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Abstract

We show that the line digraph technique, when iterated, provides
dense digraphs, that is, with asymptotically large order for a given
diameter (or with small diameter for a given order). This is a well-
known result for regular digraphs. In this note we prove that this is
also true for non-regular digraphs.
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1 Introduction

To find families of dense digraphs is an important issue in the design of
interconnection networks. Dense digraphs are strongly connected digraphs
with a relatively large number of vertices with respect to the largest order
allowed by their maximum out-degree and diameter. This is related to
the degree/diameter problem, that is, to find the largest possible number
N(d, k) of vertices in a digraph of maximum out-degree d and diameter k.
The directed Moore bound M (d, k), which is an upper bound on the order
of such a digraph, is M(d, k) = =1 if d # 1, and M(1,k) = k + 1. The
digraphs that attains the directed Moore bound are called Moore digraphs,
and they only exist for k = 1 or d = 1, that is, the directed cycles on k + 1
vertices and the complete digraphs on d + 1 vertices. For more information,
see the comprehensive survey by Miller and Siraii 18]
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We recall some basic notation and results. A digraph G = (V, E') consists
of a (finite) set V = V(G) of vertices and a set E' = E(G) of arcs (directed
edges) between vertices of G. If a = (u,v) is an arc from u to v, then vertex
u (and arc a) is adjacent to vertex v, and vertex v (and arc a) is adjacent
from v. Let GT(v) and G~ (v) denote the set of vertices adjacent from and
to vertex v, respectively. A digraph G is d-regular if |Gt (v)| = |G~ (v)| =d
forallv e V.

In the line digraph L(G) of a digraph G, each of its vertices represents
an arc of G, that is, V(L(G)) = {uwv|(u,v) € E(G)}; and vertices uv and
wz of L(G) are adjacent if and only if v = w, namely, when arc (u,v) is
adjacent to arc (w, z) in G. It can be easily seen that every vertex of L(G)
corresponds to a walk vg,v1,...,vp of length ¢ in G, where (v;_1,v;) € E
for i = 1,...,k. Then, if A is the adjacency matrix of G, the uv-entry of
the power A, denoted by al,,, is the number of f-walks from vertex u to
vertex v. Besides, the order Ny of the f-iterated line digraph Lf(G) turns
out to be Ny = j ' A*j = (j, A¥j), where j stands for the all-1 vector. In
particular, if G is a d-regular digraph with n vertices then its iterated line
digraph L*(G) is d-regular with N, = d’N vertices.

Recall also that a digraph G is strongly connected if there is a (directed)
walk between every pair of its vertices. Moreover, it is known that G is
strongly connected if and only if its line digraph L(G) is strongly connected.
If G is a digraph (different from a directed cycle) with diameter k, then its
line digraph L(G) has diameter k+ 1. From this result, it is easy to see that
for regular digraphs the iterated line digraph technique provides families
of dense digraphs. Two well-known examples of such families are the De
Bruijn [2] and Kautz digraphs [6] [7], which can be defined as iterated line
digraphs of complete symmetric digraphs with a loop on each vertex, and
complete symmetric digraphs, respectively. For both digraphs the number
of vertices is O(d¥) for a given degree d and large diameter k. Note that
this coincides with the order of the Moore bound. For more details, see Fiol,
Yebra and Alegre [4].

In this note, our aim is to show that the line digraph technique gives
digraphs with asymptotically optimal diameter (or number of vertices) also
for non-regular digraphs. Notice that, in the case of non-regular digraphs,
the Moore bound M (d, k) is not tight, since this bound is only attainable
for regular digraphs. Then, we give a new Moore bound for a digraph G in
terms of the spectral radius (namely, the largest eigenvalue) of its adjacency
matrix.

2 Main result

In our proofs, we use some results from the Perron-Frobenius theorem (see
for example Godsil [5]). That is:



Theorem 2.1. [[5], Perron-Frobenius theorem] Suppose that M is an
irreducible non-negative n x n matriz, that is, M* > O (the all-0 matriz)
for some k. Then,

(P1) The spectral radius p(M) is a positive real number, and it is a simple
eigenvalue of M, whose corresponding eigenvector can be taken to be
positive.

(P2) If N is a non-negative n x n matriz such that N < M, then p(N) <
p(M), with equality if and only in N = M.

2.1 A general upper bound for the order of a digraph

Let G = (V,E) be a (not necessarily regular) strongly connected digraph
with N = |V| vertices, |E| arcs, adjacency matrix A, and diameter k. Since
there exists a walk of length at most k between any pair of vertices, the
monic polynomial p(z) = 2¥ + 2#~1 + ... + 1 satisfies

p(A)=AF 4 A T > T, (1)

where J is the all-1 N x N matrix. Let A\g = p(A) be the spectral radius of
G. Since p(p(A)) = p(Xo) and p(J) = N, property (P2) gives
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where M (g, k) is the Moore-like bound for a digraph with eigenvalue \g # 1
and diameter k. If A\g = 1, then N = M(1,k) = k+ 1, and G is a directed
cycle. In general, notice that if the digraph is d-regular, then Ay = d and
M (Xo, k) coincides with the known bound M (d, k). Note that M (Ao, k) is
of the order of )\’5 . From , we also have

k> k(ho, N) = [logy, (Ao — DN +1)] — 1,

where k(Ag, N) represents the minimum diameter that a digraph G can have
given eigenvalue \g and order V.

Alternatively, assuming that Ay has eigenvector v which, by property
(P1), can be normalized in such a way that its minimum component, say
v1, equals 1, we can write

Nj=Jj<p(A)j <p(A)v = p(A)v,

where j is the all-1 vector. In particular, considering the first component,
we get again (2)).

In order to compare the bound with the standard Moore bound for
digraphs, Figure[I]shows a digraph on 12 vertices, with maximum out-degree
3, diameter 3, and spectral radius A9 = 1 + /2. Thus, the standard Moore
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Figure 1: A digraph with maximum out-degree 3 and A9 = 1 + v/2. The
non-directed edges represent two opposite arcs.

bound is M(3,3) = 1+ 3 + 32 + 33 = 40. In contrast, yields the much
better value N <1+ Ay + )\% + 23 =12 +8v2 ~ 23.31.

Since Moore digraphs, with order attaining M (d, k), only exist for d = 1
or k = 1, we could ask whether there exist other digraphs attaining the
‘spectral Moore bound’ M (\g, k) given in . The following lemma answers
the question in the negative.

Lemma 2.2. The only digraphs attaining the bound M (X, k) are the (reg-
ular) Moore digraphs with d = 1 (directed cycles) or k = 1 (complete sym-
metric digraphs).

Proof. From property (P2), we see that equality in , N = M(Xo, k) holds
if and only if p(A) = J. Thus, G is a Moore digraph, regular with degree
d = )\g, and eigenvector v = j. O

2.2 The iterated line digraphs

Moreover, if G is a digraph (different from a directed cycle) with diameter
k and maximum eigenvalue \g, then its (-iterated line digraph L‘(G) has
diameter ky = k+¢ (see Fiol, Yebra, and Alegre [3,[4]), maximum eigenvalue
Ao (the line digraph technique preserves all the eigenvalues, see Balbuena,
Ferrero, Marcote, and Pelayo [1]), and number of vertices

Ny = (j,A%) > (v, A') = (v, \jv) = \j||v||%,

where, now, v is normalized in such a way that its maximum component is
1. Thus, we prove the following two results concerning the number N, of
vertices and the diameter kj.

Theorem 2.3. Given a digraph G on N wvertices, with diameter k and
spectral radius Ao, let LE(G) be its C-iterated line digraph on Ny vertices,
with diameter ky and spectral radius Ag.



(a) The number Ny of vertices of L*(G) has the same order O(N§), for
¢ — o0, as its corresponding Moore bound M (Mg, N¢). More precisely,
Ne ol
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(b) The diameter k; of L*(G) has the same order O(f), for £ — oo, as the
diameter k(Xo, N¢) of the digraph corresponding to the Moore bound
M (Ao, N¢). More precisely,
ke
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Proof. (a) We compute the ratio Ny/M (Ao, k¢) when £ — oc:

lim = i
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When ¢ — oo, Ny > ”;’—,LRM()\O, k¢). Besides, Ny < M ()N, k¢), because
0

M (Ao, k¢) is an upper bound for Ny. Then, N, and M (Ao, k¢) have the

same order O(\§).

(b) We compute the ratio k¢/k(MNo, N¢) when £ — oo:

lim L = lim k£
=00 k(Xo, Ng) =00 logy, (Ao — 1)N;+ 1) — 1
k
< lim _ZE 5
=00 logy, (Ao — DA [l0]2 +1) — 1
k+¢

=1

= lim
t—o0 £ +1logy (Ao — D)lv]?) — 1

Reasoning as in (a), when ¢ — oo, we get ky < k(Aog, N¢). Besides,
k¢ > k(Xo, N¢), because k(Ag, Ny) is a lower bound for ky. Then, ky
and k(Ao, N¢) have the same order O(¥).

O

For example, the digraph of Figure has spectral radius A\g = 14+/2 with
normalized eigenvector v = )\—10(1, A—1,1,1,1, A0, Ao — 1, Ao — 1,1, A, Ao, 1),
which, for £ — oo, gives

Ng — CYM()\(), kg)

where o = [l ~ 0.3595.
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