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Abstract

We show that the line digraph technique, when iterated, provides
dense digraphs, that is, with asymptotically large order for a given
diameter (or with small diameter for a given order). This is a well-
known result for regular digraphs. In this note we prove that this is
also true for non-regular digraphs.
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1 Introduction

To find families of dense digraphs is an important issue in the design of
interconnection networks. Dense digraphs are strongly connected digraphs
with a relatively large number of vertices with respect to the largest order
allowed by their maximum out-degree and diameter. This is related to
the degree/diameter problem, that is, to find the largest possible number
N(d, k) of vertices in a digraph of maximum out-degree d and diameter k.
The directed Moore bound M(d, k), which is an upper bound on the order

of such a digraph, is M(d, k) = dk+1−1
d−1 if d 6= 1, and M(1, k) = k + 1. The

digraphs that attains the directed Moore bound are called Moore digraphs,
and they only exist for k = 1 or d = 1, that is, the directed cycles on k + 1
vertices and the complete digraphs on d+ 1 vertices. For more information,
see the comprehensive survey by Miller and Širaň [8].
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We recall some basic notation and results. A digraph G = (V,E) consists
of a (finite) set V = V (G) of vertices and a set E = E(G) of arcs (directed
edges) between vertices of G. If a = (u, v) is an arc from u to v, then vertex
u (and arc a) is adjacent to vertex v, and vertex v (and arc a) is adjacent
from v. Let G+(v) and G−(v) denote the set of vertices adjacent from and
to vertex v, respectively. A digraph G is d-regular if |G+(v)| = |G−(v)| = d
for all v ∈ V .

In the line digraph L(G) of a digraph G, each of its vertices represents
an arc of G, that is, V (L(G)) = {uv|(u, v) ∈ E(G)}; and vertices uv and
wz of L(G) are adjacent if and only if v = w, namely, when arc (u, v) is
adjacent to arc (w, z) in G. It can be easily seen that every vertex of L`(G)
corresponds to a walk v0, v1, . . . , v` of length ` in G, where (vi−1,, vi) ∈ E
for i = 1, . . . , k. Then, if A is the adjacency matrix of G, the uv-entry of
the power A`, denoted by a`uv, is the number of `-walks from vertex u to
vertex v. Besides, the order N` of the `-iterated line digraph L`(G) turns
out to be N` = j>Akj = 〈j,Akj〉, where j stands for the all-1 vector. In
particular, if G is a d-regular digraph with n vertices then its iterated line
digraph L`(G) is d-regular with N` = d`N vertices.

Recall also that a digraph G is strongly connected if there is a (directed)
walk between every pair of its vertices. Moreover, it is known that G is
strongly connected if and only if its line digraph L(G) is strongly connected.
If G is a digraph (different from a directed cycle) with diameter k, then its
line digraph L(G) has diameter k+1. From this result, it is easy to see that
for regular digraphs the iterated line digraph technique provides families
of dense digraphs. Two well-known examples of such families are the De
Bruijn [2] and Kautz digraphs [6, 7], which can be defined as iterated line
digraphs of complete symmetric digraphs with a loop on each vertex, and
complete symmetric digraphs, respectively. For both digraphs the number
of vertices is O(dk) for a given degree d and large diameter k. Note that
this coincides with the order of the Moore bound. For more details, see Fiol,
Yebra and Alegre [4].

In this note, our aim is to show that the line digraph technique gives
digraphs with asymptotically optimal diameter (or number of vertices) also
for non-regular digraphs. Notice that, in the case of non-regular digraphs,
the Moore bound M(d, k) is not tight, since this bound is only attainable
for regular digraphs. Then, we give a new Moore bound for a digraph G in
terms of the spectral radius (namely, the largest eigenvalue) of its adjacency
matrix.

2 Main result

In our proofs, we use some results from the Perron-Frobenius theorem (see
for example Godsil [5]). That is:
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Theorem 2.1. [[5], Perron-Frobenius theorem] Suppose that M is an
irreducible non-negative n × n matrix, that is, Mk > O (the all-0 matrix)
for some k. Then,

(P1) The spectral radius ρ(M) is a positive real number, and it is a simple
eigenvalue of M , whose corresponding eigenvector can be taken to be
positive.

(P2) If N is a non-negative n× n matrix such that N ≤M , then ρ(N) ≤
ρ(M), with equality if and only in N = M .

2.1 A general upper bound for the order of a digraph

Let G = (V,E) be a (not necessarily regular) strongly connected digraph
with N = |V | vertices, |E| arcs, adjacency matrix A, and diameter k. Since
there exists a walk of length at most k between any pair of vertices, the
monic polynomial p(x) = xk + xk−1 + · · ·+ 1 satisfies

p(A) = Ak + Ak−1 + · · ·+ I ≥ J , (1)

where J is the all-1 N ×N matrix. Let λ0 = ρ(A) be the spectral radius of
G. Since ρ(p(A)) = p(λ0) and ρ(J) = N , property (P2) gives

N ≤M(λ0, k) = p(λ0) = λk0 + λk−10 + · · ·+ 1 =
λk+1
0 − 1

λ0 − 1
, (2)

where M(λ0, k) is the Moore-like bound for a digraph with eigenvalue λ0 6= 1
and diameter k. If λ0 = 1, then N = M(1, k) = k + 1, and G is a directed
cycle. In general, notice that if the digraph is d-regular, then λ0 = d and
M(λ0, k) coincides with the known bound M(d, k). Note that M(λ0, k) is
of the order of λk0. From (2), we also have

k ≥ k(λ0, N) =
⌈
logλ0((λ0 − 1)N + 1)

⌉
− 1,

where k(λ0, N) represents the minimum diameter that a digraph G can have
given eigenvalue λ0 and order N .

Alternatively, assuming that λ0 has eigenvector v which, by property
(P1), can be normalized in such a way that its minimum component, say
v1, equals 1, we can write

Nj = Jj ≤ p(A)j ≤ p(A)v = p(λ0)v,

where j is the all-1 vector. In particular, considering the first component,
we get again (2).

In order to compare the bound (2) with the standard Moore bound for
digraphs, Figure 1 shows a digraph on 12 vertices, with maximum out-degree
3, diameter 3, and spectral radius λ0 = 1 +

√
2. Thus, the standard Moore
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Figure 1: A digraph with maximum out-degree 3 and λ0 = 1 +
√

2. The
non-directed edges represent two opposite arcs.

bound is M(3, 3) = 1 + 3 + 32 + 33 = 40. In contrast, (2) yields the much
better value N ≤ 1 + λ0 + λ20 + λ30 = 12 + 8

√
2 ≈ 23.31.

Since Moore digraphs, with order attaining M(d, k), only exist for d = 1
or k = 1, we could ask whether there exist other digraphs attaining the
‘spectral Moore bound’ M(λ0, k) given in (2). The following lemma answers
the question in the negative.

Lemma 2.2. The only digraphs attaining the bound M(λ0, k) are the (reg-
ular) Moore digraphs with d = 1 (directed cycles) or k = 1 (complete sym-
metric digraphs).

Proof. From property (P2), we see that equality in (2), N = M(λ0, k) holds
if and only if p(A) = J . Thus, G is a Moore digraph, regular with degree
d = λ0, and eigenvector v = j.

2.2 The iterated line digraphs

Moreover, if G is a digraph (different from a directed cycle) with diameter
k and maximum eigenvalue λ0, then its `-iterated line digraph L`(G) has
diameter k` = k+` (see Fiol, Yebra, and Alegre [3, 4]), maximum eigenvalue
λ0 (the line digraph technique preserves all the eigenvalues, see Balbuena,
Ferrero, Marcote, and Pelayo [1]), and number of vertices

N` = 〈j,A`j〉 ≥ 〈v,A`v〉 = 〈v, λ`0v〉 = λ`0‖v‖2,

where, now, v is normalized in such a way that its maximum component is
1. Thus, we prove the following two results concerning the number N` of
vertices and the diameter k`.

Theorem 2.3. Given a digraph G on N vertices, with diameter k and
spectral radius λ0, let L`(G) be its `-iterated line digraph on N` vertices,
with diameter k` and spectral radius λ0.
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(a) The number N` of vertices of L`(G) has the same order O(λ`0), for
`→∞, as its corresponding Moore bound M(λ0, N`). More precisely,

lim
`→∞

N`

M(λ0, k`)
=
‖v‖2

λk0
.

(b) The diameter k` of L
`(G) has the same order O(`), for `→∞, as the

diameter k(λ0, N`) of the digraph corresponding to the Moore bound
M(λ0, N`). More precisely,

lim
`→∞

k`
k(λ0, N`)

= 1.

Proof. (a) We compute the ratio N`/M(λ0, k`) when `→∞:

lim
`→∞

N`

M(λ0, k`)
= lim

`→∞

N`

M(λ0, k + `)

≥ lim
`→∞

λ`0‖v‖2

λk+`0 + λk+`−10 + · · ·+ 1
=
‖v‖2

λk0
.

When `→∞, N` ≥ ‖v‖
2

λk0
M(λ0, k`). Besides, N` ≤M(λ0, k`), because

M(λ0, k`) is an upper bound for N`. Then, N` and M(λ0, k`) have the
same order O(λ`0).

(b) We compute the ratio k`/k(λ0, N`) when `→∞:

lim
`→∞

k`
k(λ0, N`)

= lim
`→∞

k + `

logλ0((λ0 − 1)N` + 1)− 1

≤ lim
`→∞

k + `

logλ0((λ0 − 1)λ`0‖v‖2 + 1)− 1

= lim
`→∞

k + `

`+ logλ0((λ0 − 1)‖v‖2)− 1
= 1

Reasoning as in (a), when ` → ∞, we get k` ≤ k(λ0, N`). Besides,
k` ≥ k(λ0, N`), because k(λ0, N`) is a lower bound for k`. Then, k`
and k(λ0, N`) have the same order O(`).

For example, the digraph of Figure 1 has spectral radius λ0 = 1+
√

2 with
normalized eigenvector v = 1

λ0
(1, λ0−1, 1, 1, 1, λ0, λ0−1, λ0−1, 1, λ0, λ0, 1),

which, for `→∞, gives

N` → αM(λ0, k`)

where α = ‖v‖2
λ30
≈ 0.3595.
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