Iterated line digraphs are asymptotically dense *

C. Dalfó
Dept. de Matemàtica, Universitat Politècnica de Catalunya, Barcelona, Catalonia
cristina.dalfo@upc.edu

[

Abstract

We show that the line digraph technique, when iterated, provides dense digraphs, that is, with asymptotically large order for a given diameter (or with small diameter for a given order). This is a wellknown result for regular digraphs. In this note we prove that this is also true for non-regular digraphs.

Keywords: Line digraph, Moore digraph, degree/diameter problem. MSC: 05C50, 05C20, 05C35.

1 Introduction

To find families of dense digraphs is an important issue in the design of interconnection networks. Dense digraphs are strongly connected digraphs with a relatively large number of vertices with respect to the largest order allowed by their maximum out-degree and diameter. This is related to the degree/diameter problem, that is, to find the largest possible number $N(d, k)$ of vertices in a digraph of maximum out-degree d and diameter k. The directed Moore bound $M(d, k)$, which is an upper bound on the order of such a digraph, is $M(d, k)=\frac{d^{k+1}-1}{d-1}$ if $d \neq 1$, and $M(1, k)=k+1$. The digraphs that attains the directed Moore bound are called Moore digraphs, and they only exist for $k=1$ or $d=1$, that is, the directed cycles on $k+1$ vertices and the complete digraphs on $d+1$ vertices. For more information, see the comprehensive survey by Miller and Širaň [8].

[^0]We recall some basic notation and results. A digraph $G=(V, E)$ consists of a (finite) set $V=V(G)$ of vertices and a set $E=E(G)$ of arcs (directed edges) between vertices of G. If $a=(u, v)$ is an arc from u to v, then vertex u (and arc a) is adjacent to vertex v, and vertex v (and arc a) is adjacent from v. Let $G^{+}(v)$ and $G^{-}(v)$ denote the set of vertices adjacent from and to vertex v, respectively. A digraph G is d-regular if $\left|G^{+}(v)\right|=\left|G^{-}(v)\right|=d$ for all $v \in V$.

In the line digraph $L(G)$ of a digraph G, each of its vertices represents an arc of G, that is, $V(L(G))=\{u v \mid(u, v) \in E(G)\}$; and vertices $u v$ and $w z$ of $L(G)$ are adjacent if and only if $v=w$, namely, when $\operatorname{arc}(u, v)$ is adjacent to $\operatorname{arc}(w, z)$ in G. It can be easily seen that every vertex of $L^{\ell}(G)$ corresponds to a walk $v_{0}, v_{1}, \ldots, v_{\ell}$ of length ℓ in G, where $\left(v_{i-1,}, v_{i}\right) \in E$ for $i=1, \ldots, k$. Then, if \boldsymbol{A} is the adjacency matrix of G, the $u v$-entry of the power \boldsymbol{A}^{ℓ}, denoted by $a_{u v}^{\ell}$, is the number of ℓ-walks from vertex u to vertex v. Besides, the order N_{ℓ} of the ℓ-iterated line digraph $L^{\ell}(G)$ turns out to be $N_{\ell}=\boldsymbol{j}^{\top} \boldsymbol{A}^{k} \boldsymbol{j}=\left\langle\boldsymbol{j}, \boldsymbol{A}^{k} \boldsymbol{j}\right\rangle$, where \boldsymbol{j} stands for the all-1 vector. In particular, if G is a d-regular digraph with n vertices then its iterated line digraph $L^{\ell}(G)$ is d-regular with $N_{\ell}=d^{\ell} N$ vertices.

Recall also that a digraph G is strongly connected if there is a (directed) walk between every pair of its vertices. Moreover, it is known that G is strongly connected if and only if its line digraph $L(G)$ is strongly connected. If G is a digraph (different from a directed cycle) with diameter k, then its line digraph $L(G)$ has diameter $k+1$. From this result, it is easy to see that for regular digraphs the iterated line digraph technique provides families of dense digraphs. Two well-known examples of such families are the De Bruijn [2] and Kautz digraphs [6, 7], which can be defined as iterated line digraphs of complete symmetric digraphs with a loop on each vertex, and complete symmetric digraphs, respectively. For both digraphs the number of vertices is $O\left(d^{k}\right)$ for a given degree d and large diameter k. Note that this coincides with the order of the Moore bound. For more details, see Fiol, Yebra and Alegre (4).

In this note, our aim is to show that the line digraph technique gives digraphs with asymptotically optimal diameter (or number of vertices) also for non-regular digraphs. Notice that, in the case of non-regular digraphs, the Moore bound $M(d, k)$ is not tight, since this bound is only attainable for regular digraphs. Then, we give a new Moore bound for a digraph G in terms of the spectral radius (namely, the largest eigenvalue) of its adjacency matrix.

2 Main result

In our proofs, we use some results from the Perron-Frobenius theorem (see for example Godsil [5]). That is:

Theorem 2.1. [[5], Perron-Frobenius theorem] Suppose that \boldsymbol{M} is an irreducible non-negative $n \times n$ matrix, that $i s, \boldsymbol{M}^{k}>\boldsymbol{O}$ (the all-0 matrix) for some k. Then,
(P1) The spectral radius $\rho(\boldsymbol{M})$ is a positive real number, and it is a simple eigenvalue of \boldsymbol{M}, whose corresponding eigenvector can be taken to be positive.
(P2) If \boldsymbol{N} is a non-negative $n \times n$ matrix such that $\boldsymbol{N} \leq \boldsymbol{M}$, then $\rho(\boldsymbol{N}) \leq$ $\rho(\boldsymbol{M})$, with equality if and only in $\boldsymbol{N}=\boldsymbol{M}$.

2.1 A general upper bound for the order of a digraph

Let $G=(V, E)$ be a (not necessarily regular) strongly connected digraph with $N=|V|$ vertices, $|E|$ arcs, adjacency matrix \boldsymbol{A}, and diameter k. Since there exists a walk of length at most k between any pair of vertices, the monic polynomial $p(x)=x^{k}+x^{k-1}+\cdots+1$ satisfies

$$
\begin{equation*}
p(\boldsymbol{A})=\boldsymbol{A}^{k}+\boldsymbol{A}^{k-1}+\cdots+\boldsymbol{I} \geq \boldsymbol{J} \tag{1}
\end{equation*}
$$

where \boldsymbol{J} is the all-1 $N \times N$ matrix. Let $\lambda_{0}=\rho(\boldsymbol{A})$ be the spectral radius of G. Since $\rho(p(\boldsymbol{A}))=p\left(\lambda_{0}\right)$ and $\rho(\boldsymbol{J})=N$, property $(P 2)$ gives

$$
\begin{equation*}
N \leq M\left(\lambda_{0}, k\right)=p\left(\lambda_{0}\right)=\lambda_{0}^{k}+\lambda_{0}^{k-1}+\cdots+1=\frac{\lambda_{0}^{k+1}-1}{\lambda_{0}-1} \tag{2}
\end{equation*}
$$

where $M\left(\lambda_{0}, k\right)$ is the Moore-like bound for a digraph with eigenvalue $\lambda_{0} \neq 1$ and diameter k. If $\lambda_{0}=1$, then $N=M(1, k)=k+1$, and G is a directed cycle. In general, notice that if the digraph is d-regular, then $\lambda_{0}=d$ and $M\left(\lambda_{0}, k\right)$ coincides with the known bound $M(d, k)$. Note that $M\left(\lambda_{0}, k\right)$ is of the order of λ_{0}^{k}. From (2), we also have

$$
k \geq k\left(\lambda_{0}, N\right)=\left\lceil\log _{\lambda_{0}}\left(\left(\lambda_{0}-1\right) N+1\right)\right\rceil-1
$$

where $k\left(\lambda_{0}, N\right)$ represents the minimum diameter that a digraph G can have given eigenvalue λ_{0} and order N.

Alternatively, assuming that λ_{0} has eigenvector \boldsymbol{v} which, by property $(P 1)$, can be normalized in such a way that its minimum component, say v_{1}, equals 1 , we can write

$$
N \boldsymbol{j}=\boldsymbol{J} \boldsymbol{j} \leq p(\boldsymbol{A}) \boldsymbol{j} \leq p(\boldsymbol{A}) \boldsymbol{v}=p\left(\lambda_{0}\right) \boldsymbol{v}
$$

where \boldsymbol{j} is the all- 1 vector. In particular, considering the first component, we get again (2).

In order to compare the bound (2) with the standard Moore bound for digraphs, Figure 1 shows a digraph on 12 vertices, with maximum out-degree 3 , diameter 3 , and spectral radius $\lambda_{0}=1+\sqrt{2}$. Thus, the standard Moore

Figure 1: A digraph with maximum out-degree 3 and $\lambda_{0}=1+\sqrt{2}$. The non-directed edges represent two opposite arcs.
bound is $M(3,3)=1+3+3^{2}+3^{3}=40$. In contrast, (2) yields the much better value $N \leq 1+\lambda_{0}+\lambda_{0}^{2}+\lambda_{0}^{3}=12+8 \sqrt{2} \approx 23.31$.

Since Moore digraphs, with order attaining $M(d, k)$, only exist for $d=1$ or $k=1$, we could ask whether there exist other digraphs attaining the 'spectral Moore bound' $M\left(\lambda_{0}, k\right)$ given in (2). The following lemma answers the question in the negative.

Lemma 2.2. The only digraphs attaining the bound $M\left(\lambda_{0}, k\right)$ are the (regular) Moore digraphs with $d=1$ (directed cycles) or $k=1$ (complete symmetric digraphs).

Proof. From property ($P 2$), we see that equality in (2), $N=M\left(\lambda_{0}, k\right)$ holds if and only if $p(\boldsymbol{A})=\boldsymbol{J}$. Thus, G is a Moore digraph, regular with degree $d=\lambda_{0}$, and eigenvector $\boldsymbol{v}=\boldsymbol{j}$.

2.2 The iterated line digraphs

Moreover, if G is a digraph (different from a directed cycle) with diameter k and maximum eigenvalue λ_{0}, then its ℓ-iterated line digraph $L^{\ell}(G)$ has diameter $k_{\ell}=k+\ell$ (see Fiol, Yebra, and Alegre [3, 4]), maximum eigenvalue λ_{0} (the line digraph technique preserves all the eigenvalues, see Balbuena, Ferrero, Marcote, and Pelayo [1]), and number of vertices

$$
N_{\ell}=\left\langle\boldsymbol{j}, \boldsymbol{A}^{\ell} \boldsymbol{j}\right\rangle \geq\left\langle\boldsymbol{v}, \boldsymbol{A}^{\ell} \boldsymbol{v}\right\rangle=\left\langle\boldsymbol{v}, \lambda_{0}^{\ell} \boldsymbol{v}\right\rangle=\lambda_{0}^{\ell}\|\boldsymbol{v}\|^{2}
$$

where, now, \boldsymbol{v} is normalized in such a way that its maximum component is 1. Thus, we prove the following two results concerning the number N_{ℓ} of vertices and the diameter k_{ℓ}.

Theorem 2.3. Given a digraph G on N vertices, with diameter k and spectral radius λ_{0}, let $L^{\ell}(G)$ be its ℓ-iterated line digraph on N_{ℓ} vertices, with diameter k_{ℓ} and spectral radius λ_{0}.
(a) The number N_{ℓ} of vertices of $L^{\ell}(G)$ has the same order $O\left(\lambda_{0}^{\ell}\right)$, for $\ell \rightarrow \infty$, as its corresponding Moore bound $M\left(\lambda_{0}, N_{\ell}\right)$. More precisely,

$$
\lim _{\ell \rightarrow \infty} \frac{N_{\ell}}{M\left(\lambda_{0}, k_{\ell}\right)}=\frac{\|\boldsymbol{v}\|^{2}}{\lambda_{0}^{k}}
$$

(b) The diameter k_{ℓ} of $L^{\ell}(G)$ has the same order $O(\ell)$, for $\ell \rightarrow \infty$, as the diameter $k\left(\lambda_{0}, N_{\ell}\right)$ of the digraph corresponding to the Moore bound $M\left(\lambda_{0}, N_{\ell}\right)$. More precisely,

$$
\lim _{\ell \rightarrow \infty} \frac{k_{\ell}}{k\left(\lambda_{0}, N_{\ell}\right)}=1
$$

Proof. (a) We compute the ratio $N_{\ell} / M\left(\lambda_{0}, k_{\ell}\right)$ when $\ell \rightarrow \infty$:

$$
\begin{aligned}
& \lim _{\ell \rightarrow \infty} \frac{N_{\ell}}{M\left(\lambda_{0}, k_{\ell}\right)}=\lim _{\ell \rightarrow \infty} \frac{N_{\ell}}{M\left(\lambda_{0}, k+\ell\right)} \\
& \geq \lim _{\ell \rightarrow \infty} \frac{\lambda_{0}^{\ell}\|\boldsymbol{v}\|^{2}}{\lambda_{0}^{k+\ell}+\lambda_{0}^{k+\ell-1}+\cdots+1}=\frac{\|\boldsymbol{v}\|^{2}}{\lambda_{0}^{k}}
\end{aligned}
$$

When $\ell \rightarrow \infty, N_{\ell} \geq \frac{\|\boldsymbol{v}\|^{2}}{\lambda_{0}^{k}} M\left(\lambda_{0}, k_{\ell}\right)$. Besides, $N_{\ell} \leq M\left(\lambda_{0}, k_{\ell}\right)$, because $M\left(\lambda_{0}, k_{\ell}\right)$ is an upper bound for N_{ℓ}. Then, N_{ℓ} and $M\left(\lambda_{0}, k_{\ell}\right)$ have the same order $O\left(\lambda_{0}^{\ell}\right)$.
(b) We compute the ratio $k_{\ell} / k\left(\lambda_{0}, N_{\ell}\right)$ when $\ell \rightarrow \infty$:

$$
\begin{aligned}
& \lim _{\ell \rightarrow \infty} \frac{k_{\ell}}{k\left(\lambda_{0}, N_{\ell}\right)}=\lim _{\ell \rightarrow \infty} \frac{k+\ell}{\log _{\lambda_{0}}\left(\left(\lambda_{0}-1\right) N_{\ell}+1\right)-1} \\
& \leq \lim _{\ell \rightarrow \infty} \frac{k+\ell}{\log _{\lambda_{0}}\left(\left(\lambda_{0}-1\right) \lambda_{0}^{\ell}\|\boldsymbol{v}\|^{2}+1\right)-1} \\
& =\lim _{\ell \rightarrow \infty} \frac{k+\ell}{\ell+\log _{\lambda_{0}}\left(\left(\lambda_{0}-1\right)\|\boldsymbol{v}\|^{2}\right)-1}=1
\end{aligned}
$$

Reasoning as in (a), when $\ell \rightarrow \infty$, we get $k_{\ell} \leq k\left(\lambda_{0}, N_{\ell}\right)$. Besides, $k_{\ell} \geq k\left(\lambda_{0}, N_{\ell}\right)$, because $k\left(\lambda_{0}, N_{\ell}\right)$ is a lower bound for k_{ℓ}. Then, k_{ℓ} and $k\left(\lambda_{0}, N_{\ell}\right)$ have the same order $O(\ell)$.

For example, the digraph of Figure 1 has spectral radius $\lambda_{0}=1+\sqrt{2}$ with normalized eigenvector $\boldsymbol{v}=\frac{1}{\lambda_{0}}\left(1, \lambda_{0}-1,1,1,1, \lambda_{0}, \lambda_{0}-1, \lambda_{0}-1,1, \lambda_{0}, \lambda_{0}, 1\right)$, which, for $\ell \rightarrow \infty$, gives

$$
N_{\ell} \rightarrow \alpha M\left(\lambda_{0}, k_{\ell}\right)
$$

where $\alpha=\frac{\|\boldsymbol{v}\|^{2}}{\lambda_{0}^{3}} \approx 0.3595$.

References

[1] C. Balbuena, D. Ferrero, X. Marcote, and I. Pelayo, Algebraic properties of a digraph and its line digraph, J. Interconnection Networks 04 (2003), no. 4, 377-393.
[2] N. G. de Bruijn, A combinatorial problem, Koninklijke Nederlandse Akademie van Wetenschappen Proc. A49 (1946) 758-764.
[3] M. A. Fiol, J. L. A. Yebra, and I. Alegre, Line digraph iterations and the (d, k) problem for directed graphs, Proc. 10th Int. Symp. Comput. Arch., Stockholm (1983) 174-177.
[4] M. A. Fiol, J. L. A. Yebra, and I. Alegre, Line digraph iterations and the (d,k) digraph problem, IEEE Trans. Comput. C-33 (1984) 400-403.
[5] C. Godsil, Algebraic combinatorics, Chapman and Hall, New York, 1993.
[6] W. H. Kautz, Bounds on directed (d, k) graphs, in Theory of Cellular Logic Networks and Machines, AFCRL-68-0668 Final Rep., 1968, 2028.
[7] W. H. Kautz, Design of optimal interconnection networks for multiprocessors, in Architecture and Design of Digital Computers, Nato Advanced Summer Institute, 1969, 249-272.
[8] M. Miller, J. Širáň, Moore graphs and beyond: A survey of the degree/diameter problem, Electron. J. Combin 20(2) (2013) \#DS14v2.

[^0]: ${ }^{*}$ This research is supported by projects MINECO MTM2014-60127-P, and 2014 SGR1147 of the Catalan Government.

 This research has also received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 734922.

