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Abstract

Since the first “core mitosis” in processor market in 2005, the multi-

core era has implied a drastic change in computer architecture. For

many decades, Moore’s law [95] had dictated that processor frequen-

cies would be doubled every 18 months, which indeed caused a thousand-

fold increase during this time. Due to the memory wall and the power

wall both hit, in order to offer higher performance, mainstream man-

ufacturers were forced to place multiple processors on a silicon die,

whereas before Moore’s law had them pushing for higher-frequency

massive superpipelined cores with high single-thread performance.

This new direction demands better expressiveness of thread-level par-

allelism (TLP) and suitable ways of providing concurrency in pro-

gramming a shared-memory Chip Multiprocessor (CMP). “Multicore

architectures are an inflection point in mainstream software develop-

ment because they force developers to write parallel programs” [3].

To program these larger and scalable parallel architectures, easier

methods and abstractions for the efficient use of parallelism are es-

sential. Traditional mechanisms such as lock-based thread synchro-

nization, which are tricky to use and non-composable, are becoming

less likely to survive. Consequently, the use of atomic instructions in

lock-free Transactional Memory (TM) is a serious candidate to be-

ing the future of concurrent programming. TM is a programming

paradigm for deadlock-free execution of parallel code that provides

optimistic concurrency by executing transactions atomically: in an

all-or-none manner. In case of a data inconsistency, a conflict causes

the transaction to be aborted without committing its changes, and

restarted as if no state change had occurred.



Nowadays, TM is being seen as one of the most promising ways of

the parallel programming revolution, ensuring deadlock-free transac-

tional code segments to run atomically, saving the programmer from

explicitly dealing with locks. However, how TM guarantees such as

atomicity and deadlock-freedom should be provided to the program-

mer has been a very active research topic for the last two decades.

While TM was so actively investigated, the past decade has also seen a

shift of interests from using software simulation for evaluating new re-

search ideas, to hardware emulation and prototyping in architectural

design space exploration, using programmable FPGAs (ie. reconfig-

urable computing). Recent advances in multicore computer architec-

ture research were being hindered by the inadequate performance of

software-based instruction set simulators which led many researchers

to consider the use of FPGA-based emulation. The primary reason

for using an FPGA-based simulator is to achieve a significantly faster

simulation speed for multicore architecture research, compared to the

performance of software instruction set simulators. A secondary rea-

son is that a system that uses only the FPGA fabric to model a

multicore processor may have a higher degree of fidelity, since no

functionality is implemented by a magical software routine.

This thesis attempts to bring together these two recent topics by pre-

senting a flexible Transactional Memory environment on a prototype

that is realized on FPGA fabric. For this, we develop a 16-core MIPS-

compatible shared memory CMP system with Transactional Memory

support, based on the Plasma open source soft processor core [113].

We present the design and implementation of the TMbox system,

which features an emulation system of up to 16 MIPS soft proces-

sor cores interconnected with a bi-directional ring bus, running at 50

MHz on a Virtex5-155t FPGA of the BEE3 prototyping platform [36].

TMbox is a completely modifiable architecture implementing the first

publicly-available multicore prototype with support for Hardware-,

Software- and Hybrid TM. It was written in various common design



languages, and enables modifying the complete stack, down from the

ISA, through the software toolchain, up to the optimized concurrent

code. With our infrastructure, fast execution and quick performance

evaluation can be made possible for studies in computer architecture.

Additionally, we build the first comprehensive infrastructure to pro-

file Hybrid TM systems, an extensive visualization environment that

enables examining complete transactional executions in detail. The

profiling and visualization system of the TMbox enables in depth in-

spection of any kind of event, either triggered by the out-of-the-way

profiling hardware or by a very low overhead software routine. It cre-

ates Paraver-like [19] multi-threaded traces, which help to correctly

evaluate complex parallel executions as non-disruptively as possible.

It is shown to aid in (i) porting programs to appropriately make use

of Hybrid TM, (ii) discovering bottlenecks such as serialization, killer

transactions and repetitive aborts, as well as (iii) depicting different

program phases.

The result is a fast and flexible reconfigurable multicore architecture

with a very useful profiling and visualization tool that serves as an

efficient feedback mechanism. Although in this thesis the focus is on

TM behavior, our infrastructure can be easily modified and extended

to many other directions and to other topics of interest in novel com-

puter architecture research.
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Chapter 1

Introduction

1.1 Field-Programmable Gate Arrays

Field-Programmable Gate Arrays (FPGAs) are the first reconfigurable computing

fabrics that were proposed half a century ago by Gerald Estrin as a “fixed-plus-

variable structure computer” [41]. FPGAs are part of many of the systems and

devices that we use today, such as automobiles, consumer electronics, home ap-

pliances, aircraft, or medical devices. Due to their ability to be reprogrammed,

FPGAs were initially used for rapid prototyping of complex digital systems, and

later on, as co-processors to speed up computations. In these implementations,

compute-intensive tasks or user-defined instructions could be mapped on fabric

in compile-time, [49; 50; 87; 136] or frequently used loops and tasks could get

mapped on reconfigurable fabric dynamically at run-time [88].

Many researchers have often used FPGA technology to accelerate computing

applications. The performance achieved by these configurable machines can be up

to one or two orders of magnitude greater than general purpose processor-based

counterparts. Configurable computers are proven to be the fastest in fields such

as RSA decryption, DNA sequence matching, signal processing, microprocessor

emulation and cryptography. Here, the fast and parallel execution on the recon-

figurable chip has to compensate for the communication and transfer overheads

that occur while bringing the data into the FPGA and sending it back. Generally,

the more the data parallelism and the fewer the dependencies between the data,

the better the performance of an FPGA implementation would be.

1



1. INTRODUCTION 1.1 Field-Programmable Gate Arrays

Figure 1.1: A generic FPGA [140].

A typical FPGA consists of an array of configurable logic blocks distributed

across the entire chip in a large matrix of programmable interconnections, with

programmable Input/Output (I/O) blocks at the periphery [132] (Figure 1.1). A

logic block is an FPGA unit of area that includes N-input lookup tables (LUTs)1

and D flip-flops. To simplify, an N-input LUT is a memory unit that, when

programmed appropriately, can perform any Boolean function of up to N inputs

[134], effectively emulating the logical functionality of the digital circuit. On the

FPGA, configurable logic blocks (CLBs), which are made up of “slices” of LUTs

are organized in an array and are used to build combinatorial and synchronous

logic designs. Each CLB also has carry logic to help build fast, compact ripple-

carry adders and multiplexers to help cascade multiple LUTs into larger logic

structures. Each CLB element is tied to a switch matrix that accesses the general

routing interconnection. Each Input/Output Block (IOB) in an FPGA offers

input and output buffers and flip-flops. The programmable interconnect routes

CLB/IOB output signals to other CLB/IOB inputs. It also provides low-skew

clock lines that run around the FPGA, and horizontal long lines near each CLB.

Although various ideas might get implemented differently by different vendors,

the structures of common, non-specialized FPGAs are usually quite similar.

FPGAs are canonical examples of a configurable device. On an FPGA, all

1Throughout this thesis, we utilize Xilinx terminology, since we worked with their generously

donated FPGAs.

2
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layers already exist on the chip and connections are either created or removed

and the LUTs are programmed to implement the desired functionality with the

aid of Computer-Aided Design (CAD) tools. The functional computation to be

implemented on the hardware is defined by a set of configuration bits, gener-

ated by the CAD tools, which describes how each gate and wire (interconnect)

should behave. Consequently, FPGAs can perform any computational task that

fits in the machine’s finite state and computational capacity that is set by its

operational resources. In such, the designers themselves have the advantage of

emulating an Integrated Circuit (IC) on top of a programmable chip. Although

there are benefits like having a low NRE (Non-Recurring Engineering) cost and a

lower time-to-market period compared to ASICs (Application-Specific Integrated

Circuits), it also presents some drawbacks such as the medium-high cost per unit

and slower performance than ASICs.

The term configurable is used to refer to architectures where the active cir-

cuitry can perform any of a number of different operations, but the functionality

cannot be changed from cycle to cycle1. The register-rich nature of FPGA chips

do not solely consist of an array of look-up tables and flip-flops, but also include

on-chip RAM blocks and fast hardware DSP (Digital Signal Processing) units,

making them perfect candidates for processor design.

1.1.1 Intellectual Property Cores

In order to keep production and development expenses as low as possible, while

complying with various design constraints, embedded devices often come in the

form of a System-on-Chip (SoC) in a core-based system design. A SoC is a

concept that integrates the use of pre-designed, pre-verified, re-usable silicon

circuitry, called Intellectual Property (IP) cores, to be used as building blocks

for large and complex applications interconnected by a network-on-chip (NoC)

[32] on an Integrated Circuit (IC). So, rather than developing every sub-system

from scratch, the system is composed by integrating various cores with the re-use

of previously deployed ones (Figure 1.2).

1Although this is changing with new FPGAs that include static memories and 3D stacking

technology [68].

3
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Figure 1.2: Generic system-on-chip (SoC) architecture [89].

SoCs have altered the way commercial, off-the-shelf components are sold:

as Intellectual Property (IP) cores, processor-level components with behavioral,

structural, or physical descriptions, rather than actual Integrated Circuits. Ex-

amples of common IP cores range from a thousand-gate analog circuit blocks

to memory controllers, peripheral devices such as MAC (Media Access Control),

Ethernet, UART (Universal Asynchronous Receiver / Transmitter), or PCI (Pe-

ripheral Component Interconnect) bus controllers, to million-gate processor cores

[31]. IP cores can be split into two main categories: soft and hard cores, as

discussed next.

1.1.2 Soft and Hard IP Cores

Although programmable logic saves development cost and time over increasingly

complex ASIC designs, FPGAs have started becoming popular over the past

two decades as the unit price has dropped and gate count per chip has reached

numbers that allow for the implementation of more complex applications and

soft cores. A soft core consists of a synthesizable HDL (Hardware Description

Language) description that can be re-targeted to different semiconductor pro-

cesses, rather than being a fixed part of the chip circuitry. HDLs such as VHDL

(Very High Speed Integrated Circuit Hardware Description Language), Verilog,

SystemC and Bluespec increase the range of options available to designers by

4
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enabling hardware implementation with the flexibility that language-based de-

sign provides, allowing designers to implement efficient soft Intellectual Property

cores.

Hard IP cores are physical descriptions that involve the implementation of

a silicon-level circuit within the device fabric. A hard core includes layout and

technology-dependent timing information and is ready to be included into a sys-

tem. These components are products of the specific technology used, are propri-

etary IPs by definition, and are subject to patents and copyrights. Depending

on the design constraints, the designer can use the already optimized and syn-

thesized hard cores, or to comply with the constraints, adapt the soft (or firm)

cores to specific limitations. Typical hard cores included in a modern FPGA may

include DSP blocks, Block RAMs, or hard processor IPs.

Since soft cores do not target a specific technology, they are inherently more

flexible in function and implementation than hard cores. On the other hand, hard

core developers can afford to spend more time optimizing their implementations

to be used in many designs. For a SoC that requires the highest performance

in current process and design technology, a full-custom hard core is better at

meeting these needs by using latches, dynamic logic, 3-state signals and custom

memories. However, they are not flexible or parameterizable like soft cores and

do not accept modifications and customizations.

All of the benefits and characteristics of soft IP cores are realized by soft

processor cores implemented within FPGA components. Two proprietary soft

processor core examples are the Xilinx Microblaze and Altera Nios II [66; 71].

Both soft processor cores are 32-bit Harvard bus architecture (separate data and

instruction memories) Reduced Instruction Set Computer (RISC) systems with

32 general-purpose registers. Many open source soft processor cores, which accept

modifications have also been made available, especially in the last decade [2; 47;

52; 106; 113].

The typical design flow facilitated by CAD tools includes the synthesis of the

Register Transfer Level (RTL) code written in an HDL into logical gates, later its

translation for the selected technology, mapping of units and their placement onto

the FPGA, the routing of all signals and finally the generation of the bitstream

to be loaded on the FPGA (Figure 1.3).

5
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Design Specification

HDL Design Entry

Behavioral Simulation

Testbench

Logic Synthesis

Mapping

Place and Route, 
Timing Analysis

Bitstream Generation

Figure 1.3: FPGA Design Flow

1.1.3 FPGA use for computer architecture investigation

With the always-increasing frequencies of typical uni-processors, the investigation

of architectural schemes have been realized by software-based microarchitectural

simulators, such as Simplescalar, PTLsim, Simics or M5 [12; 114]. These sequen-

tial simulators are expressive and it’s relatively easy and fast to make changes

to the system in a high-level environment. However, little effort has been made

to parallelize or accelerate these programs which turn out to be slow to simul-

taneously simulate the multiple cores of a typical multiprocessor of the current

era of chip multi-cores. This has caused the computer architecture community

to consider performing emulations on reconfigurable fabrics as an alternative to

using software-based simulations.

The low performance of legacy architectural simulator software for investigat-

ing new generation Chip Multi-Processor (CMP) architectures has been addressed

in a few ways: the development of new parallel simulators [92], parallelization

efforts for sequential simulators [114], acceleration using GPUs [110], and proto-

type/emulation implementations on reconfigurable fabric [26; 34]. FPGAs were

proven successful in accelerating simulations working in concert with a host com-

puter [22], as well as FPGA-only multi-core MPSoC implementations [125].

6



1. INTRODUCTION 1.1 Field-Programmable Gate Arrays

1.1.3.1 Current Overview

The inherent advantages of using today’s FPGA systems are clear: multiple

hard/soft processor cores, multi-ported SRAM blocks, high-speed DSP units, and

more configurable logic cells each generation on a rapidly growing process tech-

nology. Another opportunity comes from the already-tested Intellectual Property

(IP) cores. There are various open-source synthesizable Register Transfer Level

(RTL) models of various x86, MIPS, PowerPC, SPARC architectures that can run

at up to a hundred MHz. These models can already include detailed specifications

for multi-level cache hierarchy, out-of-order issue, speculative execution, Float-

ing Point Units (FPU), and branch prediction. These are excellent resources to

start building a credible multicore system for any kind of architectural research.

Furthermore, various IPs for incorporating UART, SD, Floating Point cores, Eth-

ernet or DDR controllers are also easily accessible [104].

FPGAs can be good alternatives to implement complex computer circuitry.

On-chip Block RAM (BRAM) resources on an FPGA which are optionally pre-

initialized or with built-in ECC can be used in many configurations, such as

(i) RAM or SRAM; for implementing direct mapped or set associative on-chip

instruction/data cache, cache tags, cache coherence bits, snoop tags, register file,

multiple contexts, branch target caches, return address caches or branch history

tables, (ii) CAM; for reservation stations, out-of-order instruction issue/retire

queues or fully associative TLBs, (iii) ROM; for bootloader or lookup tables,

or (iv) asynchronous FIFO; to buffer data between processors, peripherals or

coprocessors[51]. BRAM capacity, which does not occupy general-purpose Look-

Up Table (LUT) space or flip-flops could be used to implement debug support

tables for breakpoint address/value registers, count registers or memory access

history. The available dedicated on-chip DSP blocks can be cascaded to form large

multipliers/dividers or FPUs. Complete architectural inspection of the memory

and processor subsystems can be performed using statistics counters embedded

in the FPGAs without any overhead.

Many vendors provide large FPGA programming boards and high-end FPGA

prototyping boxes with preferential pricing for academia. FPGAs have already

been proposed to teach computer architecture courses for simple designs as well

7
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as for more advanced topics [52; 91; 127]. Nowadays, it is possible to prototype

large architectures in a full-system environment, which allows for faster and more

productive hardware research than software simulation. Over the past decade,

the RAMP project has already established a well-accepted community vision and

various novel FPGA architecture designs [22; 26; 34; 81; 98; 125]. It is also known

that processor vendors make use of FPGAs to better investigate their new designs

in a rapid way [117; 135].

1.1.3.2 Choice of architecture

Although FPGA-based multiprocessor emulation has received considerable at-

tention in the recent years, the experience and tradeoffs of building such an

infrastructure from the already-available resources and IP cores has not yet been

considered in depth. Indeed, most of the infrastructures developed were either

(i) written from scratch using higher level HDLs, such as Bluespec [67], (ii) using

hard cores such as PowerPC, or (iii) using proprietary cores such as the Microb-

laze [38].

One direction is to choose a well-known architecture like MIPS and enjoy the

commonly-available toolchains and library support, as we demonstrate through-

out this thesis. Although supporting a minimal OS might be acceptable depend-

ing on the objectives, a deeper software stack could have many advantages by

providing memory protection, performing scheduling, aiding debugging, file sys-

tem support, etc. Full OS support can be accomplished either by highly detailed

design implementations on the FPGA, or with hybrid approaches, where the

core functionality is retained in FPGA hardware and it cooperates with a nearby

host computer that can serve (i) system calls and exceptions, (ii) infrequent or

slow running instructions and/or (iii) I/O operations, instead of implementing

everything inside the FPGA [26]. There also exist commercial simulator accel-

erators like Palladium and automated simulator parallelization efforts that take

advantage of reconfigurable technology [108]. In this thesis, we model the entire

multiprocessor system on FPGA logic (Figure 1.4).

This flexible experimental systems platform on an FPGA offers a multiproces-

sor System-on-Chip (SoC) implementation that: (i) can be configured to integrate

8
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Figure 1.4: An overview of FPGA emulation approach.

various Instruction Set Architecture (ISA) extensions and hardware organiza-

tions, (ii) fit and scale well for large designs of tens of processor cores, (iii) offer

high enough performance to run full benchmarks in acceptable timeframes, (iv)

run at least some minimal OS and (v) must provide with credible results. The

applications that run on real hardware should provide the researcher with fast,

wide-ranging exploration of HW/SW options and head-to-head comparisons to

determine the strade-offs between different implementations [6].

1.2 Transactional Memory

For the exchange of data among multiple threads, shared memory is a common

and convenient IPC (Inter-Process Communication) paradigm to provide all pro-

cessors with a single view of memory. However, some form of synchronization

between the processes that are storing and fetching information to and from the

shared memory region is required. For enforcing limits on access to a shared re-

source, locking is the most commonly used synchronization mechanism. Locking

is simple to use, however it has many problems: Simple coarse-grained locking

does not scale well, while more sophisticated fine-grained locking risks introducing

deadlocks, priority inversion or data races. Many scalable libraries written using

9
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fine-grained locks cannot be easily composed in a way that retains scalability and

avoids deadlock and data races.

Some 30 years ago, Lomet proposed an idea to support atomic operations in

programming languages, similar to what had already existed in database systems

[86]. Nowadays, based on this idea, the proposal that has drawn the most atten-

tion for programming shared-memory CMPs has been the use of Transactional

Memory (TM), an attractive paradigm for the deadlock-free execution of parallel

code without using locks [64; 80; 115].

TM-based algorithms can be expected to run slower than ad-hoc non-blocking

algorithms or fine-grained lock based code, but TM is as easy as using coarse-

grained locks: one simply brackets the critical section that needs to be atomic!

Using atomic blocks in TM simplify writing concurrent programs because when

a block of code is marked, the compiler and the runtime system ensure that

operations within the block appear atomic to the rest of the system [59]. TM

schemes attempt to optimistically interleave and to execute all transactions in

parallel. A transaction is committed if and only if any other transaction has

not modified the section of the memory which its execution depended on. As a

consequence, the programmer no longer needs to worry about manual locking,

deadlocks, race conditions or priority inversion [60].

1.2.1 Flavors of TM

The Transactional Memory approach allows programmers to specify transaction

sequences that are executed atomically, by encapsulating critical sections inside

the atomic{} construct. TM implementations have to ensure that all operations

within the block either complete as a whole, or automatically rollback as if they

were never run. The underlying TM mechanism has to automatically detect data

inconsistencies and aborts and restarts one or more transactions. If there are no

inconsistencies, all the side effects of a transaction have to be committed as a

whole.

Transactional Memory can be implemented in dedicated hardware (HTM)

[20; 96], which is fast but resource-bounded, while it might require changes to

10
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the caches and the Instruction Set Architecture (ISA). On the other hand, Soft-

ware TM (STM) [4; 44] can be flexible, run on off-the-shelf hardware, albeit at

the expense of lower performance. To have the best of two worlds, there are

intermediate Hybrid TM (HyTM) proposals where transactions first attempt to

run on hardware, but are backed off to software when hardware resources are

exceeded [ 33]. Another approach is Hardware-assisted STM (HaSTM), which by

architectural means aims to accelerate a TM implementation that is controlled

by software. By leaving the policy to software, different experimentations on

contention management, deadlock and livelock avoidance, data granularity and

nesting can be accomplished. HaSTM does not implement any TM semantics

in hardware, but provides mechanisms that accelerate an STM, which may also

have uses beyond TM.In transactional applications, a conflict occurs when two

simultaneously running transactions access the same memory location and one of

the accesses is a write. A TM implementation may detect conflicts either eagerly

or lazily. In the eager approach, conflicts are detected immediately as soon as

they occur, whereas in lazy conflict detection, they are detected at a later time

of the transactional execution (e.g. at commit time).

Transactional write operations in a TM system can be buffered (lazy version-

ing) or done in-place (eager versioning). With buffered writes, the speculative

values of the memory references are stored in a thread local buffer/cache, and

only written to memory when the transaction successfully commits. With in-

place writes, the TM system logs all original values for rolling back in case of

an abort, and writes the speculative values to memory. Therefore, in buffered

update TMs, commits are more expensive, whereas in eager update TMs, aborts

tend to be more costly.

Furthermore, a TM implementation may also differ based on the granularity

at which conflicts are detected. Typically TM implementations detect conflicts

at word, cache line or object granularity. The choice of the granularity involves

design and performance tradeoffs. Word and cache line granularity are more

suitable for HTMs and non-garbage-collected low-level programming languages

such as C. Per-object conflict detection is more suitable for managed STMs in

object-oriented languages such as Java or C#.
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Conflict resolution determines which transaction(s) are aborted at what point

in the execution when a conflict is detected. Conflict resolution may follow im-

mediately after a conflict is detected (i.e. eager conflict resolution) or at a later

moment of the transactional execution (i.e. lazy conflict resolution), for instance

at commit time. Once it is time to resolve the conflict, the TM system, or a

contention manager [118] may choose to block the transactional execution until

the other conflicting transaction commits or aborts, or delaying and assigning a

back-off time for the abort. In case of a cyclical dependency between two or more

waiting transactions, the TM system might choose to abort all transactions to

avoid deadlock [58].

In the past two decades, there have been a flurry of proposals of different fla-

vors of semantics and implementations, such as the first Transactional Memory

system proposed in hardware (HTM) [64], that of a software-only implementation

[119], hybrid approaches [33; 83], those that propose hardware conflict resolution,

hardware signatures to track read and write sets, those that timestamp transac-

tions, realize hardware-assisted TM, other hybrid mechanisms, and many more.

Today, TM is still a topic of very active investigation.

1.3 Thesis Contributions

FPGA emulation/prototyping of multicores has been receiving a lot of research

attention. Recently, FPGA emulators and prototypes of many complex architec-

tures of various ISAs have been proposed. However, only a few of these are on

research on Transactional Memory. Furthermore, only a few implement/scale to

an interestingly-large number of processor cores. Additionally, the majority of

these proposals are based on proprietary or hard processor cores, which imply

rigid pipelines that can prevent the researcher from modifying the ISA and the

microarchitecture of the system.

Therefore in this thesis, we choose a new approach: We reuse an already

existing MIPS [76] processor core called Plasma [113] and we modify and ex-

tend it to build a full multiprocessor system designed for multicore research on

Software-, Hardware- and Hybrid Transactional Memory. More particularly, the

contributions of this thesis are made up of three parts:

12
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• Beefarm STM: Reports on our experience of designing and building an eight

core cache-coherent shared-memory multiprocessor system on FPGA called

BeeFarm, to help investigate support for Software Transactional Memory

[54; 96; 129]. Towards this goal, we have successfully ported an STM library

and ran TM applications on the BeeFarm.

• TMbox HybridTM: Features an MPSoC built to explore trade-offs in multi-

core design space and to evaluate recent parallel programming proposals

such as Hybrid Transactional Memory. For this work, we evaluate a 16-

core Hybrid TM implementation based on the TinySTM-ASF proposal on

a Virtex-5 FPGA [73] and we accelerate three benchmarks written to in-

vestigate TM trade-offs. Our flexible system, comprised of MIPS R3000

compatible cores interconnected by a ring network, is easily modifiable to

study different architecture, library or Operating System extensions. TM-

box is the first implementation on FPGA in the literature with support for

Sofware-, Hardware- and Hybrid TM.

• TMbox Profiling: Multi-core prototyping additionally presents a good op-

portunity for establishing low overhead and detailed profiling and visualiza-

tion in order to study new research topics. In this direction, we design and

implement a low execution, low area overhead profiling mechanism and a

visualization tool for observing Transactional Memory behaviors on FPGA.

We demonstrate the usefulness of such detailed lightweight examination of

SW/HW transactional behavior to appropriately port applications to Hy-

brid TM and to accelerate them. Thanks to its ability to rapidly run and

visualize full multi-threaded benchmarks, the TMbox with profiling support

can point out pathologies such as repetitive aborts, killer transactions and

starvation and to depict the phased behavior in full benchmarks with very

low instrumentation overheads.

In this thesis, we explain how we devised a flexible infrastructure to run and

to inspect Transactional Memory systems and applications in a rapid way using

reconfigurable computing technology. As a result, TMbox is the only publicly

available multicore prototype with extensive support for Hardware-, Software-
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and Hybrid Transactional Memory and a low overhead profiler and visualizer for

analyzing extremely detailed behavior of multi-threaded transactional programs.

Chapter 2 presents the design and implementation of the Beefarm STM, an initial

implementation with Software TM support. Chapter 3 contains a description of

the TMbox Hybrid TM implementation and Chapter 4 shows the low overhead

profiling and visualization infrastructure designed for TMbox. A discussion of

tradeoffs of using reconfigurable computing and future trends are in Chapter 5,

as well as thesis conclusions. Appendices 1, 2 and 3 contain the list of TMbox

instructions, registers, and a table of abbreviations, respectively.

The work in this thesis was highly facilitated by three other students. UPC

PhD student Oriol Arcas helped in implementing the MIPS CoProcessor0, cache

modifications, the software stack, the TM Unit, the profiling infrastructure, and

others that are described in detail in his Master’s thesis [9]. Additionally, Gokhan

Sayilar (from Sabanci University, now a PhD student at UT-Austin) helped us

to implement an efficient FPU for the BeeFarm. Philipp Kirchhofer from the

Karlsruhe Institute of Technology implemented the HTM part of the profiling

infrastructure, as well as the initial profiling data analysis software [79]. Besides

the mentors Osman S. Unsal, Adrian Cristal and Mateo Valero, we received

precious support from Ibrahim Hur (BSC, now at Intel) and from Satnam Singh

(MSRC, now at Google), our FPGA guru.
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Chapter 2

The BeeFarm STM platform

Abstract

This chapter reports on our experience of designing and building an eight core

cache-coherent shared-memory multiprocessor system on FPGA called BeeFarm,

to help investigate support for Transactional Memory [54; 96; 129]. Towards this

goal, we have ported TinySTM [44], a lightweight and efficient word-based STM

library implementation in C and C++, and ran TM benchmarks on the BeeFarm.

Our approach is through taking a MIPS-based open-source uniprocessor soft core,

Plasma, and extending it to obtain the BeeFarm infrastructure for FPGA-based

multiprocessor emulation. We discuss various design tradeoffs and we demon-

strate superior scalability through experimental results compared to a traditional

software instruction set simulator, the M5 [12].
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2. BEEFARM STM 2.1 Introduction

2.1 Introduction

In this chapter, we take a popular MIPS uniprocessor core called Plasma [113] and

we extend it to build a full multiprocessor system designed for multicore research

for Software Transactional Memory. For this, we also provide our infrastructure

with compiler tools to support a programming environment rich enough to con-

duct experiments on Transactional Memory workloads. An hypothesis we wish

to investigate is the belief that an FPGA-based emulator for multicore systems

will have better scalability compared to software-based instruction set simula-

tors. We check this hypothesis using our flexible BeeFarm infrastructure with

designs ranging from 1 to 8 cores and obtaining performance speedups of up to

8x, comparing to the M5 simulator.

2.1.1 Contributions

The key contributions of this chapter are:

• A description of extending the Plasma open source processor core for im-

plementing the Honeycomb processor.

• From the Honeycomb processor cores, building the cache coherent BeeFarm

multiprocessor system on the BEE3 platform [36].

• Experimental results for three benchmarks investigating support for Trans-

actional Memory and an analysis of the performance and scalability of soft-

ware simulators versus hardware emulation/prototyping through using the

BeeFarm system.

The next section explains how the Plasma core was modified to design the

Honeycomb core, and later to build the BeeFarm soft multicore, and the software

stack that supports running STM applications. Section 2.3 compares executions

of three STM benchmarks on our platform with the M5 software simulator. Sec-

tion 2.4 discusses other related research, while Section 2.5 concludes this chapter.
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2.2 The BeeFarm System

The BeeFarm system is a bus-based multiprocessor implementation of the well-

known MIPS R3000 architecture, inspired by the Plasma soft processor core [113],

designed for running on the BEE3 hardware prototyping platform. Particularly,

the objective is to reuse a complete and small soft processor IP core, and to be

able to fit as many cache coherent cores as possible into a TM-capable multicore

emulator. RISC architectures with simpler pipelines can be customized more eas-

ily and require less FPGA resources compared to a deeply-pipelined superscalar

processor, so they are more appropriate to be integrated into a larger multiproces-

sor SoC. For this reason, using large, multithreaded soft cores like OpenSPARC

(64-bit) [31] were omitted. We chose to use the Plasma in this work, mainly since

(i) it is based on the popular MIPS architecture [94], (ii) it is complete and (iii)

it has a relatively small area footprint on the FPGA. Using the Leon 3 (32-bit

SPARC core) [1] and the miniMIPS [55] as the main processor soft IP core were

the other two acceptable options with similar advantages and disadvantages.

2.2.1 The Plasma soft core

The synthesizable MIPS R2000-compatible soft processor core Plasma was de-

signed for embedded systems and written in VHDL [113]. It features a config-

urable 2-3 stage pipeline (no hazards), a 4 KB direct-mapped L1 cache, and can

address up to 64 MB of RAM. It was designed to run at a clock speed of 25 MHz,

and includes UART and Ethernet cores. It also has its own real-time operat-

ing system (RTOS) with some support for tasks, semaphores, mutexes, message

queues, timers, heaps etc.

In a typical ALU instruction, the program counter (PC) passes the current

instruction address to the memory control unit, which fetches the 32-bit opcode

from cache or from memory, when needed. Cache accesses pause the CPU and

can take various cycles in case of a miss. In the next stage, the opcode received is

passed to the control unit that converts it to a 60-bit control word and forwards

it to the appropriate entities through a central multiplexer (bus-mux).
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2.2.2 The Honeycomb core: Extending Plasma

Although the original Plasma core is suitable for working with diverse research

topics, it has some limitations that makes it unsuitable as the processing ele-

ment of the BeeFarm system. These include the lack of virtual memory support

(implemented in MIPS as the Coprocessor 0), precise exceptions and synchroniza-

tion mechanisms. Furthermore, there is no support for floating point arithmetic

(MIPS Coprocessor 1), multiprocessing capabilities or coherent caches.

The successor architecture to the MIPS R2000 ISA is the MIPS R3000, fea-

turing a 5-stage pipeline and a co-processor for managing virtual memory. Later,

the MIPS R4000 developed implemented a 64-bit pipeline. To be more resource

efficient, we did not opt for a 64-bit datapath, however, we believe that this will

be a necessity for future multicore emulators that can make use of bigger and

more advanced FPGAs. Therefore, to build the Honeycomb core, we effectively

upgraded the MIPS R2000-compatible Plasma to a MIPS R3000-compatible soft

processor core. For enabling this, we made several changes to the Plasma soft

core:

• Design and implementation of two coprocessors: CP0 that provides support

for virtual memory using a Translation Lookaside Buffer (TLB), and CP1

encapsulating an FPU,

• Optimization of the cores to make better use of the resources on our Virtex-5

FPGAs, where it can run at twice the frequency (50 MHz),

• Memory architecture modifications to enable virtual memory addressing for

4 GB and caches of 8 KB,

• Implementation of extra instructions to better support exceptions and thread

synchronization (load-linked and store-conditional) ,

• Added coherent caches and developed a parameterizable system bus that

accesses off-chip RAM through a DDR2 memory controller [126],

• Development of system libraries for memory allocation, I/O and string func-

tions, as in [123].
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On the Honeycomb processor (Figure 2.1) instructions and data words are

32-bit wide, and data can be accessed in bytes, half words (2 bytes) or words (4

bytes). The processor is implemented in a 3-stage pipeline with an optional stage

for data access instructions (Figure 2.2).

The Honeycomb core was designed to run on the BEE3 hardware prototyping

platform which contains four Virtex5-155T FPGAs, each one with 24,320 slices of

6-LUTs, 212 BRAMs, and 128 DSP units. Four DDR2 memories are controlled by

each FPGA, organized in two channels of up to 4 GB each. The DDR2 controller

[126] manages one of the two channels per FPGA using a small processor called

TC5 (also used in Beehive V5 [127]). It performs calibration and serves requests,

and occupies a small portion (around 2%) of the Virtex5-155T FPGA. Using

one controller provides sequential consistency for our multicore described in this

work, since there is only one address bus, and reads are blocking and stall the

processor pipeline.

A new processor model (-march=honeycomb) was added by modifying GCC

and GAS (the GNU Assembler). This new ISA includes all MIPS R3000 instruc-

tions with the addition of RFE (Return from Exception), Load Linked and Store

Conditional. All GNU tools (GAS, ld, objdump) were modified to work with

these new instructions.

Coprocessor 0: The MMU: In order to support virtual memory, precise

exceptions and operating modes, we implemented a MIPS R3000-compatible 64-

entry TLB (called CP0), effectively upgrading the core from an R2000 to an

R3000, which we named Honeycomb. The CP0 provides memory management

and exception handling intercepting the memory control unit datapath. Each

entry contains two values: The 20 highest bits of the physical address, which

replace the corresponding ones in the virtual address, and the 20 highest bits of

the virtual address, which are used as a matching pattern. More details can be

found in [9].

There exist various approaches to implement an efficient Content Addressable

Memory (CAM) on FPGAs, with configurable read/write access times, resource

usage, and the technology utilized, where general-purpose LUTs or on-chip block

memories can be used [16]. The use of LUT logic is inappropriate for medium and

large CAMs, and the time-critical nature of this unit makes multi-cycle access
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Figure 2.1: The Honeycomb processor functional block diagram, with the Copro-

cessor 0 (CP0) for virtual memory and exceptions and the Coprocessor 1 (CP1)

for floating point arithmetic.
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inappropriate, since it must translate addresses each cycle on our design. Only

the approach based on RAM blocks fitted the requirements: This unit was imple-

mented with on-chip BRAM configured as a 64-entry CAM and a small 64-entry

LUT-RAM [70]. Virtual patterns that are stored in the CAM give access to an

index to the RAM that contains the physical value. It is controlled by a half-cycle

shifted clock that performs the translation in the middle of the memory access

stage, so it does not require a dedicated pipeline stage. This 6-bit deep by 20-bit

wide CAM occupies four BRAMs and 263 LUTs.

Coprocessor 1: Double-Precision FPU: Another lack of the original

Plasma is floating point arithmetic support, an integral part of a modern com-

puting system architecture. The MIPS 3010 FPU implemented in Coprocessor

1 (CP1) can perform IEEE 754-compatible single and double precision float-

ing point operations. It was designed using Xilinx Coregen library cores, takes

up 5520 LUTs and 14 DSP units, performing FP operations and conversions in

variable number of cycles (4–59). We used only 4 of the 6 integer-double-float

conversion cores to save space. This optional MIPS CP1 has 32x32-bit FP regis-

ters and a parallel pipeline. The integer register file was extended to include FP

registers implemented as LUT-RAM. For double precision, two registers represent

the low and high part of the 64-bit number and the register file was replicated to

allow 64-bit (double precision) read/write access each cycle [116].

Memory Map and ISA Extensions: We redesigned the memory subsys-

tem that could originally only map 1 MB of RAM, to use up to 4 GB with

configurable memory segments for the stack, bootloader, cache, debug registers,

performance counters and memory-mapped I/O ports. Furthermore, we extended

the instruction set of the Honeycomb with three extra instructions borrowed from

the MIPS R4000 ISA: ERET (Exception RETurn), to implement more precise

exception returns that avoid branch slot issues. We also provided with LL (Load-

Linked) and SC (Store Conditional) instructions, which provide hardware sup-

port for synchronization mechanisms such as Compare and Swap (CAS) or Fetch

and Add (FAA). This is essential for providing Software TM support, as we detail

in Section 2.2.5.

Honeycomb’s 8 KB write-through L1 cache design that supports the MSI

cache coherency [63] (unified data and instructions) in 16-byte, direct-mapped
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Figure 2.3: The BeeFarm multiprocessor system.

blocks. It uses 2 BRAMs for storing data and another two for the cache tags.

The BRAM’s dual-port access enables serving both CPU and bus requests in a

single cycle. Reads and writes are blocking, and coherence is guaranteed by the

snoopy cache invalidation protocol that was implemented. 2.4

2.2.3 The BeeFarm System Architecture

The caches designed for the BeeFarm are interconnected with a central split-

bus controlled by an arbiter, as shown in Figure 2.3. The caches snoop on the

system bus to invalidate entries that match the current write address, where

write accesses are processed in an absolute order. This protocol can perform

invalidations as soon as the writes are issued on the write FIFOs of the DDR.

This serves to find an adequate balance between efficiency and resource usage.

More complex caches that demand a higher resource usage would make it difficult

to implement a large multiprocessor given the limited resources present on chip.

The bus arbiter implemented interfaces the FIFOs of the DDR controller,

serving requests from all processors following a round-robin scheme. The boot-up

code is stored in a BRAM connected to the arbiter and mapped to a configurable

region of the address space. I/O ports are also mapped, and the lowest 8 KB

of physical memory give access to the cache memory, becoming a useful resource
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during boot-up when the DDR is not yet initialized. Furthermore, the cache can

be used as the stack thanks to the uncached execution mode of MIPS. Such direct

access to cache memory is useful for debugging, letting privileged software to read

and even modify the contents of the cache.

The arbiter, the bus, caches and processors can run at a quarter/fifth of the

DDR frequency (25 – 31.25 MHz), the CPU’s shallow pipeline being the main

cause of this upper bound on the clock. Although the bus and cache frequencies

could be pushed to work at 125 MHz or at an intermediate frequency, it was not

desirable to decouple this subsystem from the processor, because partitioning the

system in many clock domains can generate tougher timing constraints, extra use

of BRAM to implement asynchronous FIFOs or extra circuitry to prepare signals

that cross different clock domains. Further optimizations to the Honeycomb are

certainly possible by clocking faster all special on-chip units and including such

extra circuitry.

Finally, around eight Honeycomb cores (without an FPU) could form a Bee-

Farm system on one Virtex5-155T FPGA, although the system bus can become a
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bottleneck not only during system execution, but also when placing and routing

the design.

2.2.4 FPGA resource utilization

One of the objectives of the design is to fit the maximum number of cores while

supporting a reasonable number of features. The components have to be designed

to save the limited LUTs and conservatively use BRAMs and DSPs, both to

allow for more functionality to be added later on, and to reduce the system

complexity. This is necessary to keep the frequency of the clock high and thus

the performance, meanwhile reducing the synthesis and place and route time.

The Honeycomb core without an FPU occupies 5,712 LUTs on a Virtex-5 FPGA

including the ALU, MULT/DIV and Shifter units, the coherent L1 cache, the

TLB and the UART controller, a comparable size to the Microblaze core [71].

Figure 2.5 shows the LUT occupation of the CPU’s components. The functional

blocks on the Honeycomb can be categorized in three groups:

• Compute-intensive (DSP): Eg. ALU, MULT/DIV, Shifter, FPU. These

are good candidates to take advantage of hard DSP units and in the Plasma

core originally fit the third category, since the ALU is a combinatorial cir-

cuit, while the MUL/DIV/Shifter units take 32 cycles to iterate and com-

pute. The ALU can be mapped directly onto a DSP while a MULT can be

generated with Xilinx Coregen in a 35x35 multiplier, utilizing an accept-

able 4 DSP and 160 LUTs. The shifter can also benefit from these 4 DSP

thanks to dynamic opmodes, however, a 32-bit divider can take anywhere

between 1,100 LUTs to 14 DSP units: The optimal way of combining all

these operations to have a minimal design is not yet clear, and would be

interesting to look into as future work.

• Memory-intensive (BRAM/LUT-RAM): Eg. Reg Bank, Cache, TLB.

The TLB is designed in a CAM, and the cache and the cache tags in

BRAMs. For the Reg Bank, the original Plasma design selects between

instantiating 4-LUT distributed RAMs (RAM16), behaviorally describing

a tri-ported RAM, or using a BRAM. The use of BRAM is inefficient since
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Figure 2.5: Some of the available options (in 6-LUTs) to implement the Register

File, the ALU and the Multiplier unit. The lighter bars indicate the choices

already present in the original Plasma design.

Figure 2.6: LUT and BRAM usage of Honeycomb components.
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it would use a tiny portion of a large structure, and the tri-ported RAM

infers too many LUTs, as seen in Figure 2.5. When distributed LUT-RAM

is inferred, each 6-LUT can incorporate a 32-bit register on the Virtex-5,

enabling two reads and one write operation per cycle, assuming that one of

the read addresses is the write address. There are a few options to enable

two reads and a write to distinct addresses on each CPU cycle: (i) to do the

accesses in two cycles on one register file, using one of the input addresses

for reading or writing when needed, (ii) to clock the register file twice as

fast and do the reads and writes separately, or (iii) to duplicate the register

file to be able to do two reads and a write on distinct addresses on the same

cycle. Although we currently use the third approach, our design accepts ei-

ther configuration. Other groups have proposed latency insensitive circuits

which save resources by accessing the register file in multiple cycles [133].

• LUT-intensive: Eg. implementing irregular case/if structures or state

machines: PC next, Mem ctrl, control, bus mux, TLB logic, system bus

and cache coherency logic. This category demands a high LUT utilization;

one striking result in Figure 2.5 is that providing cache coherency occupies

roughly half of the LUT resources used by the Honeycomb. Such complex

state machines do not map well on reconfigurable fabric, however synthesis

results show that the Honeycomb core, when a similar speed-grade Virtex-6

chip is selected, performs 43.7% faster than the Virtex-5 version, so such

irregular behavioral descriptions can still be expected to perform faster as

the FPGA technology advances.

Unlike the cache coherence protocol and the shared system bus that map

poorly, compute-intensive units and the register bank are good matches for dis-

tributed memory that use 6-LUTs, although it is not possible to perform a 3-

ported access in a single-cycle. BRAMs and DSP units must be used carefully,

to better match the underlying FPGA architecture. Regular units that match a

compute-and-store template rather than complex state machines must be fash-

ioned. In general, we believe that caches are a bottleneck and a good research

topic for multicore prototyping. There is little capacity for larger or multi-level
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L1 Cache Size slice Regs slice LUTs BRAMs

4 KB 19 26 3

8 KB 40 47 4

16 KB 75 80 6

Table 2.1: Area occupied by L1 caches of different sizes

caches on our FPGA, and it would not be easy at all to provide high levels of

cache associativity.

There are a total of 212 Block RAMs on our Virtex 5 FPGAs. The DDR

controller utilizes 5, the Bootmem uses 2, and the TC5 tiny processor needs

another 3. Figure 2.1 shows the distribution of FPGA resources for different

L1 cache sizes. For supporting hardware transactions later on the next chapter,

we also want to reserve BRAMs for implementing a TM cache. As a rule of

thumb, we don’t want to use up more than 50% of the hard FPGA units. As the

number of cores go up, placement and routing would be more difficult to perform.

Therefore, we choose to use caches of 8 KB each, using 4 BRAMs per core for

implementing the L1 cache. The cache design is parameterizable, and accepts

other configurations.

2.2.5 The BeeFarm Software Stack

Since our system can not directly utilize the GNU C standard library libC and

we want to avoid the complexities of running a full Linux with all system calls

implemented, we developed a set of system libraries called BeeLibC for memory

allocation, I/O and string functions.

Unlike the BeeFarm, many groups exercise falling back to a host machine

or a nearby on-chip hard processor core to process system calls and exceptions

[26; 125]. A MIPS cross-compiler with GCC 4.3.2 and Binutils 2.19 is used to

compile the programs with statically linked libraries. The cores initially boot up

from the read-only Bootmem that initializes the cores and the stack and then

loads the RTOS kernel code into memory either from the serial port or from the

SD card onto the DDR. The SD card support, which was implemented by software
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$CAS_SC_FAIL:

ll $v0, 0($a0)

bne $v0, $a1, $CAS_END

nop

move $t0, $a2

sc $t0, 0($a0)

beqz $t0, $CAS_SC_FAIL

nop

$CAS_END:

jr $ra

Figure 2.7: Compare and Swap using LL/SC in MIPS assembly

bit-banging can transfer roughly a MB of data per minute. Alternatively, an SD

soft core can be incorporated for even faster data transfer. Although Ethernet

might be another fast option, we deemed the additional complexity too potentially

risky while developing the initial design. It might also be useful to port an RTOS

with multiprocessing and threading support such as the eCos [40] or RTEMS [99]

to multicore emulators. We currently let all cores initialize and wait on a barrier,

which is set by CPU0. Another option that reserves the CPU0 only for I/O is

also implemented.

TinySTM is an STM library that differentiates mainly by its time-based algo-

rithm and lock-based design from other STMs, such as TL2 and Intel STM [4; 39].

It compiles and runs on 32 or 64-bit x86 architectures, using the atomic ops li-

brary to implement atomic operations. We modified it to support Compare and

Swap (CAS) and Fetch and Add (FAA) primitives for the MIPS architecture

through the use of LL/SC instructions borrowed from the MIPS R4000 architec-

ture [25]. Figure 2.7 shows hos LL/SC instructions can be composed to form a

Compare and Swap operation.
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2.3 Comparison with SW Simulators

2.3.1 Methodology

The multiprocessor system presented in this work was designed to speed up mul-

tiprocessor architecture research, to be faster, more reliable and more scalable

than software-based simulators. Its primary objective is to execute real applica-

tions in less time than popular full-system simulators, although it is not possible

to run as fast as the actual ASIC. Therefore our tests:

• Measure the performance of the simulator platform, NOT the performance

of the system simulated. What is relevant is not the simulated processor’s

speed, but the time that the researcher has to wait for the results and its

reliability.

• Abstract away from library or OS implementation details, so that exter-

nal functions like system calls do not significantly affect the results of the

benchmark.

• Can be easily ported to different architectures, avoiding architecture-specific

implementations like synchronization primitives.

• Pay special attention to the scalability of the emulation, a key weakness

of software multiprocessor simulators. Our emulations are inherently not

affected by the number of processors in other ways than the usual and

expected from a reliable simulator (memory bandwidth, traffic contention,

cache protocols).

M5 [12] is a well-known and easily modifiable “full-system simulator” that

can simulate an arbitrary number of Alpha processors with complex architectural

details like caches and buses. We believe that despite the fact that MIPS and

Alpha are distinct architectures, this can be a fair comparison to measure and

compare the scalability of the software simulator and the BeeFarm multicore

emulator. Both architectures are 32-bit RISC, featuring 32 registers, operate on

fixed-size opcodes and the only operations that access the memory are load and

store. We used a configuration that models a DEC Tsunami system with an
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in-order, 5-stage pipeline Alpha 21164 CPU, with 64-entry data TLB, 48-entry

instruction TLB, 2-cycle L1 cache access and 10-cycle L2 cache access times [48].

To obtain exact measurements of the execution time of the M5, we added a

precise 64-bit hardware cycle counter to measure the total execution time which

we compare against BeeFarm hardware counters. We executed the test in the M5

compiled with the maximum optimizations and with the minimum timing and

profiling options (fast mode), and additionally for ScalParC in a slower profiling

mode with timing. The compilers used to obtain the test programs for the Bee-

Farm and the M5 both use GCC version 4.2, compiled with the -O2 optimization

level or -O3 when possible on an Intel Xeon E5520 server with 2x quad-core pro-

cessors running at 2.26 GHz with 64 GB of DDR3 RAM and 8 MB of L3 cache

memory.

We use the Xilinx ISIM and the Mentor Graphics ModelSim for offline func-

tional or post Place and Route (PnR) simulation. Real-time debugging on Xilinx

chips is done with Xilinx Chipscope Pro [69], for which we apply various trig-

gers to read our hardware debug registers. All results were obtained using 64-bit

Xilinx ISE 12.2 running on RHEL5.

2.3.2 Single Core Performance

The Honeycomb core, despite of its smaller cache, performs in comparable speeds

to some older well-known architectures running the Dhrystone 2.1 benchmark

[138], as seen on Figure 2.8. The results are in VAX MIPS, the unit of measure-

ment of Dhrystone performance. In particular, Honeycomb has a better perfor-

mance than M5 when the total execution time of the simulator (wall clock time) is

compared. OVPsim is a fast simulator that is used to accelerate the development

of embedded software, simulating the MIPS32 architecture [103]. Both software

simulators were run on the 2x4-core server previously described.

2.3.3 Multicore Performance using STM Benchmarks

To test multicore performance with STM benchmarks running on the BeeFarm,

we have run ScalParC, a scalable TM benchmark from RMS-TM [77], as well as
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Figure 2.8: Dhrystone 2.1 performance comparison of BeeFarm, M5 simulator

and others.

Intruder and SSCA2 TM benchmarks from STAMP [93], which are very com-

monly used for TM research. We modified ScalParC with explicit calls to use

the TinySTM library. In our experiments, ScalParC was run with a dataset with

125K records, 32 attributes and 2 classes, SSCA2 was run with problem scale 13

and Intruder with 1024 flows.

The results that are normalized to the single-core M5 executions show that

while the BeeFarm can scale in a near-linear way, the M5 simulator fails to scale

and the performance rapidly degrades as the core counts are increased. Figure

2.9 shows that the gap opens with more cores and with only four, the BeeFarm

with FPU just needs fifteen minutes to run the ScalParC benchmark, an eightfold

difference. A single core ScalParC run on the BeeFarm took around 9 hours when

a soft-float FP library is used [62] and a little more than an hour when an FPU

is used (not shown).

The scalability of our hardware is more obvious when the abort ratio between

the transactions are low and little work is repeated, so the benchmark itself is

scalable. SSCA2 also benefits from the inherent parallelism of the FPGA infras-

tructure and the good performance of the FPU: The two-core BeeFarm takes

about half of the runtime of the M5 and it shows better scalability with more

cores. In this sense our FPU which takes roughly the space of a single CPU core

31



2. BEEFARM STM 2.3 Comparison with SW Simulators

0

1

2

3

4

5

6

7

1 2 4 1 2 4 1 2 4 8

Sp
e

e
d

u
p

Number of cores

Beefarm

M5 (fast)

ScalParC SSCA2 Intruder

Figure 2.9: BeeFarm vs M5: Speedups for ScalParC, SSCA2 and Intruder (nor-

malized to single core M5 execution).

is clearly a worthy investment for the case of this particular benchmark. Other

available hardware kernels such as a quicksort core [17] would be a very useful

accelerator for this particular benchmark, and such specialized cores/execution

kernels could further push the advantages of multicore emulation on reconfig-

urable platforms.

Intruder is a very high abort rate integer-only benchmark that scales poorly,

and this can be seen on both M5 and BeeFarm results. It performs worse on

the BeeFarm for single processor runs, however for more than two cores, it runs

faster than the M5, whose scalability again degrades rapidly. We are able to run

Intruder with 8 CPUs because this design does not use the FPU.

The results of the STM benchmarks show that our system exhibits the ex-

pected behavior, scaling well with more cores and thus reducing the time that

the researcher has to wait to obtain results. In other words, the simulated time

and the simulation time are the same on our FPGA-based multicore emulator.

The software-based simulator suffers from performance degradation when more

cores are simulated and fails to scale. As seen on the Intruder example, certain

configurations (eg. without an FPU) for a small number of cores could result

in software simulators performing faster than FPGA devices. Mature simulators

that take advantage of the superior host resources could still have advantages

over FPGA emulators for simulations of a small number of cores.
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2.4 Related Work

Some classic works using MIPS and FPGAs include the GARP reconfigurable

array which is used as an accelerator to a MIPS processor [61], and DartMIPS

an early paper on implementing the MIPS R3000 architecture on an FPGA [42].

On a similar vein, RPM features a multiprocessor design with SPARC processors

coupled with cache and memory controllers that are implemented on FPGA [102].

Some of the recent multicore prototyping proposals such as RAMP Blue [81]

implement full ISA on RTL and require access to large FPGA infrastructures,

while others such as the Protoflex [26; 27] can use single-FPGA boards with

SMT-like execution engines for simulator acceleration. Although multithreading

would lead to a better resource utilization on FPGAs, on this initial study it

was not implemented. There is a wide variation of ISAs such as larger SMP

soft cores [34], hard cores [137] and small and unconventional cores like the TC5

[127], for prototyping shared memory as well as message-passing schemes [6].

Our work differs from these approaches in the sense that we model the cores only

on reconfigurable logic and we effectively upgrade a full ISA open source soft

processor core to better fit the architecture of modern FPGAs and to be able to

closely examine STM applications and implementations.

The only previous study on adapting an available soft core onto a commercial

FPGA platform has been the LEON-3 core on the BEE2, however the report
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Design name Description

Protoflex/Simflex(CMU) [26] 16-way ultraSPARC SMP, FPGA provides

acceleration (interleaved multi-context ex-

ecution engine), SW SIMICS for I/O,

syscall simulation (BEE2 board)

Hasim (MIT) [34] MIPS R10K/Alpha in Bluespec, 4-way

OoO, with separate functional/timing par-

titions.

UT-FAST(UT) [22] PowerPC/x86 in Bluespec. AMD desk-

top+Virtex4VLX200 via hypertransport

RAMP Red(ATLAS) [98; 137] On-chip PPC405 hard cores, 2 per board,

8-32 boards (Virtex2Pro30), runs Mon-

tavista Linux, Transactional Memory sup-

port

RAMP Blue [81] Microblaze cores w/ crossbar-on-chip,

message-passing on distributed memory,

21 BEE2 boards–1000 processors, Runs

uclinux

RAMP White [6] PPC hard cores on V2P30, runs Linux,

cache coherent CMP

RAMP Gold [125] 64 in-order SPARC V8 on 8 BEE3s. Multi-

ple HW threads on target model, separate

functional/timing partition

BeehiveV5 [127] TC5 RISC processors, message-passing on

Virtex-5 FPGA, using C and C#

Table 2.2: FPGA-based Multiprocessor Designs for Hardware Prototyping
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by Wong [139] does not include many details or their experiences on the feasi-

bility of this approach. As for comparison of hardware emulation with software

simulators, RAMP Gold [125] compares a SPARC V8 ISA design with three dif-

ferent Simics configurations: Functional, cache, and timing. They obtain up to

250x speedup for 64 cores running Splash-2 benchmarks. The ATLAS design

compares 8 on-chip PowerPC hard cores (100 MHz) with HTM support on five

TM applications with a execution-driven simulator at 2 GHz to show 40-200x

speedup. Their experience also reflects that higher level caches and high associa-

tivity were problematic to implement on current FPGAs [137]. It might be worth

investigating novel implementations that could reduce the size of the FP logic,

for example (i) reusing FP units to also do integer calculations, (ii) combining

them as in [131], or (iii) sharing them between the CPU cores as done in RAMP

Blue [81]. Furthermore, few works have addressed implementing cache coherent

multiprocessors on FPGAs, some examples exist for MIPS [74] and PowerPC

systems [78].

Transactional Memory has already drawn a lot of attention in the research

community as a new easy-to-use programming paradigm for shared-memory mul-

ticores. However, so far mostly preliminary work has been published in the con-

text of studying TM on FPGA-based multicore prototypes. The ATLAS emulator

(RAMP) proposed an 8-way CMP system with PowerPC hard cores, and read-

/write set buffers and caches augmented with transactional read-write bits and

TCC-type TM support, and a ninth core for running Linux [98; 137]. Another

work presented two Microblaze [71] cores with TCC support on a small Xilinx

Spartan-3 board [90]. A TM implementation that targets embedded systems

which can work without caches, using a central transactional controller intercon-

necting four Microblaze cores was explained in [75]. The feasibility of a DSM

(distributed shared memory) TM implementation was investigated by sketching

an architecture using Altera Nios processors in 53.

Recent work that also utilizes MIPS soft cores focuses on the design of a con-

flict detection mechanism that uses Bloom filters [14] for a 2-core FPGA-based

HTM, however they do not consider/detail any design aspects on their infras-

tructure. They derive application-specific signatures that are used for detecting
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conflicts in a single pipeline stage. The design takes little area, reducing false con-

flicts, and this approach is a good match for FPGAs because of the underlying

bit-level parallelism used for signatures [84].

2.5 BeeFarm Conclusions

In this work, we have described a different road map in building a full multicore

emulator: By heavily modifying and extending a readily available soft processor

core. We have justified our design decisions in that the processor core must be

small enough to fit many on a single FPGA while using the on-chip resources

appropriately, flexible enough to easily accept changes in the ISA, and mature

enough to run system libraries and a well-known STM library. We’ve presented

an 8-core prototype on a modern FPGA prototyping platform and compared

performance and scalability to software simulators for three benchmarks written

to explore tradeoffs in Transactional Memory.

The BeeFarm architecture shows very encouraging scalability results, which

helps to support the hypothesis that an FPGA-based emulator would have a

simulation speed that scales better with more modelled processor cores than a

software-based instruction set simulator. For a small number of cores, we find

that software-based instruction set simulators are still competitive, however the

gap widens dramatically as more cores are used, as ScalParC runs suggest, where

for 4 cores the BeeFarm system outperforms the M5 simulator (in fast mode) by

around 8x.

A system that uses the FPGA fabric to model a multicore processor may

have a higher degree of fidelity than a software simulator, since no functionality

is implemented by a magical software routine. By interfacing a real DDR con-

troller and real I/O, FPGAs have to implement real hardware with timing and

area constraints. Our experience showed us that place and route times, timing

problems and debugging cores are problematic issues working with FPGAs. We

have also identified parts of a typical multiprocessor emulator that map well on

FPGAs, such as processing elements, and others that map poorly and consume a

lot of resources, such as a cache coherency protocol or a large system bus. We are
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working on a ring architecture that can substantially reduce routing congestion

to fit more Honeycomb cores on an FPGA.

FPGAs also need to provide tri-ported RAM support for the benefit of hard-

ware architecture research. The impedance mismatch with an off-chip DDR RAM

could be turned into interesting opportunities, such as emulating multiple smaller

RAMs or second-level caches. Other future work of interest to us is on how to

use hard DSP blocks optimally to combine all fixed-point and floating-point op-

erations onto the same DSPs. Using specialized cores for floating point or even

quicksort can push the speed limits higher in hardware multicore emulation. For

the design and implementation of a memory directory [5] that could enable the

use of the complete 4-FPGA infrastructure, using a higher level language e.g.

Bluespec, which has been successfully used by other architecture research groups

could help improve the productivity.

2.5.1 Publications

Published work related to the material in this chapter can be found in:

• Nehir Sönmez, Oriol Arcas, Gokhan Sayilar, Adrian Cristal, Ibrahim Hur,

Osman Unsal, Satnam Singh and Mateo Valero, “From Plasma to Bee-

Farm: Design Experience of an FPGA-based Multicore Prototype”, Proc.

7th International Symposium on Applied Reconfigurable Computing (ARC

2011), Belfast (United Kingdom), March 2011.

• Oriol Arcas, Nehir Sönmez, Gokhan Sayilar, Satnam Singh, Osman Unsal,

Adrian Cristal, Ibrahim Hur and Mateo Valero, “Resource-bounded Multi-

core Emulation Using Beefarm”, to appear in Elsevier MICPRO Journal,

2012.
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Chapter 3

TMbox: A Flexible and

Reconfigurable Hybrid

Transactional Memory System

Abstract

In this chapter, the design and implementation of TMbox is presented. The

TMbox is an MPSoC built to explore trade-offs in multi-core design space and

to evaluate recent parallel programming proposals such as Transactional Mem-

ory (TM). It is based on the Honeycomb core described in the previous chapter,

and can fit a 16-core Hybrid Transactional Memory implementation based on the

TinySTM-ASF proposal on a Virtex-5 FPGA. The flexible system, comprised of

MIPS R3000 compatible cores interconnected in a ring network, is easily modifi-

able to study different architecture, library or Operating System extensions. In

this chapter, three benchmarks written to investigate TM trade-offs are acceler-

ating using hardware TM support in TMbox.
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3.1 Introduction

FPGAs have already proved useful to study topics in computer architecture,

however very little work exists in TM implementations, and none implementing

Hybrid TM, which engages both STM and HTM concepts to have the best of

both.

Additionally, the shared bus of the BeeFarm STM had some problems: it

was implemented with long and wide wires that tighten the placement and rout-

ing constraints. It consequently did not allow more than 8 processors to share

the same crossbar at reasonable frequencies. To ease the placement on chip, re-

lax the constraints, we designed and implemented a bi-directional ring for our

infrastructure.

3.1.1 Contributions

The main objectives are providing our system with HTM and finally Hybrid TM

support, and fitting a greater number of cores using a more FPGA-friendly ring

network. The software stack is similar to that of the BeeFarm, presented in

the previous chapter. More specifically, our contributions in this chapter are as

follows:

• A description of the first 16-core implementation of a Hybrid TM that is

completely modifiable from top to bottom. This implies convenience to

study HW/SW tradeoffs in emerging topics like TM.

• We detail on how we construct a multi-core with MIPS R3000 compatible

cores, interconnect the components in a bi-directional ring with backwards

invalidations and adapt the TinySTM-ASF hybrid TM on our infrastruc-

ture.

• We present experimental results for three TM benchmarks designed to in-

vestigate trade-offs in TM.

The next section presents the TMbox architecture, Section 3.3 explains the

Hybrid TM implementation, Section 3.4 the results of running three benchmarks

on TMbox and Section 3.5 sketches a 4-FPGA version of TMbox for the BEE3
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Figure 3.1: An 8-core TMbox infrastructure showing the ring bus, the TM Unit

and the processor core.

platform. Related work can be found in Section 3.6, and Section 3.7 concludes

this chapter.

3.2 HybridTM on TMbox

The TMbox system features the best-effort Hybrid TM proposal ASF [24], which

is used with TinySTM [44], a lightweight word-based STM library. The trans-

actions are first started in hardware mode with a start tx instruction. A trans-

actional load/store causes a cache line to be written to the special TM Cache.

Commit tx ends the atomic block and starts committing it to memory. An inval-

idation of any of the lines in the TM Cache causes the current transaction to be

aborted (Figure 4.1). Transactions are switched to software mode when (i) TM

Cache capacity, which is by default 16 cache lines (256 bytes) is exceeded, (ii) the

abort threshold is reached because of too much contention in the system or (iii)

the application explicitly requires it, e.g. in case of a system call or I/O inside
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of a transaction. In software mode, the STM library is in charge of that trans-

action, keeping track of read and write sets and managing commits and aborts.

This approach enables using the fast TM hardware whenever it is possible, but

meanwhile to have an alternative way of processing transactions that are more

complex or too large to make use of the TM hardware.

The hardware TM implementation supports lazy commits: Modifications

made to the transactional lines are not sent to memory until the whole transaction

is allowed to successfully commit [122]. However, TinySTM supports switching

between eager and lazy commit and locking schemes as we will look into with

software transactions later in Section 4.4.2.

The R3000-compatible CPU cores used in the TMbox are based on the Plasma

core. They feature a 3-stage pipeline, coherent, direct-mapped, write-through L1

caches of 8 KB, extra instructions to support exceptions and thread synchroniza-

tion (load-linked and store conditional), extensions to the MIPS ISA to support

Hardware, Software and Hybrid TM execution and extensive debugging facilities.

The system can address up to 4 GB of DDR2 RAM and features libraries for

memory allocation, I/O and string functions.

3.2.1 The bi-directional ring bus

The shared bus of the BeeFarm caused tough placement and routing constraints,

as well as disallowing to fit more than 8 soft processors on the FPGA. To ease

the placement on chip and to relax the constraints, a bi-directional ring network

was implemented, as shown in Figure 3.1. It is a simple and efficient design

choice to diminish the complexities that arise in implementing a large crossbar

on FPGA fabric. To interconnect the processor cores, arranging the components

on a ring rather than a shared bus requires shorter wires which allows for an

FPGA-friendly implementation: Short wires ease the placement on the chip and

relax timing and routing constraints. Apart from increased place and route time,

longer wires would lead to more capacitance, longer delay and higher dynamic

power dissipation. Using a ring will also enable easily adding and removing shared

components such as an FPU or any application-specific module, however this is
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out of the scope of this work. Debugging is also easier since messages only flow

in one direction.

The non-TM implementation of the ring bus can process two types of requests.

READ REQ, WRITE REQ are simple memory requests, and the backwards in-

validation channel deals with SNOOP INV.

CPU requests move counterclockwise; they go from the cores to the bus con-

troller, eg. CPUi - CPUi−1 - ... - CPU0 - BusCtrl. Requests may be in form

of read or write, carrying a type field, a 32-bit address, a CPU ID and a 128-bit

data field, which is the data word size in our system. Memory responses also

move in the same direction; from the bus controller to the cores, eg. BusCtrl -

CPUn - CPUn−1 - ... - CPUi+1 - CPUi. They use the same channel as requests,

carrying responses to the read requests that are served by the DDR Ctrl.

On the other hand, moving clockwise are backwards invalidations caused by

the writes to memory, which move from the Bus Ctrl towards the cores in the

opposite direction, eg. BusCtrl - CPU0 - ... - CPUi−1 - CPUi. These carry only

a 32-bit address and a CPU ID field. When a write request meets an invalidation

to the same address on any node, it gets cancelled. Moreover, the caches on

each core snoop and discard the lines corresponding to the invalidation address,

providing system-wide cache coherency. We detail how we extend this protocol for

supporting Hybrid Transactional Memory with new messages in the next section.

As an example to demonstrate how the backwards invalidations work in TM-

box, Figure 3.2 contains 4 steps:

1. CPU 1 sends WRITE REQ and CPU 2 sends WRITE REQ, with both

addresses equal.

2. WRITE REQ (from CPU 1) reaches the DDR controller and a memory re-

quest is issued. Right away, a backwards SNOOP INV is sent. Meanwhile,

WRITE REQ (from CPU 2) continues its travel on the ring bus.

3. At some point in the bus, possibly at the ring node in CPU 0, SNOOP INV

and WRITE REQ (from CPU 2) will collide, and the write request will be

destroyed since the addresses are the same.
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Figure 3.2: An invalidation example on 4 cores.

4. The backwards invalidation message will continue on its way, destroying

messages and invalidating cache lines on all cores that belong to that ad-

dress. When it reaches the other end of the ring bus (again in the DDR

controller), it will be discarded.

Finally, CPU 2 will have to retry its write request, but will first have a miss

in the cache, which implies that the updated cache line must be brought from

memory. This is a typical issue of a write-through protocol, suggesting that using

write-back caches might provide better performance.

3.3 Hybrid TM Support in TMbox

TinySTM-ASF is a hybrid port that enables TinySTM to be used with AMD’s

HTM proposal, ASF [24], which we modified to work with TMbox. Our hardware

design closely follows the ASF proposal with the exception of nesting support.
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Instruction Description

XBEGIN (addr) Starts a transaction and saves the abort handler routine (addr)

in TM register $TM0. Also saves the contents of the $sp (stack

pointer) to TM register $TM1.

XCOMMIT Commits a transaction. If it succeeds, it continues execution. If

it fails, it rolls back the transaction, sets TM register $TM2 to

ABORT CONFLICT, restores the $sp register and jumps to the

abort handler.

XABORT (20-bit) Used by software to explicitly abort the transaction. Sets TM

register $TM2 to ABORT SOFTWARE, restores the $sp register

and jumps to the abort handler. The 20-bit code is stored in the

TM register $TM3.

XLW, XSW Transactional load/store of words (4 bytes).

XLH, XSH Transactional load/store of halfwords (2 bytes).

XLB, XSB Transactional load/store of bytes.

MFTM (reg, TM reg) Move From TM: Reads from a TM register and writes to a general

purpose register.

Table 3.1: HTM instructions for TMbox

This version starts the transactions in hardware mode and jumps to software if (i)

hardware capacity of the TM Unit is exceeded, (ii) there is too much contention,

causing many aborts, or (iii) the application explicitly requires it, e.g. in case of

a system call or I/O inside of a transaction.

To enable hardware transactions, we extended our design with a per-core TM

Unit that contains a transactional cache which only admits transactional loads

and stores. By default, it has a capacity of 16 data lines (256 bytes). If the TM

cache capacity is exceeded, the transaction aborts and sets the TM register $TM2

to ABORT FULL (explained in the next section), after which the transaction

reverts to software mode and restarts.

The transactions are first started in hardware mode with a X BEGIN instruc-

tion. A transactional load/store causes a cache line to be written to the special

TM Cache. X COMMIT ends the atomic block and starts committing it to mem-

ory. An invalidation of any of the lines in the TM Cache causes the current

transaction to be aborted. Modifications made to the transactional lines are

not sent to memory until the whole transaction successfully commits. The TM
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Unit provides single-cycle operations on the transactional read/writeset stored

inside. A Content Addressable Memory (CAM) is built using LUTs both to

enable asynchronous reads and since BRAM-based CAMs grow superlinearly in

resources. Two BRAMs store the data that is accessed by an index provided by

the CAM. Additionally, the TM Unit can serve LD/ST requests on an L1 miss if

the line is found on the TM cache.

In software mode, the STM library is in charge of that transaction, keeping

track of read and write sets and managing commits and aborts. This approach

enables using the fast TM hardware whenever it is possible, but meanwhile to

have an alternative way of processing transactions that are more complex or too

large to make use of the TM hardware.

The hardware TM implementation supports lazy commits: Modifications

made to the transactional lines are not sent to memory until the whole trans-

action is allowed to successfully commit. However, TinySTM supports switching

between eager and lazy committing and locking schemes with software transac-

tions.

3.3.1 Instruction Set Architecture Extensions

To support HTM, we augmented the MIPS R3000 ISA with the new transactional

instructions listed in Table 3.1 and in Appendix A. We have also extended the

register file with four new transactional registers, which can only be read with the

MFTM (move from TM) instruction. $TM0 register contains the abort address,

$TM1 has a copy of the stack pointer for restoring when a transaction is restarted,

$TM2 contains the bit field for the abort (overflow, contention or explicit) and

$TM3 stores a 20-bit abort code that is provided by TinySTM, eg. abort due

to malloc/syscall/interrupt inside a transaction, or maximum number of retries

reached etc.

Aborts in TMbox are processed like an interrupt, but they do not cause any

traps, instead they jump to the abort address and restore the $sp (stack pointer)

in order to restart the transactions. Regular loads and stores should not be used

with addresses previously accessed in transactional mode, therefore it is left to

the software to provide isolation of transactional data if desired. Load Linked and
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LI $11, 5 //set max. retries = 5

LI $13, HW_OFLOW //reg 13 has err. code

J $TX

$ABORT:

MFTM $12, $TM2 //check error code

BEQ $12, $13, $ERR //jump if HW overflow

ADDIU $10, $10, 1 //increment retries

SLTU $12, $10, $11 //max. retries?

BEQZ $12, $ERR2 //jump if max. retries

$TX:

XBEGIN($ABORT) //provide abort address

XLW $8, 0($a0) //transactional LD word

ADDi $8, $8, 1 //increment a

XSW $8, 0($a0) //transactional ST word

XCOMMIT //if abort go to $ABORT

Figure 3.3: TMbox MIPS assembly for atomic{a++} (NOPs and branch delay

slots are not included for simplicity).

Store Conditional instructions can be used simultaneously with TM instructions,

provided that they do not access the same address.

Figure 3.3 shows a transactional atomic increment operation in TMbox MIPS

assembly. In this simple example, the abort code is responsable for checking if

the transaction has been retried a maximum number of times, and if there is

a hardware overflow (the TM cache is full), and in this case jumps to an error

handling code (not shown).

3.3.2 Bus Extensions

To support HTM, two new bus messages were introduced. A new type of request,

namely COMMIT REQ, and a new response type, LOCK RING were added to

the TMbox. When doing a commit, the CPU sends a COMMIT REQ request.

When it reaches the DDR controller, it generates a backwards LOCK RING mes-
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Figure 3.4: A commit example on 4 cores.

sage that will prevent any other CPU to send any write until a new LOCK RING

is received. Thus, a committing CPU can send COMMIT REQ, receive a back-

wards LOCK RING and be sure it has a safe “channel” to send all the transac-

tional writes to memory, and finally send the “closing” COMMIT REQ to trigger

a second LOCK RING message, which would inform all CPUs that the commit is

completed and they are free to resume normal operation and send write requests

(Between two backwards LOCK RING messages, READ REQ messages can still

be sent). As with regular writes, LOCK RING will destroy any COMMIT REQ

or WRITE REQ request it founds in the bus, to prevent other CPUs to write or

start commits during commit time. More efficient schemes can be supported in

the future to enable parallel commits [20]. A TM example, as in Figure 3.4:

1. After some transactional accesses, CPU 1 sends COMMIT REQ, while and

CPU 2 sends WRITE REQ and CPU 3 sends another COMMIT REQ.
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2. COMMIT REQ (from CPU 1) will reach the DDR controller, creating a

backwards LOCK RING message. WRITE REQ (from CPU 2) and COM-

MIT REQ (from CPU 3) will continue their way through the bus.

3. The backwards LOCK RING message will destroy WRITE REQ (from

CPU 2) and COMMIT REQ (from CPU 3). The CPUs will now avoid

sending new WRITE REQ messages.

4. When CPU 1 receives the LOCK RING message (with its ID attached), it

will have made sure that it can send its writes safely. In order to commit

now, it will send bursts of WRITE REQ to the DDR.

In the end, CPU 1 will send a second COMMIT REQ, which will generate a

second backwards LOCK RING that will re-enable writes and commits by all

CPUs.

3.3.3 Cache Extensions

The cache state machine reuses the same hardware for transactional and non-

transactional loads and stores, however a transactional bit dictates if the line

should go to the TM cache or not. Apart from regular cached LD/ST, uncached

accesses are also supported, as shown in Figure 3.5. Cache misses first make a read

request to memory to bring the line and to wait in WaitMemRD state. In case of

a store, the WRback and WaitMemWR states manage the memory write opera-

tions. While in these two states, if an invalidation arrives to the same address,

the write operation will be cancelled. In case of a store-conditional instruction,

the write will not be re-issued, and the LL/SC will have failed. Otherwise, the

cache FSM will re-issue the write after such a write-cancellation-on-invalidation.

While processing a transactional store inside of an atomic block, an incom-

ing invalidation to the same address causes an abort and possibly the restart of

the transaction. Currently our HTM system supports lazy version management:

The memory is updated at commit-time at the end of transactions, as opposed

to having in-place updates and keeping an undo log for aborting. On the other

hand, data inconsistencies in TMbox are detected only during the transactional
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Component 6-LUTs Component 6-LUTs

PC next 138 Mem ctrl 156

Control 139 Reg File 147

Bus mux 155 ALU 157

Shifter 201 MULT 497

Pipeline 112 Cache 1985

TLB 202 TM Unit 759

Bus node 619 DDR ctrl 1119

UART+Misc. 560 TOTAL 6946

Table 3.2: LUT occupation of components

execution, between XBEGIN and XCOMMIT/XABORT (eager conflict detec-

tion).

When the speculative data is being committed to memory, each transactional

write committed causes an invalidation signal, which traverses the ring, aborting

the transactions that already have those lines in the TM cache. So, once a

transaction gets to the commit phase, it will certainly commit its speculative

changes to memory. However, all other transactions are stalled in the current

implementation. To support HTM, the cache state machine is extended with three

new states, TMbusCheck, TMlockBus and TMwrite. One added functionality is

to dictate the locking of the bus prior to committing and granting the exclusive

access of the bus to the processor. Another duty is performing burst writes during

a successful commit, which runs through the TMwrite-WRback-WaitMemWR-

TMwrite loop. The TMwrite state is also responsible for the gang clearing of all

entries in the TM cache and those TM Cache entries that are also found in L1

cache after a commit/abort. To enable this, in preparation for a new transaction,

address entries that are read from the TM Unit are sent to L1 cache as invalidation

requests, after which the TM cache is cleared.

3.3.4 Area and Compilation Overheads

Figure 3.2 shows the LUT usage of each component of the TMbox. The new

TM Unit of 16 entries contributes to a 11% increase in core area. Setting the
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Figure 3.5: Cache state diagram. Some transitions (LL/SC) are not shown for

visibility.
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TMU Size Slice Regs Slice LUTs BRAMs

16 entries 484 759 2

32 entries 964 1539 2

64 entries 1924 3593 2

Table 3.3: Area occupation of different TM Unit sizes

Design Freq.(MHz) Slice LUTs Slice regs #BRAMs

2-core BeeFarm 31.25 15,628 5,527 24

4-core BeeFarm 31.25 28,962 9,970 38

8-core BeeFarm 31.25 57,575 19,655 66

8-core TMBox 50 44,584 18,376 58

16-core TMBox 50 86,893 35,368 104

Table 3.4: BeeFarm and TMbox FPGA real estate usage

TM Cache size to 64 lines per core causes an extra usage of 2800 LUTs per core

on average. Although bigger TM capacity is desirable, we opted for fitting more

cores on the FPGA and kept the TM Cache size at 16 for our experiments. If the

TM cache capacity is exceeded, the hardware transaction aborts since there is no

way of completing in HW, it reverts to software and restarts there. Figure 3.3

describes the area occupation for different sizes of TM Unit, and how the LUT

usage increases with more entries.

TMbox can fit 16 cores in a Virtex-5 FPGA, occupying 86,797 LUTs (95% of

total slices) and 105 BRAMs (49%). Table 3.4 shows the FPGA resource usage for

BeeFarm and TMbox designs, both without FPUs. We have significantly reduced

the total LUT usage and increased the frequency of our soft core by switching to

a ring network from a shared bus that did not map well on FPGA fabric. The

difference of area also corresponds to a simplified per-CPU memory controller

and a PC unit, and the TLB being turned off in the TMbox, all for being able to

fit 16 cores in a synthesis-friendly way. Table 3.5 compares the compilation times

of the BeeFarm and the TMbox. Profitable reductions in runtimes for synthesis

and map considerably bring down the time-to-bitstream for the TMbox.
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Design Synthesis Map PnR #Routed signals

2-core BeeFarm 6:44 8:30 4:09 93331

4-core BeeFarm 10:11 13:42 9:02 174677

8-core BeeFarm 44:33 28:32 20:09 348788

8-core TMBox 14:43 18:08 17:09 265055

16-core TMBox 29:35 41:44 44:45 518944

Table 3.5: BeeFarm and TMbox Compilation Times

3.4 Experimental Evaluation

In this section, we first examine the trade-offs of our implementation, and then

discuss the results of executing three TM benchmarks. We used Xilinx ISIM

and ModelSim for offline functional simulation and Chipscope Pro for real-time

debugging, for which we apply various triggers and hardware debug registers. All

results were obtained using 64-bit Xilinx ISE 12.2 running on RHEL5.

3.4.1 Architectural Benefits and Drawbacks

On the TM side, the performance of our best-effort Hybrid TM is bounded by the

size of the transactional cache of the TM unit. Although for this chapter we chose

to use a small, 16-entry TM cache, larger caches can be supported on the TMbox

on larger FPGAs, to accommodate for the extra area overheads introduced.

In pure HTM mode, all 16 lines of the TM cache can be used for running the

transaction in hardware, however the benchmark can not run to completion if

there are larger transactions that do not fit in the TM cache, since there is no

hardware or software mechanism to decide what to do in this case. The largest

overhead related to STMs is due to keeping track of each transactional load/store

in software. The situation can worsen when the transactions are large and there

are many aborts in the system.

In Hybrid TM mode, it is desired to commit as many transactions as possible

on dedicated hardware, however when this is not possible, it is also important

to provide an alternative path using software mechanisms. All transactions that

overflow the TM cache will be restarted in software, implying all work done in
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hardware TM mode to be wasted in the end. Furthermore, as a requirement of

hybrid execution, TinySTM-ASF additionally keeps the lock variables inside the

TM cache. This results in allowing a maximum of 8 variables in the read/write-

sets of each transaction as opposed to 16 for pure HTM. Of course, this is true

provided that neither the transactional variables, nor the lock variables share the

same cache line. Demonstrating this case, in some executions we observed some

transactions having a read/writeset of 9 or 10 entries successfully committing in

hardware TM mode.

On the network side, the ring is an FPGA-friendly option: We have reduced

the place and route time of an 8-core design to less than an hour using the

ring network, whereas it took more than two hours using a shared crossbar for

interconnection and we could not fit more than 8 cores [123].

However, each memory request has to travel as many cycles as the total num-

ber of nodes on the ring, plus the DDR2 latency, during which the CPU is stalled.

This is clearly a system bottleneck: Using write-back caches or relaxed memory

consistency models might be key in reducing the number of messages that travel

on the ring and to improve system performance.

On the processor side, the shallow pipeline negatively affects the operating

frequency of the CPU. Furthermore, larger L1 caches that can not fit on our

Virtex5 FPGA could be supported on larger, newer generation FPGAs, which

would help the system to better exploit data locality. Having separate caches for

instructions and data might also be a profitable enhancement.

3.4.2 Experimental Results

Eigenbench [65] is a synthetic benchmark for TM mimicry that can be tuned

to discover TM bottlenecks, with the ability to imitate transactional behavior

in terms of number and size of transactions, read/write sets and many other

orthogonal characteristics. As Figure 3.6 shows, the transactions in EigenBench

with 2 read – 8 write variables overflow (since TinySTM-ASF keeps the lock

variables in the transactional cache) and get restarted in software, exhibiting

worse performance than STM. However, the version with 4 read and 4 write

variables fits in the TM cache and shows a clear improvement over STM.
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TM Benchmark Description

Eigenbench [65] Highly tunable microbenchmark for TM with orthogonal charac-

teristics. We have used this benchmark (2000 loops) with (i) r1=8,

w1=2 to overflow the TM cache and vary contention (by changing

the parameters a1 and a2) from 0–28%, and (ii) r1=4 and w1=4

to fit in the TM cache and vary the contention between 0–35%.

Intruder [93] Network intrusion detection. A high abort rate benchmark, con-

tains many transactions dequeuing elements from a single queue.

We have used this benchmark with 128 attacks.

SSCA2 [93] An efficient and scalable graph kernel construction algorithm. We

have used problem scale value 12.

Table 3.6: TM Benchmarks Used

In the SSCA2 results presented in Figure 3.7, we get an 1-8% improvement

over STM because this benchmark contains small transactions that fit in the

transactional cache. Although Intruder (Figure 3.8) is a benchmark that is fre-

quently used for TM, it is not a particularly TM-friendly benchmark, causing a

high rate of aborts and non-scalable performance. However, especially with 16

cores, our scheme achieves in (i) discovering conflicts early and (ii) committing

48.7% of the total transactions in hardware, which results in almost 5x superior

performance compared to a direct-update STM which has to undo all changes on

each abort. This benchmark can not be run on pure HTM because it contains

memory operations like malloc/free inside transactions that are complex to run

under HTM and are currently not supported on TMbox. These three benchmarks

can benefit from our hybrid scheme because they do not run very large transac-

tions, so most of the fallbacks to software caused are due to repeated aborts or

mallocs inside transactions. For SSCA2, we see good scalability for up to 8 cores,

and for Intruder for up to 4 cores. The performance degradations in STM for

Intruder are caused by the fact that the STM directly updates the memory and

as the abort rates increase, its performance drastically decreases. Furthermore,

the system performance is benchmark-dependent: Compared to the sequential

versions, the TM versions can perform in the range of 0.2x (for Intruder) to 2.4x

(for SSCA2). As for the scalability of the ring network, SSCA2 results suggest
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Figure 3.6: Eigenbench performance on a 16 core TMbox.
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Figure 3.7: SSCA2 benchmark performance on 1–16 cores.
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Figure 3.8: Intruder benchmark performance on 1–16 cores.

that up until 8 cores, the TMbox nicely scales1. However for the 16 core setup,

there is a decrease in scalability, therefore with these frequencies, an even larger

ring is probably not scalable and not advisable. In the next section, we sketch a

multi-ring setup to be able to fit tens of Honeycomb cores inside the 4 FPGAs of

the BEE3 platform.

Various design choices made can alter conclusions, especially for TM. The

cache sizes, memory latencies, using write-through caches versus write-back caches,

TM unit sizes, effects of the ring bus are all factors that have an influence on over-

all performance. For this reason, without an accurate timing model in place, we

do not make conclusions about TM performance in this thesis. We do, however,

present a complete infrastructure that enables running, examining, profiling and

visualizing STM, HTM and Hybrid TM benchmarks with high detail. The profil-

ing and visualization infrastructure for TMbox is presented in the next chapter.

3.5 Fitting inside the BEE3

To use all four FPGAs on the BEE3 infrastructure and to be able to use tens

of cache coherent Honeycomb cores, a 4-FPGA version has been designed and

implemented. As Figure 3.9 shows, in this design, there is a single DDR channel

located on FPGA 0, which is accessed by an arbiter (similar to BeeFarm, Chapter

1Thanks to having faster memory than processors.
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Figure 3.9: A 4-FPGA setup for the BEE3.

6.3 of [9]) that selects which ring to serve among the 4 rings that make memory

requests. One of the rings (not shown in figure) resides on the same chip as the

DDR controller, and the other three rings are on remote FPGAs. By using such

a tree network, we can distribute the latency impact that a large a 40-node ring

would bring, onto smaller rings of 10 nodes each. If necessary, the designer can

slow down the local ring to match the latencies of the remote rings, or a scheduler

could be devised to intelligently decide which cores to engage at runtime.

This version simulates correctly but fails to run properly on the actual chip.

This is due to the actual wires between the FPGAs and their latencies not be-

ing simulated accurately. Therefore, we have to resort to online debugging using

Chipscope [69]. This is when things worsen: For online debugging, various trig-

gers must be engaged on different FPGAs at the same time, hence a graduate

student’s nightmare! Eventually, since we can only simulate, we only briefly

discuss this implementation.

Figure 3.10 depicts the arbiter picking requests between two rings. Ring0 re-

sides on the local FPGA, FPGA A, and Ring1 is on a remote FPGA B. When the

57



3. TMBOX 3.5 Fitting inside the BEE3

Figure 3.10: A waveform simulation of a 2-ring arbiter.
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cpu packet type head[x] has a positive value, there is a new packet arriving in the

queue, representing a memory request from FPGAx (shown by the ddr read req

and ddr write req signals). The busState FSM (under the sub-group STATE in

Figure 3.10) selects the input source (dictated by the granted ring signal) and

moves to a corresponding state, depending if it’s a DDR read/write (states 3 and

6) or a BootMem read. Accordingly, acquire ddr, req issued and finally req served

signals are set. Finally, when the pause ring signal is set, the packet is dequeued.

In this version, state 6 takes long because it is also responsible for first sending

the invalidation signals to remote FPGAs, then getting an acknowledgement, at

each write to the DDR. This was necessary for the invalidations and the writes

not to cross from one FPGA to another at the same time, since invalidations have

to cancel all write messages that they find on the way.

Another possibility of using 4 FPGAs would be to design and implement

a distributed shared memory multiprocessor with a directory scheme that will

provide system-wide memory coherency. Each FPGA would have a quarter of

the memory space and a directory that is responsible for local addresses and a

proxy directory with information about the lines from the local memory that are

cached on remote nodes. On a miss or write, all node-local directories would be

consulted and updated. If the status of a local-line changes, a message will be

sent around the 4-node ring network that covers the BEE3, so that all remote

proxy directories receive a notification.

3.6 Related Work

Some mostly initial work has been published in the context of studying Transac-

tional Memory on FPGA prototypes. ATLAS is the first full-system prototype of

an 8-way CMP system with PowerPC hard processor cores, buffers for read/write

sets and per-CPU caches augmented with transactional read-write bits and TCC-

type HTM support, with a ninth core for running Linux and serving OS requests

from other cores [98].

Kachris and Kulkarni describe a TM implementation for embedded systems

which can work without caches, using a central transactional controller on four

Microblaze cores [75]. TM is used as a simple synchronization mechanism that can

59



3. TMBOX 3.6 Related Work

be used with higher level CAD tools like EDK for non-cache coherent embedded

MPSoC. The proposal occupies a small area on chip, but it is a centralized solution

that would not scale as we move up to tens of cores. Similarly, the compact

TM proposal, composed by off-the-shelf cores with a software API managing

transactions, can be useful for early validation of programs to TM [111].

Recent work that also utilizes MIPS soft cores focuses on the design of the

conflict detection mechanism that uses Bloom filters for an FPGA-based HTM

[84]. Application-specific signatures are compared to detect conflicts in a single

pipeline stage. The design takes little area, reducing false conflicts. The under-

lying bit-level parallelism used for signatures makes this approach a good match

for FPGAs. This proposal was the first soft core prototype with HTM, albeit

only with 2 cores; it is not clear what is done in case of overflow or how the

design would scale. Another approach is TMACC, which accelerates STMs on

commodity machines and uses Bloom filters implemented on FPGAs to do so

[18].

Ferri et al. proposed an energy-efficient HTM on a cycle-accurate SW simula-

tor, where transactions can overflow to a nearby victim cache [45]. It is a realistic

system with cache coherence, and non-centralized TM support, running a wide

range of benchmarks on various configurations, however bus-based snoopy proto-

col would not scale with more cores, the simulator is not scalable and would suffer

from modelling larger numbers of processors, and no ISA changes are possible to

the ARM-based hard CPU core.

Recently, an HTM was proposed by C. Thacker for the Beehive system [128].

In case of overflow, the entire transaction is run under a commit lock without

using the transactional hardware. We believe that software transactions might

have more to offer. The Beehive design also uses a uni-directional ring where

messages are added to the head of a train with the locomotive at the end [128].

Ring networks are suggested as a better architecture for shared memory mul-

tiprocessors by Barroso et al. [11] and a cache coherent bi-directional ring was

presented by Oi et al. [101], but as far as we know, using backwards-propagating

write-destructive invalidations is a novel approach. Unlike some of the propos-

als above, our system features a large number of processors and is completely
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modifiable. This enables investigating different interconnects, ISA extensions or

coherency mechanisms.

3.7 TMbox Conclusions

We have presented a 16-core Hybrid TM design on an FPGA, providing hardware

support and accelerating a modern TM implementation and running benchmarks

that are widely used in TM research.

The results agree with our insights and findings from other works [93]: Hybrid

TM works well when hardware resources are sufficient, providing better perfor-

mance than software TM. However, when hardware resources are exceeded, the

performance can fall below the pure software scheme in certain benchmarks. The

good news is that Hybrid TM is flexible; a smart implementation should be able

to decide what is best by dynamic profiling. We believe that this is a good

direction for further research.

We have also shown that a ring network fits well on FPGA fabric and using

smaller cores can help building larger prototypes. Newer generations of FPGAs

will continue to present multi-core researchers with interesting possibilities, hav-

ing become so mature, as to permit investigating credible large-scale systems

architecture. We are looking forward to extending the TMbox with a memory

directory to utilize all four FPGAs on the BEE3 board.

TMbox enables to study many other topics such as shared memory vs dis-

tributed memory, message passing, homogeneous vs heterogeneous processing on

different memory models, utilizing various interconnect architectures or ISA ex-

tensions. The TMbox is available at http://www.velox-project.eu/releases.

3.7.1 Publications

Published work related to the material in this chapter can be found in:

• Nehir Sönmez, Oriol Arcas, Otto Pflucker, Adrian Cristal, Osman Unsal,

Ibrahim Hur, Satnam Singh and Mateo Valero, “TMbox: A Flexible and

Reconfigurable 16-core Hybrid Transactional Memory System”, In Proc.
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19th Annual IEEE International Symposium on Field-Programmable Cus-

tom Computing Machines (FCCM 2011), Salt Lake City, USA, May 2011.

• Oriol Arcas, Nehir Sönmez, Osman Unsal, Adrian Cristal and Mateo Valero,

“A Flexible Hybrid Transactional Memory Multicore on FPGA”, Jornadas

de Paralelismo 2011, La Laguna, Tenerife (Spain), Sep 2011.

• Nehir Sönmez, Oriol Arcas, Osman S. Unsal, Adrian Cristal and Satnam

Singh, “TMbox: A Flexible and Reconfigurable Hybrid Transactional Mem-

ory System”, book chapter to appear in Multicore Technology Architecture,

Reconfiguration, and Modeling”, eds. S. Sangwine, M. Y. Qadri, CRC

Press, 2012.
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Chapter 4

Profiling and Visualization for

TMbox

Abstract

Multi-core prototyping presents a good opportunity for establishing low overhead

and detailed profiling and visualization in order to study new research topics. In

this chapter, we design and implement a low execution, low area overhead profil-

ing mechanism and a visualization tool for observing Transactional Memory (TM)

behaviors on FPGA. To achieve this, we non-disruptively create and bring out

events on the fly and process them offline on a host. There, our tool regenerates

the execution from the collected events and produces traces for comprehensively

inspecting the behavior of interacting multithreaded programs. With zero execu-

tion overhead for hardware TM events, single-instruction overhead for software

TM events, and utilizing a low logic area of 2.3% per processor core, we run

TM benchmarks to evaluate various different levels of profiling detail with an

average runtime overhead of 6%. We demonstrate the usefulness of such detailed

examination of SW/HW transactional behavior in two parts: (i) we port the

STAMP application Intruder to Hybrid TM to speed it up by 24.1%, and (ii)

we closely inspect transactions to point out pathologies such as repetitive aborts,

killer transactions and starvation. The SW/HW profiling and event visualiza-

tion infrastructure that we present offers possibilities of extension to many other

directions.
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4.1 Introduction

TM is attracting a lot of recent attention both in academia and in industry. Per-

formance and scalability are both important for a successful adoption of TM.

Profiling executions in detail is absolutely necessary to have a correct under-

standing of the qualities and the disadvantages of different implementations and

benchmarks. A low-overhead, high-precision profiler that can handle both hard-

ware and software TM events is required. Up to now, no comprehensive profiling

environment supporting STM, HTM and Hybrid TM has been developed.

Due to its flexibility and extensibility, an FPGA is a very suitable environ-

ment for implementing profiling mechanisms and offers a unique advantage based

on three main aspects. Firstly, compared to a software simulator, there are no

overheads in simulation time due to the special hardware added. Moreover, FP-

GAs emulate real hardware interfacing real storage or communication devices and

exhibit a higher degree of fidelity than software simulators. Second, the relative

area overhead for implementing extra profiling circuitry can be very low, and the

throughput high, as we demonstrate. Third, because of its customizability, we

are free to extend the architecture with new application-specific instructions for

profiling. We use this flexibility to reduce the software overheads of the profiling

calls added to the programs, as we will show with the new event instruction.

The purpose of this chapter is to address these shortcomings and to develop a

complete monitoring infrastructure that can accept many kinds of software and

hardware transactional events with low overhead in the context of a Hybrid TM

system on FPGA. This is the first study to profile and visualize a Hybrid TM

scenario, with the capabilities to examine in detail how hardware and software

transactions can compliment each other.

4.1.1 Contributions

Using these advantages in utilizing FPGAs for multicore prototyping, we address

three main issues:

• STM application profiling can suffer from high overheads, especially with

higher levels of detail (e.g. looking into every transactional load/store).
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Such behavior may influence the application runtime characteristics and

can affect and alter the interactions of threads in the program execution,

producing unreliable conclusions.

• Hardware extensions for a simulated HTM system and a software API was

suggested by the flagship HTM-only profiling work, TAPE [21]. It is useful

for pinpointing and optimizing undesired HTM behaviors, but incurs some

overhead due to API calls and saving profiling data to RAM. We argue that

using an FPGA platform, hardware events can come for free.

• Visualizing executions in a threaded environment can be an efficient means

to observe transactional application behavior, as was looked into in the

context of an STM in C# [144]. A profiling framework facilitates capturing

and visualizing the complete execution of TM applications, depicting each

transactional event of interest, created either by software or by hardware.

For gathering online profiling information, first we describe (i) the profiling

hardware that supports generating TM-specific hardware events with zero execu-

tion overhead, and (ii) a key extension to the Instruction Set Architecture (ISA)

called the event instruction that enables a low, single-cycle overhead for each

event generated in software. Later, a post-processing tool that generates traces

for the threaded visualization environment Paraver [19] is engaged. The resulting

profiling framework facilitates to visualize, identify and quantify TM bottlenecks:

It allows getting insights into the interaction between the application and the TM

system, and it helps to detect bottlenecks and other sub-optimal behavior in the

process. This is very important for optimizing the application for the underlying

system, and for designing faster and more efficient TM systems.

Running full TM benchmarks, we compare different levels of profiling and their

overheads. Furthermore, we show visualization examples that can lead the TM

programmer/designer to make better and more reliable choices. As an example,

we demonstrate how using our profiling mechanism, the Intruder benchmark from

STAMP [93] can be ported to best utilize Hybrid TM resources. Such a HW/SW

event infrastructure can be easily modified to examine in detail full complex

benchmarks in any research domain.
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The next section presents the design objectives and the TMbox system used, a

Hybrid TM implementation on FPGA. Section 4.3 explains the infrastructure that

implements the profiling mechanism in order to produce meaningful HTM/STM

events and to process them offline on a host. Section 4.4 presents overhead

results running TM applications and example traces illustrating the features of

our profiling mechanism. Section 4.6 concludes the chapter.

4.2 Profiling Design Objectives

To get a complete overview of TM behavior, it is vital to have a system with

low impact on application runtime characteristics and behavior, otherwise the

optimization hints gathered could cause a misguided attempt to ameliorate the

system. A design decision was to try to still support as many cores as possible on

the FPGA by creating a system with a low overhead in terms of look-up tables

and flip-flops used. The extensibility of the designed system should enable future

projects to easily implement additional monitoring techniques.

Since the profiling infrastructure will be designed on actual hardware, we can

not implement unrealistic behavior, and the new circuitry has to map well on the

reconfigurable fabric, with minimal area and routing overheads. We made three

key design choices to get low execution and low area overhead and not to disturb

placing and routing on the FPGA:

• Non-intrusively gather and transfer runtime information by implementing

the monitoring hardware separately. Build the monitoring infrastructure

only by attaching hardware hooks to the existing pipeline.

• Make use of the flexibility of the ISA and the GCC toolchain to add new

instructions to the ISA to support STM events with low profiling overhead.

• Use little area on the FPGA by adding minimal extra circuitry, without

widening the buses or causing extra routing overheads. To transfer the

events non-disruptively, instead of adding a new events network, utilize the

idle cycles on an already-existing network. To be absolutely non-intrusive,

give higher priority to real packets, buffer the event packets and send them

only when there is no traffic.
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Figure 4.1: An 8-core TMbox system block diagram and modifications made to

enable profiling (shaded).

4.2.1 Network reuse

To cause as little area and routing overhead as possible, we discard the option

of adding a dedicated network for events. Instead, we choose to piggyback on

an existing network. More particularly, we utilize the idle cycles on the less-

frequently-used invalidation bus. However, we do not want to disturb the execu-

tion by causing extra network congestion, so we give a lower priority to profiling

events by first buffering them and transferring them only when a free cycle on

the bus is detected. This way, the profiling packets do not disrupt the traversal

of the already-existing invalidation packets in any way.

Although this approach might be somewhat specific to the TMbox architec-

ture, we believe that the methodology of always first buffering the created events,
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Figure 4.2: Event format for the profiling packets.

and injecting them in the network only on a free slot could be applied to differ-

ent network types, as well. Future work could address how to implement similar

functionality on a different network type, such as a mesh or a tree.

A disadvantage of this approach is that the new message format size to support

event propagation is bounded by the fixed message type of the invalidation ring

bus. Another drawback is watching out for event buffer overflows. The next

section explains in detail how the design decisions affected the way the TMbox

system was modified to support creating, propagating, transferring and post-

processing timestamped TM events.

4.3 The Profiling and Visualization Infrastruc-

ture for TMbox

The profiling and visualization framework developed consists of performing three

steps on the FPGA and the final step on the host computer. First, the TM behav-

ior of interest is decomposed into a small, timestamped event packet containing

information about the change of state. Second, the event is propagated on the

bus to the central Bus Controller node. Third, from the Bus Controller node, it

is transferred on the fly by PCI Express (PCIe) to a host computer. Finally, the

post-processing application running on the host parses all event packets and re-

composes them back to meaningful, threaded events with absolute timestamps,

and creates the Paraver trace of the complete application, ready for visualization.
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4.3.1 Event specification and generation

4.3.1.1 HTM events

The event generation unit (Figure 4.1) monitors the TM states inside the cache

Finite State Machine (FSM) of the processor, generating events whenever there

is a state change of interest, e.g. from tx start to tx commit. Figure 4.2 shows the

format of an event in a detailed way. The timestamp marks the time when an

event occurred, and is delta-encoded: only the time difference in cycles between

two consecutive events is sent. This space-efficient encoding allows a temporal

space of about a million cycles (20 ms @ 50 MHz) between two events occurring

on a processor. The event data field stores additional data available for an event,

for instance the cause of an abort (e.g. capacity overflow, software-induced,

invalidation).

Due to the 4-bit wide event type, we can define up to 16 different event types.

Some of the basic event types defined for hardware transactions include: tx start,

tx commit, tx abort, invalidation, lock/unlock ring bus (for performing commits).

These hardware events come with zero execution overhead, since the profiling

machinery works in parallel to the cache FSM. Our infrastructure supports easily

adding and modifying events, as long as there is a free event type encoding

available in hardware.

The fact that we can only use 20 bits for the timestamp in order to match

the predefined message format can cause wraparounds, so the Paraver threads

can fail to be properly synchronized. To address this, we added an extra event

type that is very rarely used. When it detects a timestamp counter overflow, in

the next event, it also sends the number of idle timestamp overflows occurred

along with the timestamp. Although the bus and the event messages could also

be widened, we opted for modifying the existing hardware as little as possible to

accomplish as low overhead as possible. This is also the reason why we eliminated

the option of having a separate bus only for the events.

4.3.1.2 Extending the ISA with STM events

For generating low overhead events from software, an event instruction was added

to the processor model by modifying the GNU Compiler Collection (GCC) and
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the GNU Binutils suite (GAS and objdump). The event instruction creates STM

events with a similar encoding to the HTM events, supporting up to 16 different

software events that are implemented in special event registers. Little hardware

with a small area overhead of 32 LUTs/core had to be added: extending the

opcode decoder, some extra logic for bypassing the data, and multiplexing it into

the event FIFO. More complex processor architectures might need to be more

heavily modified to add new instructions and registers. However, the ability to

create such precise events from software with single-instruction overhead is a very

powerful tool for closely inspecting a variety of behaviors. Software events can

be modified simply by storing the wire/register/bus values of interest in event

registers and by reading them from software with an event call.

Similar to the “free” hardware events discussed earlier, the events generated

in software also utilize the same event FIFO. However, software events have some

execution overhead: one instruction per event. In the next section, we compare

execution overheads of this approach to software-only events created on a com-

modity machine, and demonstrate that utilizing the event instruction actually

contributes to a smaller overhead in runtime.

4.3.2 Event propagation on the bus

A logging unit captures events sent by the event generation unit located in each

core. Here, the event is timestamped using delta encoding and enqueued in the

event FIFO. As soon as an idle cycle is detected on the invalidation bus, the event

is dequeued and transferred towards the bus controller.

To prevent a disturbance of program runtime behavior, the profiling events

are classified as low-priority traffic on the invalidation ring bus. So, invalidation

packets always have higher priority. Consequently, when the ring bus is busy

transferring invalidation messages, it is necessary to buffer the generated events.

To keep the events until a free slot is found, event FIFOs (one BRAM each) were

added to each core, as shown in Figure 4.1.

The maximum rate at which an invalidation can be generated on the TMbox

is once every three cycles. The DDR controller can issue a write every three

cycles, which translates into an invalidation message that has to traverse the
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whole bus. Therefore, for an 8-core ring setup, the theoretical limit of starting to

overflow into the event FIFOs is when one event is created by all cores every 12

cycles. Using a highly contended shared counter written in MIPS assembly, we

observed that the FIFOs never needed to have more than 4 elements (as shown in

Figure 3.7 in [79]). This is a worst case behavior: TM programs written in high

level languages incur further overhead through the use of HTM/STM abstraction

frameworks and thus would actually exhibit a smaller pressure on the buffers of

the monitoring infrastructure.

Changing the network type for the system would imply the need to modify the

infrastructure to look for and to use empty cycles or to add another data network

for events, which would come with routing issues and area overhead. While with

a dedicated event bus this step would have been trivial, better mapping on the

FPGA requires a lower cost approach. Therefore, we reuse the already-available

hardware and only incurring area overhead by placing FIFOs to compensate for

traffic congestion.

4.3.3 Transfer of events to the host

To transfer the profiling packets, we use a PCIe connection that outputs data at

8 MB/sec, coupled with a large PCIe output FIFO placed to sustain temporary

peaks in profiling data bandwidth. In our executions, we did not experience

overflows and lost packets, although the throughput of the PCIe implementation

is obviously limited. A suitable alternative for when a much greater amount of

events are created (e.g. at each cache miss/hit), might be to save to some large

on-chip DDR memory instead of transferring the events immediately. However,

this memory should preferably be apart from the shared DDR memory of the

multicore prototype, for reasons of non-disruptiveness. The profiling data might

reach sizes of many MB, so saving the profiling data on on-chip BRAMs is not a

viable option.

To accommodate for the possible increases in profiling data bandwidth, we

placed a large FIFO on the output of the PCIe. The limitations of this buffer

can also be examined, since the size depends on maximum traffic, however this is
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left as future work, as in our experiments we didn’t detect any FIFO overflows.

Furthermore, using faster connections to the host could alleviate this problem.

4.3.4 Post-processing and execution regeneration

After the supervised application has terminated, and all events have been trans-

ferred to the host machine, they are fed in to the Bus Event Converter. This

program, which we implemented in Java, (i) parses the event stream, (ii) rebuilds

TM and application states, and (iii) generates statistics that are compatible for

visualizing with Paraver [19]. The mature and scalable program Paraver was

originally designed for the processing of Message Passing Interface (MPI) traces,

which we adapted to visualize and analyze TM events and behavior. Our post-

processing program converts the relative timestamps to absolute timestamp val-

ues and re-composes the event stream into meaningful TM states. At this point,

additional states can also be created, depending on the information acquired

through the analysis of the whole application runtime. This removes the need

to modify the hardware components to add and calculate new states and events

during the execution, and allows for a more expressive analysis and visualization.

4.4 Experimental Evaluation

In order to demonstrate the low overhead benefits of the monitoring framework

proposed, we ran STAMP [93] applications using Eigenbench [65], a synthetic

benchmark for TM mimicry. STAMP is a well-known TM benchmark suite with

a wide range of workloads, and Eigenbench imitates its behavior in terms of num-

ber and size of transactions, read/write sets and many other orthogonal charac-

teristics. We used the parameters for five STAMP benchmarks provided by the

authors of Eigenbench. We compare runtime overheads of the profiling hardware

to an STM-only implementation which generates runtime event traces in a way

comparable to our FPGA framework. This version called STM (x86) tracks each

transactional start, commit, and abort events in TinySTM running on a West-

mere1 server. The events are timestamped and placed in a buffer, which is written

1The OS used is Linux version 2.6.32-29-server (Ubuntu 10.04 x86 64).
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Profiling Type Area Overhead Actions Tracked

(per CPU core)

STM-only (x86 host) NONE SW start tx, SW commit tx,

SW abort tx

STM-only 32 6-LUTs + 1 BRAM SW start tx, SW commit tx,

SW abort tx

HTM-only 129 6-LUTs + 1 BRAM HW start tx, HW commit tx,

HW abort tx, lock bus,

unlock bus, HW inv,

HW tx r/w, HW PC

Hybrid TM (CG) 129 6-LUTs + 1 BRAM HTM-only + STM-only

Hybrid TM (FG1) 129 6-LUTs + 1 BRAM Hybrid TM (CG)

+ SW tx r/w + tx ID

Hybrid TM (FG2) 129 6-LUTs + 1 BRAM Hybrid TM (FG1)

+ SW inv + SW PC

Table 4.1: Area overhead per processor core and the tracked events in different

profiling options

to a thread-local file handle.

Along with STM and HTM profiling, we engage three levels of Hybrid TM

profiling to enable both light and detailed profiling options. The coarse-grained

(CG) version features the typical HTM and STM events (Table 4.1). Besides the

most common start tx, commit tx and abort tx events, we also look at invalidation

events and the overheads of locking/unlocking the bus for commits (part of the

HTM commit behavior of TMbox). Additionally, there are two fine-grained pro-

filing options that are implemented through the event mechanism in software.

FG1 includes tracking all transactional reads and writes, also useful for monitor-

ing readset and writesets. It also keeps transaction IDs, which are needed for

dynamically identifying atomic blocks and associating each transactional opera-

tion with them.

In addition, the maximum profiling level FG2 that we implemented features

source code identification, a mechanism for monitoring conflicting addresses and

their locations in the code. For enabling this, a JALL (Jump And Link and
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Figure 4.3: Runtime overhead (%) for STM (x86) vs. STM (FPGA), in different

core counts and applications. (avg. 20 runs)

Link) instruction was added to the MIPS ISA. This extends the standard JAL

instruction by storing an additional copy of the return address, which is kept as a

reference to be able to identify the Program Counter (PC) of the instruction that

is responsible of the subsequent transactional read/write operations in TinySTM.

This way, a specific event with that unique PC is generated by the transactional

operations in these subroutines, effectively enabling us to identify the source code

lines with low overhead.

4.4.1 Runtime and area overhead

In Figure 4.3, STM (x86) profiling overhead was compared to our FPGA frame-

work with the same level of profiling detail (STM-only). The overhead introduced

by the FPGA implementation is less than half of the STM (x86) overhead, on

average. This is largely due to adding the event instruction to the ISA to ac-

complish a single instruction overhead per software event. Please note that if the

transactional read and write events were tracked additionally, we would expect a

larger slowdown for STM (x86).
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Figure 4.4: Runtime overhead (%) for different Hybrid TM profiling levels, core

counts and applications. (avg. 20 runs)

Figure 4.4 shows the extra overhead that our FPGA profiler causes by turning

on all kinds of TM profiling capabilities. Almost half a million events were pro-

duced for some benchmarks. With the highest level of detail, the average profiling

overhead was less than 6% and the maximum 14%. When the transactions can

be run on the dedicated hardware, as in the case of SSCA2, the overall profiling

overhead is lower. This is because hardware events come “for free” and less work

has to be done in software, where there is some overhead. Therefore, the success

of the Hybrid TM drives that of the TM profiling machinery. The higher the

percentage of transactions that can complete in hardware, the faster and more

efficient the execution of the TM program is, and the more lightweight is the

profiling. Conversely, the Genome benchmarks has many transactions that can

never fit the dedicated TM hardware and exhibit higher overheads.

Interesting cases of low Hybrid TM CG overheads appear when running

Genome with 4 threads and SSCA2 with 2 and 8 threads. This behavior is due

to the specific Eigenbench parameters for STAMP benchmarks, eg. Genome’s

parameter values for CPU 3 are huge and cause the application to behave much
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differently for 4 threads than for 2 threads.

The inclusion of profiling hardware to TMbox results in a 2.3% increase in

logic area, plus the memory needed to implement the event FIFO (1 BRAM)

for each processor core. The fixed area overhead of the PCIe endpoint plus the

PCI FIFO occupies 3978 LUTs and 30 BRAMs. For future work, it would be

interesting to investigate new techniques that could allow zero runtime overhead

in STM profiling. This would also avoid the interferences caused by profiling in

the normal program behavior, which we observed as negative values in the case

of Vacation.

At first thought, the cross effects of profiling on TM might seem to cause an

increased number of aborts. Since profiling delays execution, making the critical

sections larger, the possibilities of conflict and aborts therefore are increased.

However, since we are dealing with numerous interacting threads, it is not possible

to make general statements on faster/slower execution or more/less aborts when

the interaction of atomic blocks is altered. For example, with profiling enabled,

two transactions that used to conflicting might correspond and interfere in a

completely different way as to cease to conflict. Although using low overhead

software events minimizes this effect, using too many events inside transactions

might cause a larger deviation on the execution. Generally, it would be advisable

to keep the software events at a minimum, and to omit having superfluous events.

4.4.2 Improvement Opportunities

In this section, we present sample Paraver traces for the Intruder benchmark

to demonstrate how our low overhead profiling infrastructure can be useful in

analyzing TM benchmarks and systems. First, we run the Eigenbench-emulated

Intruder and suggest a simple methodology to improve the application’s execution

for the appropriate usage of TM resources. Next, to visualize TM behavior and

pathologies from real application characteristics, we depict some example traces

running the actual, non-emulated Intruder benchmark from the STAMP suite.
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Figure 4.5: Improving Intruder-Eigenbench step by step from an STM-only ver-

sion to utilize Hybrid TM appropriately.

4.4.2.1 Intruder-Eigenbench

Figure 4.5 shows the four traces of a simple refinement process using our profil-

ing mechanism. By running the STAMP application Intruder with 4 CPUs, we

attempt to derive the best settings both in hardware and in software for running

this application in Hybrid TM mode. The program has to complete a total of 410

transactions on four threads. Around 300,000 events are generated in the highest

profiling mode for this benchmark. On overall, a 24.1% improvement in execution

time was observed when moving from STM-only to Hybrid TM-64-ETL. This fi-

nal version of Intruder is able to utilize both the TM hardware and the software

TM options better.

STM-only: Here, the TM application is profiled with FG1 STM profiling,

where a count of the number of read/write events for each transaction is kept. By

analyzing the profiled data, we discover a certain repetition of small transactions

which can benefit from HTM acceleration. However, there also exist very large

transactions, suggesting that an HTM-only approach is not feasible. The trans-

action size depends on its read/write set and can be obtained simply by counting

the event flags in Paraver or by using the post processing application. In FG1

level profiling we keep a count of the number of read/write events created inside

each transaction.

Hybrid-TM-16: Introduces HTM with a 16-entry TM Cache per processor

core, so this trace depicts both STM and HTM events. CPU 1 seems to have

77



4. TMBOX PROFILING 4.4 Experimental Evaluation

benefited from using HTM as shown in the table in Figure 4.5, although there

are still some small transactions on other CPUs that might fit if the hardware

buffers are increased in size. Please note that a poorly-configured Hybrid TM

can end up showing worse performance than an STM.

Hybrid TM-64-CTL: Uses a larger, 64-entry TM Cache. Here, CPUs 2

and 4 also start utilizing HTM efficiently, causing the software transactions to

reduce in number. However, CPU 3 suffers from long aborting transactions and

a huge wasted work. Looking at the available software TM options, we switch

from Commit Time Locking (CTL) to Encounter Time Locking (ETL) to discover

some conflicts early and to decrease the abort overheads.

Hybrid TM-64-ETL: On overall, an 24.1% improvement in execution time

when moving from STM-only to Hybrid TM-64-ETL was observed. This final

version of Intruder is able to utilize both the TM hardware and the software TM

options better. Although there are only 3 fewer aborts in software now, they cause

much less wasted work [109], helping the application to run faster to completion.

Other than the Intruder benchmark, we also tried these experiments with a

TM Cache that was 4x as large (64 entries) on the rest of the benchmarks. In

general, we observed only a slight overall improvement. Eigenbench is not made

with smaller Hybrid TM systems in mind (such as FPGA implementations); the

small transactions fit well in the transactional hardware, but the larger ones are

usually still too large. On our FPGA, it is not possible to have larger TM Caches

(which grow up exponentially in size) with an interestingly high number of cores.

4.4.2.2 Intruder-STAMP

To pinpoint real application behavior, the actual non-emulated Intruder from

STAMP was ran with 128 attacks [93]. Intruder is an interesting benchmark

in the sense that (i) it contains a mix of short and long transactions that can

sometimes fit in the dedicated transactional hardware, and other times overflow,

(ii) typically has a high abort rate which is interesting for TM research, (iii)

exhibits real transactional behavior, such as I/O operations inside transactions,

and (iv) demonstrates phased behavior, which shows an inherent advantage of

our visualization infrastructure.
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Figure 4.6: Example traces showing phased behavior and transactional patholo-

gies in Intruder, a network intrusion detection algorithm that scans network pack-

ets for matches against a known set of intrusion signatures. The benchmark con-

sists of 3 steps: capture, re-assembly, and detection. The main data structure in

the capture phase is a simple queue, and the re-assembly phase uses a dictionary

(implemented by a self-balancing tree) that contains lists of packets that belong

to the same session. It has high levels of contention due to the re-assembly phase

rebalancing its tree.
79



4. TMBOX PROFILING 4.4 Experimental Evaluation

Figure 4.6 depicts phased behavior and some examples of different pathologies

that can be discovered thanks to the profiling framework. Some solutions to these

problems include rewriting the code, serialization, taking pessimistic locks [124]

or guiding a contention manager that can take appropriate decisions:

• Phased behavior: An inherent property of real world benchmarks is

phased behaviour. A program does not always exhibit the same behavior

throughout its execution, and in terms of TM might show different phases

of high aborts, shorter transactions, or serialization. Figure 4.6 shows an

example where there are more transactions and parallelism in the first half,

when the packets are being constructed by all the threads and there is not

enough complete data to process for detection. In the second half of the ex-

ecution, there are enough complete packets for the detector function, which

generates less (but larger) transactions in number, which results in more

aborts among them. Dynamic switching mechanisms would be suitable for

treating adequately phased behavior in transactions.

• Starvation: A clear example of starvation on CPUs 3, 5, 6 and 7 (towards

the beginning of the benchmark) is shown.

• Killer transaction: Illustrates a single transaction (CPU 7) aborting six

others. After it commits, other CPUs can finally take the necessary locks

and start committing successfully.

• Repetitive aborts: Demonstrates the pathology of repetitive aborts and

its effect on the execution, as in [15]. Finding the optimal abort threshold

(to switch to STM mode) could be important in such cases.

Additionally, our infrastructure could also perform the following actions auto-

matically:

Suggest HW/SW partitioning for transactions: Some transactions are

more suitable to run in software (eg. those that include syscalls) and others in

hardware (short transactions, or those that always fit the dedicated resources).

By partitioning all transactions into HW and SW, we can avoid the wasted work
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caused by the transactions that are sure to abort in HTM mode (because of

overflow, I/O, etc.).

Propose which locking/versioning strategy to use: CTL vs. ETL, or

lazy versioning vs. eager versioning could be dynamically switched in flexible

STM schemes. The application or the TM infrastructure can choose to use one

mechanism over another, either statically or dynamically, by looking at how early

the aborts happen, transaction sizes and other relevant data.

Debugging: By using software programmable events, the register values in

hardware can quickly be brought up to the software layer and analyzed there.

When these debugging events are enabled, they have to be lightweight and as

non-disruptive as possible, which our low-overhead events accomplish.

Some of the suspected bottlenecks of the TMbox system were visualized and

quantified with these analysis capabilities. Although the ring network is very

suitable to map on FPGA fabric, it has some drawbacks, e.g. the cores closer to

the main memory execute complete their writes more quickly, whereas the cores

on the other end might be bound to finish executing last, an inherent attribute

of a ring bus type core interconnect. An architecture-aware scheduling scheme

for transactions might be beneficial for NUMA (Non-Uniform Memory Access)

systems such as the TMbox.

Additionally, by modifying the application software and the post-processing

application, and adding new events of interest, various advanced profiling in-

formation can be reached by analysis. Some examples are to draw sets/tables

of conflicting atomic{} blocks, or read/write sets. Profiling the reasons of the

aborts gives a better idea of which transactions are frequent aborters of which

other transactions, which could help contention management schemes. Recently

such advanced profiling was studied in the context of STMs in Java [7] and Haskell

[109; 121].

As we have shown, an implementation with very low overhead on application

runtime can be achieved, which causes minimal changes in application timing

characteristics. With this new infrastructure in place, a complete cycle-accurate

overview of the TM behavior of an application running on several processor cores

can be obtained and analyzed [79]. A visual depiction of the runtime behavior

of a TM program enables the viewer to easily identify application parts with
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different characteristics and to detect parts with sub-optimal behavior [8]. This

can allow for specifically optimizing the poorly performing parts of the underlying

TM system.

4.5 Related Work

FPGAs are excellent tools for the acceleration of full-system multiprocessor sim-

ulations [26; 34; 35]. The flexibility of FPGAs is beneficial for architectural ex-

ploration. In our approach, we have exploited the FPGA properties to design and

implement a low overhead monitoring infrastructure for a hybrid TM platform.

Some work have been published in the context of studying Transactional Memory

on FPGA prototypes. ATLAS is the first full-system prototype of an 8-way CMP

system with PowerPC hard processor cores with TCC-like HTM support [98]. It

features buffers for read/write sets and per-CPU caches that are augmented with

transactional read-write bits and. A ninth core runs Linux and serves OS requests

from other cores. It does not have any profiling support. There also exist work on

TM for embedded systems [75], and Bloom filter implementations to accelerate

transactional reads and writes [84; 128]. They also lack support for profiling and

visualization.

Kachris and Kulkarni describe a basic TM implementation for embedded sys-

tems which can work without caches, using a central transactional controller on

four Microblaze cores [75]. Pusceddu et al. present a single FPGA with support

for Software Transactional Memory [111]. Ferri et al. propose an energy-efficient

HTM on a cycle-accurate SW simulator, where transactions can overflow to a

nearby victim cache [45].

Recent work that also utilizes MIPS soft cores focuses on the design of the con-

flict detection mechanism that uses Bloom filters for an FPGA-based HTM [84].

TMACC [18] proposes the acceleration of transactional memory for commodity

cores. The conflict detection uses Bloom filters implemented on an FPGA, which

accelerates the conflict detection of the STM. Moderate-length transactions ben-

efit from the scheme whereas smaller transactions do not.

The TM support for Beehive stores transactional data in a direct-mapped

data cache and overflows to a victim buffer [128]. Bloom filters are also used
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for conflict detection. Damron et al. present Hybrid Transactional Memory

(HyTM) [33], an approach that uses best-effort HTM to accelerate transactional

execution. Transactions are attempted in HTM mode and retried in software.

The HTM results are based on simulation. The aforementioned systems lack a

comprehensive support for the profiling of transactions. The existing work on

TM profiling are discussed next.

Chung et al. gather statistics on the behavior of TM programs in hardware

and describe the common case behavior and performance pathologies [15]. Ansari

et al. present a framework to profile and metrics to understand Software TM

applications [7]. Although the presented metrics are transferable to our approach,

the implementation of a software profiling framework in Java differs significantly

from our hardware-based implementation. Zyulkyarov et al. offered an extensive

profiling environment for Bartok STM in C# [143; 144]. Most of these papers

are about STM. The general ideas in these papers are transferable from STM

systems, but the specific implementation is quite different on HTM systems and

therefore is not directly applicable.

The programming model of the underlying TMbox system [122] is comparable

to the TCC model [54]. The monitoring techniques used in this work are in some

parts similar to the TAPE [21] system. Major differences include the use of

multiple ring buses in the TMbox system, compared to a switched bus network

with different timing characteristics and influences on HTM behavior. Further,

the HW support for profiling with TAPE incurs an average slowdown of 0.27%

and a maximum of 1.84%. Our system by design has zero HTM event overhead.

The tracing and profiling of non-TM programs has a long tradition, as well

as the search for the optimal profiling technique [10]. SW techniques for pro-

filing, targeting low overhead, have been researched [46; 97], alongside of OS

support [141], and HW support for profiling [37; 142]. Further, techniques to

profile parallel programs using message passing communication have been devel-

oped [120]. as well as an event-based distributed monitoring system for software

and hardware malfunction detection, as described by Faure et al. [43].

Up to now, a comprehensive profiling environment for hybrid TM systems

has not been proposed. Previous approaches either lack the ability to profile

TM programs or are designed for a specific hardware or software TM system.
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As a consequence, these approaches can not capture the application’s behavior

comprehensively.

An application running on a Hybrid TM system may transition between HW

and SW execution modes. These changes can only be tracked and understood by

a dedicated solution, such as the framework presented here. We have presented

the first comprehensive environment to profile hybrid TM systems, with HW-only

profiling through zero overhead profiling. Later, we have introduced Hardware-

assisted profiling of SW executions and then merged it all into an analysis and

visualization tool that enables profiling and optimization of TM programs.

4.6 TMbox Profiling Conclusions

An FPGA, for its flexibility in programming and its speed, is a convenient tool

for the customization of hardware and application-specificity. Based on this, we

have built the first profiling environment capable of precise visualization of HTM,

STM and Hybrid TM executions in a multi-core FPGA prototype. We have used

a post-processing tool for events and Paraver for their interactive visualizations.

Taking into consideration non-intrusiveness and low overhead, the extra hardware

added was small but efficient. It was possible to run STAMP TM benchmarks

with maximum profiling detail inside the 14% overhead limits. On average, we

incurred half the overhead of an STM-only software profiler. Furthermore, if a

software simulator was used instead of FPGA emulation, the overheads to reach

this much detail would have been high when simulating full programs.

Our infrastructure can be very useful to port applications to appropriately

use Hybrid TM, as demonstrated with the Intruder benchmark to get a speedup

of 24.1% compared to the STM-only version.

With the profiling and visualization infrastructure presented, it was possible

to pinpoint many bottlenecks and pathological transactional behaviors that were

previously published, with even lower overhead. Some of these include serial-

ization, killer transactions and repetitive aborts. Depicting full multi-threaded

executions, we can also examine phased behavior in transactional programs, por-

tions where there is a high number of aborts, or series of long transactions. This

information would be very useful in guiding a dynamically adaptable contention
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manager, so that the system could self-optimize depending on each workload or

each phase.

We support almost all types of transactional profiling mentioned previously in

the literature: per-atomic block profiling [121] or source code identification [144]

using our flexible software events, as well as useful/wasted work analysis [109] or

constructing conflict tables [121] in post-processing phase.

Furthermore, a single-cycle debugging instruction to read out any machine

register or an internal value was provided. This can help to propagate very

precise hardware information during the executions up to the software layer to

be analyzed there. Disruptiveness is an advantage here, the program has to be

altered as little as possible, which our low-overhead events accomplish.

The profiling framework could be easily adapted to work for any kind of mul-

ticore profiling and visualization, and with other state-of-the-art shared memory

hardware proposals such as speculative lock elision [112], or speculative multi-

threading [82]. The event-based framework created in this chapter can be easily

extended to enable the analysis of various processor core functionalities such as

ALU, TLB and cache operations, locking behavior or memory access patterns,

which can be useful for the construction of adaptive and self-optimizing systems.

4.6.1 Publications

Published work related to the material in this chapter can be found in:

• Nehir Sönmez, Adrian Cristal, Osman S. Unsal, Tim Harris, Mateo Valero

“Why you should profile Transactional Memory Applications on an Atomic

Block basis: A Haskell Case Study”, Second Workshop on Programmabil-

ity Issues for Multi-Core Computers (MULTIPROG), Jan 2009, Paphos,

Cyprus.

• Oriol Arcas, Philipp Kirchhofer, Nehir Sönmez, Martin Schindewolf, Osman

S. Unsal, Wolfgang Karl and Adrian Cristal, “A low-overhead profiling and

visualization framework for Hybrid Transactional Memory”, In Proc. 20th

Annual IEEE International Symposium on Field-Programmable Custom

Computing Machines (FCCM 2012), Toronto, Canada, May 2012.
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Chapter 5

Thesis Conclusions: Experience,

Trade-offs and Future Trends

5.1 Experience and Trade-offs in Emulating Fu-

ture Multicores

In this section, based on our experience of designing and building a complete

FPGA-based multiprocessor emulation system that supports run-time and com-

piler infrastructure and on the actual executions of our experiments running

Transactional Memory benchmarks, we comment on the advantages, drawbacks

and future trends of using hardware-based emulation for research.

Firstly, we have observed several challenges that still face the computer ar-

chitecture researcher that adopts FPGA-based emulation. These can be grouped

in three: debugging FPGA designs, programmability and tools for FPGAs and

limitations for computer architecture research.

• Debugging FPGA designs: Waveform simulators such as Modelsim are

of indispensable help when designing and testing a circuit. However, in

the example of working with a DDR controller that resides outside of the

FPGA, a precise simulation model of the controller should be developed

in HDL. In its absence, a fully-working simulation of a design can fail to

run when loaded onto the actual FPGA. For such cases, certain alternative

versions could also be developed, eg. one that substitutes the DDR with
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an on-chip memory of BRAMs to look for possible problems interfacing

the DDR controller. Such ‘extra’ designs prove to be extremely useful for

debugging off-the-chip interactions. Another important issue is the low level

of observability offered by online debugging tools like ChipScope, plus the

resource overhead. This problem could be mitigated by the development of

an application-specific debugging framework that is tailored to capturing

information about multiprocessor systems.

Modifying slightly the online debugging core [69] ie. adding it a new signal

to be inspected online also requires a complete re-do of Translate, Map and

Place and Route, which can be very inconvenient. One solution to this

problem might be to try to exploit floor planning tools (e.g. PlanAhead) or

the explicit use of layout constraints (e.g. Xilinx’s RLOCs) to place the pro-

cessor cores and other components more carefully, which could significantly

reduce the time-to-bitstream. Since actual hardware with area and timing

constraints has to be designed when using FPGAs, mapping and placement

issues are a lot more relevant compared to using software simulators.

• Programmability and tools for FPGAs: One of the biggest problems

with employing large designs on FPGAs is that place and route times can

be prohibitively long. Recently, synthesis tools have started to make use

of the host multithreading capabilities, and to execute multiple hardware

compilations in parallel for designs with tough timing constraints [72]. In

the case of adding a simple counter to the design for observing the oc-

currence of an event, the re-synthesis, mapping, placing and routing and

preparing the bitstream of an 8-core BeeFarm design takes more than an

hour on our 8-core Intel server. The speed advantages of FPGAs should

not get hindered by the slowness of the tools to program FPGAs.

Other researchers have advocated the use of higher level HDLs to improve

programmer productivity. We undertook our design in VHDL/Verilog and

based on our experience, we would also consider moving to a higher level

representation because the design effort and debug difficulty of working with

a lower level language when producing a system for emulation, rather than

production, is probably not worthwhile compared to a system that offers
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rapid design space exploration, e.g. Bluespec [67]. Most of the available

designs ready for reuse at the time of writing are either in Verilog or VHDL.

• Limitations for computer architecture research: The Virtex-5 FP-

GAs that we use in this work do not allow for implementing a greater num-

ber of cores or large multi-level caches. Multi-FPGA usage can also bring

extra complications. However, new FPGAs on 28 nm technology double

the total number of gates available on chip, while allowing the designer to

have access to megabytes of Block RAM capacity and thousands of DSP

units. Such abundance of resources will be more suitable for building larger

and faster prototypes on reconfigurable infrastructures.

We also observe an impedance mismatch between the speed of the off-chip

DDR memory, which runs much faster than the internal processing ele-

ments. Other than implementing an accurate timing partition, such as the

pipelined and partitioned timing approaches [34; 125], this mismatch could

also be exploited by using the fast external memory to model multiple inde-

pendent smaller memories. This would better support architecture research

where each processor core has its own local memory. Alternatively, one

memory controller on each FPGA can be dedicated to model secondary-

level caches, again subject to area constraints. Multi-ported memory re-

search for FPGAs is another branch of investigation that can be very useful

to overcome input-output port limitations [85].

5.2 Future Trends

• FPGAs: In the near future, FPGAs are expected to steadily grow larger

in size and capacity, and faster in frequency, continuing the trends set by

Moore’s Law. We also expect and hope for faster connections with higher

bandwidth, better interfaces and of course, better and faster tools. Further-

more, we expect more appropriate languages for representing architectures

at a higher level than RTL descriptions, which are too detailed and tedious

to deal with, especially when complex multiprocessors are designed.
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New generation FPGAs will also offer a greater number of on-chip hard

RAM and DSP blocks, as well as hard processor cores (such as ARM).

These processor cores can be very useful for managing the executions or

acting as a fast-access host computer that does not use up precious FPGA

resources.

• Open IP and tools: Opencores [104] and the Open Graphics Project [100]

can be very important catalysts for the development of other hardware

emulation initiatives in the academia. The OpenFPGA consortium aims

to standardize core libraries, APIs and benchmarks for FPGA computing

[105]. On the other hand, using proprietary cores and hardware patents (as

in MIPS unaligned memory access instructions [56]) can stop the investiga-

tors from implementing certain necessary functionalities and/or to look for

workarounds. If we had chosen to utilize a different architecture, we could

have been subject to such problems.

While consortia such as RAMP, parameterizable NoCs such as the CON-

NECT [107] or heterogeneous multicore models such as the FabScalar [23]

can be driving forces for FPGA technology in the computer architecture

community, more support and tools are needed to make the process main-

stream. We need readily-usable interfaces, programming and debugging

tools, and more helper IP cores. The already available IPs should be struc-

turalized and standardized, so that their reuse can be more straightforward

and commonplace.

• Transactional Memory: The future of Transactional Memory and of

speculation hardware looks promising. Finally, we are seeing HTM to be

implemented in more mainstream processors, although the first processor

to have support for HTM, the Rock from Sun Microsystems, was cancelled

[130]. The 48-core Vega2 chip from Azul systems uses HTM to accelerate

Java TM applications. AMD already detailed their Advanced Synchro-

nization Facility (ASF) HTM proposal for the x86 architecture, and more

recently Intel described their new upcoming Haswell processor core with

HTM support and IBM announced that the upcoming BlueGene/Q sup-

ports lazy-lazy TM [28; 29; 30; 57].
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These designs can attract even more attention on TM. However, more re-

search might be necessary to make improvements for managing system-wide

contention in hardware. Under high contention, taking pessimistic locks

[124], guiding a contention manager that can take appropriate decisions

[118], or even predicting the outcome of conflicting transactions (similar

to branch prediction) could provide with more efficient ways of executing

transactions.

While computer architecture is drastically changing, heterogeneous comput-

ing promises a greater variety of architectures to be proposed, meanwhile

requiring low power consumption. Techniques such as clock gating can also

be perfectly employed on FPGAs, as well.

5.3 Thesis Conclusions

This thesis attempted to build an extensive tool to investigate novel multicore

designs with Transactional Memory support by developing a flexible prototype

called TMbox. The TMbox can fit up to 16 MIPS-compatible cores on a mid-

sized Virtex-5 FPGA, supports STM, HTM and Hybrid TM, and has a useful

visualization tool to profile entire execution streams and get feedback with low

overhead. The FPGA emulator is shown to show better performance than the

M5 software simulator, as well as scaling well as the core counts are increased.

Supporting and accessing a modified GCC MIPS toolchain, the MIPS-R3000-

compatible TMbox runs TM benchmarks through the TinySTM-ASF Hybrid

Transactional Memory infrastructure. However, it is not only a useful tool for

studying TM: It can easily be modified to support other state-of-the-art shared

memory hardware proposals such as speculative lock elision, runahead execution

or speculative multithreading.

There are many ways to keep upgrading and improving the TMbox. A 64-bit

datapath, a deeper pipeline, Chip Multi-Threading support, a prefetching mech-

anism or having larger caches with more levels are some of the most immediate

ways of achieving this. Implementing a write-back cache coherence protocol or a

directory structure might also improve the performance, although simpler cache

90



5. THESIS CONCLUSIONS 5.3 Thesis Conclusions

coherency mechanisms or involving a greater number of on-chip hard blocks would

keep the soft processor cores small in size.

TMbox, inside the guidelines of this thesis, is an open source hardware project.

The design of the full HW/SW stack is free software (with small exceptions) and

all instructions that are implemented are non-patented or expired. A timing

partition that exists in software architectural simulators was not implemented

for the TMbox. Various latency numbers can be devised and provided to the

system, which can be made to access the memory and the caches and meet certain

deadlines in specified amounts of clock cycles. TMbox also doesn’t support a full

OS, which can prove to be very useful to execute complex programs. This can

be achieved by implementing more corner-case instructions required for porting

Linux to TMbox-MIPS and supporting all necessary system calls. The TMbox is

available online at http://www.velox-project.eu/releases.

We believe that studying computer architecture through FPGA-based hard-

ware prototyping has a long and prosperous way to go. With larger FPGAs that

are not affected by the limitations of Moore’s Law (yet), many new designs of

multi-soft cores can enjoy the assistance of embedded hard processor cores, more

capable DSP blocks, larger block RAMs at faster frequencies.

We need more descriptive higher-level languages than VHDL and Verilog for

the design of large MpSoCs for architectural prototyping and emulation. Some

examples are Bluespec, Lava [13] and SystemC. We also believe that any research

in this direction that would increase productivity and ease rapid design space

exploration is absolutely worthwhile.
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Appendix A

Honeycomb ISA

Table A.1: Honeycomb ISA: Arithmetic Logic Unit

Opcode Name Action Opcode bitfields (6+5+5+5+5+6)

ADD rd,rs,rt Add rd=rs+rt 000000 rs rt rd 00000 100000

ADDI rt,rs,imm Add Immediate rt=rs+imm 001000 rs rt imm

ADDIU rt,rs,imm Add Immediate

Unsigned

rt=rs+imm 001001 rs rt imm

ADDU rd,rs,rt Add Unsigned rd=rs+rt 000000 rs rt rd 00000 100001

AND rd,rs,rt And rd=rs&rt 000000 rs rt rd 00000 100100

ANDI rt,rs,imm And Immediate rt=rs&imm 001100 rs rt imm

LUI rt,imm Load Upper Imme-

diate

rt=imm<<16 001111 rs rt imm

NOR rd,rs,rt Nor rd=∼(rs—rt) 000000 rs rt rd 00000 100111

OR rd,rs,rt Or rd=rs|rt 000000 rs rt rd 00000 100101

ORI rt,rs,imm Or Immediate rt=rs|imm 001101 rs rt imm

SLT rd,rs,rt Set On Less Than rd=rs<rt 000000 rs rt rd 00000 101010

SLTI rt,rs,imm Set On Less Than

Immediate

rt=rs<imm 001010 rs rt imm

SLTIU rt,rs,imm Set On Less Than

Imm. Uns.

rt=rs<imm 001011 rs rt imm

SLTU rd,rs,rt Set On Less Than

Unsigned

rd=rs<rt 000000 rs rt rd 00000 101011

SUB rd,rs,rt Subtract rd=rs-rt 000000 rs rt rd 00000 100010

SUBU rd,rs,rt Subtract Unsigned rd=rs-rt 000000 rs rt rd 00000 100011

XOR rd,rs,rt Exclusive Or rd=rs∧ rt 000000 rs rt rd 00000 100110

XORI rt,rs,imm Exclusive Or Im-

mediate

rt=rs∧ imm 001110 rs rt imm

The immediate values are normally sign extended.
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Table A.2: Honeycomb ISA: Shifter

Opcode Name Action Opcode bitfields (6+5+5+5+5+6)

SLL rd,rt,sa Shift Left Logical rd=rt<<sa 000000 rs rt rd sa 000000

SLLV

rd,rt,rs

Shift Left Logical

Variable

rd=rt<<rs 000000 rs rt rd 00000 000100

SRA rd,rt,sa Shift Right Arith-

metic

rd=rt>>sa 000000 00000 rt rd sa 000011

SRAV

rd,rt,rs

Shift Right Arith-

metic Variable

rd=rt>>rs 000000 rs rt rd 00000 000111

SRL rd,rt,sa Shift Right Logical rd=rt>>sa 000000 rs rt rd sa 000010

SRLV

rd,rt,rs

Shift Right Logical

Variable

rd=rt>>rs 000000 rs rt rd 00000 000110

The NOP (no operation) instruction is encoded as an opcode with all bits cleared, equivalent to

“SLL r0,r0,0”, which has no effect.

Table A.3: Honeycomb ISA: Multiply/Divide

Opcode Name Action Opcode bitfields (6+5+5+5+5+6)

DIV rs,rt Divide HI=rs%rt;

LO=rs/rt

000000 rs rt 0 011010

DIVU rs,rt Divide Un-

signed

HI=rs%rt;

LO=rs/rt

000000 rs rt 0 011011

MFHI rd Move From HI rd=HI 000000 0000000000 rd 00000 010000

MFLO rd Move From LO rd=LO 000000 0000000000 rd 00000 010010

MTHI rs Move To HI HI=rs 000000 rs 000000000000000 010001

MTLO rs Move To LO LO=rs 000000 rs 000000000000000 010011

MULT rs,rt Multiply HI,LO=rs*rt 000000 rs rt 0000000000 011000

MULTU rs,rt Multiply Un-

signed

HI,LO=rs*rt 000000 rs rt 0000000000 011001
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Table A.4: Honeycomb ISA: Branch

Opcode Name Action Opcode bitfields (6+5+5+5+5+6)

BEQ rs,rt,offset Branch On

Equal

if(rs==rt)

pc+=offset*4

000100 rs rt offset

BGEZ rs,offset Branch On >=

0

if(rs>=0)

pc+=offset*4

000001 rs 00001 offset

BGEZAL rs,offset Branch On >=

0 And Link

r31=pc; if(rs>=0)

pc+=offset*4

000001 rs 10001 offset

BGTZ rs,offset Branch On > 0 if(rs>0)

pc+=offset*4

000111 rs 00000 offset

BLEZ rs,offset Branch On if(rs<=0)

pc+=offset*4

000110 rs 00000 offset

BLTZ rs,offset Branch On if(rs<0)

pc+=offset*4

000001 rs 00000 offset

BLTZAL rs,offset Branch On r31=pc; if(rs<0)

pc+=offset*4

000001 rs 10000 offset

BNE rs,rt,offset Branch On Not

Equal

if(rs!=rt)

pc+=offset*4

000101 rs rt offset

BREAK Breakpoint epc=pc; pc=0x3c 000000 code 001101

J target Jump pc=pc upper

|(target<<2)

000010 target

JAL target Jump And Link r31=pc;

pc=target<<2

000011 target

JALR rs Jump And Link

Register

rd=pc; pc=rs 000000 rs 00000 rd 00000 001001

JR rs Jump Register pc=rs 000000 rs 000000000000000 001000

Table A.5: Honeycomb ISA: Memory Access

Opcode Name Action Opcode bitfields (6+5+5+5+5+6)

LB rt,offset(rs) Load Byte rt=*(char*)(offset+rs) 100000 rs rt offset

LBU rt,offset(rs) Load Byte Un-

signed

rt=*(Uchar*)(offset+rs) 100100 rs rt offset

LH rt,offset(rs) Load Halfword rt=*(short*)(offset+rs) 100001 rs rt offset

LBU rt,offset(rs) Load Halfword

Unsigned

rt=*(Ushort*)(offset+rs) 100101 rs rt offset

LW rt,offset(rs) Load Word rt=*(int*)(offset+rs) 100011 rs rt offset

SB rt,offset(rs) Store Byte *(char*)(offset+rs)=rt 101000 rs rt offset

SH rt,offset(rs) Store Halfword *(short*)(offset+rs)=rt 101001 rs rt offset

SW rt,offset(rs) Store Word *(int*)(offset+rs)=rt 101011 rs rt offset

Table A.6: Honeycomb ISA: Misc

Opcode Name Action Opcode bitfields (6+5+5+5+5+6)

MFC0 rt,rd Move From Coprocessor rt=CPR[0,rd] 010000 00000 rt rd 00000000000

MTC0 rt,rd Move To Coprocessor CPR[0,rd]=rt 010000 00100 rt rd 00000000000

SYSCALL System Call epc=pc; pc=0x3c 000000 00000000000000000000 001100
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Table A.7: Honeycomb ISA: Synchronization

Opcode Name Action Opcode bitfields (6+5+5+5+5+6)

LL rt,offset(rs) Load Linked rt=*(int*)(offset+rs); ll=1 100000rs rt offset

SC rt,offset(rs) Store Conditional if(ll=1)

*(int*)(offset+rs)=rt

101000rs rt offset

Table A.8: Honeycomb ISA: Transactional Memory

Opcode Name Action Opcode bitfields (6+5+5+5+5+6)

XLB rt,offset(rs) Transactional

Load Byte

rt=*(char*)(offset+rs) 011000 rs rt offset

XLH rt,offset(rs) Transactional

Load Halfword

rt=*(short*)(offset+rs) 011001 rs rt offset

XLW rt,offset(rs) Transactional

Load Word

rt=*(int*)(offset+rs) 011010 rs rt offset

XSB rt,offset(rs) Transactional

Store Byte

*(char*)(offset+rs)=rt 011011 rs rt offset

XSH rt,offset(rs) Transactional

Store Halfword

*(short*)(offset+rs)=rt 011110 rs rt offset

XSW rt,offset(rs) Transactional

Store Word

*(int*)(offset+rs)=rt 011111 rs rt offset

XBEGIN Transaction

Begin

*(char*)(offset+rs)=rt;

TM1=sp

110100 rs 00000 rd 00000 000000

XCOMMIT Transaction

Commit

*(short*)(offset+rs)=rt;

sp=TM1

111100 rs 00000 rd 00000 000000

XABORT addr Transaction

Abort

TM3=imm; TM2=1 111100 rs imm

MFTM rt,TMreg Move From

TMU

rt=TMreg 111100 rs 00000 rd 00000 000010

Table A.9: Honeycomb ISA: Profiling

Opcode Name Action Opcode bitfields (6+5+5+5+5+6)

EVENT imm Create Event *(int*)(offset+rs)=rt 011111 rs rt imm

JALL target Jump And Link

And Link

r31=pc; pc=target<<2 000011 target
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Appendix B

Honeycomb Registers

Table B.1: Compiler Register Usage

Register Name Function

R0 zero Always contains 0

R1 at Assembler temporary

R2-R3 v0-v1 Function return value

R4-R7 a0-a3 Function parameters

R8-R15 t0-t7 Function temporary values

R16-R23 s0-s7 Saved registers across function calls

R24-R25 t8-t9 Function temporary values

R26-R27 k0-k1 Reserved for interrupt handler

R28 gp Global pointer

R29 sp Stack Pointer

R30 s8 Saved register across function calls

R31 ra Return address from function call

HI-LO lo-hi Multiplication/division results

PC Program Counter Points at 8 bytes past current instruction

EPC epc Exception program counter return address

TM0 Keeps the abort address

TM1 Keeps the stack pointer(sp)

TM2 Keeps the reason for abort

TM3 Keeps the reason for SW abort

96



Appendix C

List of Abbreviations

Table C.1: List of Abbreviations (I)

Abbreviation Description

ALU Arithmetic Logic Unit

AMD Advanced Micro Devices

API Application Programming Interface

ARM Advanced RISC Machines

ASF Advanced Synchronization Facility

ASIC Application-Specific Integrated Circuit

BEE3 Berkeley Emulation Engine 3

BRAM Block Random Access Memory

CAD Computer-Aided Design

CAM Content-Addressable Memory

CAS Compare And Swap

CMP Chip MultiProcessor

CP Coprocessor

CPU Central Processing Unit

DDR Double Data Rate

DSP Digital Signal Processor

ECC Error Correcting Code

EDK Embedded Development Kit
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Table C.2: List of Abbreviations (II)

Abbreviation Description

FAA Fetch And Add

FIFO First-in First-Out

FP Floating Point

FPU Floating Point Unit

GAS GNU Assembler

GCC GNU Compiler Collection

GNU GNU’s Not Unix

HaSTM Hardware-Assisted Software Transactional Memory

HTM Hardware Transactional Memory

HW Hardware

HyTM Hybrid Transactional Memory

I/O Input/Output

IP Intellectual Property

ISA Instruction Set Architecture

ISE Integrated Synthesis Environment

ISIM ISE Simulator

KB Kilobyte

LL Load-Linked

LUT Look-Up Table

MFTM Move From TM

MIPS Microprocessor without Interlocked Pipeline Stages

MPSoC Multiprocessor System-on-Chip

NOP No Operation

OS Operating System

RAMP Research Accelerator for Multiple Processors

RD Read

RFE Return From Exception

RHEL5 Red Hat Enterprise Linux 5

RISC Reduced Instruction Set Computer

ROM Read-Only Memory

RTL Register-Transfer Level
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Table C.3: List of Abbreviations (III)

Abbreviation Description

SC Store-Conditional

SoC System-on-Chip

SPARC Scalable Processor Architecture

SRAM Static Random Access Memory

SSCA2 Scalable Synthetic Compact Applications 2

STM Software Transactional Memory

SW Software

TCC Transactional Coherence and Consistency

TL2 Transactional Locking 2

TLB Translation Lookahead Buffer

TLP Thread-Level Parallelism

TM Transactional Memory

TMU Transactional Memory Unit

UART Universal Asynchronous Receiver/Transmitter

VHDL Very-high-speed integrated circuits Hardware Description Language

WR Write

XABORT Transaction Abort

XBEGIN Transaction Begin

XCOMMIT Transaction Commit

XLB Transactional Load Byte

XLH Transactional Load Halfword

XLW Transactional Load Word

XSB Transactional Store Byte

XSH Transactional Store Halfword

XSW Transactional Store Word
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