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Abstract

Fetch performance is a very important factor because it
effectively limits the overall processor performance. How-
ever, there is little performance advantage in increasing
front-end performance beyond what the back-end can con-
sume. For each processor design, the target is to build
the best possible fetch engine for the required performance
level. A fetch engine will be better if it provides better per-
formance, but also if it takes fewer resources, requires less
chip area, or consumes less power.

In this paper we propose a novel fetch architecture based
on the execution of long streams of sequential instructions,
taking maximum advantage of code layout optimizations.
We describe our architecture in detail, and show that it re-
quires less complexity and resources than other high perfor-
mance fetch architectures like the trace cache, while provid-
ing a high fetch performance suitable for wide-issue super-
scalar processors.

Our results show that using our fetch architecture and
code layout optimizations obtains 10% higher performance
than the EV8 fetch architecture, and 4% higher than the
FTB architecture using state-of-the-art branch predictors,
while being only 1.5% slower than the trace cache. Even in
the absence of code layout optimizations, fetching instruc-
tion streams is still 10% faster than the EV8, and only 4%
slower than the trace cache.

Fetching instruction streams effectively exploits the spe-
cial characteristics of layout optimized codes to provide a
high fetch performance, close to that of a trace cache, but
has a much lower cost and complexity, similar to that of a
basic block architecture.

1. Introduction

Fetch performance is a very important factor, because in
a classic processor design, it is not possible to execute in-
structions faster than they can be fetched. In this sense, the
fetch engine effectively limits the overall processor perfor-
mance.

However, there is little performance advantage in in-

creasing front-end performance beyond what the back-end
can consume. For each processor design, the target is to
build the best possible fetch engine for the required perfor-
mance level. A fetch engine will be better if it provides
higher performance, but also if it takes fewer resources, re-
quires less chip area, or consumes less power.

The fetch engine has evolved from fetching a single in-
struction every few cycles, to one instruction per cycle, to a
full basic block per cycle, to a full instruction trace per cy-
cle. Each new architecture increases performance over the
previous one, but also increases the cost and complexity.

The increase in complexity derives from the fact that
the fetch engine has lost its relationship with the high-level
programming constructs that it is fetching. While fetch-
ing basic blocks, the architecture is still aware of what it
is fetching. When fetching instruction traces, or any other
randomly constructed fetch structure, the architecture loses
track of what the code is doing, and that increases complex-
ity.

High fetch performance is always desirable, but to main-
tain complexity under control, it is necessary to design the
fetch engine around the high-level programming constructs.
This is what we have done with instruction streams.

An instruction stream is a sequential run of instructions,
from the target of a taken branch, to the next taken branch
(also called adynamicblock in the literature). A single
instruction stream may contain multiple basic blocks, and
multiple branches, as long as all the intermediate branches
are not-taken.

As such, an instruction stream is fully identified by the
starting instruction address and the stream length. Unlike
traces, streams do not require information about the behav-
ior of the branches contained in the stream, because it is
implicit in the definition: all intermediate branches are not
taken, and the terminating branch is always taken.

Furthermore, instruction streams are defined by the pro-
gram (the branches, and the branch behavior) not by hard-
ware limitations, and once again provide semantic informa-
tion about the code behavior to the fetch engine

Figure 1 shows an example control flow graph from
which we will find the possible streams. The figure shows
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Figure 1. Example instruction streams.

a loop containing an if-then-else structure. Our profile data
shows that� � � � � is the most frequently followed
path through the loop. Using this information, we lay out
the code so that the path� � � goes through a not-taken
branch, and falls-through from� � �. Basic block� is
mapped somewhere else, and can only be reached through
a taken branch at the end of basic block�.

From the resulting code layout we may encounter four
possible streams composed by basic blocks���,�,�,�.
The first stream corresponds to the sequential path starting
at basic block� and going through the frequent path found
by our profile. Basic block� is the target of a taken branch,
and the next taken branch is found at the end of basic block
�. The infrequent case follows the taken branch at the end
of �, goes through�, and jumps back into basic block�.

These are all the possible streams found as long as
branch prediction is correct. In our architecture, instruc-
tion streams are not treated as atomic regions of code. That
is, if a branch misprediction is detected halfway through a
stream, the front-end engine is informed, fetch is redirected,
and proceeds from the point of misprediction. We do not
rollback execution to the beginning of the stream. Instruc-
tions up to the mispredicted branch are executed and gradu-
ated normally. The front-end recovers after the branch, and
fetch is redirected towards the correct branch target.

If we account for branch mispredictions, there is a fifth
possible stream which does not follow the definition above.
Stream�� does not start at the target of a taken branch: it
starts at the target of a branch misprediction. That is, if the
branch at the end of� is predicted taken, but it turns out to
be not taken, execution would continue from basic block�

(we do not rollback to basic block�), but there is no full
stream starting there.

To avoid this situation, we define apartial instruction
stream as a stream which starts at the target of a branch mis-
prediction, and goes on until the next taken branch. This al-
lows the front-end engine to maintain the stream semantics
even in the event of a branch misprediction.

Table 1 summarizes the reasons for designing a fetch en-
gine around the concept of an instruction stream. Streams
directly map to the structure of the high-level programming

constructs, respecting loop bodies and hammock structures.
Streams span multiple basic blocks and represent long se-
quences of instructions, specially in layout optimized codes,
as we show in [28].

Fetch unit high size cost complex. perform.
level (inst.)

Basic block yes 5–6 low avg. low
Trace cache no 14 high high high
rePLay no 60–100 high high high
Streams yes 20+ low low high

Table 1. A comparison of fetch engines in
terms of their relation to high-level code, cost,
and performance.

Based on these facts, we will show that a fetch engine
based on streams has a low implementation cost, results in
a low complexity fetch architecture, and deliver high fetch
performance comparable to that of a trace cache.

This paper describes in detail our implementation of
the stream front-end architecture (a front-end valid for
any back-end), which introduces a novel feature: the next
stream predictor, which provides stream level sequencing
(that is, it steps through the code one stream at a time), al-
lowing the rest of the fetch engine to fetch multiple consec-
utive basic blocks in a single cycle without need of complex
circuitry.

Our results show that indeed the stream fetch architec-
ture provides for high performance, comparable to that of
a trace cache, while maintaining a low implementation cost
and complexity, similar to that of a basic block architecture.

In Section 2 we discuss previous related work, including
state of the art fetch architectures like the FTB proposed
by Reinman, Austin and Calder [30] and the trace cache
architecture as proposed by Rotenberg, Bennett and Smith
in [32].

In Section 3 we describe our proposed stream fetch ar-
chitecture in detail, showing how it improves on other archi-
tectures by exploiting the special characteristics of layout
optimized applications without requiring additional com-
plexity.

In Section 4 we provide simulation results comparing our
stream architecture with the Alpha EV8, the FTB, and the
trace cache architectures to back up our claims about the
stream front-end architecture:

� Fetching streams provides higher performance than the
EV8 and FTB front-ends, and a performance close to
that of a trace cache, maintaining a reduced cost and
minimum complexity.

� Even in the absence of code layout optimizations, the
stream fetch architecture still provides performance
improvements over the EV8 and FTB architectures.
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Finally, in Section 5 we provide our conclusions for this
work, and provide guidelines for future development of this
architecture.

2. Related work

Superscalar processors require a fetch engine capable of
providing more than one instruction per cycle in order to
keep their functional units busy. However, fetching more
instructions per cycle can not be accomplished by replicat-
ing the fetch engine.

2.1. The FTB front-end

In order to increase fetch width, Yeh and Patt introduced
a novel fetch architecture based on dynamic branch predic-
tion [39]. Figure 2 shows a block diagram of this fetch ar-
chitecture.
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Figure 2. The BTB fetch architecture uses dy-
namic branch prediction to fetch a full basic
block per cycle.

The fetch engine is divided in two sections: the dynamic
branch prediction mechanism, composed of the BTB, the
return address stack (RAS), and the two-level branch pre-
dictor (BP); and the instruction cache. The BTB provides
information about the basic block being fetched, and the
BP predicts the behavior of its terminating branch. All the
provided data is combined to calculate the fetch address for
the next basic block. The same information drives the in-
struction cache to provide a cache line, and select the valid
instructions from it.

The original design by Yeh and Patt [39] had a single
table for the BTB and branch predictor. Calder and Grun-
wald [3] showed that decoupling the BTB and branch pre-
dictor allowed an independent resource allocation which
leads to better branch prediction accuracy. They also
suggested that basic blocks should not be terminated at
branches which have never been taken, that is, that only
taken branches should introduce a basic block in the BTB.

Further development of this fetch architecture leads to
a decoupling of the dynamic branch prediction mechanism
and the instruction cache access, as proposed by Reinman,
Austin, and Calder [30]. The branch prediction mechanism

is a fully autonomous engine, capable of following a spec-
ulative path without further assistance. Each cycle it gener-
ates the fetch address for the next cycle, and a fetch request
which is stored in a fetch target queue (FTQ). The instruc-
tion cache is then driven by the requests stored in the FTQ.

Another important contribution of [30] is the Fetch Tar-
get Buffer (FTB). It extends the BTB by allowing the stor-
age of variable lengthfetch blocks. A fetch block is a se-
quence of instructions starting at a branch target, and end-
ing at a strongly biased taken branch. This allows strongly
biased not taken branches to be embedded within a fetch
block, increasing the fetch width without increasing the
cost, as such not taken branches can be easily predicted by
simply ignoring them.

Code layout optimizations benefit this fetch architecture
in two ways: reducing the number of instruction cache
misses, and increasing the effective fetch width. Because
branches are aligned towards their not taken direction, it is
likely that a branch which exhibits a biased behavior will be
biased towards not taken. If a branch is always not taken, it
is effectively ignored by the FTB architecture, and it never
terminates a fetch block, enlarging the size of the fetch unit
of the architecture.

The stream fetch architecture takes this advantage one
step further. The FTB ignoresbiasednot taken branches,
but the next stream predictor ignoresall not taken branch
instances. For example: if a branch is 100% not taken, it
will be ignored by both the FTB and the next stream predic-
tor. If a branch is only 80% not taken, it will be ignored by
the FTB until it is taken for the first time. After it has been
taken once, it enters the FTB tables, and always terminates
the fetch block.

The FTB architecture does not store overlapping fetch
blocks. If a taken branch is found half-way through a fetch
block, the fetch block is split in two smaller parts. Mean-
while, the stream fetch architecture allows for overlapping
fetch blocks (streams), choosing the appropriate one fore
each instance. This allows the stream predictor to ignore the
branch in all its not taken instances, which allows a larger
basic block to be fetched 80% of the time for than particular
branch.

2.2. The trace cache

Fetching one basic block per cycle effectively limits the
fetch performance to 5–6 instructions per cycle on most in-
teger benchmarks. In order to feed an 8 or 16 wide super-
scalar processor, fetching multiple basic blocks per cycle
becomes necessary.

The trace cache [9, 23, 31, 32] is one such high fetch
width mechanism, recently implemented in the Pentium4
processor[14]1. Figure 3 shows a block diagram of the

1This shows that regardless of its high cost and complexity, the trace
cache mechanism is indeed implementable. Our work does not suggest that
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trace cache mechanism as proposed by Rotenberg, Benett
and Smith in [32].
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Figure 3. The trace cache fetch architecture.

The trace cache captures the dynamic instruction stream,
and fragments it in smaller segments called traces. These
traces are then stored in a special purpose cache (the trace
cache), expecting that the same code sequence will be re-
executed in the future. If such is the case, it can be provided
from the trace cache in a single cycle without need of further
processing regardless of taken branches.

A trace is defined by heuristics which limit either the
number of instructions in a trace, the number of branches,
the number of indirect branches, and such. In order to fully
identify an instruction trace, it is necessary to know the
starting instruction of the trace, and the number and behav-
ior of the branches contained. A trace may contain multiple
basic blocks, and several branches, regardless of them being
taken or not taken.

The next trace predictor [17] provides trace level se-
quencing. That is, the fetch engine steps through the code
at the trace level granularity. However, when a branch
misprediction is encountered, or the predicted trace is not
found in the trace cache, instructions must be provided by
a secondary fetch engine. The secondary fetch engine is
composed by an instruction cache and a BTB for dynamic
branch prediction.

There has been much work done to improve the trace
cache mechanism. Techniques such as path associativity,
partial matching, and inactive instruction issue [9] target an
improvement in the trace cache hit rate. Branch promo-
tion [21] targets an increase in the average trace length, al-
lowing traces to contain more branches. The possibility of
using the trace buffers to do dynamic code optimization has
also been explored [10].

building a trace cache is not feasible, we just propose an easier alternative
with similar performance.

2.3. Other high-performance fetch architectures

Aside from the widely adopted trace cache, there are
other high performance fetch mechanisms, with varying de-
grees of complexity and performance. The branch address
cache [38], and the collapsing buffer [7] represent earlier
attempts at a fetch architecture capable of fetching multi-
ple non-sequential basic blocks in a single cycle. Both re-
quire multiple read ports to the instruction cache, a complex
branch predictor, and a complicated realignment network to
join the fetched blocks before passing them to the decode
stage.

Other multiple branch predictors like the multiple block-
ahead predictor [35], or the tree-like subgraph predictor [8]
can also be used to implement a fetch engine capable of
providing multiple basic blocks per cycle, but would also re-
quire a high complexity alignment network. The trace cache
solves this problem by moving the alignment network out of
the critical path, and storing the already aligned instructions
in a special purpose cache.

The next line and set predictor (NLS) architecture [5],
implemented in the Alpha 21264 [12], also allows fetching
of multiple basic blocks in a single cycle, as long as they
reside sequentially in the same cache line.

The Alpha EV8 architecture [34] uses an interleaved
BTB and a multiple branch predictor to fetch instructions
from multiple basic blocks up to the first encountered
taken branch, much in the way the SEQ.3 engine described
in [31].

The rePLay microarchitecture [22] uses a front end de-
rived from the trace cache, making extensive use of the
branch promotion technique to build very long instruc-
tion traces, called frames, and then dynamically optimize
them. Opposite to streams, frames are defined as atomic re-
gions. That is, if a branch misprediction is detected halfway
through a frame, execution is backed up to the beginning of
the frame, and execution proceeds again fetching instruc-
tions from the instruction cache instead, one basic block at
a time.

The stream architecture uses the static approach to solve
the same problems. Both the trace cache and rePLay read
the dynamic instruction stream and record segments of it for
increased fetch performance or dynamic optimization, and
to avoid the alignment network required by other mecha-
nisms. We rely on the compiler to organize the code so that
the code segments that would be constructed by the trace
cache/rePLay are already mapped sequentially in memory.
This allows the stream architecture to use the instruction
cache as the only source for instructions, avoiding any re-
dundant and/or complex mechanisms.

Finally, superblocks bear a non-casual resemblance to
instruction streams, and they are also composed of multi-
ple sequentially executed basic blocks, and are also orga-
nized by the compiler. IBM holds a later patent on a branch
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predictor designed to fetch (and prefetch) superblocks [20].
While our mechanism pursues a similar goal (fetching long
sequences of sequential instructions), we achieve it in a dif-
ferent way. A detailed comparison between both can be
found in [33].

A performance comparison between the stream fetch ar-
chitecture and all other high-performance architectures is
beyond the scope of this work. Instead we have chosen
to compare with the state of the art regarding fetch archi-
tectures for sequential basic blocks (the FTB and the EV8
architectures), and the most widely adopted mechanism for
non-sequential basic blocks (the trace cache).

2.4. Code layout optimizations

Previous work has explored the use of code layout op-
timizations to increase fetch performance both in BTB ar-
chitectures and trace cache architectures. Code layout op-
timizations were initially proposed to improve the perfor-
mance of the instruction memory hierarchy (instruction
cache, instruction TLB) by reducing the code footprint and
minimizing conflict misses [15, 24, 37, 13, 11], and to align
branches to benefit the underlying fetch architecture and
branch predictor [4]. Our previous work presents a detailed
analysis [25] of the effects of these optimizations, conclud-
ing that the improvements on the instruction cache perfor-
mance are due to an increase in the sequential execution of
code, and a better packing of useful code to cache lines.

We also show that layout optimizations not only improve
instruction memory performance, but also have an impact
on the branch prediction accuracy [27], and the effective
fetch width of the front-end [26]. The layout optimizations
align branches towards not-taken, which translates in longer
chains of sequential instructions being executed.

The use of code layout optimizations usually has the
availability of profile data as a requisite, and experience
shows that it is infrequent for end-users to do so. In those
cases in which profile data is unavailable, it is still possi-
ble to benefit from code layout optimizations either using
heuristics to replace the profile data [2], or dynamic code
optimizers [1, 19].

While our stream fetch architecture is designed to ex-
ploit the special characteristics of optimized codes, it does
not exclusively depends on them. However, the use of such
heuristics or dynamic optimizations would provide an addi-
tional fetch performance increase due to the synergy of the
layout optimizations and our architecture.

3. The stream fetch architecture

Our previous work with theSoftwareTraceCache[26]
shows that a sequential fetch engine obtains a fetch perfor-
mance similar to that of a trace cache when using layout
optimized codes. The sequential engine used in that work
is the SEQ.3 unit described in [31]. However, such engine

proves very complex to implement, and is still limited to
3 consecutive basic blocks per cycle. Next, we describe
a fetch engine designed to fetch sequential code, up to a
whole instruction stream per cycle, that overcomes the 3 ba-
sic block limitation without requiring more complexity than
the classic BTB front-end engine.

Figure 4 shows the block diagram for the proposed
stream fetch engine. The next stream predictor provides the
fetch engine with stream level sequencing. That is, given
the current stream starting address, it provides the current
stream length, and the next stream starting address. The pre-
dicted next stream address is used as the fetch address for
the next cycle. The current stream address, and the current
stream length are stored in the fetch target queue (FTQ), and
represent a fetch request for a full instruction stream.

The instruction cache is driven by the fetch requests
stored in the FTQ. The stream starting address is used to
access the instruction cache, which provides one or more
consecutive cache lines. If the cache lines provided contain
the whole stream, the FTQ is advanced to the next request,
if not, the fetch request is updated to reflect the remaining
part of the stream to be fetched.

As described, the stream fetch engine can be run as a sin-
gle pipeline stage, or can be divided in several shorter stages
using the different intermediate structures (FTQ and cache
line buffer) to separate them. In the following sections we
describe the different fetch sub-stages in detail.

The novel aspect of this fetch architecture is the use of
a specialized branch predictor (the stream predictor) which
provides stream level sequencing. Each prediction contains
information about a whole instruction stream, possibly con-
taining multiple basic blocks.

The use of an FTQ is not novel, it was introduced in [30].
It decouples the branch prediction from the memory access,
and stores information about the instruction sequence as in-
dicated by the branch predictor providing a certain degree
of tolerance to the branch predictor latency, and storing a
glimpse of the future control flow of the program. In our
case, the usefulness of the FTQ increases, as each entry
now contains information about a whole instruction stream
instead of just a fetch block.

Our fetch architecture has a single source for instruc-
tions (the instruction cache), which uses very wide lines to
provide a high fetch width. Fetching streams does not re-
quire any additional instruction storage not special purpose
caches.

3.1. Complexity issues

Across al the paper we claim that the stream fetch archi-
tecture has a lower cost and complexity than a trace cache
architecture, but quantifying the cost of both architectures to
allow an objective comparison is beyond the scope of this
work.
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Figure 4. The proposed stream fetch engine. The instruction stream becomes the basic fetch entity.

However, it is clear that the trace cache requires two sep-
arate instruction paths (a primary path for traces, and a sec-
ondary path when the trace cache misses), requiring addi-
tional storage, and redundant branch prediction.

The stream fetch architecture does not require additional
instruction storage (the trace cache), nor a trace construc-
tion engine (streams are recorded, not built dynamically),
nor two separate branch predictors (a trace predictor, and a
back-up predictor for trace construction).

The trace cache uses a BTB as a back-up predictor in
case of trace predictor misses, which makes it necessary to
keep the BTB updated at any point, requiring an update for
each executed branch. The BTB is the backup predictor for
the trace cache, and is used on a trace predictor miss, or
when a misprediction is detected half-way through a trace.
In the event of a stream predictor miss, we resort to sequen-
tial fetching, which does not require any back-up predictor.

Our stream fetch architecture has a single instruction
path (as opposed to two in the trace cache), a single branch
predictor, a single storage cache, and is fairly straight-
forward to implement, without need of much control logic
to coordinate the different components, as they all work de-
coupled from each other by the FTQ.

In any case, we do not wish to disregard other advan-
tages of the trace cache mechanism, like its ability to store
decoded instructions for processors like the Pentium4 [14],
or enabling dynamic optimization of traces [9, 22]. Our
instruction stream fetch architecture is intended as another
alternative for a high-performance fetch architecture when
complexity and cost issues are to be involved, but does not
completely replace the trace cache in all its possible uses.

3.2. Stream prediction

The stream fetch engine we propose is driven by a branch
predictor providing stream level sequencing. Such is the
purpose of thenext streampredictor. Given a stream start-
ing address, the predictor provides a stream identifier and
the next stream starting address. The stream identifier con-
sists of the stream starting address and the stream length.

The next stream predictor serves both the purpose of
branch direction predictor and target address predictor,

replacing both the conditional branch predictor and the
BTB/FTB of a conventional fetch engine. The branch di-
rections are predicted implicitly: all intermediate branches
from the start address of the stream are predicted not taken,
and the stream terminating branch is predicted taken. The
target addresses for all not taken branches are the next se-
quential instruction, and the target address of the terminat-
ing branch is the starting address for the next stream.

Figure 5 shows our implementation of the next stream
predictor (a cascaded next stream predictor). Each table en-
try contains information about one stream: start address,
length (in instructions or bytes in a variable-length ISA),
terminating branch type (for return stack management), the
next stream address, and a 2-bit saturating counter used for
the replacement policy.

The first table is indexed using the current fetch address
only, and the second table is indexed using a hash of the
current fetch address and the previous stream starting ad-
dresses (the previous fetch addresses). The hash function
uses a DOLC scheme similar to what was used in multi-
scalar processors [16].

current
stream
length

terminating
branch
type

next
stream

start addr.

Address indexed table

Path indexed table

Tag Length Next @ CntType
Current Stream @

Previous Stream

Previous Stream

Previous Stream

Figure 5. Cascaded implementation of the
next stream predictor.

The predictor maintains two separate path history regis-
ters: alookupregister which is updated immediately with
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speculative information, and anupdateregister which is up-
dated at commit time when the stream has completed, using
correct path information only. In the case of a mispredic-
tion, the contents of the non-speculative register is copied to
the speculative register, restoring the correct history state.

To improve the prediction accuracy of return instruc-
tions, we use a Return Address Stack (RAS). The RAS is
updated speculatively as guided by the branch type field,
and a shadow copy of the top of the stack is kept with each
branch instruction. When a misprediction is detected, the
stack index and the top of the stack are restored to their cor-
rect values.

To obtain a prediction, the stream predictor is presented
with the current fetch address (the address where the new
stream starts). The predictor calculates the hash function,
and obtains an index into the prediction tables. If both ta-
bles have a hit, we choose the data from the path correlated
table. If only one hits, we use whichever data is provided.
If both tables miss, we resort to sequential fetching until the
predictor hits again, or a branch misprediction is detected.

The confidence counter is used to implement the replace-
ment policy. When a new stream is completed, the predic-
tion tables are checked. If the stream is already there (the
table is being updated with the same length and target ad-
dress already stored in that entry) the confidence counter is
increased. If the new stream data and the data stored in the
table do not match (either the stream length or target address
differ), the counter is decreased. When the counter reaches
zero, the old data is replaced by the new data (both length
and target are replaced) and the counter is set to one.

The use of path correlation and the hysteresis counter
for replacement is what allows the stream predictor to hold
overlapping streams in the prediction tables. This allows the
streams to be kept as long as possible, without having to cut
them short to avoid overlapping of multiple fetch blocks.

A stream is introduced in both tables the first time it ap-
pears. In following appearances of the stream, its informa-
tion is updated only in those tables where it has not yet been
replaced. Streams which do not require patch correlation for
accurate prediction will be replaced from the second table,
but the first table will still be able to predict them.

A stream present only in the first table will be upgraded
to the second table if it is mispredicted. Streams not re-
quiring path correlation will thus never be upgraded to the
second table, avoiding aliasing.

Each access to the predictor provides information about
a whole instruction stream, possibly containing multiple
basic blocks as long as they are connected by not taken
branches. This is how the stream front end engine takes ad-
vantage of the characteristics of layout optimized codes: an
average of 80% of all conditional branch instances are not
taken, while only 60% of all branches are strongly biased
to not taken. By stepping through the code passing through

not taken branches, we are able to fetch much longer code
sequences than if we had to stop at all branches to pre-
dict them individually. And by ignoring not taken branch
instances, we avoid interference in the prediction tables,
which allows us to increase prediction accuracy.

3.3. Fetch target queue

Following the proposal of Reinman, Austin and
Calder [30] we have decoupled the branch prediction stage
from the instruction cache access stage. The stream predic-
tor provides information about an instruction stream with
each prediction, the predictions are stored in a Fetch Target
Queue (FTQ), and are used to drive the instruction cache
access.

The FTQ does not serve any actual performance im-
provement purpose, the branch prediction and instruction
cache access could be done in parallel and avoid the use of
an FTQ and the additional pipeline stage. We have used it
because it allows the branch predictor to work at a different
rate than the instruction cache. It is likely that a single FTQ
entry will take multiple cycles to fetch from the instruction
cache (long basic blocks, or streams containing multiple ba-
sic blocks). This allows the branch predictor to run ahead
of the instruction cache, and to stall (and avoid power con-
sumption) when the FTQ is full2.

The usefulness of the FTQ with our stream front-end
is higher than that of a basic block architecture, because
each FTQ entry contains information about more instruc-
tions, which allows the front-end to have a larger view of
the future instruction stream.

The average stream contains over 16 instructions, which
means that the average fetch request stored in the FTQ is
too large to be fetched in a single cycle. Instead of divid-
ing a large fetch request into several smaller ones, we have
implemented a fetch request update mechanism as shown in
Figure 6.

Start @ Length

effective fetch width

Figure 6. Fetch target queue update mecha-
nism.

2This is not the case of the trace cache, where each trace prediction
corresponds to a single trace cache access. In the trace cache setup, if
the fetched trace can feed the processor for more than one cycle, both the
predictor and the trace cache stall at the same time.
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Each fetch request contains the stream starting address
and the stream length. The starting address is used to ac-
cess the instruction cache and fetch one or more consecu-
tive cache lines. Depending on how many cache lines were
fetched, and the cache line width, a number of instructions
belonging to the stream will be fetched.

The fetch request is updated using the actual number
of instructions obtained from the instruction cache. The
stream starting address is advanced, and the stream length
is reduced appropriately. If the stream length reaches zero,
then the fetch request has been satisfied, and the FTQ is
advanced to the next request.

3.4. Instruction cache

Instruction streams are composed of sequential instruc-
tions. The easiest way to fetch an instruction stream is to
read multiple consecutive cache lines from the instruction
cache until the whole stream has been fetched. However,
fetching a large number of cache lines in a single cycle is
not always feasible, nor cost-effective.

The simplest fetch mechanism would be to fetch a sin-
gle cache line per cycle. In this scenario we must face the
problem of instruction misalignment, as shown in Figure 7.

3 instruction stream

4−wide fetch engine

4−wide cache lines

8−wide cache lines

16−wide cache lines

Figure 7. The instruction misalignment prob-
lem.

A fetch request consisting of 3 consecutive instructions
should be fetched in a single cycle by a 4-wide fetch engine,
but such is not always the case. It is possible that the 3
instruction stream is split across two separate cache lines,
which means that it will take two cycles to fetch if we fetch
a single cache line per cycle.

The use of long instruction cache lines alleviates this
problem. A longer cache line reduces the possibilities of
the instruction stream crossing the cache line boundary.

Also, previous work shows that layout optimized codes
benefit from long cache lines more than unoptimized codes
due to a denser packing of useful instructions to cache
lines. These results show that even a very long 128-byte
line (32 instructions) is usually fully used before being re-
placed [25].

Considering both benefits together (the reduced stream
misalignment, and the instruction cache miss rate benefits),

we have adopted a simple instruction cache design which
reads a single line per cycle, but we use a very long line
size.

An alternate solution would be to fetch two consecutive
cache lines from a multi-banked instruction cache, so that
we can always guarantee a full width of instructions, as
done in [7, 31]. Our solution requires a wider read port
to the instruction cache, while this solution requires an in-
terchange network which increases complexity. For the re-
maining of this paper we will use the wide cache line ap-
proach.

4. Performance evaluation

4.1. Simulation setup

The results in this paper were generated using trace
driven simulation of a superscalar processor. Our simula-
tor uses a static basic block dictionary to allow simulating
the effect of wrong path execution. This model includes the
simulation of wrong speculative predictor history updates,
as well as the possible interference and prefetching effects
on the instruction cache.

We compare our stream fetch architecture with three
other state-of-the-art fetch architectures: the FTB architec-
ture [30] using a perceptron branch predictor [18], the Al-
pha EV8 architecture using a 2bcgskew predictor [34], and
the trace cache architecture using a trace predictor [32] and
selective trace storage [29].

Table 2 shows the values used in the processor simula-
tion. Most of the setups correspond to the fetch engine,
which was simulated in greater detail.

In all cases in which the branch predictor requires two
separate mechanisms (branch predictor and target address
predictor) we have simulated multiple resource allocations
maintaining a total approximate budget of 45KB, and in-
clude here only the one which provided better performance.

The trace cache processor uses a 32KB trace cache (in-
struction storage only), and a 32KB instruction cache, both
2-way set associative. We tested multiple combinations of
instruction and trace cache sizes (big trace cache with small
instruction cache and vice versa), and multiple secondary
fetch paths (multiple block instruction cache with a multi-
ple branch predictor, single block instruction cache with a
classic branch predictor), and selected the one which pro-
vided better performance. For the trace cache, we use only
the trace packing and selective trace storage optimizations3.

The results shown are the harmonic average of all SPEC
2000 integer benchmarks. We feed our simulator with
traces of 300 million instructions collected using theref

3Our results show that in the context of code layout optimizations, the
partial matching optimization actually causes a drop in trace cache perfor-
mance.
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FTB architecture + perceptron
512 perceptrons

history 40 bit global history
4096 x 14 bit local history

FTB 2048-entry, 4-way
RAS 8-entry

EV8 fetch architecture + 2bcgskew
4 x 32K-entry tables

history 15 bit history
BTB 2048-entry, 4-way
RAS 8-entry

Stream fetch architecture
first table 1K-entry, 4-way

second table 6K-entry, 3-way
DOLC index 12-2-4-10

RAS 8-entry
Trace cache architecture + Trace predictor

fist level 1K-entry, 4-way
second level 4K-entry, 4-way
DOLC index 9-4-7-9

RHS 8-entry
Backup BTB 1K-entry, 4-way
Trace cache 32KB, 2-way, Selective Trace Storage

Common settings
pipe width 2, 4, and 8
pipe depth 16 stages

FTQ 4 entries
L1 inst. cache 64KB, 2-way, 1-cycle (single ported)
L1 inst. line 4x pipe width (32, 64, and 128-bytes)

L1 data cache 64KB, 2-way, 64B line, 1-cycle
L2 cache (unif.) 1MB, 4-way, 64B line, 15-cycles

Memory 100-cycles latency

Table 2. Processor setup simulated.

input set. To find the most representative instruction seg-
ment we have analyzed the distribution of basic blocks as
described in [36].

Previous has shown that code layout optimizations have
a very important effect on all aspects of fetch performance.
For this reason we use two separate sets of executables: the
baseline set, and a layout optimized set. The layout op-
timized codes were generated with thespike tool shipped
with Compaq Tru64 Unix 5.1 [6]. The profile data was ob-
tained usingpixie and thetrain input set. As mentioned
above, we use theref input set to obtain simulation results.
It is important to note that we used both optimized and un-
optimized codes with all fetch architectures.

4.2. Processor performance

In Section 3 we have described the stream fetch archi-
tecture: a low cost, low complexity fetch engine designed
to exploit the characteristics of optimized code layouts. As
we already mentioned in the introduction, a fetch engine is
better than others if it has a lower cost, requires fewer re-
sources, or has a lower energy consumption. However, raw
performance is still a very important metric when designing
a high performance processor.

Figure 8 compares the processor performance for the dif-

EV8
+2bcgskew

FTB
+perceptron

Streams Tcache
+Tpred

1.30

1.35

1.40

IP
C

base
optimized

(a) 2-wide processor

EV8
+2bcgskew

FTB
+perceptron

Streams Tcache
+Tpred

2.0

2.1

2.2

IP
C

base
optimized

(b) 4-wide processor

EV8
+2bcgskew

FTB
+perceptron

Streams Tcache
+Tpred

2.6

2.8

3.0

3.2

IP
C

base
optimized

(c) 8-wide processor

Figure 8. IPC performance for multiple
pipeline widths using base and optimized
codes.

ferent fetch architectures varying the pipeline width, using
both baseline and optimized code layouts.

The results for the 2-wide processor show that indeed
there is very little performance advantage in increasing
fetch performance beyond what the back-end can consume.
In this narrow pipeline all setups obtain a similar perfor-
mance, with the streams and the trace cache being only 2%
better than the EV8 architecture.

Given this circumstance, the best option would be the
one which obtains that performance at the minimum cost
and complexity, or consumes the less power. Our fetch ar-
chitecture has a slightly higher performance, and does not
introduce additional costs and complexity, which make it
the more suitable choice.
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The 4-wide pipeline already shows significant perfor-
mance differences, as the fetch width and branch prediction
accuracy become more important. The results show that the
use of code layout optimizations is beneficial to all architec-
tures, but it is the stream fetch architecture which benefits
most from them.

Using optimized codes, the stream fetch architecture ob-
tains a 5% speedup compared to the EV8 architecture, and
a 3% speedup agains the FTB, while being only 2% slower
than the trace cache architecture.

Even in the absence of layout optimized codes the stream
fetch architecture still obtains a 4% speedup against the
EV8 architecture, and a 1% speedup against the FTB. That
is, the streams architecture using baseline codes obtains the
same performance as the FTB architecture using optimized
applications.

Also, it is worth noting that the combination of opti-
mized applications and the stream fetch architecture obtains
better performance than the trace cache using unoptimized
codes (this result is also visible in the 2-wide pipeline). The
results in Table 3 will show that this is due to the higher pre-
diction accuracy of the stream predictor in an environment
where the fetch width is still not the most relevant factor.

The 8-wide pipeline shows the larger performance differ-
ences, because in this wide pipeline setup, the fetch width
becomes a more relevant aspect, as fetching instructions
from multiple basic blocks per cycle becomes imperative.

When using unoptimized codes, both the FTB and
stream fetch architectures provide an intermediate perfor-
mance between the EV8 and the trace cache architectures
(10% faster than EV8, and only 4–5% slower than the trace
cache).

However, the use of code layout optimizations uncov-
ers the potential performance of instruction streams. The
stream fetch architecture is designed to exploit optimized
codes, and does so successfully, increasing performance by
a full 3%, while the FTB and the trace cache improve less
than 1%.

When using code layout optimizations, the stream fetch
architecture obtains a 4% speedup over the FTB, and is only
1.5% slower than the trace cache, while requiring a lower
cost and complexity.

Figure 9 shows individual benchmark results for the 8-
wide processor in the presence of code layout optimizations.
The results show that the stream fetch architecture obtains
the best performance in 5 benchmarks, (176, 186, 254, 255,
and 256) and is at least second best is all but one case (175)
where it is third best. Comparing only streams vs. traces
performance, the trace cache is better in 6 codes, and the
streams are better in 5 codes.

Hmean
gzip vpr gcc

crafty
parser

eon

perlbmk
gap

vorte
x

bzip2
twolf

2
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6
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EV8+2bcgskew
FTB+perceptron
Streams
Tcache+Tpred

Figure 9. Individual IPC results for the 8-wide
processor using optimized codes.

4.3. Fetch performance

Table 3 shows other performance metrics which deter-
mine the fetch engine performance: the actual fetch width
on the 8-wide processor, and the branch misprediction rate.
The instruction cache miss rate is very low in all setups, and
hardly contributes to the IPC performance difference.

base optimized
Mispred. Fetch IPC Mispred. Fetch IPC

EV8+2bcgskew 3.9% 5.3 3.9% 5.5
FTB+perceptron 3.0% 5.5 2.8% 5.5
Streams 2.5% 5.8 2.3% 6.0
Traces 2.8% 6.8 2.8% 6.9

Table 3. Branch misprediction rate and Fetch
IPC for the 8-wide processor.

The results show that the main advantage of the trace
cache over the other fetch architectures is the increased
fetch width, obtained fetching instructions from multiple
non-sequential basic blocks in a single cycle. This fetch
width increase means that the trace cache provides 25–30%
more instructions per cycle than the EV8 or FTB architec-
tures. However, the stream fetch architecture does not lag
behind, providing only 11–15% fewer instructions per cycle
than the trace cache.

However, an increased fetch width is not the only advan-
tage of the stream architecture. Our results also show that
instruction streams also provide for increased prediction ac-
curacy, with a misprediction rate 18% lower than that of the
perceptron or trace predictors, and 36–40% lower than the
2bcgskew miss rate.

Instruction streams seem to be inherently easier to pre-
dict. The same seems to hold true for fetch blocks (FTB
units) and traces (trace predictor units). As the prediction
unit size increases, fewer predictions are required, which
means that there is less pressure and interference in the pre-
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diction tables. This would point the advantage to traces and
streams, but traces are built using hardware-derived heuris-
tics, and result in a somewhat random splitting of code.
Meanwhile, streams are defined by the natural control flow
of the program, retaining their relationship to high-level
programming constructs, which makes them easier to pre-
dict.

The combination of increased fetch width and improved
branch prediction accuracy explain the IPC improvements
obtained fetching instruction streams. The fact that the trace
cache provides only 11–15% more instructions per fetch
than the stream architecture, and that the trace predictor
has a misprediction rate 17% higher than the stream pre-
dictor show why the stream architecture comes so close to
the trace cache performance.

5. Conclusions

This paper presents the instruction stream fetch archi-
tecture, our first step towards an architecture which ties the
internal processing units to the high-level programming lan-
guage structures.

Instruction streams are sequences of sequential instruc-
tions between two consecutive taken branches. As such,
streams contain instructions from multiple basic blocks, but
still maintain their relationship with high-level structures
such as loop bodies. Their large size and their high-level
information make them suitable for a low complexity, but
high performance fetch engine.

Our fetch architecture replaces the conventional branch
predictor with a next stream predictor, which steps through
the code at a larger granularity (that of instruction streams),
providing higher prediction accuracy and larger fetch
blocks. Because streams are sequentially stored in mem-
ory, we use the instruction cache as our only source of in-
structions, avoiding redundant mechanisms and additional
complexity.

Our results show that for narrow issue processors, the
stream architecture offers higher performance than other
state-of-the-art architectures, and a lower complexity than
a trace cache. On wide issue processors, the use of code
layout optimizations and our fetch architecture obtains 10%
higher performance than the EV8 fetch architecture, and
4% higher than the FTB architecture using state-of-the-art
branch predictors, while being only 1.5% slower than the
trace cache.

When not using optimized applications, fetching instruc-
tion streams is still 10% faster than the EV8 fetch architec-
ture, and only 4% slower than fetching traces, and always
at a lower cost and complexity.

If performance is the only relevant factor, then the trace
cache is still probably the best option. If implementation
cost and complexity are also taken into account, we believe

that our stream fetch architecture provides a better alterna-
tive.

Future lines of research include improving the accuracy
of the next stream predictor, devising better ways to explode
the characteristics of optimized codes, and further develop-
ment of the instruction stream architecture.
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