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Deep Learning Backend for Single and Multisession
i-Vector Speaker Recognition

Omid Ghahabi and Javier Hernando

Abstract—The lack of labeled background data makes a big per-
formance gap between cosine and Probabilistic Linear Discrimi-
nant Analysis (PLDA) scoring baseline techniques for i-vectors in
speaker recognition. Although there are some unsupervised clus-
tering techniques to estimate the labels, they cannot accurately
predict the true labels and they also assume that there are sev-
eral samples from the same speaker in the background data that
could not be true in reality. In this paper, the authors make use
of Deep Learning (DL) to fill this performance gap given unla-
beled background data. To this goal, the authors have proposed
an impostor selection algorithm and a universal model adaptation
process in a hybrid system based on deep belief networks and deep
neural networks to discriminatively model each target speaker. In
order to have more insight into the behavior of DL techniques in
both single- and multisession speaker enrollment tasks, some ex-
periments have been carried out in this paper in both scenarios.
Experiments on National Institute of Standards and Technology
2014 i-vector challenge show that 46% of this performance gap,
in terms of minimum of the decision cost function, is filled by the
proposed DL-based system. Furthermore, the score combination
of the proposed DL-based system and PLDA with estimated labels
covers 79% of this gap.

Index Terms—Deep learning, deep neural network, deep belief
network, i-vector, speaker recognition.

I. INTRODUCTION

THE recent compact representation of speech utterances
known as i-vector [1] has become the state-of-the-art in

the text-independent speaker recognition. There are two com-
mon scoring techniques to decide if two i-vectors belong to a
same speaker namely cosine and Probabilistic Linear Discrimi-
nant Analysis (PLDA) [2], [3]. PLDA scoring leads to a superior
performance but with the cost of need to speaker-labeled back-
ground data. Moreover, it needs several samples for each back-
ground speaker spoken in different session conditions to work
efficiently. One of the recent challenges in speaker recognition,
which was organized by the National Institute of Standards and
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Technology (NIST), has been how to fill the performance gap
between these two common scoring techniques when no labeled
background data is available [4]. Although there are some un-
supervised automatic labeling techniques like those proposed
in [5], [6], they cannot appropriately estimate the true labels
and also they assume that there are several samples from a same
speaker in the background data which could not be true in real-
ity. PLDA with estimated labels performs reasonably well [5],
[6], but the results are still far from that of PLDA with actual
labels [7].

On the other hand, the success use of Deep Learning (DL)
in speech processing, specifically in speech recognition (e.g.,
[8]–[12]), has inspired the community to make use of DL
techniques in speaker recognition as well. Both generative ap-
proaches, like Restricted Boltzmann Machines (RBM) and Deep
Belief Networks (DBN), and discriminative ones, like Deep
Neural Networks (DNN), have been used for this purpose. A
possible use of DL techniques in speaker recognition is to com-
bine them with the state-of-the-art i-vector approach. Two kinds
of combination have been considered. DL techniques have been
used in the i-vector extraction process [13]–[17] or applied on
i-vectors as a backend [18]–[23].

DNNs have been used in the i-vector extraction algorithm for
two main goals. First, the Universal Background Model (UBM)
is replaced by a DNN, which is typically trained for acoustic
modeling in speech recognition [13], [14], [16], [24], [25]. Sec-
ond, conventional spectral features are replaced or appended
by so-called DNN bottleneck features [15], [16]. A significant
performance gain is reported in both cases but it is shown that
appending bottleneck features to spectral ones and using Gaus-
sian UBM as the acoustic model will lead to higher quality
i-vectors [15], [16].

Besides, after i-vector computation, DL techniques can be
used for different purposes. For example, different combina-
tions of RBMs have been proposed in [18], [19] to classify
i-vectors and in [20] to learn speaker and channel factor sub-
spaces in a PLDA simulation. RBMs in [26] and DNNs in [27]
are used to increase the discrimination power of i-vectors given
speaker-labeled background data. In [21]–[23] DBNs have been
integrated in an adaptation process to provide a better initial-
ization for DNNs in order to have discriminative target models.
There are also some attempts to extract compact representations
of speech signals given spectral features [28]–[30] and GMM
supervectors [31].

In this work, the authors make use of deep architectures for
backend i-vector classification in order to fill the performance
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gap between the cosine (unlabeled-based) and PLDA (labeled-
based) scoring baseline systems given unlabeled background
data. As in [21], [22], the authors take advantage of unsupervised
learning of DBNs to train a global model referred to as Universal
DBN (UDBN) and DNN supervised learning to model each
target speaker discriminatively. To provide a balanced training,
an impostor selection algorithm and to cope with few training
data, a UDBN-adaptation process is proposed.

Compared to [21], [22], deep architectures with different
number of layers are explored for both single and multi-session
speaker enrollment tasks. The parameters of the global model
are normalized before adaptation. Normalization is just scaling
down the parameters but it facilitates the training of the net-
works specifically where more than one hidden layer is used.
The top layer pre-training proposed in [21] is not used in this
work. The reason is that it emphasizes on the top layer connec-
tion weights and avoids the lower hidden layers to learn enough
from the input data. This fact is of more importance when more
hidden layers are used. In addition, new experiments based on
unsupervised labeling techniques for PLDA [6] are performed
in this paper as a potential baseline system when no labeled
background data is available.

The preliminary experiments are performed on NIST SRE
2006 [32] to show the effect of each contribution. Taking advan-
tage of the conclusions obtained on the preliminary experiments,
another set of experiments are carried out on the newer and more
challenging database NIST 2014 i-vector challenge [4]. Exper-
imental results performed on 2014 i-vector challenge show that
the proposed DL-based system fills 46% of the performance gap
between cosine and oracle PLDA scoring systems in terms of
minDCF which is similar to the PLDA scoring results obtained
with unsupervised estimated labels. The score combination of
the proposed DL-based system and PLDA with estimated labels
fills 79% of this gap.

The rest of the paper is organized as follows. Section II gives
a brief background overview about i-vectors, PLDA, and deep
learning techniques used in experiments. Section III presents
the proposed DL-based backend for i-vector classification.
Section IV describes the proposed impostor selection algorithms
in order to have a balanced training. Section V shows how we
will cope with the few amount of data for the training of each tar-
get model. Sections VI and VII discuss the experimental results
obtained on NIST SRE 2006 and NIST 2014 i-vector challenge,
respectively. Section VIII concludes the paper.

II. BACKGROUND

A. i-Vector and PLDA

It is shown that a Gaussian Mixtures Model (GMM) adapted
from a Universal Background Model (UBM) can represent
the feature vectors of a speech signal adequately [33]. If the
mean vectors of the adapted GMM are stacked to build the
supervector s, it can be further modeled as follows [1],

s = su + Tx (1)

where su is the speaker- and session-independent mean super-
vector typically from UBM, T is the total variability matrix,

Fig. 1. (a) DNN, (b) DBN, and (c) DBN training/DNN pre-training.

and x is a low rank vector of latent variables. The mean of
the posterior distribution of x is referred to as i-vector ω [1].
This posterior distribution is conditioned on the Baum-Welch
statistics of the given speech utterance. The T matrix is trained
using the Expectation-Maximization (EM) algorithm given the
centralized Baum-Welch statistics from background speech ut-
terances. In other words, one can say that an i-vector is a low rank
vector, typically between 400 and 600, representing a speech ut-
terance. More details can be found in [1].

Two main scoring techniques for i-vectors are cosine [1],
[34] and Probabilistic Linear Discriminant Analysis (PLDA)
[2], [3]. PLDA is a more efficient technique which performs
scoring along with session variability compensation. Since i-
vectors are of sufficiently low dimension, a modified version of
PLDA proposed in [3] is typically used. It assumes that each
i-vector can be decomposed as,

ω = m + Φβ + ε (2)

where m is a global offset, the columns of Φ are eigenvoices,
β is a latent vector having a standard normal prior, and the
residual vector ε is normally distributed with zero mean and
a full covariance matrix. The model parameters are estimated
from a large collection of speaker-labeled background data using
an EM algorithm as in [2]. Within and between class i-vector
covariance matrices, depending only on the model parameters,
are stored and used for scoring.

B. Deep Learning

Deep Learning (DL) refers to a branch of machine learning
techniques which attempts to learn high level features from
data. Since 2006 [35], [36], DL has become a new area of
research in many applications of machine learning and signal
processing. Various deep learning architectures have been used
in speech processing (e.g., [11], [12], [37]–[39]). Deep Neural
Networks (DNN), Deep Belief networks (DBN), and Restricted
Boltzmann Machines (RBM) are three main techniques we have
used in this work to discriminatively model each target speaker
given input i-vectors.

DNNs are feed-forward neural networks with multiple hid-
den layers (Fig. 1(a)). They are trained using discriminative
back-propagation algorithms given class labels of input vec-
tors. The training algorithm tries to minimize a loss function
between the class labels and the outputs. For classification tasks,
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cross-entropy is often used as the loss function and the soft-
max is commonly used as the activation function at the output
layer [40]. Typically, the parameters of DNNs are initialized
with small random numbers. Recently, it has been shown that
there are more efficient techniques for parameter initialization
[41]–[43]. One of those techniques consists in initializing DNN
with DBN parameters, which it is often referred to as unsu-
pervised pre-training or just hybrid DBN-DNN [9], [44]. It has
been empirically shown that this pre-training stage can set the
weights of the network closer to an optimum solution than ran-
dom initialization [41]–[43].

DBNs are generative models with multiple hidden layers of
stochastic units above a visible layer which represents a data
vector (Fig. 1(b)). The top two layers are undirected and the
other layers have top-down directed connections to generate
the data. There is an efficient greedy layer wised algorithm to
train DBN parameters [36]. In this case, DBN is divided in
two-layer sub-networks and each one is treated as an RBM
(Fig. 1(c)). When the first RBM built on visible units is trained,
its parameters are frozen and the outputs are given to the RBM
above as input vectors. This process is repeated until the top two
layers are reached.

RBMs are generative models constructed from two undirected
layers of stochastic hidden and visible units. RBM training is
based on maximum likelihood criterion using the stochastic
gradient descent algorithm [9], [36]. The gradient is estimated
by an approximated version of the Contrastive Divergence (CD)
algorithm which is called CD-1 [35], [36]. More theoretical and
practical details can be found in [35], [36], [45]. The whole
training algorithm is given in [31].

In all of these networks, it is possible to update the parame-
ters after processing each training example, but it is often more
efficient to divide the whole input data (batch) into smaller size
batches (minibatch) and to update the parameters by averag-
ing the gradients over each minibatch. The parameter updating
procedure is repeated when the whole available input data is
processed. Each iteration is called an epoch.

III. PROPOSED DEEP LEARNING BACKEND FOR I-VECTORS

The success use of i-vectors in speaker recognition and DL
techniques in speech processing applications has encouraged the
research community to combine those techniques for speaker
recognition. Two kinds of combination can be considered. DL
techniques can be used in the i-vector extraction process, or
applied as a backend.

In this work, DL technology is used as a backend in which a
two-class hybrid DBN-DNN is trained for each target speaker
to increase the discrimination between target i-vector/s and the
i-vectors of other speakers (non-targets/impostors) (Fig. 2). Pro-
posed networks are initialized with speaker-specific parameters
adapted from a global model, which is referred to as Univer-
sal Deep Belief Network (UDBN). Then the cross-entropy be-
tween the class labels and the outputs is minimized using the
back-propagation algorithm.

DNNs usually need a large number of input samples to be
trained efficiently. As a general rule, deeper networks require

Fig. 2. Proposed deep learning architecture for training of each speaker model.

more input data. In speaker recognition, target speakers can be
enrolled with only one sample (single session task) or multiple
samples (multi-session task). In both cases, the number of target
samples is very limited. A network trained with such limited data
is highly probable to be overfitted. On the other hand, the number
of target and impostor samples will be highly unbalanced, i.e.,
one or some few target samples against thousands of impostor
samples. Learning from such unbalanced data will result in
biased DNNs towards the majority class. In other words, DNNs
will have a much higher prediction accuracy over the majority
class.

Fig. 3 shows the block diagram of the proposed approach to
discriminatively model target speakers. Two main contributions
have been proposed in this work to tackle the above problems.
The balanced training block attempts to decrease the number of
impostor samples and, on the contrary, to increase the number
of target ones in a reasonable and effective way. The most in-
formative impostor samples for target speakers are first selected
by the proposed impostor selection algorithm. Afterwards, the
selected impostors are clustered and the cluster centroids are
considered as final impostor samples for each target speaker
model. Impostor centroids and target samples are then divided
equally into minibatches to provide balanced impostor and tar-
get data in each minibatch.

On the other hand, the DBN adaptation block is proposed
to compensate the lack of input data. As DBN training does
not need any labeled data, the whole background i-vectors are
used to build a UDBN. The parameters of the UDBN are then
adapted to the balanced data obtained for each target speaker. At
the end, given the target/impostor labels, the adapted DBN and
the balanced data, a DNN is discriminatively trained for each
target speaker. These two contributions are described in more
details in the following sections.

IV. BALANCED TRAINING

As speaker models in the proposed method will be finally dis-
criminative, they need both positive and negative data as inputs.
Nevertheless, the problem is that the amount of positive and
negative data are highly unbalanced in this case, which leads
to biasing towards the majority class. Some of the straightfor-
ward ways to deal with unbalanced data problem are explored
in [46]–[48] [49], [50]. A commonly used method is data sam-
pling. The data of the majority class is undersampled and, on
the contrary, the data of the minority class is oversampled. The
effectiveness of these techniques is highly dependent on the data
structure.
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Fig. 3. Block-diagram of the train/test phases of the proposed deep learning backend for i-vectors.

In the proposed approach shown in Fig. 3, the amount of
impostors is decreased in two steps, namely selection and clus-
tering. On the other hand, the amount of target samples is in-
creased by either replication or combination. After that, bal-
anced target and impostor samples are distributed equally among
minibatches.

A. Impostor Selection and Clustering

The objective is to decrease the large number of negative sam-
ples in a reasonable way. Our proposal has two main steps. First,
only those impostor i-vectors which are more informative for
the training dataset are selected. Informative impostor means, in
this case, the impostor which is not only representative to a given
target but also is statistically close to other targets in the dataset.
For some real applications, it could makes sense to select those
impostors who are globally close to all enrolled speakers. When
the target speakers are changed significantly, the selected im-
postors could be re-selected according to the new target dataset.
Second, as the number of selected impostor samples is still high
in comparison to the number of target ones, they are clustered
by the k-means algorithm using the cosine distance criterion.
The centroids of the clusters are then used as the final negative
samples.

The selection method is inspired from a data-driven back-
ground data selection technique proposed in [51]. In that
technique given all available impostor supervectors, a Sup-
port Vector Machine (SVM) classifier is trained for each target
speaker. The number of times each impostor is selected as a
support vector, in all training SVM models, is called impostor
support vector frequency [51]. Impostor examples with higher
frequencies are then selected as the refined impostor dataset.
However, SVM training for each target speaker would be com-
putationally costly. Moreover, as our final discriminative models
will be DNNs, it would not be worth to employ this technique
as such. Instead, we have proposed to use cosine similarity as
an efficient and a fast criterion for comparing i-vectors. We
compare each target i-vector with all impostor i-vectors in the
background data set. Those N impostors which are close to each
target i-vector are treated like support vectors in [51]. Then the

Fig. 4. Steps of the proposed impostor selection algorithm.

κ impostors with higher frequencies are selected as the most
informative impostors. The N and κ selected impostors are re-
ferred to as local and global selected impostors in this work. The
parameters N and κ are determined experimentally. The whole
algorithm is shown in Fig. 4 and can be summarized as follows,

1) Set impostor frequencies fm = 0 for impostor i-vectors
ωm , 1 ≤ m ≤M

2) For each target i-vector νi , 1 ≤ i ≤ I
a) Compute cosine (νi ,ωm ), 1 ≤ m ≤M
b) Select the N impostors with the highest scores
c) For the selected impostors fm ← fm + 1

3) Sort impostors in descending order based on their fm

4) Select the first κ impostors as the final ones.
where cosine (νi ,ωm ) is the cosine score between target i-
vector νi and the impostor i-vector ωm in the background
dataset, M and I are the number of impostor and target i-
vectors, respectively. Note, in the case of multi-session target
enrollment, the average of the available i-vectors per each target
speaker will be considered in the above algorithm. The final
selected impostors could be only local, global, or a pooling of
both of them. If local or pooling are used, the computational
cost would be higher as the k-means clustering should be run
for each target model independently.

We have proposed a similar algorithm in [23] in which the
selection process is only dependent on the background data. A
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Fig. 5. An example of proposed balanced training for DNNs in multi-session
speaker verification task. In each minibatch the same target i-vectors but different
impostors are shown to DNNs.

randomly selected subset from the background data is used in
the above algorithm rather than the target training database. In
order to make the process statistically more reliable, the whole
process is repeated several times and the impostor frequencies
are accumulated over all iterations. The full algorithm can be
found in [23]. It was shown that this algorithm performs sim-
ilar to the first algorithm which uses the training target set in
the selection process when the background database is large
enough [23].

B. Target Replication or Combination

In order to balance positive and negative samples, the number
of target samples is increased as many as the number of impostor
cluster centroids obtained in Section IV-A. In the single session
enrollment task, the i-vector of each target speaker is simply
replicated as many as the number of cluster centroids. Replicated
target i-vectors will not act exactly the same as each other in
the pre-training process of DNNs due to the sampling noise
created in RBM training [45]. Moreover, in both adaptation
and supervised learning stages the replicated versions make the
target and impostor classes having the same weights when the
network parameters are being updated. In multi-session task,
the available i-vectors of each target speaker can be combined,
i.e., the average of every n i-vectors is considered as a new target
i-vector.

Once the number of positive and negative samples are bal-
anced, they are distributed equally among minibatches. In other
words, each minibatch contains the same number of impostors
and targets. If target samples in the multi-session task are not
combined, the same target samples but different impostor ones
are shown to the network in each minibatch (Fig. 5). The op-
timum numbers of impostor clusters and minibatches will be
determined experimentally in Sections VI and VII.

V. UNIVERSAL DBN AND ADAPTATION

Unlike DNNs, which need labeled data for training, DBNs
do not necessarily need such labeled data as inputs. Hence,
they can be used for unsupervised training of a global model
referred to as Universal DBN (UDBN) [21]. UDBN is trained
by feeding background i-vectors from different speakers. The
training procedure is carried out layer by layer using RBMs as
described in Section II-B. As the input i-vectors are real-valued,

Fig. 6. Comparison of the adapted connection weights between the visible
and the first hidden units for two different speakers.

a Gaussian-Bernoulli RBM (GRBM) [9], [45] is used to train
the connection weights between the visible and the first hidden
layer units. The rest of the connection weights are trained with
Bernoulli-Bernoulli RBMs.

It is shown that pre-training techniques can initialize DNNs
better than simply random numbers [41]–[43]. However, when
a few input samples are available, just pre-training may not be
enough to achieve a good model. In this case, we have proposed
in [21] to adapt UDBN parameters to the balanced data obtained
for each target speaker. Adaptation is carried out by training a
DBN which is initialized by the parameters of the UDBN given
the balanced data of each target speaker. Adapted DBNs are then
used as an initialization for the final DNN target models. In or-
der to avoid overfitting, only a few iterations will be considered
for adaptation. It is supposed that UDBN can learn both speaker
and channel variabilities from the background data. Therefore,
UDBN will provide a more meaningful initial point for DBNs
than a simple random initialization. The study in [42] has shown
that pre-training is robust with respect to the random initializa-
tion seed. The use of UDBN parameters makes target models
almost independent from the random seeds.

In contrast to [21], [22], in this work we normalize the UDBN
parameters before adaptation. Normalization is carried out by
simply scaling down the maximum absolute value of connec-
tion weights to 0.01. In this way, connection weights will have
a dynamic range similar to that typically used for random ini-
tialization. Additionally, bias terms are multiplied by 0.01 to
be closer to zero. This is because the bias terms are usually set
to zero when the connection weights are randomly initialized.
UDBN parameter normalization facilitates the training of the
networks specifically where more than one hidden layer is used.
In this way, the same learning rates and the number of epochs
tuned for random initialized DNNs can also be used for adapted
DNNs in the supervised learning stage.

Fig. 6 shows the comparison of the adapted UDBN connection
weights, between the input layer and the first hidden layer, for
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two different speakers. As it can be seen in this figure, speaker-
specific initial points are set by the adaptation process for each
DNN target model. Given target/impostor labels, the minibatch
stochastic gradient descent back-propagation is then carried out
for fine-tuning. The softmax and the logistic sigmoid will be the
activation functions of the top label layer and the other hidden
layers, respectively.

We have proposed to compute the output scores in Log Pos-
terior Ratio (LPR) forms as,

Λ(target|ω) = log P (target|ω)− log P (non-target|ω) (3)

where P (target|ω) and P (non-target|ω) are, respectively, the
posterior probability of the target and non-target classes given
the test i-vector ω. LPR computation helps to Gaussianize the
true and false score distributions which can be useful for score
fusion.

In addition, to make the fine-tuning process more efficient a
momentum factor is used to smooth out the updates, and the
weight decay regularization is used to penalize large weights.
The top layer pre-training proposed in [21] is not used in this
work. The reason is that it gives the emphasis on the top layer
connection weights and avoids the lower layers, closer to the
input, to learn enough from the input data. This fact will be
more important when higher number of hidden layers are used.

VI. EXPERIMENTS ON NIST SRE 2006

NIST SRE 2006 [32] is used to show the effect of each pro-
posed contribution shown in Fig. 3 for both single and multi-
session speaker verification tasks. In these experiments, we have
built the whole system from scratch including Voice Activity
Detection (VAD) and feature and i-vector extraction. Taking
advantage of the conclusions of this section, the NIST 2014 i-
vector challenge database [4] is used in Section VII to compare
the performance of the proposed system with the most recent
state-of-the-art baseline systems.

A. Baseline and Database

The whole core test condition of SRE 2006 is used as a single
session task and 8 conversation side training condition is used
as the multi-session task. In both cases, training and test signals
have approximately two-minute total speech duration. There are
816 target models and 51,068 trials in the single session and 699
target models and 31,080 trials in the multi-session task. Speech
signals with the two-minute approximate duration from NIST
SRE 2004 and 2005 are used as the background data containing
6,063 speech signals from 1,070 distinct speakers.

Frequency Filtering (FF) features [52] are used in these exper-
iments. FFs, like Mel Frequency Cepstral Coefficient (MFCC),
are decorrelated version of log Filter Bank Energies (FBE) [52].
It has been shown that FF features achieve a performance equal
to or better than MFCCs [52]. Features are extracted every 10 ms
using a 30 ms Hamming window. The number of static FF
features is 16 and along with delta FF and delta log energy,
33-dimensional feature vectors are built. Before feature ex-
traction, speech signals are subject to an energy-based silence
removal process. The gender-independent UBM is represented

as a diagonal covariance, 512-component GMM. All the i-
vectors are 400-dimensional. The i-vector extraction process
is carried out using ALIZE open source software [53]. UBM, T
matrix, and PLDA parameters are trained using the same back-
ground data. PLDA baseline systems are gender-independent
with a 250-dimensional speaker space. For PLDA experiments,
i-vectors are length normalized. Performance is evaluated using
Detection Error Tradeoff (DET) curves, Equal Error Rate (EER),
and the minimum of the Decision Cost Function (minDCF) de-
fined as follows [32],

DCF (t) = 0.1× PM (t) + 0.99× PF A (t) (4)

where the miss rate PM is the relative number of target trials
decided incorrectly, the false alarm rate PF A is the relative
number of non-target trials decided incorrectly, and t is the
threshold for which DCF is computed.

B. Single Session Experiments

For DNN experiments, the size of hidden layers is set to
512. DNNs with up to three hidden layers are explored in all
experiments. We do not go further than three layers because
of few amount of data and increasing the computational
complexity without more significant gain. The number of
minibatches and the number of impostor centroids are set
experimentally to 3 and 12, respectively. Each minibatch will
include four impostor centroids and four replicated target
samples. It is worth noting that compared to speech recognition
in which the amount of training data is typically very high, the
size and the number of minibatches are much less in this appli-
cation. However, the gradient is still stable and training works
very well.

As a DNN baseline system, we train a DNN for each target
speaker using the whole impostor background data and ran-
dom initialization. In this case, the whole background i-vectors
are clustered using the k-means algorithm and the centroids
are considered as impostor samples. In this work, we use the
uniform distribution U (0, 0.01) for random initialization as the
experimental results showed that it achieves slightly better per-
formance than the normal distribution N (0, 0.01) used in the
prior work [21]. We tune the parameters of the networks and
keep them fixed in all other experiments. DNN-3L will stand
for a three hidden layer DNN.

The two parameters N and κ, the number of local and global
selected impostors in the proposed impostor selection method,
need to be determined experimentally. Fig. 7 illustrates the vari-
ability of EER in terms of these two parameters for one hidden
layer DNNs. The similar behavior can be observed for minDCF
curves. DNN examples shown in this figure are initialized ran-
domly. Based on this figure, for DNN-1L we set N and κ to
10 and 2,000, respectively. Similar curves are plotted for other
networks and N is set to 10 for all of them and κ is set to 300
and 500 for DNN-2L and DNN-3L, respectively.

Experimental results showed that the main improvement due
to the adaptation process comes from the adaptation of the con-
nection weights between the input layer and the first hidden
layer for all DNNs. The adaptation of the other layers has no



GHAHABI AND HERNANDO: DEEP LEARNING BACKEND FOR SINGLE AND MULTISESSION I-VECTOR SPEAKER RECOGNITION 813

Fig. 7. Determination of the parameters of the proposed impostor selection
algorithm for one hidden layer DNNs. N and κ are, respectively, the number of
local and global nearest impostor i-vectors to target i-vectors.

TABLE I
THE EFFECT OF EACH PROPOSED IDEA OF FIG. 3 ON THE PERFORMANCE OF

THE PROPOSED DNN SYSTEMS

Impostor Selection Adaptation EER (%) minDCF (×104 )
# Hidden Layers # Hidden Layers

1 2 3 1 2 3

– – 8.55 7.76 7.59 381 353 351
� – 8.06 7.12 7.09 360 327 326
– � 7.43 7.47 7.45 339 343 339
� � 6.81 6.97 6.99 315 317 313

Fusion with cosine 6.83 6.88 6.64 308 309 299
Fusion with PLDA 4.98 5.03 4.76 253 248 230

Results are Obtained on the Core Test Condition of NIST SRE 2006. The Cosine and
PLDA Baseline Systems Achieve (EER=7.18%, minDCF=324) and (EER=4.78%,
minDCF=253), Respectively.

significant impact on the performance. In order to decrease the
probability of overfitting during the adaptation, a separate net-
work is adapted to each minibatch and then the parameters of
the obtained networks are averaged.

Table I summarizes the effect of each proposed contribu-
tion. Impostor selection improves the performance to a great
extent for all the networks. We have tried global, local, and the
pooling of global and local selected impostors before k-means
clustering and the best performance was obtained by using only
global selected impostors. The biggest improvement due to the
adaptation process is observed in DNNs with one hidden layer.
The best results are obtained using both impostor selection and
adaptation techniques which show an 8-20% and 10-17% rela-
tive improvements in terms of EER and minDCF, respectively,
compared to the baseline DNNs. The biggest relative improve-
ments are achieved on DNN-1L. The last two rows of the table
show the fusion of DNN systems with the cosine (EER=7.18%,
minDCF=0.0324) and PLDA (EER=4.78%, minDCF=0.0253)
baseline systems. Scores of each system are first mean and
variance normalized and then simply summed. The fusion of
the cosine baseline and DNN systems improves the results and
DNN-3L achieves the best results corresponding to an 8% rela-
tive improvement for both EER and minDCF in comparison to
the cosine scoring baseline system. Nevertheless, only DNN-3L

TABLE II
THE EFFECT OF EACH PROPOSED IDEA OF FIG. 3 ON THE PERFORMANCE OF

THE PROPOSED DNN SYSTEMS

Impostor Selection Adaptation EER (%) minDCF (×104 )
# Hidden Layers # Hidden Layers

1 2 3 1 2 3

– – 4.58 4.58 4.38 208 213 217
� – 4.02 4.07 3.86 183 201 194
– � 4.24 4.30 4.20 202 207 202
� � 3.68 3.83 3.50 170 189 172

Fusion with cosine 3.61 3.77 3.45 161 169 162
Fusion with PLDA 2.46 2.62 2.36 111 121 112

Results are obtained on NIST SRE 2006, 8-Session Enrollment Task. The Cosine and
PLDA Baseline Systems Achieve (EER=4.2%, minDCF=191) and (EER=2.27%,
minDCF=105), Respectively.

scores can improve the PLDA results specifically for minDCF
by 9% relative improvement. We have also combined the scores
of DNNs with different number of hidden layers, but no gain is
observed.

C. Multi-Session Experiments

The same configuration used for the single session task is also
applied for the multi-session one. The number of minibatches
is set to 3. In each minibatch, all 8 target i-vectors accompany-
ing with 8 impostor cluster centroids are shown to the network.
Therefore, the size of each minibatch and the total number of
impostor clusters will be 16 and 24, respectively. As the com-
bination of the i-vectors of each target speaker did not help the
training of the networks, we replicated the target i-vectors in
every minibatch as it was shown in Fig. 5. We train the net-
works with the same parameters tuned for the single session
experiments.

Results are summarized in Table II. Around 12% relative
improvements are achieved in all DNNs employing impostor
selection technique proposed in this work. With the same pa-
rameters obtained for the single session task, we re-selected
the impostors for the new multi-session data set. The adapta-
tion process improves the performance up to 8%. As in the
single session task, adaptation is more effective for one-hidden-
layer DNNs. For all the networks, only the parameters of the
first hidden layer are adapted because no more improvement
was observed adapting the other layers. The best results are
obtained with DNN-3L when the two proposed techniques are
combined. It shows more than 20% relative improvements of
EER and minDCF in comparison to the baseline three-layer
DNNs.

The proposed three-hidden-layer DNNs show a performance
between the cosine (EER=4.2%, minDCF=0.0191) and PLDA
(EER=2.27%, minDCF=0.0105) baseline systems, with more
than 17% and 10% relative improvements in terms of EER and
minDCF, respectively, compared to the cosine scoring. Fusion
with the cosine baseline system improves the results in all cases,
but no improvement is observed by combination with PLDA
scores.



814 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 25, NO. 4, APRIL 2017

VII. EXPERIMENTS ON NIST 2014 I-VECTOR CHALLENGE

The full database provided in the NIST 2014 speaker recog-
nition i-vector challenge [4] is used for the experiments in
this section. Rather than speech signals, i-vectors are given
directly by NIST in this challenge to train, test, and develop
the speaker recognition systems. This enables system compar-
ison more readily with consistency in the front-end and in the
amount and type of the background data [4]. For this challenge,
speaker recognition systems are evaluated in two phases: when
the speaker labels of the background data are not known and
when they are known to the systems. The cosine and PLDA
scoring techniques are used by NIST as the baseline systems
when unlabeled and labeled background data are available, re-
spectively. The goal of this evaluation is to see how other tech-
niques can fill the performance gap between these two baseline
systems when no labeled background data is available.

A. Baseline and Database

Conventional telephone speech recordings from NIST SRE
2004 to 2012 are used to compute i-vectors for this challenge [7].
Unlike NIST SRE 2006 experiments, in which the duration of
speech signals for each i-vector was approximately 2 minutes, in
this challenge i-vectors are extracted from speech utterances of
varying duration with a mean of 39.6 seconds. Three sets of 600-
dimensional i-vectors are provided: development, train, and test
consisting of 36,572, 6,530, and 9,634 i-vectors, respectively.
The number of target speaker models is 1,306 and for each
of them five i-vectors are available. Each target model will
be scored against all the test i-vectors and, therefore, the total
number of trials will be 12,582,004. Trials are divided by NIST
into two randomly selected subsets: a progress subset (40%),
and an evaluation subset (60%). The performance is evaluated
using a minDCF obtained by [4],

DCF (t) = PM (t) + 100× PF A (t) (5)

Two main baseline systems are considered in this work when
the background i-vectors are not labeled: cosine and PLDA
with estimated labels. The PLDA with actual labels is also used
as an oracle system for comparison. In all of them, i-vectors
are whitened and length normalized prior to evaluation and the
average i-vector per each target speaker is used as a single
target model. Only for the cosine baseline system the average
i-vectors are again length normalized as it is shown that for
the PLDA systems re-normalization affects the performance
[7]. Both PLDA systems are gender-independent with a 400-
dimensional speaker space. In order to have the best PLDA
with actual labels, those background i-vectors extracted from
speech signals shorter than 30 seconds are discarded before
PLDA training [7]. For the PLDA with estimated labels, a two
stage unsupervised clustering technique is used to estimate the
speaker labels of the background data. The first stage of the
clustering algorithm is similar to the Mean Shift based algorithm
proposed in [54] and used successfully in this challenge in [6].
In the second stage, the closer clusters obtained in the first stage
are combined. In both stages, i-vectors are joined based on the
cosine similarity considering a threshold which is set to 0.29 in

our experiments as in [6]. At the end, only clusters contained no
less than 4 and no more than 50 i-vectors are selected. As in [6],
those i-vectors with less than 20 seconds of speech are discarded
before PLDA training in this case. It is possible to train a PLDA
with the estimated labels and repeat the two stage unsupervised
clustering algorithm with the PLDA similarity measurement,
but it would be time consuming and no significant gain will be
observed in practice. The experimental results for this baseline
system show a comparable performance to those reported in [6]
and [5].

B. Multi-Session Experiments

The same architecture as in SRE 2006 multi-session experi-
ments has been used for these experiments with some modifi-
cation. The size of hidden layers is set to 400. Each minibatch
consists of 5 impostor centroids and 5 target samples. The to-
tal number of impostor centroids is 15 for each target model.
Since DNN-1L and DNN-3L worked better than DNN-2L in
SRE 2006 experiments, we only implement these two networks
for the NIST i-vector challenge. DNN-1L and DNN-3L are
trained with the learning rates of 0.002 and 0.07 and with the
number of epochs of 30 and 300, respectively. Momentum and
weight decay are set, respectively, to 0.9 and 0.001 for all DNNs.
The whole unlabeled background i-vectors are used for UDBN
training. The learning rate and the number of epochs for UDBN
training are set to 0.02 and 200 for GRBM, and to 0.06 and 120
for the rest of RBMs, respectively. Momentum, weight decay,
and the minibatch size are set, respectively, to 0.9, 0.0002, and
100 for all RBMs. For DNN-3L we adapted only the first two
layers. The learning rate and the number of epochs of adaptation
are set, respectively, to 0.001 and 10 for the first layer and to
0.0001 and 20 for the second layer.

As it was discussed in Section IV-A, when the background
data set is big enough like in this challenge, the results will be
only slightly better if the training data set is used in the selection
algorithm. On the other hand, as a general rule of this challenge
the use of training data is not allowed for impostor selection.
Therefore, in order to have a fair comparison with the results of
other participating sites, we use only the background i-vectors
in the impostor selection algorithm (Section IV-A).

As in SRE 2006 experiments, we have tried global, local,
and the pooling of global and local selected impostors before
k-means clustering and the best performance was obtained by
pooling. For global impostor selection, κ and N are set to 4,500
and 100 for both DNN-1L and DNN-3L, respectively. The al-
gorithm is iterated 20 times. Afterwards, the global selected
impostors are pooled with 500 local impostors for each target
speaker before k-means clustering.

Table III compares the performance of the proposed DNN
systems with other baseline systems in terms of minDCF and
EER, and Figs. 8 and 9 compares them in all operating points in
terms of DET curves. Circles in the figures show the operating
points corresponding to minDCFs. It is worth noting that in
NIST 2014 i-vector challenge the performance of the systems
were evaluated only in terms of minDCF. However, we have
also included EERs in the table for better comparison. As it can
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TABLE III
COMPARISON OF THE PERFORMANCE OF THE PROPOSED DNN SYSTEM WITH

OTHER BASELINE SYSTEMS ON NIST 2014 I-VECTOR CHALLENGE

Unlabeled Background Data Progress Set Evaluation Set

EER (%) minDCF EER (%) minDCF

[1] cosine 4.78 0.386 4.46 0.378
[2] PLDA (Estimated Labels) 3.85 0.300 3.46 0.284
[3] Proposed DNN-1L 5.13 0.327 4.61 0.320
[4] Proposed DNN-3L 4.55 0.305 4.11 0.300
Fusion [2] & [4] 2.99 0.260 2.70 0.243

Labeled Background Data

[5] PLDA (Actual Labels) 2.23 0.226 2.01 0.207
Fusion [2] & [5] 2.04 0.220 1.85 0.204
Fusion [4] & [5] 2.13 0.221 2.00 0.196
Fusion [2] & [4] & [5] 1.88 0.204 1.74 0.190

Fig. 8. Comparison of the performance of the proposed DNN-3L system with
other baseline systems on the progress set of NIST 2014 i-vector challenge.

be seen in the table, the proposed DNN-3L performs better than
DNN-1L, as it was concluded from SRE 2006 experiments. The
proposed DNN-3L system achieves comparable performance to
PLDA with estimated labels in terms of minDCF (with 21%
relative improvement compared to cosine scoring), but lower
performance in terms of EER. In other words, as it is shown in
Figs. 8 and 9, the proposed DNN-3L system performs closer to
PLDA with actual labels than to cosine for lower False Alarm
(FA) probabilities. For higher FA probabilities, it is the other
way around. The proposed DNN and PLDA with actual labels
achieve the same performance for FA probability around 0.01,
and for lower than 0.01 the proposed DNN system outperform
the PLDA with actual labels. This can be seen as an advantage of
the proposed system since having better performance in lower
FA probabilities is more important for higher security purposes.

Fig. 9. Comparison of the performance of the proposed DNN-3L system with
other baseline systems on the evaluation set of NIST 2014 i-vector challenge.

The interesting point is that the combination of the DNN-3L
and PLDA with estimated labels in the score level improves the
results to a great extent in all operating points. The score fusion
is carried out using BOSARIS toolkit [55]. The combination
weights are trained on the progress trial set and used for the
evaluation set. The resulting relative improvement compared
to cosine baseline system is 36% in terms of minDCF on the
evaluation set. This improvement with no use of background
labels is considerable compared to 45% relative improvement
which can be obtained by PLDA with actual labels.

Although the use of speaker labels for the background data
has not been the goal of this work, it would be interesting to see
how the proposed DL-based backend and PLDA with estimated
labels can help the oracle PLDA system, which uses the actual
labels. As it can be seen in Table III, in both cases of DNN-3L
and PLDA with estimated labels, the combination with oracle
PLDA improves the results. This improvement is higher in terms
of EER for PLDA with estimated labels and higher in terms of
minDCF for DNN-3L systems. Nevertheless, the combination of
all three systems achieves the best performance, corresponding
to 8% and 13% relative improvement in terms of minDCF and
EER, respectively, compared to the PLDA with actual labels.

VIII. CONCLUSION

A hybrid architecture based on Deep Belief Networks (DBN)
and Deep Neural Networks (DNN) has been proposed in this
work to discriminatively model each target speaker for i-vector
speaker verification. The main objective has been to fill the per-
formance gap between the cosine and the oracle PLDA scoring
systems when no labeled background data is available. Two
main contributions have been proposed to make DNNs more
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efficient in this particular task. Firstly, the most informative im-
postor i-vectors have been selected and clustered to provide a
balanced training. Secondly, each DNN has been initialized with
the speaker specific parameters adapted from a global model,
which has been referred to as Universal DBN (UDBN). In order
to have more insight into the behavior of these techniques in
both single and multi-session speaker enrollment tasks, the ex-
periments have been carried out in both scenarios. Experiments
were performed on NIST SRE 2006, mainly for development,
and on NIST 2014 i-vector challenge, mainly for evaluation. It
was shown that the proposed hybrid system fills approximately
46% of the performance gap between the cosine and the ora-
cle PLDA scoring systems in terms of minDCF. Although the
proposed system still does not outperform the baseline PLDA
with estimated labels, their score fusion is highly effective and
covers 79% of this gap. The reason that the proposed system
still does not outperform the baseline PLDA system could be
that it does not explicitly compensate the session variability as
it is carried out in PLDA. Thus, it is expected that adding some
explicit session modeling to the proposed hybrid model could
improve the performance, but it has been beyond the scope of
this paper.
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