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Abstract  

Purpose: Human dosimetry studies play a central role in PET radioligand 

development.   Drawing regions of interest (ROIs) on the PET images is used to 

measure the dose in each organ. In the study aspects related to ROI delineation 

methods were evaluated for two radioligands of different biodistribution (intestinal vs 

urinary). Procedures: PET images were simulated from a human voxel-based 

phantom. Several ROI delineation methods were tested: antero-posterior projections 

(AP), 3D sub-samples of the organs (S), and a 3D volume covering the whole-organ 

(W). Inter- and intra-operator variability ROI drawing was evaluated by using human 

data. Results: The effective dose estimates using S and W methods were comparable to 

the true values. AP methods overestimated (49%) the dose for the radioligand with 

intestinal biodistribution. Moreover, the AP method showed the highest inter-operator 

variability: 11±1%. Conclusions: The sub-sampled organ method showed the best 

balance between quantitative accuracy and inter- and intra-operator variability.  

Keywords: PET, dosimetry, [11C]Raclopride, [11C]GSK931145 
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INTRODUCTION 

Estimation of radiation exposure affecting human subjects undergoing positron 

emission tomography (PET) exploration plays a central role in new radioligand 

development. Internal dosimetry estimates for each radioligand are essential to 

calculate the safety limits of injected activity and the maximum number of scans that a 

subject can undergo. In a diagnostic context, procedures implies the administration of 

activity levels that do not lead to the appearance of radiation deterministic effects, 

therefore only stochastic risks have to be considered. However, in any use of ionizing 

radiation, one must prevent or minimize the risks of the use of the radiation while 

allowing its beneficial applications. Radiation exposure estimations are, in general, 

obtained in biodistribution and dosimetry studies where the time course of the 

radioligand in organs and tissues must be measured. In these kind of studies, multiple 

whole-body PET scans are acquired after radioligand injection and regions-of-interest 

(ROIs) placed on the images are used to measure the amount of radioactivity in each 

organ over time. Time-integrated activity coefficients are then calculated from the time 

course of the radioligand and are used by software packages such as Olinda/EXM [1] 

to obtain dosimetry estimates. Olinda/EXM code implements the methods outlined by 

the Medical Internal Radiation Dose (MIRD) Committee. These doses are estimated 

based on organ level S values calculated for standard phantoms representing the 

average male or female. Where S factor is the mean absorbed dose to the target 

organ, t from unit activity of the relevant radioisotope distributed within the 

source organ S. The dose is given by summing up the contributions from all 

source organs. Several methods for delineating regions-of-interest (ROI) and 

quantification of dosimetry estimates are currently being used. Whole-organ ROI 

drawn on PET images or on co-registered high-resolution structural images (computed 
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tomography (CT) or magnetic resonance imaging (MRI)) have been used to estimate 

the distribution of radioactivity over time [2-3]. However, whole organ ROI 

delineation is very time-consuming and, as a consequence, simplified methods are also 

employed. Delineation of ROIs on sub-samples of the organs facilitates ROI drawing, 

but only activity concentration is obtained with this method together with an 

approximation of organ volume [4-6]. A further simplification consists of drawing 

planar ROIs on the antero-posterior compressed images [7-10]. However, delineating 

and overlapping organs may lead to biased results. There have been several attempts to 

compare the performance of these methods [10-12]. Nevertheless, the absence of a gold 

standard with which to compare the dosimetry estimates obtained have made it 

impossible to draw conclusions about the accuracy of these methods. Additionally, the 

lack of reliable methods to perform automated organ segmentation makes internal 

dosimetry estimates operator dependent. To the best of our knowledge, the impact of 

ROI delineation methods on the inter- and intra-operator variability in internal 

dosimetry estimates has not been reported to date.  

Monte Carlo (MC) simulations are an important tool in the assessment and 

optimization of image processing methods in nuclear medicine. MC simulations 

provide an adaptable environment where the ground truth is known and where the 

realism of the input models can be suitable reproduced. Dedicated MC codes (SimSET, 

GATE) for PET/SPECT systems, are well-known for its efficiency in the simulation of 

voxel-based objects [13]. 

PET image quality, which is related to the reconstruction method used, the corrections 

for degrading factors applied (randoms, attenuation, scatter, and partial volume) and 

the number of counts acquired, is another factor to consider in dosimetry studies. 

Several reconstruction methods, based on the filtered back-projection (FBP) and on the 

ordered-subsets expectation-maximization (OSEM) algorithm [14] are currently being 
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used. Corrections such as attenuation, randoms and dead time are routinely applied 

since they have been shown to increase image quality and quantification accuracy. 

Scatter correction is also usually applied, but most of the commercial tomographs 

apply simplified scatter correction methods that only take into account a single scatter 

correction [15-16]. Although there is extensive literature comparing the performance of 

both methods in whole-body [17] and brain [18] studies, little is known about their 

performance in dosimetry studies. 

 

The aim of this study was to evaluate the performance of ROI delineation methods and 

reconstruction algorithms on the accuracy of internal dosimetry estimates using 

simulated PET studies for two radioligands with different biodistribution (intestinal 

and urinary excretion)In addition, the impact of ROI delineation methods on the inter- 

and intra-operator variability of dosimetry estimates has been assessed using clinical 

data from a previous study, where a radioligand  with intestinal route of clearance was 

used [12].  

MATERIAL AND METHODS 

Impact of reconstruction algorithms and ROI drawing on the accuracy of 

dosimetry estimates 

 Reference case studies. Two different radioligands with distinct biodistribution and 

kinetics were simulated ([11C]Raclopride and [11C]GSK931145). The main route of 

clearance for [11C]Raclopride was urinary, while the principal route of clearance for 

[11C]GSK931145 was considered to be intestinal. The voxel-based Zubal phantom 

with arms down [19] was used to generate a realistic anatomical model for subsequent 

Monte Carlo simulation.  The original whole-body phantom was rebinned to a size of 

64 x 64 x 200 voxels, with a voxel size of 10x10x10 mm3. Nine activity models 
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reproducing the radiotracer concentration in each organ over time were created. Each 

model reproduced a different time point after injected activity. An homogeneous 

activity to each organ was assigned using time-activity curves of the simulated 

radioligands extracted from previously published human PET data [4-5, 12]. 

Attenuation maps were created from the Zubal phantom segmented into three different 

tissues: lungs, bone and soft tissue.  

PET image simulations. PET acquisitions were simulated using SimSET [20] Monte 

Carlo code (version 2.9) (http://depts.washington.edu/simset), which was configured 

for a General Electric Discovery ST PET/CT scanner [21]. The detector was modeled 

as a single ring of bismuth germanate (BGO) material. The energy window was 375-

650 keV and simulations were performed in 3D. The output sinograms covered a 

15.7cm axial field of view (FOV). The number of transaxial and angular bins were 128 

and 140, respectively and 192 was the number of axial slices (1 cm slice size) [22]. 

Eight bed positions each corresponding to the dimension of the scanner axial FOV 

were independently simulated to achieve whole-body coverage. An overlap of 1.3 cm 

(corresponding to 4 slices) was considered between two consecutive bed positions to 

compensate for the loss of sensitivity on both extremities of the axial FOV. To 

realistically simulate the noise levels in dynamic PET studies, firstlynoise-free 

sinograms (noise in simulations was 100 times less than noise obtained in real 

acquisitions) were scaled to have the same number of counts as in a clinical scan 

[23].Secondly, Poisson distribution noise was added to each of them to mimic the 

number of counts collected per frame in realistic dynamic PET studies. True 

coincidences, single scatter coincidences and multiple scatter coincidences were stored 

in separate files to assess the effect of Compton scatter. Then standard PET corrections 

were made [24].Two different scatter correction methods were applied on the 
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sinogram: a) an ideal scatter correction (ISC) which considered only true coincidences 

on the sinograms [25] and b) ideal single scatter correction by subtracting Monte Carlo 

simulated single scatter coincidences from the sinograms.  Attenuation correction and 

rebinning were performed on the sinograms for the true coincidences before 

reconstruction. 

 Reconstruction algorithms. STIR [26] was employed to reconstruct the data using 

three different methods (http://stir.sourceforge.net/):  a) 2D Filtered back projection 

(FBP 2D) (transaxial filter: ramp, cut-off: 0.2 cycles), b) 3D Filtered back projection 

(FBP 3D): 3D re-projection (transaxial filter: ramp, cut-off frequency: 0.2 cycles; axial 

filter: Colsher, cut-off frequency: 0.5 cycles) and c) Ordered-subset expectation-

maximization (OSEM): number of subsets: 5; number of iterations: from 1 to 20.  The 

resulting images consisted of nine frames of volumes of the size 128 x 128 x 47 mm3. 

The voxel size was 5.47 x 5.47 x 3.34 mm3.  

 Calibration factor estimation. Activity units were obtained after calibration using a 

SimSET Monte Carlo simulation of an homogeneous cylindrical phantom with the 

same parameters as those used for the simulation of the dosimetry study. A calibration 

factor was obtained for the reconstruction algorithms applied. 

 Impact of inter- and intra- operator variability of ROI drawing on the precision 

of dosimetry estimates 

 Clinical human data. Inter- and intra-operator variability of the different methods to 

obtain dosimetry estimates was evaluated using clinical data acquired in an earlier 

study [12]. In such study, eight healthy human volunteers (4 M /4 F) underwent whole-

body PET/CT scans on a General Electric Discovery ST scanner which used a 3-

dimensional mode protocol. A CT scan (80 mA, 120 keV) was acquired before tracer 
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injection and used for subsequent attenuation correction and reconstructed to generate 

512×512×593 voxel volumes (0.98×0.98×1.80 mm3). Emission scans were acquired 

after intravenous injection of a 1-min bolus of the 11C-GSK931145 radioligand 

followed by 30-s flushing with saline. Emission scans were collected in nine passes of 

increasing duration (15, 15, 30, 30, 60, 60, 120, 180, and 240 s per bed) with six to 

seven overlapping bed positions from the head to the mid-thigh of the subject. PET 

data were reconstructed using a OSEM reconstruction algorithm which included 

correction for attenuation, scatter, randoms and dead time to generate 128×128×327 

voxel volumes (3.91×3.91×3.27 mm3). For activity quantification in PET planar 

images and according to previous works, there were no background susbstraction. In 

such studies it was demonstrated that analysis of compressed planar images were 

comparable to tomographic images, but with a slight overestimation (conservative 

calculation) [8-9, 11-12]. 

 Calibration factor estimation. A homogeneous water-filled phantom with a known 

concentration of 18F was used to determine the cross-calibration factor between PET 

and the dose calibrator. This factor was applied to the PET data to generate quantitative 

images. 

 Assessment of inter- and intra- operator variability. The three delineation procedures 

which are detailed in II.C. were used by six (for AP and S methods) and five (for W 

method)  independent operators on all subjects to examine inter-operator variability. 

Additionally, two of the operators carried out the procedures twice to examine intra-

operator variability. 

The intra- and inter-operator variability in effective doses (ED) was calculated as the 

mean variability of the standard deviation of the ED calculated by all operators. 

Estimation of the uncertainty of the variability for the three delineation methods was 
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provided. Similar calculations were done to estimate the percentage of variability of 

the absorbed doses (AD). 

II.B.3.1. Statistical analysis. Human data were analyzed using two-way analysis of 

variance (ANOVA) to test differences in the ED values using operator and methods of 

ROI delineation as factors. When the overall F statistic was significant, post-hoc 

comparison of ROI methods using the Scheffé approach was performed. A probability 

threshold of 0.05 was chosen as the significance level.  Statistical analysis system 

(SAS) 9.2 for Windows was used for statistical analysis.   

Delineation methods 

Dosimetry was estimated by using three ROI delineation methods differing in their 

complexity and execution time. ROIs were drawn on the following organs: brain, heart, 

lungs, stomach, liver, gallbladder, intestine, kidneys, urinary bladder and cortical bone, 

using MRIcro software [27]. For planar images, the user draws a region on the image 

by using the available MRIcro tools. In 3D methods, the drawing is performed on each 

slice encompassing the volume of interest and the set of resulting regions are then 

combined to form a 3-D volume [28]. These ROIs were drawn in three different ways: 

Antero-posterior compressed images (AP). Images were compressed by projecting the 

reconstructed images in the antero-posterior direction to obtain planar images. ROIs 

were drawn on the planar images (one single slice) covering the entire organ; it was 

done six times due to the variability expected using this method. Results were 

expressed as the mean value and the uncertainty in the mean.  

Sub-sample of the organs (S). Spherical ROIs were applied on 3D images and only 

the center and radius of the ROI were fixed interactively using the  graphical interface. 

For reference simulated data, ROIs were scaled according to the organ volumes 
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derived from Zubal phantom and a same operator have drawn ROIs three times. 

Results were expressed as the mean value and and the uncertainty in the mean. In 

addition, to assess the variability of the results on organ size, variations within ±20% in 

organ volumes were applied from the anatomical regions of the Zubal phantom. For 

clinical human data, ROIs were scaled according to the organ volumes derived from 

adult (male and female) numerical phantoms [29]. 

Whole-organ (W).  For reference simulated data, we considered (i) the optimal case 

using ROIs obtained from the anatomical regions of the Zubal phantom and (ii) to 

assess the variability of the results on organ size, variations within ±20% in organ 

volumes were applied from the anatomical regions of the Zubal phantom. For clinical 

human data, ROIs were drawn on the CT encompassing the whole-organ, following 

each organ shape, with the exception of the cortical bone, red marrow, and small and 

large intestine ROIs, which were drawn only in sub-samples of the organs as described 

above. All the ROIs drawn on the CT images were verified by overlapping the ROIs on 

the PET images. Organ volumes considered were derived from CT subjects. 

Time-integrated activity coefficients and Absorbed Dose Calculations. ROIs 

delineated using the methods described in the previous section were applied to the PET 

images to obtain time-activity curves. The area under the non-corrected time-activity 

curves (TACs) was calculated with the trapezoidal method of integration [24]. To be 

conservative, we calculated the area under the curve from the final data acquisition to 

infinity by assuming that decline in radioactivity occurred only by physical decay. The 

area under the time-activity curve of the source organ from time zero to infinity 

divided by the injected activity is equivalent to the time-integrated activity coefficient 

(ã (rs, TD)). The ã (rs, TD) for all the source organs was summed and subtracted from 
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the true total time-integrated activity coefficient value (T1/2/ln 2 = 0.49 h) to calculate 

the ã (rs, TD) of the remainder of the body (T1/2: the radioactive half-life of [11C]). 

Time-integrated activity coefficients were inputted into OLINDA/EXM (version 1.0) 

software[1] and a 70kg adult male and a 55kg adult female phantom were used to 

obtain both organ AD and ED.  

 Reference dose estimations. Reference TACS from the considered studies [4-5, 12] 

were also inputted into OLINDA/EXM to obtain the true dosimetry estimates for 

comparison purposes. 

RESULTS 

ROI method comparison on simulated PET images. Fig. 1 shows transverse slices of 

the resulting images over time, showing the biodistribution and routes of excretion of 

[11C]Raclopride and [11C]GSK931145. As we have already pointed out, both 

biodistributions simulated high activity in the liver for early scans. As expected 

activity in the contents of the stomach and small intestine was present in 

[11C]GSK931145 biodistribution where the simulated route of clearance was 

intestinal. Activity in the urinary bladder was present in [11C]Raclopride 

biodistribution simulating urinary excretion.  
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Fig. 1 Illustative transverse slices showing the simulated biodistribution of a 

[11C]GSK931145 and b [11C]raclopride (bottom) in whole-body PET images at 2, 
16, and 90 min after injection of the radioligand. For each radioligand, two slices at 
the level of the liver and urinary bladder are shown. Images reconstructed using 
OSEM and ISC. 

 

Reconstruction. Effective dose estimates using images reconstructed using OSEM 

increased their value when the number of iterations was increased until a plateau was 

reached after approximately 15 iterations. Using the W ROI delineation method for the 

[11C]GSK931145 distribution, no differences in ED estimates were found when 

OSEM, FBP 2D and FBP 3D were applied (Fig. 2). The same pattern was found when 

S and AP ROI delineation methods were applied. 

No significant differences (less than 1%) were found in ED estimates when using full 

scatter correction and single scatter correction.  

For the sake of simplicity, from now onwards, results are referred to simulated PET 

images reconstructed using FBP 2D algorithm and ideal scatter correction. 
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Fig. 2 Comparison of the reconstruction algorithm applied: FBP2D, FBP3D, and 
OSEM with five subsets and from 1 to 20 iterations, which corresponds to positions 
1 to 20 on the x-axis. Values are the effective dose estimates for the 

[11C]GSK931145 distribution whole-body ROI delineation method. 
 

Delineation methods. Measured and true TACs showed close agreement when S and 

W ROI delineation methods were used. When the AP method was used, measured 

TACs presented higher activity than simulated TACs in those organs where the ROI 

enclosed the whole organ (heart, lungs and liver) (Fig. 3).  

However, lower activity in the TACs in comparison with the simulated ones was found 

for the AP method for those organs where only a portion of the organ was delineated 

(kidneys and intestine) due to overlapping between organs. A similar pattern was 

found in the time-integrated activity coefficient and absorbed dose where S and W 

were comparable to the true values and AP methods showed differing results 

depending on how the ROIs were drawn due to overlapping between organs (Fig. 4 

and Fig. 5). As expected, higher TACs lead to higher ã (rs, TD) and dose estimations. 
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Fig. 3 Simulated and true time-activity curves using different ROI delineation 
methods (AP antero-posterior, S subsamples, W whole body) of some 

representative organs for a–f [11C]GSK931145 and g–k [11C]raclopride. Images 
reconstructed using FBP2D and ISC. 
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Fig. 4  Time-integrated activity coefficient (ã (rs, TD)) for a [11C]GSK931145 and 

b [11C]raclopride distributions. ã (rs, TD) calculated from 2D planar images (AP 
ROI method applied) and tomographic (3D) images (S and W ROI methods applied). 

 

 
Fig. 5  Comparison of the organ-effective doses (μSv/MBq) using different ROI 
delineation methods (AP, S, and W) for a [11C]GSK931145 and b [11C]raclopride 
distributions. 

 

For both simulated radioligands, effective dose estimates using S and W methods 

showed close agreement with true values   ([11C]GSK931145: 4.8 μSv/MBq (true), 4.6 

μSv/MBq (W), 4.5±0.5 μSv/MBq (S); [11C]Raclopride: 6.0 μSv/MBq (true), 5.8 
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μSv/MBq (W), 5.4±0.2 μSv/MBq (S)) (Table 1). For [11C]GSK931145 radioligand, 

ROIs drawn on AP compressed images provided higher effective dose estimates than 

true values and the S and W ROI delineation methods (4.8 μSv/MBq (true), 6.7±0.5 

μSv/MBq (AP)). For [11C]Raclopride, true effective dose was higher than the similar 

values provided by the three delineation methods: 6.0 μSv/MBq (true), 6.1±0.3 

μSv/MBq (AP)).  The organs with the highest tissue-weighted (wt were taken from 

ICRP Publication 60) absorbed dose and ED were the lungs and the liver. The 

estimations obtained with the S and W methods showed good agreement with the true 

values (Table 1). The AP method provided higher values in ED and AD in the lungs 

and liver in comparison with the true value (Table 1). Considering a real situation 

including errors on organ volume estimates, errors up to ±20% of the organ size when 

using the S method for [11C]Raclopride lead to errors in the ED of up to ±10% (Fig. 

6). Men and women showed the same pattern. Nevertheless, women’s dose estimations 

were on average 22% higher than men’s results. 
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Fig. 6 Percentage difference of effective dose from the whole-organ method for 
[11C]raclopride distribution using different organ volumes. 

 

Table 1 Radiation-absorbed dose (AD) and effective dose (ED) estimates using different ROI 
delineation methods (AP, S and W)  

 [11C]GSK931145 [11C]Raclopride 

 True AP S W  Theor. AP S W 

Liver AD 
(μSv/MBq) 
 

10.7 10.0±1.8 10.6±0.2 9.59 
 

16.9 19.7±0.9 17.3±0.1 15.0 

Lung AD 
(μSv/MBq) 
 

9.5 14.4±1.8 9.2±1.7 9.82 
 

13.9 18.3±1.9 14.3±0.1 13.7 

Stomach AD 
(μSv/MBq) 
 

9.4 20.6±4.9 8.7±0.2 8.07 
 

2.1 2.3±0.1 2.4±0.1 2.2 

ED (μSv/MBq) 4.8 6.7±0.5 4.5±0.5 4.64  6.0 6.1±0.3 5.4±0.2 5.8 

 

Inter- intra- operator variability. Variance analysis presented significant differences 

in mean dosimetry estimates depending on the delineation method (p<0.001).  Post hoc 

analysis showed significant differences in the effective dose between the AP method 
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and the other two methods studied (S and W). However, there were no differences 

between S and W. No significant differences were also found between the effective 

dose measured by different operators. The three delineation methods showed the same 

intra-operator variability in the effective ED estimates.  AP method showed higher 

intra-operator variability in the AD estimates than the S and W methods (Table 2 and 

Table 3). AP also showed higher inter-operator variability in the ED estimates and AD 

estimates than the S and W methods (Table 2 and Table 3). Inter-operator variability 

was slightly reduced in the case that both operators delineated ROIs according to same 

criteria.  

Table 2 Inter- and intra-operator percentage variability 

 

Method 

Variability 

(intra-

operator) 

Variability 

(inter-

operator) 

ED 

(µSv/MBq) 

AP 4 ± 1 % 11 ± 1  % 

S 4 ± 1 % 4 ± 1 % 

W 4 ± 1 % 5 ± 1  % 

Table 3 Inter- and intra-operator percentage variability 

  Variability 

(intra-

operator) 

Variability (inter-operator) 

Method 
AD (µGy) 

AD×WT
a
  

(µGy) 

Liver 

(WT=0.05) 

AP 12 ± 6 % 12 ± 3% 0.6% 

S 8 ± 5 % 8 ± 3% 0.4% 

W 3 ± 1 % 3 ± 1 % 0.2% 

     

Lungs 

(WT=0.12) 

AP 13 ± 5 % 18 ± 3 % 2% 

S 15 ± 9% 15 ± 7% 2% 

W 11 ± 6% 11 ± 6% 1% 

     

Stomach 

(WT=0.12) 

AP 14 ± 5 % 31 ± 2% 4 % 

S 11 ± 3 % 15 ± 3% 2% 

W 7 ± 2% 7 ± 2% 1% 
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aTissue weighting factor 

DISCUSSION 

Reconstruction. OSEM provided closer ED estimates to the simulated ones. However, 

the influence of reconstruction algorithms was minimal. This can be explained by the 

fact that in dosimetry studies not only is the relative contrast between structures 

important, but also the global activity distributed on organs. An activity calibration 

method for each reconstruction algorithm is an important step to obtain images 

providing accurate global activity estimates. Additionally, the absorbed dose received 

by an organ has a contribution from distant organs, thus in terms of calibration of the 

global mean activity, differences in contrast have a lower effect. Furthermore, large 

ROIs encompassing complete organs used in dosimetry contribute to reduce the impact 

that the partial volume effect may have on the images [30]. A similar argument could 

be used for the lack of differences found when using full scatter correction and single 

scatter correction. Full scatter correction is, in theory, more accurate than single scatter 

correction. However, the calibrated activity used for dosimetry estimations provides an 

accurate mean global distribution which leads to accurate ED estimates.  

ROI delineation comparison. In this study 2D planar image analyses (AP) and two 3D 

ROI delineation methods (S and W) for obtaining time-activity curves were compared 

using PET simulated images as the gold standard.  The differences in the ED obtained 

were small between 3D methods, as it would be expected when taking into account 

organs of the same volume. However, there is a slight underestimation of the ED in 

comparison with the true value. For [11C]GSK931145 radioligand, with intestinal 

route of excretion, planar methods overestimate due to a combination of delineating, 

overlapping between ROIs (mainly for lungs and stomach) and the background activity 

in the planar projection view. The fact that these differences were not found for 
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[11C]Raclopride radioligand could be attributed to the route of excretion, since the 

involved organs reduce the impact of errors related to delineation and overlapping on 

the effective dose. The same behavior would be expected for radioligands with the 

same biodistribution and route of excretion. Delineation of whole-organ ROIs was 

considerably more time-consuming in large organs since the ROIs were drawn 

manually on the whole set of transverse slices of the CT including the complete organ 

by following its anatomical contours (~6 h per subject). Analysis time for estimating 

radiation dose can be shortened by using sub-samples of the organ or delineating ROIs 

on 2D compressed images. The time spent drawing ROIs on the AP compressed 

images and on sub-samples of the organs was similar (~15 min per subject). In the AP 

method, each ROI was drawn on the AP compressed image (one single slice). For the 

sub-sampled organ method, spherical ROIs were applied on 3D images and only the 

center and radius of the ROI were fixed interactively using a graphical interface, which 

substantially simplifies the method (~15 min per subject). 

It was observed that ED estimations were sensitive to whichever delineation ROI 

method was applied. The difficulty lies in delineating the border of each region with 

precision, whether excluding or not blurred borders in the forming ROIs. Thus, slight 

differences in boundary delineation have a great effect on dose estimations.  The AP 

method showed the highest inter-operator variability, in particular, the highest organ 

doses were obtained when including the blurred borders, and the corresponding ED 

were overestimated. The purpose of this study was to evaluate the impact of ROI 

delineation methods on accuracy and precision of dosimetry estimates. The next step 

would be the evaluation of the errors associated[30] to the use of using phantoms 

instead of performing an individual dosimetry, however, in diagnostic applications, 

using a phantom instead of a patient-specific model seems to be acceptable. In 
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therapeutic applications, however the model-based dosimetry would not be appropriate 

and it would be better use a patient-specific modelling. 

Inter- intra- operator variability. Inter operator variability results showed higher 

reproducibility of the three dimensional methods in comparison with two dimensional 

methods. The S method was substantially less time consuming and showed comparable 

inter- and intra-operator variability compared with the W method and may provide the 

best option in the balance between analysis time, accuracy and reproducibility. 

Nevertheless, care should be taken when using the S method since errors in the organ 

volume estimation may have an impact on the effective dose estimates [31-32]. This is 

the case of subjects that are quite different from the phantom used by Olinda/EXM. In 

these cases, whole organ ROIs would be desirable. Although some investigators have 

claimed that the 2D approach is the method of choice because of its considerable ease 

and conservative estimate of radiation burden, it does not appear to be the optimal 

method for individual dosimetry estimates of ligands due to its high inter- and intra-

operator variability. This large variability is likely to be due to volume delineation.  

CONCLUSIONS 

Among the three methods compared to draw ROIs, the sub-sampled organ method 

showed the best balance between quantitative accuracy, inter- and intra-subject 

variability and practical implementation. Similar quantitative accuracy can be found 

with either FBP (2D and 3D) or OSEM reconstruction methods. 
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