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Abstract

This thesis deals with the study of current charging infrastructure availability in high-

ways, as well as proposing optimal allocations for new stations. First, a Machine

Learning model is trained in order to estimate the actual range of an electric vehicle.

This model will be constructed using heterogeneous data sources and variables that

influence the total autonomy, such as speed, temperature, degradation or elevation,

among others. Second, this model is used in combination with geospatial data re-

garding French highway and charging infrastructure locations, in order to propose a

methodology for analyzing the availability level of charging stations in highways for

electric vehicles. Finally, an optimization framework is implemented to decide the

opening of several charging stations inside a highway, providing as possible locations

rest and service areas already built, and considering current highway operational

charging points.

Keywords: Electric vehicle, charging infrastructure, range estimation, facility location

problem.
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Chapter 1

Introduction

1.1 Context

Despite being at a relatively embryonic stage in terms of market penetration, Electric

Vehicles (EV) present important benefits respect the Internal Combustion Engine (ICE)

vehicles. The main advantages are in terms of reduction of greenhouse gas emissions

in transportation, as well as improvements in air quality and reductions in noise

pollution. Other potential benefits involve providing flexibility to the power system

by vehicle-to-grid (V2G) , and therefore contributing to the integration of renewable

energy. However, several challenges remain unsolved, and as a consequence EV is far

from being chosen as the first choice by users.

The low number of charging infrastructures is one of the main problems, even though

there exists a growing exponential trend since 2010, as shown in Figure 1. In addition to

this problem, there exists a problem of standardization, including charging protocols,

plug designs and billing systems. In fact, even within many European countries,

various networks with proprietary identification and billing systems have emerged

that do not yet allow EV drivers to roam between these networks. The diversity and

incompatibility among these networks makes that EV owners can not use the full

potential of EVs and that cross-border trips are virtually impossible [1].
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1.1. Context

Figure 1: Evolution of the total number of EV charging positions in Europe. Source: [2]

What is more, the reduced autonomy of the EV respect to the ICE in terms of total

range, makes more essential stations to stop and recharge the batteries. Both the

number of available charging points and the EV range influence what it is defined as

range anxiety, which can be described as the anxiety felt by many drivers about the

remaining driving range their vehicle can run before the next charge. For this reasons,

the electric vehicle has been positioned as a city car, primarily used in urban areas,

although some manufacturers like Tesla Motors have cars that can reach up to 540 km.

On the other hand, data-driven strategies have come into view recently as they have

the advantage of being economic and realistic comparing to traditional improvement

on charging infrastructure and battery technologies, thanks to the dropping price of

deploying Internet of Things (IoT). The increasing amount of sensory data can be gath-

ered from in-vehicle networks and transmitted to the Cloud, where Machine Learning

(ML) algorithms can be applied to useful applications such as range prediction, smart

route planning, finding the nearest empty charging station or recommendations on

energy harvesting.

In terms of sold units, the year 2015 saw the global threshold of 1 million electric cars

on the road exceeded, closing at 1.26 million. This symbolic achievement highlights

the efforts deployed jointly by governments and industry over the past ten years. In

2014, only about half of today’s electric car stock existed. In 2005, electric cars were

still measured in hundreds [3].
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Chapter 1. Introduction

1.2 Objectives

The analysis performed on the optimal location of charging infrastructures for electric

vehicles in highways respond to the following objectives, each of them presented in

different chapters:

• Model a electric vehicle range estimator: Construct a Machine Learning model

using different data sources to predict the actual range of an electric vehicle.

This model will be used in posterior analysis to study the availability of charging

infrastructure in French highways.

• Propose a methodology for analysing the availability of charging infrastruc-

ture in highways: Considering geospatial data from a given highway, and its

nearest charging points, deploy a method in order to study the degree of electric

vehicle penetration in highways. The obtained results can be used to decide

whether or not it is necessary to invest in new charging points for a given motor-

way.

• Construct a Location model of charging infrastructure in highways: Build

a model to find the optimal allocation of EV fast-charge charging points in

highways, taking into account the availability study, the existing infrastructure

and possible locations such as rest and service areas within the highway. The

result should offer a grid that prevents a driver running out of battery, and at the

same time reducing the number of points needed.

As a secondary objectives, state-of-the-art of EV applications used for facilitating the

usage of electric vehicles will be revised, as well as the collection and integration of

various data sources in order to conduct the described objectives.
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Chapter 2

Background

In this chapter, electric vehicles (EV) and EV charging infrastructure are described as

being the main features to consider for modelling the location of new infrastructures,

as well as constructing a model capable of predicting the actual range of a vehicle

given certain initial trip conditions. This chapter is structured as follows: first, the

electric mobility, including EVs and charging infrastructure, is analyzed. The second

section consists of a study of current state-of-the-art in range estimation is presented.

The chapter ends with an analysis of current studies for locating new charging points

in highways.

2.1 Electric Mobility

This section encompasses the main aspects of electric mobility, including electric

vehicles, batteries for electric vehicles, data transmission approaches in this area,

charging modes and finally charging infrastructure in France.

2.1.1 Electric Vehicles

Although the electric vehicle is considered a current concept, the first models emerged

in the mid-nineteenth century. What is more, the EV appeared first rather than the
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Chapter 2. Background

conventional thermal vehicles, powered by internal combustion engines (ICE). Ac-

cording to [5], the first prototype was designed in 1835 at the hands of the Dutchman

Sibrandus Stratingh. However, in the beginnings of XX century the ICE vehicle pre-

vailed against the EV with improvements such as Ford cost reduction and limited

access of electricity.

Figure 2: Thomas Parker Electric Car, 1880s. Source: [6]

This type of cars are powered by an electric motor, which converts battery electricity

into kinetic motion. Essentially, this engine is composed by a fixed part, where the

magnetic field is produced, and the rotor, a mobile component which moves within

the induced magnetic field. Through this exchange of the two magnetic elements, the

rotor begins to move. This movement is finally connected to the transmission system

in order to transfer the movement to the wheels.

The advantages of this engine compared to the conventional internal combustion

engine (ICE) can be summarized in three aspects: Recovery, efficiency and greenhouse

gas reduction. First, recovery due to it can be used as a motor and also as a generator,

allowing systems such as braking energy recovery. Regarding the efficiency, electric

motors have a performance of between 93-99%, exceeding three or four times the ICE

[4]. However, this rate of efficiency does not take into account that ICE takes energy

from a primary energy source, whereas the electricity from the battery is obtained by

national electric grids, i.e. it is generated in Power plants. Therefore, the conversion

efficiency varies according to the type of central. Finally, EV emissions are given by
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2.1. Electric Mobility

how this electricity was generated: renewable energy provides a zero-emission type,

whereas thermal centrals have its own rate of emissions given the type of fuel.

The electric vehicle can be classified in three main groups: hybrids, plug-in hybrids

and battery electric vehicles. It is important to note that this project is focused on the

thrid type, Battery Electric Vehicles, henceforth EVs.

• Hybrid Electric Vehicles (HEVs): Powered by both petrol and electricity, even

though the ICE is the principal engine. The electric part is only powered by

systems such as regenerative brakings.

• Plug-in Hybrid Electric Vehicles (PHEVs): It is a subtype of HEVs, but with two

main differences: PHEVs have a higher autonomy than conventional HEVs,

and more interesting, it is possible to plug them and charge the battery. The

principal engine in this case is the electric

• Battery Electric Vehicles (BEVs): Full electric cars, only powered by electricity.

The disadvantage of this type of electric vehicles is its total range, significantly

slower than the hybrid approach.

According to the International Energy Agency (IEA), the future prospects show a

greater adaptation of the hybrid vehicles rather than BEVs in a scenario of short and

medium term. Starting in the year 2030 sales of electric vehicles, with fuel cells and

plug-in hybrids will be fired and will replace the ICE cars in 2045, as it is presented in

Figure 3.

Figure 3: Future prospective of sales for different vehicle types. Source: [7]
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Chapter 2. Background

The keys aspects to achieve these objectives include the following points:

• The cost and energy density of the batteries should decrease significantly for

making the EV technology competitive against conventional ICE cars.

• Fundamental regulatory support in two areas: provision of adequate and stan-

dardized charge infrastructure; and assure a competitive cost of EVs versus

internal combustion via financial aids.

• Collaboration of the involved stakeholders in order to accelerate VE implemen-

tation: industry and governments must work together on research, regulatory

and adaptation programs to the grid infrastructure.

Finally, Table 1 presents a comparison between popular full electric vehicles currently

available in the market. The range is indicative, as it can be influenced by a multitude

of parameters (see section 2.2).

Table 1: Comparison between battery technologies. Sources: Vehicle manufacturers

Battery type Capacity Power Top speed Range
[kWh] [kW] [km/h] [km]

BMW i3 Lithium-ion 19 125 150 190
Citroen C-Zero Lithium-ion 16 49 130 150
Mitsubishi i-MiEV Lithium-ion 16 49 130 170
Nissan Leaf Lithium-ion 30 80 150 200
Renault Fluence Z.E. Lithium-ion 22 70 135 175
Renault Twizy Lithium-ion 6.1 4 45 100
Tesla Model S 60 Lithium-ion 60 225 193 335
Tesla Model S 85 Lithium-ion 85 225 225 426
Th!nk City ZEBRA 24 37 110 160

There is a clear difference between the models, as it is also in the prices. Some electric

vehicles are designed to a city-level usage, as Renault Twizy, whereas on the other

hand we can find the Tesla Model S, which can compete with ICE cars in terms of

speed and range. However, this has a price: at the time of writing this thesis, the price

of a Tesla Model S with 85 kWh battery pack is around 80000eand 120000e[13].
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2.1. Electric Mobility

2.1.2 Electric Vehicle Batteries

The battery of the electric vehicle is possibly the most important component, in terms

of functionality and cost. Its aim is to provide electricity to the mechanical engine. Lots

of efforts are being made in order to reduce the energy density (Wh/kg) and energy

density by volume (Wh/l), in order to fit the maximum energy in the minimum space

and weight. The batteries also play an important role in terms of EV integration in the

power systems, as it can be used to both store and provide energy to the electric grid

with the objective of flatting the energy curve. This procedure is called vehicle-to-grid,

also known as V2G [8].

Batteries are classified according to their chemical composition. The following list

collects the features that differentiate the most outstanding battery types

• Lead-acid: Typical batteries from ICE cars. The advantages over other batteries

are its large-scale industrial production, becoming a mature technology used

more than 50 years ago, and its low cost. In contrast, it has problems such as not

accepting discharges of more than 20% of its capacity without being affected

its life cycle. It also has a low energy and power density due to the weight of the

lead, besides being corrosive for the environment [9].

• Lithium-ion: Most used type in EVs. This type presents higher performance

and better future prospects for EVs. They have a high energy density, good

performance at high temperatures, have low self-discharge and are recyclable.

In addition, they have a very low memory effect and a considerable power

density with good life cycle. The main drawback of this type of battery is its

price per kWh [9].

• Nickel metal hydride (Ni-MH): It has twice the energy density than lead-acid

and its components do not harm the environment. It also stands out for its high

life cycle, the possibility of recycling, a high operating temperature range and

resistance to loading/unloading. On the other hand, repeated discharge of high

current reduces its life cycle and if it works discharging more than 20-50% loses

capacity. Another negative aspect is its memory effect, which over time causes

the battery not to reach 100% state of charge. [10]
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Chapter 2. Background

• Molten salt (ZEBRA): Relatively mature technology with a higher energy density

than lead acid and Ni-MH. They have a high life cycle, have no memory effect

and are not polluting. The main disadvantage is its average operating tempera-

ture, which is around 250ºC, having to isolate the system and always be charging

or running to maintain the temperature [11].

The main characteristics of the described battery technologies are presented in Table

2.

Table 2: Comparison between battery technologies. Sources: [4], [12]

Lead-acid Lithium-ion Ni-MH Molten salt
Energy Density [Wh/kg] 20-50 80 110 100-120
Power density [W/kg] 80-100 200-1300 500 110-115
Operational Temperature [ºC] -10 to 40 -20 to 60 -20 to 60 >240
Life cycle 700-800 2000 >2000 >600
Cost ($/kWh) 50-150 200 250 [12] 200

2.1.3 Electric Vehicle Data transmission

Data transmission is one of the key features for EV industry. Just to give an example,

Intel’s proposed $15.3 billion acquisition of Mobileye, an Israeli company that supplies

car manufacturers with a computer-vision technology and advanced driver assistance

systems. It uses a single camera, together with a proprietary computer chip and some

clever software, to provide various advanced driver assistance features. Its systems

can, for example, identify the speed limit from road signs, or identify vehicles and

pedestrians for an automatic braking system [14].

At this moment, it is difficult to obtain vehicle variables such as the State Of Charge,

SOC [%], and other real time data directly from the vehicle. A typical workaround

is to physically connect with the CAN bus of the vehicle, but it is impracticable for

inexperienced users. Several studies are based on monitoring a set of electric vehicles,

as the one presented by Pavel Brandstetter et al. [19], or the performance analysis

conducted by this author and CITCEA university group [18].

9



2.1. Electric Mobility

On the other hand, some car manufacturers such as Volkswagen offer their own private

applications to obtain these type of data. The following list illustrates the different

methods that the manufacturers are applying at this time:

• Volkswagen: Data transmission technology is called Car-Net, and it allows to

inform about current SOC, real time traffic information and to search for interest

places (restaurants, charging stations, etc.) [15].

• Tesla Motors: Their users have the Tesla unofficial Mobile API, with its own

Github repository provided by Tim Dorr. It features functionality to monitor

and control the car remotely. It consists of three main categories: Login/ Au-

thentication module, Vehicle List and Information, and Vehicle Command. You

can also relatively easily retrieve various settings and the status of the user’s

vehicle, including the charge state of the car, climate settings, the vehicle state,

the driving and position features and finally it provides mobile access. However,

the company does not claim this API as official [16], [17].

• Ford: MyFord mobile app, launched for hybrid vehicles, it supports the C-MAX

Enrgi together with Fusion Energi hybrid cars. More features have been added

to find charging stations, and can be used in combination with PlugShare. Data

from Plug Share shows the station’s status, like if it is free (currently not being

used), the chargers at the charging station and the type of charger used there.

The driver may also search various places of interests like restaurants, shopping

malls or even gymnasiums using the MyFord app.

• BMW: The BMW i Remote App for iOS and Android, it shows you detailed

information on the current status of your BMW i – e.g. car location, range, and

battery charge. It is compatible with the BMW i3 and i8.

• Nissan Leaf: The Nissan LEAF app is designed to help in the management of

Leaf vehicle and control many most features directly from the smartphone.

• Audi: Audi A3 e-tron Connect App connect services specially developed for the

e-tron that enable the user to call up specific information and manage individual

functions via smartphone and web portal. Using a smartphone app and the A3

e-tron platform, data on the vehicle status can be called up on aspects such as

the current level of charge.

• Toyota: Toyota Entune App is a collection of popular mobile apps and in-car

10



Chapter 2. Background

data services accessible from a Toyota EV. These services are delivered via most

smartphones using hands-free Bluetooth 9 and a cellular data connection.

2.1.4 Charge Modes

The process of charging EVs is one of the properties that most condition their develop-

ment. Firstly, the time to charge the battery depends directly on the charging power,

and it takes usually several hours if it is charged with standard household outlets. This

fact is far from the few minutes that the ICE cars takes to fill the fuel tank. On the

other hand, there are few fast charging points at this time. It is therefore necessary

to develop a rapid charging mode that allows the waiting time and an investment in

infrastructure to be used to boost the purchase of EVs. The most common way to

charge the batteries is to connect the vehicle to the mains. However, loading methods

are not fully standardized and therefore there are several options for loading vehicles.

There are four modes of charging technology, described in the IEC 61851. Each of

them involve different combinations of power supplied by the electric grid, the plug

types and the electric mode used: Direct current (DC) or Alternating current (AC).

Note that batteries work with DC, therefore the owners may use a on-board AC/DC

converter or a converter integrated into the charging point itself. The power level (kW)

of the charging infrastructure depends on both the voltage and the maximum current

of the power supply. The power level of charging points ranges widely, from 3.3 kW to

120 kW. Lower power levels are typical of residential charging points [20], [21], [1].

• Mode 1 (Slow charging): Charge using conventional household sockets and

cables, with AC current. Commonly found in domestic and office buildings.

• Mode 2 (Slow or semi-fast charging): Again, it uses non-dedicated sockets with

AC current. The difference lies in a special charging cable provided by the car

manufacturer, with a protection device for electrical installations.

• Mode 3 (Slow, semi-fast or fast charging): Also in AC current, but this mode

uses a special socket and a dedicated circuit which allows charging at higher

power levels, and ensures safe operation. It is typically found in stand-alone

poles in public locations. The slow mode 3 includes supply power from 2.3 to

3.6 kW, the semi-fast at 22 kW and 32 A, and the fast with 43 kW and 63 A.

11
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• Mode 4 (Fast charging): This is the unique mode with direct current, DC. An

AC/DC converter is located in the charging equipment, instead of inside the

vehicle as for the other levels. The only drawback of this method is that it has

lower efficiency, due to the double conversion DC/AC/DC. The supply power is

typically equal or higher than 50 kW.

Just to give some numbers, charging 100 km with mode 4 and power supply of 120 kW

will took around 10 minutes, whereas a power supply of 50 kW will account for 20-30

minutes. Using the other modes in AC current, the time can be increased to 6-8 hours

for household sockets (3.3 kW), and 1-2 hours with public stations (22 kW) [20].

2.1.5 Charging Infrastructure in France

One of the keys to success for EV is to ensure user confidence in their driving range

and safety. Reliable charging infrastructure that is backed by a national installation

strategy is required to ensure sufficient driving range. France is planning to deploy

this infrastructure in all sectors of daily life, in particular for the following groups [22]:

• Enterprises: Charging infrastructure will be installed for captive fleets of plug-in

vehicles, such as corporate fleets. The possibility of “plug-in benefits” will be

considered, such as allowing employees to recharge their personal or company

cars at their place of work with low or no cost. Added power demand for charging

would be managed.

• Public domain: Plug-in vehicles and charging infrastructure will also be de-

ployed in public areas, such as roadways and public parking garages. Suitable

options for use are being developed, such as shared vehicles and vehicles on

demand.

• Residential sector: Plug-in vehicles and charging infrastructure will be made

available to individual users, with or without vehicle ownership.

As of January 2016, France vehicle fleet was composed by 57.2% of passenger vehicles

had diesel engines and 38.6% had gasoline engines. By the end of 2015, France was

second behind Norway in Europe in registration of hybrid and electric passenger

vehicles. The market share for plug-in hybrid electric passenger vehicles reached
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3.3% (of which 0.3% are rechargeable), and 0.9% for fully electric vehicles. This is an

increase of 27% compared to 2013. Regarding the vehicle manufacturers, in 2015 the

Renault ZOE has a 60.4% of market share, the second position is for Nissan Leaf, with

12.9% of market share. Tesla has around 4.3% of market share [23].

Figure 4: French charging infrastructure by charge type. Source: [25]

About charging infrastructure, the French government’s objective is to reach 7 million

charging points for hybrid and electric vehicles by 2030. Individuals who install

a charging station at home will benefit from a 30% tax rebate. Table 3 shows the

percentage of charging stations by location, according to ChargeMap.

According to European Alternative Fuel Obsevatory, there are actually 14.800 charging

stations in France, where 1.543 of them are considered as high power (>22kW) [2].

However, it is not easy to have access about the current coordinates of these points.
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2.2. Electric Vehicle Range Estimation

Table 3: Breakdown of Charging Stations by Location. Source: [24]

Location Relative frequency
Parking 23.4%
Road 23.0 %
Car Dealership 12.0 %
Home 11.1 %
Shop 9.4 %
Hotel 5.6 %
Company 4.7%
Fuel Station 2.7 %
Train Station 1.5%
City Hall 1.8%
Restaurant 1.2%
Others 4.1%

As it will be explained in section 3.1.3, OpenChargeMap [25] is used to gather this

information. Figure 4 shows the location of the obtained infrastructure, also with the

different modes of charge. Notice the high level of Not Available (NA) data in this

feature.

2.2 Electric Vehicle Range Estimation

Even though there are lots of related work focused on the development and study of

EVs technology and their operation with smart grids (for example [26], [27], [28]), the

investigation of EV related data mining applications is practically non-existent. An-

other important field involving EV can be seen from the view of intelligent transporta-

tion systems and urban computing a, where sophisticated mechanisms to process

heterogeneous data is required when the number of EVs that join into the transporta-

tion networks and connect to the cloud increases. Additionally, the security and

privacy on EV-based cloud environment must be considered during mining EV related

big data [29].

This section presents the current state-of-the-art for EV range prediction, as well as

current commercial approaches, basically apps, that are used to improve the driver’s
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experience.

2.2.1 Commercial Applications

There are several available applications for mobile users, not only for range estimation

but also for charging infrastructure location, among other purposes. For that reason,

this section tries to encompass all the apps that are being deployed for electric vehicle

users.

Therefore, the applications for EVs can be divided in three types. The first one helps

owners to find nearby charging points and are called charging apps. The second

group are the monitoring apps, which helps EV owners to update the current state

of their vehicles, and also control them for some applications. The last type are the

informative apps, and give general information about electric cars [32].

There are several applications provided by the manufacturers, presented in section

2.1.3. The following list excludes these apps, as they are defined previously.

• Better Place Oscar: In case you want to contact customer service, the Better

Place Oscar is the app for you as it enables you get assistance anytime. Addition-

ally, the apps offers smart navigation, range forecasting and customised energy

management options that will make you a proud owner of that electric car or

plug-in hybrid vehicle [32].

• GreenCharge: enables you to check the range of the current battery before a

charge is required. In addition, the app offers insightful metrics and battery

data. Since this information can be accessed daily, weekly and monthly, you can

effectively monitor your driving habits to further bolster your cost-saving efforts

[30].

• NFPA EV EFG: Mobile emergency field guide used for electric and hybrid vehicle

incidents involving damaged high voltage batteries, battery fires, extrication

challenges, submersion, and charging stations. This app covers the vital aspects

of EV/hybrid hazard awareness and procedures.

• PlugShare: Operates through a social network of electric-vehicle driving in-

dividuals. Through this network, drivers exchange information regarding the
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18000 electric charging stations that are stationed around the United States and

listed in the PlugShare network [31].

• EV Ping: EV charging stations are often under-utilized because a given station

is being occupied by another EV driver. EV Ping enables drivers to easily com-

municate with each other to maximize EV charging. It provides electric vehicle

(EV) drivers who need to charge their cars an easy way to communicate with

each other to optimize charge station utilization using SMS and a simple mobile

interface [31].

• Open Charge Map: This app also helps you find charging stations. This gives

detailed information about what kind of charging station it is with pictures and

other details so you can locate it easily. This app also gives you directions to the

charging stations better than the other apps since it has an actual navigation

function built-in.

• Recargo: Locate electric vehicle charging stations, check availability, share

photos and tips.

Notice that the main part of applications can be classified as charging apps, whereas

the monitoring apps are reserved to manufacturers private applications, as they ensure

a reliable and safe connection between the vehicle and the device.

2.2.2 State-of-the-Art of Range estimation

Range anxiety, also known as the fear of losing power and seeing EV car shut down

in the middle of a long-distance drive, is one of the biggest factors preventing more

widespread adoption of electric vehicles [29]. A quick way to overcome range anxiety

is through the wide deployment of battery charging points in a country or increasing

the EV battery capacity [33].

There are several factors that may affect to the overall performance of an EV in terms

of reducing the actual autonomy or range, and can be divided in four categories:

• Vehicle status: Initial State Of Charge (SOC) in %, speed, degradation of the

battery, car model, vehicle weight, etc.

• Driver behaviour: Type of acceleration, braking, charging habits, etc.
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• External conditions: Temperature, weather, wind, etc.

• Trip characteristics: Elevation, traffic, type of road, etc.

One example is the work presented by Habiballah Rahimi-Eichi and Mo-Yuen Chow

[37], which integrates various data sources to construct the range estimator model, as

it can be seen in Figure 5.

Figure 5: An example of range estimation framework. Source: [37]

Range estimators can be divided in two groups, depending on the time of prediction.

The first group belongs to route planners, with the aim of estimating the autonomy of

the vehicle given certain a-priory conditions of the trips. On the other hand, real-time

range estimator models are used in on-board vehicle dashboards in order to vary the

output of the model as the trip advances. The following list presents a literature review

of the diverse factors that are considered when predicting this range:

• Bohan Zheng et al. [34] propose a hybrid Model built with modified Self-

Organizing Maps (SOM) and Regression Trees to predict the power consumption

of EV trips. They use a time-series dataset of EV drivers in North America and

Europe with real-world commutes in terms of speed, distance, traffic conditions,

hills and driving behaviour, containing 421 EV trips.
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• Joonki Hong et. al [35] consider a two consecutive steps model:a driving profile

estimation and a power consumption estimation using the power model. Among

the variables, they introduce route information, slope and driving patterns, as

well as traffic, current speed and weather.

• Daniela Chrenk et al. [36] propose a methodology to estimate the energy con-

sumption of an electric vehicle based on road planning software. They introduce

some trip data such as elevation using Google Directions API as well as vehicle

current speed.

• Habiballah Rahimi-Eichi and Mo-Yuen Chow [37] presented a Big Data frame-

work considering five types of public data for EV range estimation with various

structures and resources, where the calculation relied on basic physical mecha-

nisms.

• C. H. Lee and C.H. Wu [38] propose a big data analysis method with Machine

Learning algorithms to process related data, but basically speed-energy con-

sumption ratio data is fed to the cluster and the other related variables are

implied by the speed time series.

• Eugene Kim et al. [41] present a real-Time model, with diverse data such as

history of users power consumption, speed, and acceleration, as well as the road

information from pre-downloaded map. The objective is to use the predicted

power requirement to prevent the damage of battery cells that might result from

high discharge rates.

• Y. Zhang et. al [39] considered several factors in their estimation method, in-

cluding driving style ( quick acceleration and fast driving), aggressive braking,

temperature, weight, inclines and weather.

• A. Bolovinou et al. [40] proposed an online prediction system based on regres-

sion analysis methods focusing on time series data including distance, velocity

and elevation.

There are other approaches that, even though the objective does not involve predicting

the range, use Machine Learning (ML) models to facilitate this task. In [42], a pattern

recognition approach is proposed to model the driving pattern according to the energy

consumption of an EV. The growing hierarchical self-organizing maps (GHSOM) is

applied to learn driver’s behaviours gradually in the offline process, and the clustered
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neurons are used as the training sets for implementing online classifiers based on

support vector machine (SVM).

2.3 Location of Charging Infrastructures in highways

This section presents an overview of the current projects and papers that tackle the

root of this problem. It is important to consider that building a charging stations

around highways from scratch would be too expensive, as the cost may include new

roads, electrical installation and facilities, among others. For that reason, it is desired

to adapt existing areas of service (fuel stations, rest areas, etc.) in order to include

charging points, reducing the total cost of the installation.

In contrast to range estimation for electric vehicles, the location of charging infras-

tructures in highways is not a mature field. Hence, few literature was found at the

time of writing this project. The main projects that have been found are presented

below, analyzing not only the description and the approach, but also the critical issues,

software used and input data, among other features.

European Commission: Optimal allocation of EV charging infrastructure in cities

and regions, 2016

• Description: Propose a GIS methodology to provide locations for EV charging

infrastructure, both in cities and in national networks (highway and rural roads).

In the case of highways, only model one highway at a time.

• Approach: In highways use already build areas and gas stations to minimize

additional investment costs. Very simple case, only 2 gas stations available per

direction, without analyzing inter-correlation between highways

• Critical issue: Data availability

• Software: Open Source GIS tools, particularly QGIS along with the QChainage

and MMQGIS open source plugins

• Input data: Road network (Open Street Maps) and Service areas.

Real driving range: They use a JRC study which concluded that the maximum

distance between charging stations should be 60 km, the two directions of the

highway being independent.
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• Modelling: Directions are independent, placement on already existing gas sta-

tions

• Algorithm:

1. Create a geospatial file (shape-file) with the highway network, including

direction.

2. Create the shape-file with the location of gas stations along the highway

(discard the ones that need to exit the highway).

3. Calculate the distances between consecutive gas stations

4. Check first whether the distances between gas stations are less than 60 km

5. Additional condition: charging infrastructure has to be build at the first

and the last gas station of the highway, since it is unknown if there is any

charging station before and after the studied area.

6. Check distance between consecutive gas stations. An area is marked as

"suggested" every time the limit of 60 km from the last "suggested" area is

exceeded.

7. As a decision criteria, they use the minimum distance between stations

Deployment Methods For Electric Vehicle Infrastructure

• Description: Methodology for the spatial deployment of public charging sta-

tions for electric vehicles

• Approach: Three cases: public slow charging in a city area, public fast charging

in a city area, and charging station along a major road.

• Critical issues: Much work will have to be invested in finding adequate GIS

input data. Uncertainties in predicting the future electric vehicle market pene-

tration, charging behaviours and market models

• Software: GIS-software ArcGIS (proprietary software)

• Input data: Road grid, electric grid, suitable stops, EV range

GIS-driven analysis of e-mobility in urban areas: An evaluation of the impact on

the electric energy grid

• Description: Using GIS software, evaluate the potential of the BEVs to meet the

urban mobility demand. Based on driving patterns collected from conventional

fuel vehicles by means of on-board GPS systems. Only focuses on city level.
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• Results: More than 80% of the urban trips are compatible with the performance

of the current BEVs and HEVs, and that an urban fleet share ranging from 8%

to 28% could be replaced by BEVs without significant changes n their driving

patterns, resulting to be no more than 5% of the total electricity demand in the

analysed areas.

• Other publications: Customer-driven design of the recharge infrastructure and

Vehicle-to-Grid in urban areas: A large-scale application for electric vehicles
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Data Framework

This chapter presents the several data sources considered to develop this project. Due

to the wide range of fields treated in this this work, it was a must to search and process

different kind of data, such as electric vehicle trip information, battery behaviour over

temperature or elevation, highway geospatial data and available charging stations,

among others. Considering that this project had no previous work done, data gathering

could be considered the critical phase: first for the difficulty of finding open and

reliable data, and second for directly affecting to the accuracy of the present models

and simulation.

The case of study of this project is focused on France highways, concretely in Autoroute

A10. For this reason, highway data and charging infrastructure are referred to France

national level.

All the steps involving data gathering, data cleaning, and data integration are done

using the statistical open software R.

3.1 Data Collection

This section is divided in the three main data sources required for developing this

project. Location data about EV infrastructure and highway areas are used in order to
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perform the simulation to study the situation of EVs in highways, and also to perform

the optimization model for allocating new charging stations. On the other hand,

electric vehicle usage data are needed in order to implement the range estimator

model.

3.1.1 Highway geospatial data

Highway data were acquired via web scraping from Saratlas website. Saratlas [43] is a

free database that provides information about the French expressway and motorway,

called Autoroutes, such as their length, their exits and infrastructures. Again, data is

entered by volunteers, so there is no guarantee of its correctness. However, it is an

active forum and there exists a community behind, so the information is constantly

updated and verified.

The R package xml2 was used to retrieve the data from Saratlas website. The first

step was to obtain all available highways, identifying the desired node returned from

XML response. However the smallest branches were discarded due to its short driving

lengths. Next, a function was build to copy and clean the table that Saratlas presents

for each Autoroutes. Text preprocessing and data cleaning have been applied, as not

only the table is gathered from Saratlas, but also the other information contained in

the page. Then, the function is applied to all the retrieved Autoroutes, and the data is

grouped into a unique matrix.

Finally, all the tables were combined in order to retrieve every rest area and service

area from France highways. The final table include the following features:

• Identifier: Name of the Point Of Interest (POI)

• Type of Area: Categorical data. Two main classes, service area and rest area. It

also include the direction of the highway, as some areas are only accessible in

one way, left or right, and others are accessible by both ways

• Location: Kilometre of the highway where the area is located

• Latitude: North-south geographical coordinate

• Longitude: Est-west geographical coordinate

• Highway: French Autoroute name (e.g. A1)
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Apart from areas, it is also interesting to gather information about the other Points

Of Interest (POIs) from the highways, in order to use it in the charging infrastructure

availability study. For that reason, an extended version of the previous table is created,

incorporating junctions, which represents the entries and exits for a given highway.

3.1.2 Electric Vehicle Range

This data source is crucial in order to construct a model to predict the EV range, and at

the same time it is the less accessible data. The search across Internet and well-known

data repositories, such as USA government [45], was not successful.

The first approach to solve this issue was to use the iThink EV ZEBRA dataset, studied

in detail during the author’s Bachelor thesis. However, this dataset belongs to a EV

fleet of car-sharing, and the majority of the trips are in a city level, with low percentage

of discharge (initial SOC minus final SOC), and small distances. Bearing in mind that

the objective is to predict the full range of a vehicle for doing long trips in highways,

the final decision was to discard this dataset.

Instead, data from Nissan Leaf owners was used to create the range model. Two

different data sources were used to build the model:

1. MyNissanLeaf [47]. Forum with approximately 20.000 users. The data was

initially collected by Tony Williams and QuickChargePower LLC. As this data is

only collected by one user, it can not be assured that it applies to all Nissan Leaf

vehicles, and other EV models. The data was compiled with empirical methods

over a multi year period. It consists of a four tables, representing the degradation

of the battery (0%, 10%, 20% and 30%). For each table, the rows represent the

level of SOC [%], and the columns the speed level, with minimum of 72 km/h

and a maximum of 136 km/h. All the values contained in the table are the actual

range.

2. Fleet Carma [48]: This data contains the actual driving range of the electric

vehicles given several levels of temperature, from -25ºC to 35ºC. All of the results

were created from FleetCarma real-world vehicle loggers installed on vehicles

all across North America. The data corresponds to the study of 7.375 trips of
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Nissan Leaf cars.

3.1.3 Charging Infrastructure

There are several applications, web-sites and communities that offer world-wide

geospatial data about location of charging stations. However, at the time of doing this

thesis there is only one repository that actually allows to download the data under an

Open Data license, called Open Charge Map [25].

Given that the information from Open Charge Map is provided and validated by its

users, it is easy to see that their system does not include all charging stations. This

problem could be partially solved crossing data from other sources, but no other

application offers the possibility of downloading data without paying a variable fee.

There are actually 14.800 charging stations in France, where 1.543 of them are con-

sidered as high power (>22kW) [2]. However, Open Charge Map only includes 1.184

stations, whereas one of its competitors, Charge Map, collects 7.679 points, even

though this data is not accessible. This huge difference may affect the model accuracy,

as it will not be possible to include all the current charging infrastructure. On the

other hand, improving the model with more data would be trivial considering that the

model primarily focuses on the geolocation of the stations.

Data were obtained through an Open Charge Map API GET request, using R as a

programming language and its package httr. Even though Open Charge Map provide

several features of each charging station, only the relevant ones were kept, listed

below:

• ID: Identifier of the charging station

• Address: Street, postal code and city

• Latitude: North-south geographical coordinate

• Longitude: Est-west geographical coordinate

• Number of points: Discrete data. Quantity of charging points per station

• Usage: Categorical data. Levels include Private (costumers), Private (restricted

access), Public, Public (membership required) and Privately Owned
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• Charging Type: Categorical data. Levels include Low (under 2 kW), Medium

(over 2 kW) and High (over 40 kW)

• Status: Categorical data. Levels include operational, not operational, planned

for future, partly operational and unknown

• Last status update: Date of the last update

3.1.4 Trip information

To build the simulation data, as well as combining data from Autoroutes and charging

stations, it is necessary to obtain the distance, duration and elevation between a pair of

coordinates. For this purpose, Google APIs where used, with a limit of 2.500 calls/day

(75.000 calls/month). Concretely, the following features where extracted:

1. Elevation between coordinates: Obtained using Google Elevation API [49]. The

API response has JSON format, and it is processed with R to obtain the elevation

in meters.

2. Distance between coordinates: Obtained using Google Distance Matrix API

[49]. There are several parameters to be specified in the API call, in this case the

type was set to driving. It also cames in JSON format.

3. Duration of a trip: Obtained using Google Distance Matrix API [49]. This vari-

able is obtained together with Distance between coordinates, taking advantage

of the same call to gather both components.

3.2 Data Cleaning

The next step is to transform the data adding or deleting variables in order to prepare

it for the modelling and simulation phases.

Charging infrastructure data contains all the charging points of France. However,

giving the case of study of this project, home and slow charging points are not suitable

for charging an EV in a highway. For that reason, the next considerations were applied

to filter this dataset:
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• The NAs in the variable number of points were set to 1, as it is the most frequent

value in this feature.

• Remove points with status "Planned for future date" and "Not operational".

• Remove points with usage "Private - Restricted Access".

• Remove points with charging type "Level 1 : Low (Under 2kW)" and "Level 2 :

Medium (Over 2kW)". Then we are only considering fast charging, with Level 3:

High (Over 40kW).

• Remove points inside Paris, as they are far from highways. This is done to reduce

the computational cost and avoid Google API limits in the data integration phase

among charging points and highway information.

3.3 Data Transformation

The data sources described in section 3.1 are combined and/or converted in order to

develop the proposed range estimation model, the study of charging points availability

for EVs in highways and the location of new charging infrastructure. Due to the nature

of the data sources, data transformation is divided in two parts: one regarding the

geospatial data from highways, and the other to electric vehicle data.

3.3.1 Available Charging Infrastructure in Highways

This section describes the procedure followed to combine the charging point and

highway data sources. The idea is to obtain for a given highway not only the within

charging infrastructure, but also near infrastructure that could be used in long trips.

Figure 6 shows the location of the obtained infrastructure inside France, and the

highway points of interest (POI). Plotted using R packages ggmap and ggplot2.

The distance between pairs of highway Point of Interests (POI) and charging points is

used to decide whether or not a charging point is considered accessible for a given

highway. Given the size of the data, it is not feasible to calculate the distance for

all the possible combinations, as it will result in more than 150.000 API calls, with a

limit of 2.500 calls per day. To solve this issue, first only junctions of the highway are
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Figure 6: France charging points and Autoroute POIs. Source: Own

considered, and second the Haversine distance is computed using distm function in

geosphere R library. Haversine distance considers the great-circle distance between

two points on a sphere given its coordinates. For this reason, the distance computed

with this method will be always smaller or equal to the driving distance given by

Google Distance Matrix API.

Next, the charging points are filtered to consider the points that are near to highway

POIs. The threshold is defined in 5 km, taking into account that the driver would not

want to deviate that much from the initial route. This process will discard the major

part of charging points, obtaining a reduced subset. Then, the same procedure of

comparing pairs of Autoroute POIs and charging points is applied, but in this case with

the real driving distance provided by Google Distance Matrix API. Finally, the results

are filtered again by the 5 km threshold. Figure 7 shows the described procedure,

where the Ai represents a concrete Autoroute.
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Figure 7: Integration of charging points and Autoroute POIs. Source: Own

3.3.2 Electric vehicle data

Data collected from Nissan Leaf forum does not present a suitable format to apply a

statistical method for predicting the range given more features rather than initial State

Of Charge and mean speed. For this reason, the data is transformed into a matrix with

multiple variables, where each row stands for a journey. The columns will represent

the different features of each trip, including degradation, available State Of Charge

[%], speed, temperature, elevation and range.

The tables of equivalences between SOC and speed does not consider the effect of

temperature nor elevation. The data will be adjusted in order to consider these vari-

ables. Furthermore, the four tables respect the levels of degradation will be combined

in an unique matrix.

The first step is to build models in order to adjust the range with a given temperature

and elevation:

• Elevation: Unfortunately, after reviewing several papers and other sources,

presented in subsection 2.2.2, it was not possible to find data or determine a

function to model the range given an elevation. For that reason, the adjustment

empirically calculated from Tony Williams provided with the documentation

of the data, will be used. It recommends to use a model that reduces 1.5 kWh

from the battery every 300 meters of elevation. For this reason, a linear model

is created to consider the elevation effect, considering that the results may not

have a high degree of accuracy.
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• Temperature: In this case, it was possible to collect data from Fleet Carma [48].

Normalized Root Mean Squared Error was used to decide the final model.

N RMSE =
√∑N

i=1(ŷi − yi )2

(N −1)var (y)

Polynomial linear regression is selected to model the effect of temperature in

range, as we only need to make an adjustment to the range before building the

final model, and more sophisticated methods can lead to over-fitting or add to

much complexity. Table 4 present the obtained results.

Table 4: Results of modelling Range against temperature

Degree 1 2 3 4 5 6 7 8
NRMSE 0.621 0.508 0.359 0.317 0.308 0.308 0.307 0.3039

It can be seen that after polynomial degree 4 the model does not get significantly

better, and including such irrelevant variables leads to unnecessary complex-

ity in the resulting model [46]. For that reason, degree 4 is chosen. Figure 8

illustrates the fitted model.

Figure 8: Range vs Temperature and the fitted Polynomial degree 4. Source: Own

Finally, the model is not fitted using the original range, but using a normalized

version. The reason of this adjustment is to avoid the both the units (in miles)

and differences between the data collected by Fleet Carma and Tony Williams.

Range is normalized dividing by the maximum range, considering that the
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minimum value is 0 miles, getting a percentage between 0.49 and 1, meaning

the reduction of range for a given temperature level, with the maximum located

at 22ºC.

After creating the models to adjust the range provided by Tony Williams using different

values of temperature and elevation, it is possible to transform the data into the unique

matrix.

Figure 9: Transformation of EV data. Source: Own

The procedure is described in Figure 9, and has the following steps:

1. Iterate through the four tables, taking one row at a time

2. Iterate through the columns of each table, gathering the speed level

3. Write the variables into the new matrix: Degradation, initial SOC, speed and

battery capacity (kWh).

4. Generate values for temperature with a random variable with Normal distribu-

tion, with mean = 10 and standard deviation of 7 (values from -11ºC to 33ºC).

5. Generate values for elevation with a random variable with Normal distribution,

with mean = 0 and standard deviation of 500 (values from -1300 to 1500 meters).

This values are feasible given the elevation extremes of France [52], considering
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that the elevation represents the difference between origin and destination

height from sea.

6. Modify the actual range applying the presented methods for temperature and

elevation. In the elevation case, an interpolation to get the range is applied, as

the model predicts the capacity variation (kWh) against elevation.

7. Write Temperature, Elevation and Range row into the new matrix.
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Electric Vehicle Range Estimation

This chapter presents the methodology for predicting the range of a vehicle given a set

of initial conditions for a trip. The initial idea of this project was to consider various

vehicles and users to develop the model, in order to get a prediction that considers

not only trip variables, but also the type of the vehicle and user behaviour. However,

the only available data that was found come from just one user and one vehicle, the

Nissan Leaf.

4.1 Exploratory Analysis

The data obtained from the transformation phase is in the desired format to apply an

statistical method in order to predict the range. The following features are used:

• Degradation: Percentage of degradation of the battery. Categorical variable

with four levels: Zero (0%), Low (10%), Medium (20%) and High (30%).

• SOCi: Initial State Of Charge. The available range represents the full distance

until the vehicle runs out of battery. Continuous variable, from 100% to 7%.

• Speed: Mean speed of the trip. As the study is focused in highways, the range of

this variable is considered from 80 km/h and 130 km/h (minimum and maxi-

mum speed limits in french Autoroutes [51]).
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• Temperature: The initial data does not contain information about tempera-

ture. The range is from -11ºC to 33ºC. The seed was set to 27 for reproducible

purposes.

• Elevation: The initial data does not contain information about elevation. Range

from -1300 to 1500 meters.

• Range: Label to predict. Continuous variable with range from 2 to 215 km.

The maximum value is lower than the maximum range of 250 km provided by

Nissan [53] but higher than the range provided by the United States Environment

Protection Agency (EPA) [54]. The values are adjusted to consider the effect of

the temperature and elevation in each case.

Figure 10 presents a grid of plots relating the different levels of degradation and mean

speed with the range and initial SOC. The elevation is also differentiated using three

levels: Descent from -1500 to 200; Flat from 200 to 200; and Climb from 200 to 2000

meters. It is easy to see graphically the effect of the variables to the final range, which

decreases with more degradation, elevation and speed.

The maximum likelihood framework can yield unstable parameter estimates if the

explanatory variables are highly correlated. A correlation analysis is also conducted

between pairs of continuous variables, obtaining a correlation of 0.996 between initial

SOC and battery capacity (kWh). This result was expected, as we are only modelling

one vehicle model, Nissan Leaf. For that reason, capacity was discarded to fit the

model. The other continuous variables have correlations lower than 0.13.

4.2 Metric Selection

Normalized Root Mean Squared Error (NRMSE) is used as a metric to decide the

final model. NRMSE is a risk metric that corresponds to the normalization of the

expected value of the squared (quadratic) error loss. Exists the assumption that errors

are unbiased, and follow a normal distribution. It is considered as an excellent general

purpose error metric for numerical predictions [55]. The RMSE without normalization

is used in competitions such as Kaggle Home Depot Product Search Relevance [56].
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Figure 10: Effect of degradation, speed and initial SOC to range. Source: Own

N RMSE =
√∑N

i=1(ŷi − yi )2

(N −1)var (y)

Normalizing the RMSE we gain interpretability, as the error lies between 0 and 1,

where 1 stands for a model that always outputs the average of the target, and 0 a model

with no error.

4.3 Model Selection

The models that will be used to fit the data are Support Vector Machines (SVM), and

Multiple Linear Regression (MLR):
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4.3.1 Multiple Linear Regression

Is one of the most commonly used statistical techniques. Some of the advantages

are that is a flexible model, and it is relatively easy to interpret the model coefficients.

There are four assumptions. First, it assumes that the errors are normally distributed;

second, that the errors have constant variance; third, that the mean of the errors is

zero; and finally that the errors are independent [57] [55]. If Y is the response variable,

and X [1..p] the predictors, it can be formulated as:

Y =β0 +β1 ∗X1 + ...+βP ∗XP +ε

4.3.2 Support Vector Machines

Introduced by Vladimir Vapnik and his co-workers at the Computational Learning

Theory (COLT) 1992. This method has several advantages: it contains a regularisation

term, which may help to avoid over-fitting; it uses the kernel trick, so it is possible

to model non-linear relations; SVM is defined by a convex optimisation problem, i.e.

it has no local minima; SVM also presents sparseness of the solution and capacity

control obtained by acting on the margin, or on number of support vectors [58]. Even

though SVM is sometimes only related to classification problems, it also works in

regression, where a non-linear function is supported by linear mapping into a high

dimensional kernel induced feature space. SVM for regression are based on defining

the loss function that ignores errors, placed within the certain distance of the true

value. This type of function is often called epsilon intensive loss function [59].

Formulation: The input X is mapped into a m-dimensional feature space using a

kernel mapping, which can be non-linear, bext a linear model is constructed in this

feature space. The linear model f (w,ω) is given by:

f (x,ω) =
m∑

i=1
wiφ(x)+b

Where φ(x) denotes the set of non-linear transformations, and b the bias term. As-
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suming a zero mean in the data (achived by scale=T in R), the bias term is dropped.

The quality of the estimation is measured by the following loss function, called ε-

intensive function, proposed by Vapnik:

L(y, f (x,ω)) =
0 |y − f (x,ω)| ≤ ε
|y − f (x,ω)|−ε other wi se

And the empirical risk:

Remp (ω) = 1

n

N∑
i=1

L(yi , f (x,ω))

Finally, SVM regression also tries to reduce model complexity by the minimization of

||ω||2, measuring the deviation of training samples outside ε-intensive zone with the

non-negative slack variables ζi amd ζ∗i . The minimization problem can be formulated

as:

minimize
1

2
||ω||2 +C

N∑
i=1

(ζi +ζ∗i )

subject to yi − f (xi ,ω) ≤ ε+ζ∗i
f (xi ,ω)− yi ≤ ε+ζi

ζi ,ζ∗i ≥ 0, i = 1, ...N

As it can be seen, one of the drawbacks of SVM Regression against MLR are the

number of hyper-parameters to be tuned, in this case 3: The penalty factor or cost, C;

the epsilon, which controls the width of the ε-insensitive zone; and gamma (γ), which

controls the trade-off between error due to bias and variance in your model. However,

it is also necessary to specify the basis function to perform the kernel transformation

in the feature space.

To compare the performance of different basis functions, SVM will be tested modelling

with four kernels:

• Radial Basis Function kernel (RBF): Gaussian kernel, polynomial of infinite
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degree with the form k(x, y) = exp(−γ||x −x ′||2)

• Linear: Simplest kernel function. It is given by the inner product < x, y >
• Polynomial: Cubic transformation will be tested. Kernel with the form k(x, y) =

(αxT y +c)d . Adjustable parameters are the slope alpha, the constant term c and

the polynomial degree d.

4.3.3 Validation Model

In order to measure the performance of the models, the data is divided in training set

with 2/3 of the total data, and test set with the remaining information. MLR and SVM

will be trained using the first set, but the criteria to chose the best method will take into

account the achieved NRMSE in the test set. The idea is to try to avoid over-fitting, i.e.

models that adapt very well to the training data but do not achieve the same accuracy

predicting new data points.

4.3.4 Cross-Validation

Support Vector Machines for Regression are a more flexible method, which allows to

apply nonlinear transformations. However, there are several parameters to be tuned,

such as the cost C, γ and the ε. For that reason, a cross-validation to the training

set will be applied to select the best combination of parameters. In order to define

the best hyper-parameters of the SVM, a k-fold cross-validation is performed. The

number of folds is set to 5 to reduce the computational time, even though a smaller

value of k could lead to biased results [60].

Table 5: Search range of SVM parameters

Cost γ ε

0.25 0.008 0.008
1.00 0.031 0.031
4.00 0.125 0.125

16.00 0.500 0.500
64.00 1.000 1.000
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Table 5 shows the selected values to tune the SVM. The range of values was chosen

considering the projects done during the MIRI Master, and literature review such as

[61].

4.4 Results

4.4.1 Multiple Linear Regression

This method is applied in R using the base R function lm. This functions directly

deals with categorical variables, so there is no need to dummy code the Degradation

factor. We can not discard the hypothesis that all the predictors affect to the response

variable, as p-values are in the worst case lower than 7.15e-15. The obtained Multiple

R-squared is 0.948, and the adjusted R.squared 0.9467. The model can be validated

looking at its residuals, which may have zero mean, independent, normally distributed

and with same variance. For that reason, Figure 11 is presented.

Figure 11: Validity check of Multiple Linear Regression. Source: Own

Even though the residuals may look Gaussian, the tails of the quantiles plot (qqplot)

are far from the assumption.
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4.4.2 SVM

Support Vector Machines are trained using the e1071 R package. Several assumptions

are taken into account:

• The categorical variable degradation is dummy coded into binary (0,1) features,

as this function only allows continuous predictors

• The predictors are scaled to have zero mean

• tune function from the same package is applied to do the grid search of the

values presented in section 4.3.4

• tune.control function is used to perform the 5-fold cross-validation, inside the

grid.search part.

4.4.3 Model comparison

After selecting the best hyper-parameters for each SVM kernel model, it is possible to

compare the results in terms of the Normalized Root Mean Squared Error. Results are

presented in Table 6 .

Table 6: Search range of SVM parameters

Model Train NRMSE Test NRMSE
Multiple Linear Regression 0.22783 0.21829
SVM Radial Kernel 0.02466 0.04227
SVM Linear Kernel 0.23015 0.21988
SVM Polynomial degree 3 0.15805 0.24385

As it is explained in section 4.2, test NRMSE will be used to chose the best model. On

the other hand, comparing the traning and the test errors we can have an idea about

the generalization of the model, i.e. if it tends to over-fitting. This phenomena can be

detected in the cubic SVM (polynomial degree 3), where the test error is significantly

higher than the training error. The other fitted models have a theoretically good

generalization, even though the RBF test error is the double than the training one,

but it has to be taken into account that the achieved precision with this method is

really high. Another aspect to comment is that, as it was expected, the results from the

multiple linear regression and the linear SVM regression are very similar.
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In conclusion, RBF is the model with the best metric with difference. In fact, the

reached NRMSE is really low compared with the other models.

4.4.4 Final Model

The selected model is the RBF SVM, which got the best metric compared to the other

evaluated models. It has the following parameters:

• Type: ε-regression

• Kernel: Radial

• Cost: 64

• Gamma (γ): 0.0312

• Epsilon (ε): 0.0078

• Number of Support Vectors: 203

One particularity is that the number of support vectors is significantly high. This

could be explained as we are training the model departing from a table of relations of

SOC versus speed, i.e. not real-world data with similar cases. However, analysing the

prediction in the test set, we can see that the model generalize really well, as it can be

seen in Figure 12.

Figure 12: Scatter plots of Actual vs Predicted Range values from RBF SVM. Source: own
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Scatter plots of Actual vs Predicted are one of the richest form of data visualization.

Ideally, all the points should be close to a regressed diagonal line, marked in red,

somehow visualizing the Goodness of fit of the model: the more foggy or dispersed

the points are (away from this diagonal line), worse is the prediction. It can also be

seen that the residuals are homoscedastic, i.e. they have the same variance across

various levels of the dependent variable.
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Chapter 5

Charging Infrastructure Availability

Analysis in Highways

This chapter presents a methodology for evaluating the availability of charging stations

in highways for electric vehicles. One of the the major impediments for EV owners

is the limited number of fast chargers, also known as Level 3 and Level 4 chargers,

capable of providing a full charge in question of minutes. This issue combined with

the reduced range of EVs respect to internal combustion engine vehicles, aggravate

the problem. For this reason, it is important to know the state of a given highway with

the objective of deciding if it is necessary to invest in new charging stations, and, of

course, where to place them.

This study is focused in launching a simulation of multiple possible real trips between

two points in a highway, in order to detect whether or not the electric vehicle will

reach its destination, considering the current charging infrastructure in that highway.

For that reason, not only the charging points within the highway are considered, but

also near points with a threshold of 5 km, as it is described in section 3.3.1.
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5.1. Simulation Setup

5.1 Simulation Setup

This section presents the different considerations that are taken into account to con-

figure the simulation, as well as the different data sources. The following assumptions

are made:

• The availability of a given charging point is total, i.e. the number of charging

points will be enough to charge the vehicle without queues .

• Initial State Of Charge (SOCi): Even though the range estimation model was

trained with values of SOCi in the interval [7, ..., 100], it is not likely for a user

to plan a long trip and begin the journey with a practically discharged battery.

For this reason, the range of values of SOCi is set from a minimum of 40% and a

maximum of 100%.

• Trip distance: The generated trips will belong the origin - destination pairs of

POIs between a given highway. However, only the pairs that represent distances

greater than 20 km will be taken into account, as we are interested on studying

the long trip scenario.

5.1.1 Trip data generation

It is not possible to study the availability of charging infrastructure for EV owners

without analyzing different kind of trips between a given highway. Due to the absense

of real data, the decision is to create possible trips given two locations of a concrete

highway.

The departure point is the full Autoroutes data source presented in section 3.1.1, which

contains information about areas and junctions. Here we are interested in generating

all possible combinations of each pair of coordinates ∈ P [1,...,p], that will be taken

as origins and destinations for the simulated trips. Figure 13 shows the followed

procedure.

The combination of all origin - destination points can be easily achieved in R with

the function expand.grid, which returns a matrix object with dimensions [p,p]. Next,

the Haversine distance is computed between all pairs, in order to avoid Google API
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Figure 13: Flow chart of trip data generation. Source: Own

request limit. After that point, a filtering is applied to reduce the number of trips to

simulate, due to computational cost: we consider trips with distance greater than 20

km, and for a given coordinate p, we select 10 equidistant points (i.e. in the range

between minimum and maximum distance between trips). The efficiency of this last

filter can be checked with Figure 16, in the final section of this chapter, which shows

the two histograms of the distance between POIs in the case study of one Autoroute

(A10), for the total population (left) and the reduced sample (right).

The next step involves calculating the real elevation between POIs, as well as its driving

distance and driving time, since the reduced sample has a suitable dimension to don’t
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exceed the Google API limits. Finally, mean speed is calculated dividing the driving

distance and the driving time.

5.1.2 Electric vehicle data generation

At this point, the first part of simulation data is ready. However, the range estimator

model is trained bearing in mind other variables that significantly affects to the total

autonomy of the vehicle, such as initial State Of Charge, temperature and degradation

of the battery. Consequently, the approach is to simulate different combinations of

these variables for each generated trip. This strategy will allow to study the availability

of charging infrastructure in highways under certain conditions, and extract more

accurate conclusions.

Considering both a representative range of values for each variable and the feasibility

in terms of computational time, the following configuration is presented.

• SOCi: 4 levels, from 40% to 100% [40, 60, 80 and 100].

• Temperature: 4 levels, from -5ºC to 30ºC [-5, 10, 20, 30].

• Degradation: 4 levels [High (30%), Medium (20%), Low (10%) and Zero (0%).

• Speed: 2 levels, the real driving mean speed calculated from Google Distance

Matrix API values, and the minimum speed in highway, 80 km/h, which would

allow the maximum range for the Nissan Leaf.

Therefore, each trip will be tested under 128 different combinations of variables.

5.1.3 Distance between charging infrastructure

Last but not least, it is important to pre-compute the distance between all the charging

points of a given highway in order to avoid costly computations inside the simulation

loop. For this reason, first the charging points are sorted by its coordinates and then

the Google Distance Matrix API is called to retrieve the driving distance between them.

In addition, to relate the charging points location and the highway POIs, an index is cre-

ated. This index takes into account the nearest POI of a given charging infrastructure.
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This index will be used again to avoid calculating inside the simulation loop which

charging points can be found inside each trip, notably reducing the computational

time.

5.2 Methodology

This section presents the methodology for simulating the availability of charging

infrastructure for electric vehicle owners in large trips within highways. The different

cases are presented in the previous section, with a list of possible journeys using pairs

of POIs from a given highway. Each of the trips will be tested under certain conditions,

concretely 128. Therefore, the size of simulations increases to the number of pairs

origin-destination (OD) multiplied by the number of possible configurations (128).

5.2.1 Initialization

The main objective of the algorithm is to decide whether or not an electric vehicle

user could reach its destination, and if it makes uses of any of the infrastructures that

could be found within the trip route, given the generated trip data and the vehicle con-

figuration. During this study, several variables will be stored for each case, described

in table 7.

Table 7: Variables from the charging infrastructure availability simulation

Variable Description
Success Boolean that indicates if the vehicle would reach the destination
anyInfra Boolean to know if there was available infrastructure inside the trip

route. It only needs to be calculated once (for each trip).
useInfra Boolean that shows if any charging station was used
DistToDest Distance from the destination or the nearest charging point

Taking into consideration that the data that will be used in the simulation is already

created, the range estimator model (RBF SVM) is applied previous to the algorithm in

order to save computational time.
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All the variables will be written in the matrix of simulation setup, in order to facilitate

the posterior analysis of results.

5.2.2 Procedure

At this point all the data is prepared to run the simulation, including the generated

trips with the vehicle configurations and the RBF SVM range estimator model. The

algorithm is described in the flow chart of Figure 14.

The process starts with a loop for each trip t, representing a pair of origin - destination

coordinates. For each case, a temporary data matrix of the 128 configurations is

saved in memory, as well as some calculations that do not affect the inner loops: the

direction; the presence of any infrastructure in the route, which is easily to check using

the pre-defined indexes; and the Vdist vector. This last structure is created if only

anyInfra variable is true, and collects all the distances between the origin, the charging

stations that could be found inside the route, and the destination. The distances

between the different charging points are pre-calculated (see subsection 5.1.3), but

the distances of the nearest charging stations from origin and destination must be

calculated through Google Distance Matrix API. The direction of the trip is taken into

account, as the distances may change.

Once all the static data from the outer loop is loaded, the algorithm enters to the

inner loop that iterates through all the different configurations c of the trip t. The

first if statement compares the real driving distance versus the predicted range. As

it is commented in the previous section, all the range estimations are pre-calculated

outside the algorithm. If the predicted range is enough, the inner procedure is ended

by writing the results: Success true, useInfra false and DistToDest equal to zero. If

distance is greater than the range, the algorithm passes to the next statement, which

checks if exists any infrastructure within the route. In the negative case, the simulation

c is ended, writing the corresponding result (Success false, useInfra false, DistToDest

equal to the difference between real distance and range). In case the statement is true,

the range estimator will be applied again changing the value of SOCi to 100, as we will

need this value considering that if the vehicle reaches one charging point, it will get

out of it with full battery.
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Finally, the algorithm enters to the second inner loop, for each value of trip t and

configuration c, which iterates through the values of the vector Vdist. The objective is

to check:

• Case 1: If the vehicle could reach the nearest charging point from origin. If false,

end the two inner loops and write Success false, useInfra false, DistToDest equal

to the distance origin - charging point minus the predicted range.

• Case 2: If the vehicle can reach the k th charging stations from the k th −1 charg-

ing point (or the origin if there is only one station within the route). If false, end

the two inner loops and write Success false, useInfra true, DistToDest equal to

the distance k th - point k th −1 minus the predicted range with 100% of SOCi.

• Case 3: If the vehicle can reach the destination from the last charging point. If

true, write Success true, useInfra true, DistToDest zero. Otherwise, write Success

false, useInfra true, DistToDest equal to the difference of the distance between

the last charging - destination, and the predicted range with 100% of SOCi.

49



5.2. Methodology

Figure 14: Simulation flow chart. Source: Own
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5.3 Case of Study: Autoroute A10

The availability model for a given highway described in the previous sections is tested

with the Autoroute A10 from France. The A10, also called L’Aquitaine, is an Autoroute

in placed in France, with a total length of 549 km from the A6 south of Paris to the

A630 at Bordeaux. It is the longest motorway in France [62]. To have an idea about the

placement of this autoroute, Figure 15 shows the plot of A10 charging points, in black,

and A10 service and rest areas, in red.

Figure 15: Integration of charging points and Autoroute POIs in the A10. Source: Own

5.3.1 Simulation setup

Trip and electric vehicle data is generated with the method described in section 5.1.

The following list shows the configuration values for this simulation:

• Number of different trips T = 963 .

• Number of configurations C = 128.

• Total number of cases T·C = 123264.
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• Interval of driving distance from POIs from 22.27 km to 556.26 km.

• Interval of mean speed from 78 km/h to 125 km/h.

• Interval of elevations between origin-destination from -162 meters to 163 me-

ters.

• Predicted range interval betweem 28.03 km to 227.39 km.

As it is commented in subsection 5.1.1, it is not feasible to perform the simulation

for each pair of POIs points. For that reason, a subset of the total combination of

points is used, trying to preserve the same distribution of data. Figure 16 shows the

two histograms of the distance between POIs in the case study of one Autoroute (A10),

for the total population (left) and the reduced sample (right). It can be concluded that,

even though the number of trips to study is reduced, it preserves a close distribution

with the same minimum and maximum values.

Figure 16: Histogram of trip distances: total and reduced samples for A10. Source: Own

Regarding the predicted range, its maximum value of 227.39 km is far from the highest

trip distances, around 550 km. Therefore, to get a success in these long trips will be

indispensable to charge the vehicle one or more times within the route.
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5.3.2 Overall results

The results regarding the success of each simulation case, understood as the vehicle

had enough battery to reach its destination, with or without charging it within the

route. Table 8 presents the overall results of the availability study. The average distance

to destination is calculated using the cases where Success = TRUE, considering that for

the case, all the values are zero.

Table 8: Overall results from highway availability simulation for A10

Average Distance to Success Infrastructure Used Infrastructure
Destination [km] [%] [%] [%]

34.01 62.26 92.10 53.03

For A10 Autoroute, the results of the simulation show that more than 60% of the

vehicles would be able to reach its destination. Furthermore, this success cases

where mostly possible by using one or more charging points within the vehicle route,

concretely 68.51%. The percentage of the presence of charging infrastructure within

the routes is significantly high. However, this value may not be taken as an indicator

for deciding whether or not building more charging points, as it does not assure that

the distance between points is low enough to be reached by all electric vehicles.

Although overall results could be used for stakeholders as Key Performance Indexes

(KPIs) to study the availability of charging points in highways, it is important to

compare the results by the driving distances of the trips. Figure 17 shows the density

percentage of the three binary decision variables: Success, anyInfra and useInfra (see

Table 7). Charge during trips only considers the successful journeys. Conclusions:

• Success rate decreases as driving distance increases, and even though for short

trips the rate of success in high, for trips longer than 400 km it is less than 25%.

• The presence of charging points within the route are present in 100% of the

trips longer than approximately 150 km. However, this does not assure that the

distances between charging points are sufficient to finish a trip.

• The simulated short trips, say less than 100 km, practically do not need to charge

the vehicle to reach its destination. However, for distances greater than 200 km

it is an imperative to stop and charge.
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Figure 17: Integration of charging points and Autoroute POIs in the A10.
Source: Own

Figure 18 represents the distribution of trip distances in four different result combina-

tions, concretely the variables Success (Success or Failure) and useInfra (Charge during

trip or No charge). Several conclusions can be drawn for each case:

• Success trips are mostly situated in low distance journeys, even though with the

usage of one or more charging points the range of distances is increased until

maximum trip distances (around 500 km).

• Failure trips are distributed across all driving distance range. In comparison

with Success ones, they have a higher ratio in long distances, as it was expected.

• Charge during trips case is essential in Success trips for achieving its destination:

distances greater than approximately 200 km are not plausible for vehicles if

there not exists any infrastructure within the route. However, in some cases is

not enough to find a charging point between origin and destination, due to the

distances between points.

• No charge situation leads to a higher Failure rate, especially in long distances.
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Figure 18: Trip distance distribution for success and used infrastructure cases . Source: Own

5.3.3 Effect of external conditions

This part present how the results are influenced by temperature and elevation between

origin and destination. In fact, these effects were modelled in the range estimator

chapter (see chapter 4).

For interpretability purposes, the Success rate is compared not only with temperaure

or elevation, but also with the association of the initial SOC. This decision is taken

because is the variable that mostly influences the available range, as it represents the

percentage of battery at the beginning of the trip. Table 9 represents the success rate

against temperature and initial SOC. There is a clear influence of temperature, in the

worst scenario only between 30% and 57% of the trips reach its destination. However,
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for higher temperature values, from 10ºC to 30ºC the success rate has lower influence.

Table 9: Contingency table of the Success given the initial SOC and Temperatures

Temperature
SOCi -5ºC 10ºC 20ºC 30ºC
40% 0.3001 0.4524 0.5039 0.4559
60% 0.3982 0.6142 0.6856 0.6292
80% 0.4943 0.7455 0.8132 0.7674

100% 0.5715 0.8149 0.8772 0.8384

Table 10 represents the success rate against elevation and initial SOC. As elevation

is a continuous variable, it is discretized in three categories: Descent, representing

the elevations from -162 meters to -50 meters; Flat, from -50 meters to 50 meters; and

Climb, from 50 meters to 163 meters. Even though temperature has higher influence,

elevation also plays an important role in the success rate.

Table 10: Contingency table of the Success given the initial SOC and Elevation

Elevation
SOCi Descent Flat Climb
40% 0.4699 0.4290 0.3416
60% 0.6388 0.5651 0.4826
80% 0.7637 0.6821 0.6089

100% 0.8313 0.7592 0.6783

5.3.4 Battery characteristics and driving behaviour

In addition to external features, it is interesting to study how the results are affected by

vehicle-specific variables. Concretely, the degradation level of the battery, the initial

State Of Charge at the beginning of the trip, and the average speed will be analyzed.

First, the success rate given the different values of initial SOC and degradation battery

levels are presented in table 11. There is a clear influence of both features to the

success rate. As it is expected, as degradation increases the total range is reduced,

affecting to the success of the trip. At the same time, decreasing the level of initial

State Of Charge have the same effect. Even though degradation has a significant effect
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on the success rate, it is the initial SOC the variable that mostly influences the total

range of the vehicle.

Table 11: Contingency table of the Success given the initial SOC and Degradation level

Degradation
SOCi 0% 10% 20% 30%
40% 0.5308 0.4441 0.3956 0.3415
60% 0.7276 0.6056 0.5354 0.4584
80% 0.8267 0.7280 0.6815 0.5839

100% 0.8939 0.8037 0.7457 0.6586

Apart from the previous variables, the speed of the vehicle is another factor that

influences the total range. Figure 19 presents a boxplot of the simulation variable

DistToDest (see Table 7) against two vehicle-specific variables: the initial SOC and the

speed. As speed is a continuous feature, it was discretized in two levels: the maximum

distance, calculated by the Google Distance Matrix API values, and the minimum

distance, set to 80 km/h.

Figure 19: Boxplot of distance to destination for failure cases by SOC and Speed Type levels.
Source: Own

This data representation is useful in order to see the current limits of distance from
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which the electric vehicles can not reach its destination, around 150 km. Although the

effect of the initial SOC does not seem very significant, we have to take into account

that some of the trips include a charge between origin and destination. Driving

with the minimum speed has a positive effect on the total range of the vehicle, and

the distance to destination is significantly decreased. Users may be aware of this

characteristic, in order to increment the available range in case they need it.

When the vehicle initiates the trip with full battery (SOC = 100%), the success rate is

increased to 89% in the scenario of zero degradation, whereas in the worst case, 30%

of degradation, the rate decreases to approximately 66%. What is more, if we consider

a best scenario with SOC = 100%, degradation = 0% and mean speed = 80 km/h, the

success rate is increased to 98.54 %.

Figure 20: Integration of charging points and Autoroute POIs in the A10. Source: Own

Figure 20 shows the origin and destination points for this best scenario, as well as the

charging stations, for all the trips that do not reach its destination. It is interesting
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to see that there is a long distance between two charging stations in the north of the

A10 Autoroute, which is the cause of failure for these trips. Specifically, the distance is

150.67 km.
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Chapter 6

Conclusions

Several studies for contributing in the integration of electric vehicle and charging

station in highways have been presented in this project. This chapter details the main

findings throughout the thesis and includes the future work that may be addressed.

6.1 Contributions

The contributions are detailed per chapter.

• In Chapter 3 the different data sources used for conducting this thesis are pre-

sented, including data transformation and data integration. Bearing in mind

that this project was started from zero, data collection can be considered the

critical phase: There is no public available data for electric vehicle range estima-

tion, and charging infrastructure geospatial data is very limited in comparison

the the real number of points.

• In Chapter 4, a model to predict the actual range of a vehicle given certain trip

and vehicle features is trained, including vehicle features such as available SOC

at the beginning of the trip and degradation level of the battery; user features

including the mean driving speed; and trip features such as elevation between

origin and destination and temperature. Even though the obtained test error is
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exorbitantly low, the lack of a extensive real world trip data sentences this model

to be very vehicle and user dependent, and therefore can not be extrapolated to

other vehicle or user types.

• In Chapter 5, a methodology for studying the availability of charging infrastruc-

ture for electric vehicles in highways is detailed. The method takes into account

highway and near-highway charging points, as well as the different Points Of

Interest (POIs) to build a grid of possible trips and simulate their success given a

series of feature combinations, related with the range estimation explanatory

variables. The algorithm is applied to the French Autoroute A10, and several re-

sults and conclusions are presented to allocate the critical points where electric

vehicles could not finish the journeys.

6.2 Future work

Collecting or having access to data is a crucial part in order to perform an accurate

analysis of the situation of EV charging stations in highways, as well as predicting the

range of a vehicle given certain conditions for a trip. In this sense, future work can be

done in the following directions:

• Finish the optimal location model for charging stations in highways and analyze

the results with the proposed methodology for analyzing its availability.

• Compare the results obtained in the case study of Autoroute A10 for the avail-

ability analysis both with the current situation and with the optimal charging

point scenario.

• Improving the range forecast using real data from a set of users in order to de-

velop a framework that considers not only the type of vehicle and the discharge

rate given speed or temperature, but also user behaviour on road.

• Refine the methodology for studying the availability of charging infrastructure

in highways, building several cases of study to consider the whole Autoroute

grid in France. Interpret the results in global terms to decide new strategies of

charging infrastructure location.
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