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Abstract: Damage-induced strain softening is of vital importance for the modeling of localized
failure in frictional-cohesive materials. This paper addresses strain localization of damaging solids
and the resulting consistent frictional-cohesive crack models. As a supplement to the framework
recently established for stress-based continuum material models in rate form (Wu and Cervera
2015, 2016), several classical strain-based damage models, expressed usually in total and secant
format, are considered. Upon strain localization of such damaging solids, Maxwell’s kinematics of a
strong (or regularized) discontinuity has to be reproduced by the inelastic damage strains, which
are defined by a bounded characteristic tensor and an unbounded scalar related to the damage
variable. This kinematic constraint yields a set of nonlinear equations from which the discontinuity
orientation and damage-type localized cohesive relations can be derived. It is found that for the
“Simó and Ju 1987” isotropic damage model, the localization angles and the resulting cohesive model
heavily depend on lateral deformations usually ignored in classical crack models for quasi-brittle
solids. To remedy this inconsistency, a modified damage model is proposed. Its strain localization
analysis naturally results in a consistent frictional-cohesive crack model of damage type, which can
be regularized as a classical smeared crack model. The analytical results are numerically verified
by the recently-proposed mixed stabilized finite element method, regarding a singly-perforated
plate under uniaxial tension. Remarkably, for all of the damage models discussed in this work,
the numerically-obtained localization angles agree almost exactly with the closed-form results.
This agreement, on the one hand, consolidates the strain localization analysis based on Maxwell’s
kinematics and, on the other hand, illustrates versatility of the mixed stabilized finite element method.

Keywords: localized failure; strain localization; damage; frictional-cohesive materials; constitutive
behavior

1. Introduction

It is well known that under certain circumstances, frictional-cohesive materials with a softening
regime exhibit strain localization prior to the occurrence of macroscopic failure. For instance, in the
so-called frictional J2 (von Mises) materials, the shear (or slip) strains usually concentrate, leading
to the formation of shear bands with a small, but finite width or slip lines with a vanishing width.
Similarly, cohesive crack bands or surfaces are often observed in frictional-cohesive geomaterials
like concrete and rocks. Once such strain localization occurs, inside and outside these domains with
highly localized deformations, the strain fields are either discontinuous due to the continuous, but
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non-smooth displacements, or even singular (unbounded), caused by the discontinuous displacements.
These strain (or weak) and displacement (or strong) discontinuities are usually regarded as prognostics
of localized failure in frictional-cohesive materials and resulting catastrophic collapse of engineering
structures. Therefore, it is of vital importance to predict the occurrence of strain localization and
quantify its adverse influence on the overall response.

In the theoretical context, strain localization and the induced localized failure in frictional-cohesive
materials can be characterized by either generalized continuum models or nonlinear crack/fracture
models. In the former approach, the effects of strain/displacement discontinuities are smoothed or
smeared. Accordingly, the overall nonlinear behavior of the weakened material can be described by a
tensorial constitutive law in terms of stress vs. strain. Among many alternatives, plasticity [1] and
damage mechanics [2] or their combination [3–5] are frequently employed to develop appropriate
inelastic constitutive laws, usually based on the irreversible thermodynamics with internal variables.
Comparatively, in nonlinear crack/fracture models, displacement jumps are explicitly accounted
for by embedding the discontinuities into a solid matrix (bulk) along preferred orientations. It is in
general assumed that the discontinuity in which energy dissipation localizes is characterized by a
vectorial traction-based frictional-cohesive zone model while the bulk remains elastic, between which
the traction continuity condition is imposed. Similarly, depending on the recoverable/irreversible
properties of the discontinuities, frictional-cohesive zone models of either the plastic [6], damage [7–9]
or combined plastic-damage [10,11] type can be established. Note that in both approaches, the
introduction of fracture energy per discontinuity surface, usually regarded as a material property, is
indispensable to guarantee the objectivity of energy dissipation during the whole failure process [12,13].

Though both the continuum and crack/fracture models are able to quantify the overall effects
of localized failure in frictional-cohesive materials, their theoretical fundamentals and physical
motivations are rather distinct from each other. It is of great significance to investigate and clarify
the interrelations between them. On the one hand, the constitutive relations of a frictional-cohesive
zone model, in terms of tractions versus displacement jumps (or the regularized inelastic deformation
vector), are generally established in a heuristic or ad hoc manner. This heavily restrains developing
a physically-sound and theoretically-rational cohesive zone model for mixed-mode failure. On the
other hand, the smeared crack model can be regarded as a particular generalized continuum model
in between both families. More specifically, it can be recovered by combining of the elastic bulk and
the nonlinear cohesive discontinuity upon the assumption of a continuous stress field overall the
whole solid; see [14,15]. Therefore, it would be rather enlightening if the above procedure could be
performed inversely, i.e., developing a frictional-cohesive zone model in the context of discrete crack
methods [16,17] from its continuum counterpart with softening material laws.

Employing the strong discontinuity approach [18,19], Oliver et al. [20–24] derived frictional-cohesive
zone models by projecting inelastic material laws onto the discontinuity orientation. Similar work has
also been done in [25,26]. However, only very simple continuum models, e.g., the classical isotropic
damage model [22–24], the Rankine and plane strain J2 (von Mises) plasticity models [20,21], can be
considered, whereas more general material constitutive laws cannot be sufficiently accounted for [21]:
“obtaining such explicit forms of the discrete constitutive equations is not so straight-forward for other
families of elastoplastic models”. Furthermore, as the discontinuity orientation is determined from
the discontinuous bifurcation condition [27–32] together with the null softening modulus, strong
(regularized) discontinuities cannot form in general cases. Consequently, some kinematic mismatches
are observed [24,33], resulting in spurious stress locking [34,35].

To overcome the issue of mispredicted discontinuity orientation, Cervera et al. [34] suggested
directly using Maxwell’s kinematic conditions of strong (or regularized) discontinuities to determine
the discontinuity orientation, so that the stress locking-free property can be guaranteed for a
fully-softened discontinuity. The closed-form results of the localization angles for the J2 plasticity model
were validated by numerical simulations in the cases of plane stress and plane strain. More recently,
the authors [15,36] successfully extended the above strain localization analysis to a unified stress-based
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plastic-damage model with general (e.g., Rankine, von Mises, Mohr–Coulomb, Drucker–Prager
and more complex elliptic, parabolic, hyperbolic, etc.) failure criteria. Both general 3D and 2D
(plane stress and plane strain) cases were considered. Not only the discontinuity orientation, but also
the corresponding cohesive zone model, i.e., constitutive relations, evolution equations, traction-based
failure criterion, softening functions, etc., are determined consistently from the given stress-based
counterpart. Furthermore, the bi-directional connections and in particular the equivalence conditions
between two complementary methodologies for the modeling of localized failure in quasi-brittle solids,
i.e., traction-based discontinuities localized in an elastic solid and strain localization of a stress-based
inelastic softening solid, have also been fully established. Numerical results obtained from the stress
accurate stabilized mixed elements [34,37] coincide with the theoretical predictions, validating the
developed framework.

On the one hand, so far, Maxwell’s kinematics-based strain localization has been employed mainly
to analyze stress-based elastoplastic damage models with the inelastic strain expressed in rate form.
Consequently, in general load scenarios, the normal strains not acting on the discontinuity surface,
caused by Poisson’s lateral effects, can vanish in such a way that Maxwell’s kinematics of strong
(or regularized) discontinuities is accommodated upon strain localization. On the other hand, the
continuum damage model, usually expressed in the strain-based total form, has also been widely
accepted as an alternative to deal with complex material behavior. The application includes, but is not
limited to, creep, fatigue and other nonlinear behavior of frictional-cohesive materials; see [38] for a
review. The reason for its popularity is as much the intrinsic simplicity and versatility of the theory, as
well as its consistency based on the irreversible thermodynamics with the internal variable. However,
it is not so straightforward to extend the aforesaid Maxwell’s kinematics-based strain localization to
strain-based continuum models, since the resulting inelastic (damage) strain depends heavily on the
lateral deformations induced by Poisson’s ratio. This fact is inconsistent with the frictional-cohesive
zone models, which generally neglect the strain and stress triaxiality. As will be shown, owing to this
conceptual contradiction, strain localization of a general strain-based isotropic damage model cannot
always be guaranteed as of stress-based ones.

This paper addresses the above challenging issue. Its objectives are four-fold: (i) to present strain
localization analysis of strain-based isotropic damage models in a unified manner; (ii) to analyze strain
localization of two classical damage models and, in particular, to derive closed-form results of the
discontinuity orientation and corresponding localized frictional-cohesive model; (iii) to advocate a
new modified damage model for frictional-cohesive materials, with its localized counterpart consistent
with the assumption of classical discrete and smeared crack models; and (iv) to numerically validate
the analytical results by the mixed stabilized finite element method [39,40].

The structure of this paper is outlined as follows. After this Introduction, Maxwell’s
kinematics-based strain localization analyses of strain-based isotropic damage models are presented
in Section 2 in a unified approach. In Section 3, the classical J2 and Simó and Ju [41] damage models,
as well as a new modified Simó and Ju [41] model are analytically investigated. In particular, the
closed-form results of the localization angles and the corresponding localized frictional-cohesive
models are derived consistently. Section 4 addresses the numerical verification of the proposed strain
localization analysis, regarding numerical simulations of a singly-perforated plate under uniaxial
tension. The effects of Poisson’s ration on the localization angles are investigated. The most relevant
conclusions are drawn in Section 5. Finally, two appendices are attached to close this paper.

Notation: Compact tensor notation is used in this paper. As a general rule, scalars are denoted
by italic light-face Greek or Latin letters (e.g., a or λ); vectors and second-order tensors are signified
by italic boldface minuscule and majuscule letters like a and A, respectively. Fourth-order tensors
are identified by blackboard-bold majuscule characters (e.g., A). Symbols I and I represent the
second-order and symmetric fourth-order identity tensors, respectively. Superscripts ‘T’ and ‘sym’
indicate the transposition and symmetrization operations, respectively. The inner products with



Materials 2017, 10, 434 4 of 27

single and double contractions are denoted by ‘·’ and ‘:’, respectively. The dyadic product ‘�’ and the
symmetrized Kronecker product � are defined as:

(
A⊗ B

)
ijkl = AijBkl ,

(
A� B

)
ijkl =

1
2
(

AikBjl + Ail Bjk
)

2. Strain Localization in Damaging Solids

2.1. Continuum Damage Models

For a damaging solid, the constitutive relation between the second-order stress σ and (infinitesimal)
strain ε is expressed as:

σ = E : ε, ε = C : σ (1)

where E and C := E−1 represent the fourth-order (variable) secant stiffness and compliance tensors,
respectively.

As depicted in Figure, the strain tensor ε can be kinematically decomposed into the following
additive form:

ε = εe + εd (2)

where the elastic strain εe and the damage one εd, both being recoverable upon unloading, are
given by:

εe = C0 : σ, εd = Cd : σ (3)

for the damage compliance tensor Cd := C−C0 defined as the difference of the total secant one C
with respect to the undamaged elasticity one C0. The above kinematic decomposition is depicted in
Figure 1 for the 1D case.

σ

ε
εeεd

ε

εe

Cd

1

E0 E0E

Figure 1. Elastic-damage model in the 1D case.

In the above constitutive relations, the damage compliance Cd (or, equivalently, the secant
compliance C or stiffness E) is an internal variable. Based on different approximations, either
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isotropic, orthotropic or fully-anisotropic evolution laws can be postulated for the fourth-order damage
compliance Cd; see [3,11,36,42–44] for more details. Among them, due to the conceptual simplicity, the
strain-based 1− d damage model, with d ∈ [0, 1] representing the single damage scalar index, has been
widely adopted in the literature. For such a model, as will be shown later, the damage compliance can
be expressed in the following total format:

Cd =
d

1− d
C̄d = ωC̄d =⇒ εd = C̄d : σ = ωΛ (4)

where ω := d/(1− d) is an alternative damage variable in the range [0, ∞]; the fourth-order tensor
C̄d and second-order one Λ := C̄d : σ, both being model-dependent and bounded, characterize the
damage compliance Cd and strain εd, respectively.

With the above definitions, only the evolution law for the damage scalar d, rather than for the
complicate tensor Cd, needs to be postulated. Without loss of generality, this can be expressed as:

d(r) = 1− q
r

, q = q̂(r) =
(
1− d

)
r (5)

where the stress-like internal variable q̂(r) is a monotonically-decreasing function of the history variable
(threshold) r, with identical initial value q0 = r0. For instance, the linear function:

q̂(r) =


[

1 + H ·
( r− r0

r0

)]
q0 r0 ≤ r ≤ ru

0 r ≥ ru

(6a)

or the exponential one:

q̂(r) = q0 exp
[

H ·
( r− r0

r0

)]
(6b)

is frequently adopted, where the parameter H < 0 controls the softening function q̂(r); see Figure 2.

q

r − r0

q

H

H + 1
=

q − q0
r − r0

H0

q0

0

Softening curve

Figure 2. Definition of the continuum softening parameters H and H .

Let us introduce the secant slope Hs of the q versus r− r0 softening curve, so that:

Hs :=
q− q0

r− r0
=

H

H + 1
< 0 ⇐⇒ r− q =

1
H

(
q− q0

)
(7)
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Note that the secant value Hs < 0 is not coincident with the softening parameter H introduced
in Equation (6); only for the linear softening case, the relation H = Hs holds; see Figure 2 for
the illustration.

Accordingly, the alternative damage variable ω can be expressed as:

ω :=
d

1− d
=

r− q
q

=
1

H

(
1− q0

q

)
(8)

which results in the following damage strain tensor εd:

εd = Cd : σ = ωΛ =
1

H

(
1− q0

q

)
Λ (9)

Note that the entity (1− q0/q), related to the stress-like internal variable q, and the characteristic
tensor Λ, dependent on the stress σ, are both bounded.

2.2. Strain Localization and Localized Damage Models

For strain localization to occur in a softening solid and to develop eventually into a fully-softened
discontinuity at the final stage of the deformation process, material points inside the strain localization
band undergo inelastic loading, while those outside it unload elastically [20,21,34]. As recently clarified
by the authors [45], this standpoint is equivalent to strong discontinuities of the displacement field
localized in an elastic solid. Based on this equivalence, novel strain localization analysis [15,36] based
on the satisfaction of Maxwell’s kinematics [32] and of stress continuity has been proposed. Particularly,
for a stress-based material model with a softening regime, not only the discontinuity (band) orientation,
but also the corresponding traction-based cohesive model can be consistently derived. In this section,
the aforesaid method is extended to the strain-based damage models addressed in Section 2.1.

S

Ω+

Ω−

x

n

(a) Strong discontinuity

x

ε

εe(x)

xS

εe(x)

(w ⊗ n)symδS

(b) Strain field

Figure 3. Strong discontinuity and the resulting singular strain field in an elastic solid.

Let us first consider an elastic solid Ω containing a strong discontinuity S as depicted in Figure 3a.
The orientation of the discontinuity S is characterized by the normal vector n, as well as two tangential
vectors m and p, constituting a local coordinate system (n, m, p). Upon strain localization, the standard
kinematics of a continuum medium are replaced by Maxwell’s kinematics [32], which allows for jumps
in the derivatives of the displacement field with respect to the direction normal to the discontinuity S ,
but not in the derivatives with respect to the direction tangential to it. According to the above Maxwell
kinematics, the jump in the strain field between the inside and the outside of the localization band
may be expressed exclusively in terms of the unit normal vector and a deformation vector. Therefore,
the singular strain field ε caused by the displacement jump JuK = w across the discontinuity S is
expressed as:
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ε = εe +
(
w� n

)sym
δS (10)

where εe represents the bulk strain field, being elastic but not necessarily continuous across the
discontinuity S ; the Dirac-delta δS is introduced to characterize the singular strain field at the interface
S ; see Figure 3b.

Recalling the aforementioned equivalence, for strain localization in damaging solids to occur,
it follows from Maxwell’s kinematic (10) that:

εd = Cd : σ = ωΛ =
(
w� n

)sym
δS (11)

As the stress σ and the resulting characteristic tensor Λ are both bounded, upon strain localization,
the damage compliance Cd and the variable ω in Equation (9) have to be singular, i.e.,

Cd = C̄d δS , ω = ω̄ δS (12)

with C̄d and ω̄ both being bounded.
Calling for the relation (8), the singularity of ω implies the existence of a bounded softening

parameter H̄ < 0, such that:

1
H

=
1

H̄
δS , ω̄ =

1
H̄

(
1− q0

q

)
(13)

It then follows that:

ωΛ = ω̄Λ δS =
(
w� n

)sym
δS =⇒ ω̄Λ =

(
w� n

)sym (14)

Therefore, the displacement jump w can be solved in terms of the characteristic tensor Λ as:

w = wnn + wmm + wp p = ω̄
(
2n ·Λ− nΛnn

)
(15)

where the local components (wn, wm, wp) of the displacement jump vector w in the orthogonal system
(n, m, p) of the discontinuity S are given by:

wn := w · n = ω̄Λnn, wm := w ·m = 2ω̄Λnm (16a)

wp := w · p = 2ω̄Λnp (16b)

Substitution of the above results into the relation (14) yields:

Λmm(θ
cr) = 0 (17a)

Λpp(θ
cr) = 0, Λmp(θ

cr) = 0 (17b)

for the discontinuity angles θcr upon which the kinematic conditions (14) are satisfied. Calling for the
relations of the local components (Λmm, Λpp, Λmp) between the principal values Λi (i = 1, 2, 3) and a
set of characteristic angles θ, the kinematic constraints (17) yield a system of nonlinear equations, such
that the discontinuity angles θcr can be determined.

In particular, let us consider the 2D plane stress and plane strain conditions (σnp = σmp = 0).
In such cases, the discontinuity orientation can be characterized by the inclination angle (anti-clockwise)
θcr ∈ [−π/2, π/2] between the normal vector n of the discontinuity and the principal vector v1 of the
tensor Λ; see Figure 4. Furthermore, the in-plane components (Λnn, Λmm, Λnm) are given by:
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Λnn = Λ1 cos2 θ + Λ2 sin2 θ =
Λ1 + Λ2

2
+

Λ1 −Λ2

2
cos(2θ) (18a)

Λmm = Λ1 sin2 θ + Λ2 cos2 θ =
Λ1 + Λ2

2
− Λ1 −Λ2

2
cos(2θ) (18b)

Λnm =
(
Λ1 −Λ2

)
cos θ sin θ =

Λ1 −Λ2

2
sin(2θ) (18c)

for the in-plane principal values Λ1 and Λ2. As the out-of-plane constraint Λmp(θcr) = 0 is
automatically fulfilled, it follows from the condition Λmm(θcr) = 0 that:

sin2 θcr = − Λ2

Λ1 −Λ2
, cos2 θcr =

Λ1

Λ1 −Λ2
(19)

where the in-plane principle values Λ1 and Λ2 of the tensor Λ, satisfying Λ1 ≥ 0 and Λ2 ≤ 0, are
constrained by the conditions:

σ3(θ
cr) = σpp(θ

cr) = 0 Plane stress (20a)

Λ3(θ
cr) = Λpp(θ

cr) = 0 Plane strain (20b)

Note that in the plane stress state (σpp = 0), the constraint Λpp(θ
cr) = 0 makes no sense, and the

cohesive relations (16a) always hold; see Remark 2 for more discussion.

1s

2s

1s

2s

n

m

crq

 

1v

2v

crq

Figure 4. Definition of the discontinuity angle.

Remark 1. The above arguments also apply to a regularized discontinuity B with finite bandwidth b 9 0.
Note that the bandwidth b is a regularized parameter, which can be taken as small as desired. In such a case,
the Kronecker-delta δS is regularized by δS (x) ≈ Ξ(x)/b, where the collocation function Ξ(x) is defined as
Ξ(x) = 1 for x ∈ B and Ξ(x) = 0 otherwise; see [15,36].

Remark 2. To gain further insight into the above strain localization analysis, let us consider a regularized
discontinuity B in the solid Ω with the following internal virtual work:

δW =
∫

Ω
σ : δεe dV +

∫
B

σ : δεd dV (21)
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For general 3D and plane strain cases, provided that the discontinuity angles θcr satisfying the constraints (17)
exist, the inelastic internal work localized in the discontinuity band B is expressed as:∫
B

σ : δεd dB =
∫
B

(
σnnδεd

nn + 2σnmδεd
mm + 2σnpδεd

nm
)

dB =
∫
S

(
tnδwn + tmδwm + tmδwp

)
dS (22)

where the results (16) with the regularization relation ω = ω̄/b have been recalled. This is exactly the result for
the elastic solid containing a frictional-cohesive crack. In the plane stress state (σpp = 0), only the condition (17a)
is necessary for guaranteeing the identity:∫

B
σ : δεd dB =

∫
B

(
σnnδεd

nn + 2σnmδεd
nm
)

dB =
∫
S

(
tnδwn + tmδwm

)
dS (23)

with the constraint Λpp(θcr) = 0 being irrelevant. That is, regardless of the constraint Λpp(θ
cr) = 0, strain

localization also occurs in the plane stress condition, with the resulting discontinuity characterized by the
cohesive relations (16a).

3. Closed-Form Results

In this section, the strain localization analysis presented in Section 2.2 is applied to several classical
1− d damage models. Both the discontinuity orientation and the corresponding localized constitutive
laws are given.

3.1. J2 Damage Model

Let us first discuss the J2 damage model. It is usually employed for the modeling of shear bands
or slip lines in J2 softening materials; see [46] for the details.

3.1.1. Constitutive Relations

In the J2 damage model, the stress and strain tensors are decomposed as:

σ = pI + s, ε =
1
3

εv I + e (24)

where p = 1
3 trσ and s = σ − pI are the volumetric and deviatoric parts of the stress tensor σ,

respectively; εv = trε and e := ε− 1
3 εv I represent the trace and the deviatoric part of the strain tensor

ε, respectively.
While the volumetric behavior remains elastic, a scalar variable d ∈ [0, 1] is introduced to

characterize the deviatoric behavior. It then follows that:

p = K0εv, s =
(
1− d

)
s̄ =

(
1− d

)
2G0e (25)

where s̄ = 2G0e is the effective deviatoric stress tensor; K0 and G0 are the elastic bulk and shear moduli
of the material, respectively.

In this case, the constitutive relation (2) is particularized as:

ε = C : σ, C =
1

3K0
Ivol +

1
2
(
1− d

)
G0

Idev (26)

for the volumetric and deviatoric projection operators:

Ivol =
1
3

I � I, Idev = I− Ivol = I− 1
3

I � I (27)

The damage compliance tensor Cd and the resulting inelastic strain εd are then given by:
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Cd = C−C0 =
ω

2G0
Idev, εd = Cd : σ =

ω

2G0
s = ωΛ (28)

for the variable ω := d/(1− d) and the characteristic tensor Λ = s/(2G0).
The above J2 damage model corresponds to the following Helmholtz free energy ψ:

ψ =
1
2

K0ε2
v +

1
2
(
1− d

)
2G0e : e (29)

together with the energy dissipation inequality:

D = Y · ḋ ≥ 0 Y = −∂ψ

∂d
= G0e : e =

1
4G0

s̄ : s̄ (30)

for the energy release rate Y, conjugate to the damage variable d.
Additionally, a strain-based (or effective stress-based) damage criterion is introduced:

Fε(ε, r) = εeq(ε)− r ≤ 0 (31)

in terms of the equivalent strain εeq(ε) and the threshold r:

εeq(ε) =

√
1
2

s̄ : s̄ =
√

J̄2, r = max
t∈[0,T]

(
r0, εt

eq
)

(32)

for the second invariant J̄2 = 1
2 s̄ : s̄ of the effective deviatoric stress tensor s̄ = 2G0e. Upon damage

loading, it follows from the consistency condition Ḟε(ε, r) = 0 that the threshold r, with the initial
value r0, represents the maximum value of εeq ever reached.

In order to postulate the damage evolution law in the format (5), it is convenient to rewrite the
above strain-based damage criterion as:

Fσ(σ, q) = σeq(σ)− q ≤ 0 (33)

in terms of the following equivalent stress σeq and the corresponding softening variable q(r):

σeq =

√
1
2

s : s =
√

J2 =
(
1− d

)
εeq, q =

(
1− d

)
r (34)

where J2 = 1
2 s : s represents the second invariant of the deviatoric stress tensor s.

3.1.2. Orientation of the Discontinuity

For the J2 damage model with the characteristic tensor Λ = s/(2G0), the conditions (17) upon
strain localization become:

smm(θ
cr) = spp(θ

cr) = smp(θ
cr) = 0 (35)

for the deviatoric stress components (smm, spp, smp) on the discontinuity surface. Accordingly, the
orientation angles θcr can be solved in terms of the principal values si (i = 1, 2, 3) of the deviatoric
stress tensor s.

In particular, for the 2D cases of plane stress and plane strain (σnp = σmp = 0), the condition
smm(θcr) = 0 gives:

sin2 θcr = − s2

s1 − s2
, cos2 θcr =

s1

s1 − s2
(36)
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Furthermore, it follows from the constraint s3 = spp = 0 that:

s1 = −s2 =⇒ θcr = ±45◦ (37)

That is, in 2D conditions strain localization of a J2 damaging material with stress continuity can
always occur along the discontinuity angle θcr = ±45◦. Note that the above analytical result coincides
with the numerical simulations [46].

3.1.3. Localized Damage Model

Provided that the solution to the constraints (35) exists, it follows from the vanishing trace tr s = 0
that snn = −

(
smm + spp

)
= 0 holds on the discontinuity surface with the normal n(θcr). Accordingly,

the relation (14) becomes:

ω̄
s

2G0
=
(
w� n

)sym
= wm

(
n�m

)sym
+ wp

(
n� p

)sym (38a)

or, equivalently,

s =
2G0

ω̄

[
wm
(
n�m

)sym
+ wp

(
n� p

)sym
]

(38b)

The above frictional-cohesive relations can also be given straightforwardly from Equation (16):

wn = ω̄
snn

2G0
= 0, wm = ω̄

snm

G0
= ω̄

tm

G0
, wp = ω̄

snp

G0
= ω̄

tp

G0
(39)

where the identities snm = σnm = tm and snp = σnp = tp have been considered.
With the frictional-cohesive relations (39) upon strain localization, the stress-based damage

criterion (33) becomes:

f (t, q) = Fσ(σ, q) =
G0

ω̄
weq − q = teq − q ≤ 0 (40)

or the alternative displacement jump-based one:

g(w, κ) = weq − κ ≤ 0, κ =
ω̄

G0
q =

1
G0

q− q0

H̄
(41)

where weq and teq denote the equivalent displacement jump and traction, defined as:

weq =
√

w2
m + w2

p, teq =
√

t2
m + t2

p (42)

Similarly to the strain-based threshold r, the displacement jump-like internal variable κ represents
the maximum value of the equivalent displacement jump weq ever reached.

As expected, upon strain localization, the J2 damage model is characterized by displacement
jumps and tractions. That is, a pure mode-II discontinuity in the sense of fracture mechanics occurs in
the J2 damaging material.

3.2. Simó and Ju [41] Damage Model

Next, let us consider the Simó and Ju [41] damage model, which has been widely adopted in the
literature. As will be shown, strain localization with stress continuity cannot always occur in any case.

3.2.1. Constitutive Relations

The Simó and Ju [41] damage model is characterized by the following well-defined Helmholtz
free energy:
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ψ =
1
2
(
1− d

)
ε : E0 : ε (43)

where E0 = λ0 I � I + 2µ0I represents the fourth-order material elasticity tensor, with λ0 and µ0 being
the Lamé constants. Standard arguments then yield:

σ =
∂ψ

∂ε
=
(
1− d

)
σ̄, σ̄ = E0 : ε (44)

or, equivalently,

ε = C : σ, C =
1

1− d
C0 (45)

Similarly, the damage compliance tensor Cd and the resulting damage strain εd are characterized
in the form (4):

Cd = C−C0 = ωC0, εd = Cd : σ = ωC0 : σ = ωΛ (46)

for the variable ω := d/(1− d) and the characteristic tensor Λ = C0 : σ.
The above constitutive relations are constrained by the damage energy dissipation inequality:

D = Y · ḋ ≥ 0, Y = −∂ψ

∂d
=

1
2

ε : E0 : ε =
1
2

σ̄ : C0 : σ̄ (47)

It is then possible to introduce the Beltrami strain-based damage criterion:

Fε(ε, r) = εeq(ε)− r ≤ 0 (48)

where the equivalent strain εeq and the threshold r are defined as:

εeq(ε) =
√

M0
(
σ̄ : C0 : σ̄

)
, r = max

t∈[0,T]

(
r0, εt

eq
)

(49)

for the longitudinal or constrained modulus M0 = λ0 + 2µ0. Alternatively, for the damage evolution
law (5), a stress-based failure criterion can be expressed as:

Fσ(σ, q) = σeq(σ)− q ≤ 0 (50)

for the equivalent stress σeq and the corresponding stress-like internal variable q:

σeq(σ) =
√

M0
(
σ : C0 : σ

)
=
(
1− d

)
εeq, q =

(
1− d

)
r (51)

Once the softening function q(r) is postulated, the damage variable d can be determined as
shown later.

3.2.2. Orientation of the Discontinuity

For the Simó and Ju [41] damage model, the characteristic tensor Λ is expressed as:

Λ = C0 : σ =
1

E0

[(
1 + ν0

)
σ − ν0trσ I

]
(52)



Materials 2017, 10, 434 13 of 27

so that the constraints (17) give:

σmm − ν0
(
σnn + σpp

)
= 0, σpp − ν0

(
σnn + σmm

)
= 0, σmp = 0 (53)

With the stress components expressed in terms of the principal stresses σi (i = 1, 2, 3) and a set of
characteristic angles θ, the discontinuity angles θcr can be determined.

In particular, let us focus on the 2D plane stress and plane strain cases in which the identity
σnp = σmp = 0 holds. For the plane stress state, the conditions (19) and (20a) give:

σmm = ν0σnn =⇒ cos(2θcr) =
1− ν0

1 + ν0
· σ1 + σ2

σ1 − σ2
(54a)

For the plane strain case (i.e., σ3 = σpp 6= 0), it follows from the conditions (19) and (20a) that:

σmm = σpp =
ν0

1− ν0
σnn =⇒ cos(2θcr) =

(
1− 2ν0

)σ1 + σ2

σ1 − σ2
(54b)

Note that the convention σ1 > σ2 is assumed as usual. As can be seen, both results depend on
Poisson’s ratio ν0 and coincide for a vanishing one.

3.2.3. Localized Damage Model

Provided that the solution to the conditions (53) exists, it follows from the relation (14) that:

σ =
1
ω̄
E0 :

(
w� n

)sym (55)

Accordingly, the frictional-cohesive relations are given by:

t = n · σ =
1
ω̄

Q0 ·w, w = ω̄Q−1
0 · t (56a)

or, in the component form,

wn = ω̄Λnn =
ω̄

M0
σnn, wm = ω̄Λnm =

ω̄

G0
σnm, wp = ω̄Λnp =

ω̄

G0
σnp (56b)

where the second-order elastic acoustic tensor Q0 and its inverse Q−1
0 are expressed as:

Q0 : = n ·E0 · n = M0n� n + G0
(
m�m + p� p

)
(57a)

Q−1
0 =

1
M0

n� n +
1

G0

(
m�m + p� p

)
(57b)

in the local (n, m, p) coordinate system.
With the relation (55), upon strain localization, the stress-based damage criterion (50) becomes:

f (t, q) = Fσ(σ, q) =
M0

ω̄
weq − q = teq − q ≤ 0 (58)

or, the alternative form,

g(w, κ) = weq − κ ≤ 0, κ =
ω̄

M0
q =

1
M0

q− q0

H̄
(59)

where the equivalent displacement jump weq and traction teq are expressed as:
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weq =

√
1

M0

(
w ·Q0 ·w

)
=
√

w2
n + β2

0
(
w2

m + w2
p
)

(60a)

teq =
√

M0
(
t ·Q−1

0 · t
)
=
√

t2
n + β−2

0
(
t2
m + t2

p
)

(60b)

for the coefficient β0 =
√

G0/M0.
The above localized cohesive law for the Simó and Ju [41] damage model was first derived

in [22,24] where the discontinuity orientation was determined from the classical discontinuous
bifurcation analysis rather than the Maxwell kinematic condition considered in this work.

3.3. Modified Damage Model

As can be seen from the cohesive relation (56b)1, the normal behavior upon strain localization is
affected by the lateral deformation due to the non-vanishing Poisson’s ratio. This fact is inconsistent
with the concept of a cohesive zone model in which the lateral deformations on the discontinuity
surface are not considered. To reconcile this inconsistency, let us consider a modified Simó and Ju
damage model.

3.3.1. Constitutive Relations

In the modified damage model, the constitutive relations read:

ε = C : σ, C = C0 +Cd (61)

which gives the following damage strain tensor εd:

εd = Cd : σ = ωΛ, Λ = C̄0 : σ (62)

where the compliance tensor Cd is expressed as the form (4):

Cd = C−C0 = ωC̄0, C̄0 = DIAG
[

1
E0

,
1

E0
,

1
E0

,
1

G0
,

1
G0

,
1

G0

]
(63)

for the variable ω := d/(1 − d). Here, the diagonal matrix C̄0 is the Voigt representation of a
fourth-order reference compliance tensor, which is obtained from the elastic one C0 by ignoring
the lateral deformations caused by Poisson’s ratio. The explicit expressions of the resulting secant
compliance C and stiffness E are given in Appendix A.

As these constitutive tensors are of major symmetry, the corresponding energy function ψ is
defined as:

ψ(ε, d) =
1
2

ε : E : ε =
1
2

σ : C : σ =
1
2

σ : C0 : σ +
d

2
(
1− d

)σ : C̄0 : σ (64)

Standard arguments give the constitutive relations (61) and the following energy dissipation
inequality:

D = Y · ḋ ≥ 0, Y = −∂ψ

∂d
=

σ : C̄0 : σ

2
(
1− d

)2 =
1
2

σ̄ : C̄0 : σ̄ (65)

for the effective stress tensor σ̄ = σ/(1− d). Accordingly, the following strain-based damage criterion
can be considered:

Fε(ε, r) = εeq(ε)− r ≤ 0 (66)
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where the equivalent strain εeq and the threshold r are given by:

εeq(ε) =
√

E0
(
σ̄ : C̄0 : σ̄

)
, r = max

t∈[0,T]

(
r0, εt

eq
)

(67)

Alternatively, the stress-based damage criterion is expressed as:

Fσ(σ, q) = σeq(σ)− q ≤ 0 (68)

for the equivalent stress σeq and internal variable q:

σeq =
√

E0
(
σ : C̄0 : σ

)
, q =

(
1− d

)
r (69)

Note that the above equivalent strain and stress are subtly different from their counterparts in the
Simó and Ju [41] damage model.

3.3.2. Orientation of the Discontinuity

For the damage strain (62), the constraints (17) become:

Λmm(θ
cr) =

σmm

E0
= 0, Λpp(θ

cr) =
σpp

G0
= 0, Λmp(θ

cr) =
σmp

G0
= 0 (70)

With the stress components expressed in terms of the principal stresses σi (i = 1, 2, 3) and a set of
characteristic angles θ, the discontinuity angles θcr can thus be determined.

For the plane stress and plane stress conditions, both Constraints (20a) and (20b) coincide, and
the last two conditions in Equation (70) are automatically fulfilled. It then follows from the remaining
one Λmm(θ

cr) = 0 that:

σmm(θ
cr) = 0 =⇒ cos(2θcr) =

σ1 + σ2

σ1 − σ2
(71)

The above result applies for the biaxial tension-compression quadrant, i.e., σ1 > 0 > σ2. For the
case σ1 > σ2 > 0, the discontinuity angle is given from cos(2θcr) = 1, i.e., θcr = 0. That is,
the discontinuity orientation n coincides with the major principle vector v1 of the stress tensor σ.
Compared to the Simó and Ju [41] model, the discontinuity angle (71) does not depend on the elastic
Poisson’s ratio. This is consistent with the conclusion drawn for stress-based material models [15,36].

3.3.3. Localized Damage Model

Provided the solution to the conditions (53) exists, it follows from the relation (14) that:

σ =
1
ω̄
Ē0 :

(
w� n

)sym (72)

for the displacement jumps w :=
{

wn, wm, wp
}T. Accordingly, the frictional-cohesive tractions

t :=
{

tn, tm, tp
}T are given by:

t = n · σ = ĒS ·w, ĒS =
1
ω̄

Ē0 (73a)

or, inversely,

w = C̄S · t, C̄S = E−1
S

= ω̄C̄0 (73b)
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for the reference stiffness Ē0 and compliance C̄0 of the discontinuity:

Ē0 = n · Ē0 · n = E0n� n + G0
(
m�m + p� p

)
(74a)

C̄0 = Ē−1
0 =

1
E0

n� n +
1

G0

(
m�m + p� p

)
(74b)

Note that in 2D plane stress and plane strain conditions, the above frictional-cohesive relations
also apply with a vanishing out-of-plane jump wp = 0 (or, equivalently, tp = 0).

After calling for the relation (72) and performing some straightforward manipulations, upon
strain localization, the stress-based damage criterion (50) becomes:

f (t, q) = Fσ(σ, q) =
E0

ω̄
weq − q = teq − q ≤ 0 (75)

or, equivalently,

g(w, κ) = weq − κ ≤ 0, κ =
ω̄

E0
q =

1
E0

q− q0

H̄
(76)

where the equivalent displacement jump weq and traction teq are expressed as:

weq =
√

w2
n + β2

0
(
w2

m + w2
p
)
, teq =

√
t2
n + β−2

0
(
t2
m + t2

p
)

(77)

for the material property β0 =
√

G0/E0.
Compared to the frictional-cohesive relations (56) resulting from the Simó and Ju [41] damage

model, the longitudinal modulus M0 in Equation (57) is replaced here by Young’s modulus E0. This
modification is consistent with the concept of a frictional-cohesive crack model in which only the strain
components acting on the discontinuity surface are accounted for [47]. Moreover, upon the assumption
of a continuous elastic strain field εe(x) across the discontinuity, it can be regularized as the smeared
crack model discussed in [38,48]; see Appendix B for more details. The above facts justify the above
modified Simó and Ju damage model, which will be addressed in the numerical context elsewhere.

4. Numerical Verification

In this section, the analytical results presented in Section 3 are numerically verified. Due to
the poor resolution upon strain localization, the irreversible displacement-based finite element
method is not sufficient for this purpose. In order to circumvent this difficulty, the mixed stabilized
strain/displacement ε− u finite element method, recently developed by Cervera et al. [39] for elasticity
and extended to isotropic damage materials [40,49], is considered.

4.1. Mixed Stabilized Strain/Displacement Element

The aforesaid mixed stabilized strain/displacement element is briefly recalled in a secant format
appropriate for the continuum damage models discussed in this work. The mechanical behavior of the
solid body Ω is described by the compatibility of deformations and the equilibrium of body forces:

− ε +∇symu = 0 (78a)

∇ · σ + b∗ = 0 (78b)

where u is the displacement vector, ε is the strain tensor, σ represents the stress tensor,∇sym and∇ · (·)
are the adjoint symmetric gradient and the divergence operators, respectively; b∗ is the body force
vector. The strain and stress tensors are linked by the secant constitutive relations (1) with appropriate
damage evolution laws. The strong form of the boundary value problem is completed by imposing
proper traction and displacement boundary conditions on ∂Ω.
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After pre-multiplying the secant stiffness tensor E, the strong form reads:

−E : ε +E : ∇symu = 0 (79a)

∇ ·
(
E : ε

)
+ b∗ = 0 (79b)

for the unknowns fields of total strains ε and displacements u. Introducing the test function γ ∈ G ⊂[
L2(Ω)

]dim for strains and v ∈ V ⊂
[
H1(Ω)

]dim for displacements and applying Gauss’s divergence
theorem to the strong form yields the following weak form of the mixed problem:

−
∫

Ω
γ : E : ε dV +

∫
Ω

γ : E : ∇symu dV = 0 ∀γ ∈ G (80a)∫
Ω
∇symv :

(
E : ε

)
dV = F(v) ∀v ∈ V (80b)

where F(v) represents the work done by boundary tractions t∗ and body forces b∗. Note that this
weak form is symmetric.

The discrete version of the mixed weak form is obtained by substituting the unknown fields with
their finite element interpolation counterparts:

ε→ εh =
npts

∑
i=1

γ
(i)
h ε

(i)
h γh ∈ Gh; u→ uh =

npts

∑
i=1

v(i)
h u(i)

h vh ∈ Vh (81)

where εh and uh are the nodal degrees of freedom; γh and vh are the discrete test functions for the
strains and displacements pertaining to the spaces Gh and Vh, respectively, the discrete counterparts of
G and V .

As implied by the Inf-Supcondition [50], equal interpolations for strains and displacements are
bound to be unstable. To overcome this issue, a stabilization procedure needs be introduced by
modifying the discrete variational form with numerical stability while maintaining consistency. For
the stabilized problem [39,40] derived the following system of equations:

−
(
1− τε

) ∫
Ω

γh : E :
(
εh −∇symuh

)
dV = 0 ∀γh ∈ Gh (82a)∫

Ω
∇symvh : E : ε̃h dV = F(vh) ∀vh ∈ Vh (82b)

where the stabilized discrete strain field ε̃h is a blending of the continuous and discontinuous strain
fields (εh,∇symuh) weighted by the stabilization parameter τε:

ε̃h =
(
1− τε

)
εh + τε∇symuh with τε = cε

h
L0

(83)

for the arbitrary positive parameter cε, the representative mesh size h and the characteristic length L0

of the problem. Note that the above stabilized formulation is consistent with the original discrete weak
form since, with converging values of the unknowns εh and uh, the contribution of the stabilization
terms (those multiplied by τε) vanishes.

4.2. Numerical Results

The above mixed stabilized strain-displacement element is then applied to analyses of strain
localization. As the J2 damage model has already been thoroughly verified in [46], only the Simó and
Ju [41] damage model and the modified one are presented here.

The example is a 2D singly perforated strip loaded in uniaxial tension by stretching via imposed
vertical displacements at the top and bottom ends; horizontal movement is not restrained. Both plane
strain and plane stress conditions are considered and compared. Figure 5a depicts the geometry of
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the problem with dimensions 20 m × 40 m ×1 m (width × height × thickness). An imperfection is
introduced with a slanted perforation of diameter D = 1 m such that symmetric solutions are excluded.

Singly perforated strip
Uniaxial stretch

(a) Geometry

Singly perforated strip
Uniaxial stretch

(b) Finite element mesh zoomed around the hole

Figure 5. Uniaxial tension of a perforated strip: problem setting.

In all simulations, the exponential softening curve (6b) is considered and regularized according to
the crack band theory [12], with the softening parameter H determined as:

H = − lch
LH − 0.5lch

(84)

where lch and LH := E0GF/q2
0 represent the localization and Griffith’s characteristic lengths,

respectively. In the mixed formulation, lch = 2h, with h being the finite element mesh size.
The following material properties are assumed: Young’s modulus E0 = 10 MPa, uniaxial failure

stress q0 = E/1000 = 10 KPa and fracture energy is GF = 500 J/m2. Poisson’s ratio ν0 takes different
values for comparison purposes.

The mesh used in the analyses consists of 45,750 mixed P1P1triangles (23,183 nodes) as shown
in Figure 5b, with an average mesh size of h = 0.20 m. This level of refinement ensures convergence
of the numerical simulation and allows comparison with the analytical solution. The mesh is fully
unstructured. All analyses are performed on the same mesh.

Loading is applied by imposed vertical displacements at both ends of the strip.
The Newton–Raphson method is used to solve the nonlinear system of equations arising from the
spatial and temporal discretization of the problem. An automatic procedure is used to decide the step
size, and about 200 steps are necessary to complete the analyses. Convergence of a time step is attained
when the ratio between the norms of the residual and the total forces is lower than 10−3.

Calculations are performed with an enhanced version of the finite element program COMET [51],
developed by the authors at the International Center for Numerical Methods in Engineering (CIMNE).
Pre- and post-processing is done with GiD, also developed at CIMNE [52].
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4.2.1. Simó and Ju [41] Damage Model

Let us first discuss the Simó and Ju [41] damage model. For the considered uniaxial stress state
(σ1 > 0 and σ2 = 0), it follows from the closed-form results (54) that:

cos(2θcr) =


1− ν0

1 + ν0
Plane stress

1− 2ν0 Plane strain
(85)

The resulting discontinuity angles θcr for various Poisson’s ratio ν0 are summarized in Table 1.
Figures 6 and 7 show the numerical contours of vertical displacements with respect to Simó and

Ju [41] damage model in the plane stress and plane strain conditions. Strain localization is manifested
by the discontinuous displacement field. The numerical discontinuity angles θcr are then determined
as in Table 1.

nu = 0.0 nu = 0.15 nu = 0.30 nu = 0.45

Uniaxial stretch – Plane stress
Beltrami’s damage criterion

	 0.00°
0.00°

	 21.17°
19.75°

	 28.71°
27.15°

	 33.85°
31.82°

(a) ν0 = 0.00

nu = 0.0 nu = 0.15 nu = 0.30 nu = 0.45

Uniaxial stretch – Plane stress
Beltrami’s damage criterion

	 0.00°
0.00°

	 21.17°
19.75°

	 28.71°
27.15°

	 33.85°
31.82°

(b) ν0 = 0.15

nu = 0.0 nu = 0.15 nu = 0.30 nu = 0.45

Uniaxial stretch – Plane stress
Beltrami’s damage criterion

	 0.00°
0.00°

	 21.17°
19.75°

	 28.71°
27.15°

	 33.85°
31.82°

(c) ν0 = 0.30

nu = 0.0 nu = 0.15 nu = 0.30 nu = 0.45

Uniaxial stretch – Plane stress
Beltrami’s damage criterion

	 0.00°
0.00°

	 21.17°
19.75°

	 28.71°
27.15°

	 33.85°
31.82°

(d) ν0 = 0.45

Figure 6. Uniaxial tension of a perforated strip: Simó and Ju [41] damage model in the plane stress condition.

Uniaxial stretch – Plane strain
Beltrami’s damage criterion

nu = 0.0 nu = 0.15 nu = 0.30 nu = 0.45

	 0.00°
0.00°

	 22.78°
22.19°

	 33.21°
31.84°

	 42.13°
41.82°

(a) ν0 = 0.00

Uniaxial stretch – Plane strain
Beltrami’s damage criterion

nu = 0.0 nu = 0.15 nu = 0.30 nu = 0.45

	 0.00°
0.00°

	 22.78°
22.19°

	 33.21°
31.84°

	 42.13°
41.82°

(b) ν0 = 0.15

Uniaxial stretch – Plane strain
Beltrami’s damage criterion

nu = 0.0 nu = 0.15 nu = 0.30 nu = 0.45

	 0.00°
0.00°

	 22.78°
22.19°

	 33.21°
31.84°

	 42.13°
41.82°

(c) ν0 = 0.30

Uniaxial stretch – Plane strain
Beltrami’s damage criterion

nu = 0.0 nu = 0.15 nu = 0.30 nu = 0.45

	 0.00°
0.00°

	 22.78°
22.19°

	 33.21°
31.84°

	 42.13°
41.82°

(d) ν0 = 0.45

Figure 7. Uniaxial tension of a perforated strip: Simó and Ju [41] damage model in the plane strain condition.
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Table 1. Comparison between the analytically- and numerically-obtained discontinuity angles θcr for
the Simó and Ju [41] damage model.

Stress State ν0 = 0.00 ν0 = 0.15 ν0 = 0.30 ν0 = 0.45

Analytical Numerical Analytical Numerical Analytical Numerical Analytical Numerical

Plane stress 0.00◦ 0.00◦ 21.17◦ 20.75◦ 28.71◦ 28.69◦ 33.85◦ 33.13◦

Plane strain 0.00◦ 0.00◦ 22.79◦ 22.31◦ 33.21◦ 32.27◦ 42.13◦ 41.48◦

As can be seen, the analytical results agree almost exactly with the numerical ones, verifying
the validity of both the novel strain localization analysis presented in this work and the mixed
stabilized finite element method proposed in [39,40]. Slight differences are attributed to the unavoidable
perturbation of the hole and to the boundary effects.

For illustration, the evolution of damage and vertical displacements for the Simó and Ju [41]
model in the case of plane strain with Poisson’s ratio ν0 = 0.30 is shown in Figure 8. Furthermore,
load-displacement curves for the Simó and Ju [41] model in the conditions of plane strain and plane
stress with various Poisson’s ratio ν0 = 0.0, 0.15, 0.30 and 0.45 are given in Figure 9.
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Figure 8. Uniaxial tension of a perforated strip: Load versus displacement curves for �0 D 0.3.

(a) �0 D 0.00 (b) �0 D 0.19 (c) �0 D 0.30 (d) �0 D 0.45 (e) �0 D 0.45

Figure 9. Uniaxial tension of a perforated strip: Simó and Ju [45] damage model in the plane strain condition.

(a) Evolution of damage
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Figure 10. Uniaxial tension of a perforated strip: Simó and Ju [45] damage model in the plane strain condition.
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Figure 11. Uniaxial tension of a perforated strip: Modified Simó and Ju damage model in the plane stress (PS)
and plane strain (PE) conditions.

(b) Evolution of displacement

Figure 8. Uniaxial tension of a perforated strip: evolution of damage and vertical displacements for
the Simó and Ju [41] model in the case of plane strain with Poisson’s ratio ν0 = 0.30.
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Figure 9. Uniaxial tension of a perforated strip: load versus displacement curves for the Simó and
Ju [41] model.

4.2.2. Modified Simó and Ju Damage Model

For the modified Simó and Ju damage model, the discontinuity angle θcr given by the analytical
results (71) is independent of Poisson’s ratio ν0. In particular, for the uniaxial stress state, it follows that:

cos θcr = 1 =⇒ θcr = 0 (86)

for both plane stress and plane strain states.
Figure 10 shows the numerical contours of vertical displacements obtained from the modified

Simó and Ju [41] damage model in the plane stress and plane strain conditions. As predicted from
the analytical result (86), the displacement field exhibits a jump across the horizontal discontinuity
surface, normal to the principal major stress, i.e., θcr = 0. The novel strain localization analysis and the
mixed stabilized finite element method are verified again.



Materials 2017, 10, 434 22 of 27
Uniaxial stretch

Modified Beltrami’s damage criterion

nu = 0.15
Plane strain

nu = 0.450
Plane strain

nu = 0.15
Plane stress

nu = 0.45
Plane stress

	 0.00°
0.00°

	 0.00°
0.00°

	 	0.00°
			 	0.00°

	 0.00°
		 0.00°

(a) PS (ν0 = 0.15)

Uniaxial stretch
Modified Beltrami’s damage criterion

nu = 0.15
Plane strain

nu = 0.450
Plane strain

nu = 0.15
Plane stress

nu = 0.45
Plane stress

	 0.00°
0.00°

	 0.00°
0.00°

	 	0.00°
			 	0.00°

	 0.00°
		 0.00°

(b) PS (ν0 = 0.45)

Uniaxial stretch
Modified Beltrami’s damage criterion

nu = 0.15
Plane strain

nu = 0.450
Plane strain

nu = 0.15
Plane stress

nu = 0.45
Plane stress

	 0.00°
0.00°

	 0.00°
0.00°

	 	0.00°
			 	0.00°

	 0.00°
		 0.00°

(c) PE (ν0 = 0.15)

Uniaxial stretch
Modified Beltrami’s damage criterion

nu = 0.15
Plane strain

nu = 0.450
Plane strain

nu = 0.15
Plane stress

nu = 0.45
Plane stress

	 0.00°
0.00°

	 0.00°
0.00°

	 	0.00°
			 	0.00°

	 0.00°
		 0.00°

(d) PE (ν0 = 0.45)

Figure 10. Uniaxial tension of a perforated strip: Modified Simó and Ju damage model in the plane
stress (PS) and plane strain (PE) conditions.

5. Conclusions

This paper presents Maxwell’s kinematics-based strain localization analysis of frictional-cohesive
materials characterized by strain-based damage models of total form, extending our recent work
for stress-based ones of rate type. In such models, the (inelastic) damage strains are characterized
by a bounded characteristic tensor and an unbounded variable related to the damage scalar. For
strain localization to occur, Maxwell’s kinematics of a strong (or regularized) discontinuity has to
be reproduced by the inelastic damage strains. This kinematic constraint yields a set of nonlinear
equations from which the discontinuity orientation and localized frictional-cohesive relations of
damage type are derived consistently.

Two classical isotropic damage models, i.e., the J2 model and the Simó and Ju [41] one, are then
analyzed. In particular, upon strain localization, the J2 damaging solid is characterized by a pure
mode-II discontinuity in which only the tangential tractions (or displacement jumps) are activated.
Comparatively, a mixed-mode discontinuity occurs in the Simó and Ju [41] isotropic damaging solid.
Furthermore, the localization angles and the resulting cohesive model depend explicitly on Poisson’s
ratio. That is, the lateral deformations, not acting on the discontinuity surface, affect heavily strain
localization, inconsistent with classical frictional-crack models in which the strain and stress triaxiality
is not accounted for.

To remove the above inconsistency, we further proposed a modified Simó and Ju damage model.
Its strain localization analysis naturally yields a consistent damage-type cohesive crack model, with the
discontinuity orientation independent of the material elastic property (i.e., Poisson’s ratio). It is found
that, on the one hand, the discontinuous version of the cohesive crack model is formally identical, but
not equivalent to that first proposed in [7] and widely applied in the literature. On the other hand, the
regularized version recovers the classical smeared crack model [47,48,53] upon the assumption of a
continuous stress field across the discontinuity band.

The analytical results are numerically-verified by the mixed stabilized finite element method,
regarding a singly perforated plate under uniaxial tension. Remarkably, for all of the damage models
discussed in this work, the numerically-obtained localization angles agree almost exactly with the
closed-form results. This agreement, on the one hand, consolidates the strain localization analysis
based on Maxwell’s kinematics and, on the other hand, illustrates versatility of the mixed stabilized
finite element method.
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Finally, so far, only the material models with associated evolution laws have been considered in
Maxwell’s kinematics-based strain localization analysis. The extension to non-associated cases will be
the forthcoming work.
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Appendix A. Modified Damage Model: Compliance and Stiffness Matrices

For the modified damage model presented in Section 3.3, the secant compliance is expressed in
matrix form as:

C =
1

E0



1
1− d

−ν0 −ν0 0 0 0

−ν0
1

1− d
−ν0 0 0 0

−ν0 −ν0
1

1− d
0 0 0

0 0 0
2
(
1 + ν0

)
1− d

0 0

0 0 0 0
2
(
1 + ν0

)
1− d

0

0 0 0 0 0
2
(
1 + ν0

)
1− d


(A1)

The above expression applies to general 3D and plane strain conditions. For the case of plane
stress, it follows that:

C =
1

E0


1

1− d
−ν0 0

−ν0
1

1− d
0

0 0
2
(
1 + ν0

)
1− d

 (A2)

Note that under uniaxial tension, the nominal Poisson’s ratio predicted by the modified damage
model is given by:

ν = − ε22

ε11
=
(
1− d

)
ν0 (A3)

As expected, it decreases with increasing axial deformations. Contrariwise, in the Simó and Ju [41]
isotropic damage model, the lateral deformations always increase in such a way that the nominal
Poisson’s ratio remains constant.

Appendix B. Smeared Crack Model: Compliance and Stiffness Matrices

As clarified in [14,15], the cohesive crack model for a strong discontinuity with a vanishing
bandwidth b → 0 is consistent with a regularized one for a discontinuity band with a finite width
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b 9 0; see Figure B1a. For such a regularized discontinuity, an inelastic deformation vector e := w/b
can be introduced such that:

en :=
wn

b
=

ω

E0
σnn, em :=

wm

b
=

ω

G0
σnm, ep :=

wp

b
=

ω

G0
σnp (A4a)

or, equivalently,

e = ωC̄0 · t = C̄S · t, C̄S = ωC̄0 (A4b)

for the damage variable ω := d/(1− d) = ω̄/b and the compliance C̄S of the regularized discontinuity.

S
S−

S+

Ω+

Ω−

xS

n

x∗
S

b

(a) Smeared discontinuity

x

ε

xS

εe(x)

1

b
(w ⊗ n)sym

b

(b) Strain field

Figure B1. Smeared discontinuity and the resulting discontinuous strain field in an elastic solid.

In both the frictional-cohesive relations and the regularized counterparts, the kinematic unknowns
related to the discontinuity, i.e., the displacement jump w or the inelastic deformation vector e, are
determined through the statement of the traction continuity condition, i.e.,

t = σ+
S · n = σ−S · n (A5)

where σ+
S and σ−S represent the bulk stresses “ahead of” and “behind” the discontinuity S .

Alternatively, as depicted in Figure B1b, if the stresses are assumed to be continuous across the
discontinuity, i.e., σ+

S = σ−S = σ, traction continuity t = σ · n follows automatically, and no specific
kinematic unknowns for the discontinuity are necessary. In this case, it follows from the regularized
cohesive relations (A4) that:

εd =
(
e� n

)sym
=
[(

C̄S · t
)
� n
]sym

= Cd : σ (A6)

for the fourth-order damage compliance Cd:

Cd = n� C̄S � n =
(
C̄S � N

)sym (A7)

The resulting stress versus strain relation become:

ε = εe + εd = C : σ (A8)

where the compliance tensor C is expressed as:

C = C0 +Cd = C0 +
(
C̄S � N

)sym (A9)

for the second-order geometric tensor N = n� n.
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In matrix notation, the compliance C of the smeared crack model is given by:

C =
1

E0



1
1− d

−ν0 −ν0 0 0 0

−ν0 1 −ν0 0 0 0
−ν0 −ν0 1 0 0 0

0 0 0
2
(
1 + ν0

)
1− d

0 0

0 0 0 0
2
(
1 + ν0

)
1− d

0

0 0 0 0 0 2
(
1 + ν0

)


(A10)

which applies to general 3D and plane strain conditions. In the case of plane stress, it follows that:

C =
1

E0


1

1− d
−ν0 0

−ν0 1 0

0 0
2
(
1 + ν0

)
1− d

 (A11)

As can be seen, upon strain localization, the damage affects only the behavior normal to the
discontinuity surface, while the one parallel to it remains elastic. This idea dates back to the classical
smeared crack models [53–56]; see also the reviews [38,48].
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