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Abstract

Next generation 5G networks will rely on virtualized Data Centers (vDC)
to host virtualized network functions on commodity servers. Such Network
Function Virtualization (NFV) will lead to significant savings in terms of
infrastructure cost and reduced management complexity. However, green
strategies for networking and computing inside data centers, such as server
consolidation or energy aware routing, should not negatively impact the
quality and service level agreements expected from network operators. In
this paper, we study how robust strategies that place virtual network func-
tions (VNF) inside vDC impact the energy savings and the protection level
against resource demand uncertainty. We propose novel optimization mod-
els that allow the minimization of the energy of the computing and network
infrastructure which is hosting a set of service chains that implement the
VNFs. The model explicitly provides for robustness to unknown or impre-
cisely formulated resource demand variations, powers down unused routers,
switch ports and servers, and calculates the energy optimal VNF placement
and network embedding also considering latency constraints on the service
chains. We propose both exact and heuristic methods. Our experiments
were carried out using the virtualized Evolved Packet Core (vEPC), which
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allows us to quantitatively assess the trade-o↵ between energy cost, robust-
ness and the protection level of the solutions against demand uncertainty.
Our heuristic is able to converge to a good solution in a very short time, in
comparison to the exact solver, which is not able to output better results in
a longer run as demonstrated by our numerical evaluation. We also study
the degree of robustness of a solution for a given protection level and the
cost of additional energy needed because of the usage of more computing
and network elements.

Keywords: Virtualization, Binary Linear Programming, Robust
Optimization, Network Function Virtualization (NFV), EPC, 5G

1. Introduction

Telecom Service Providers are in the process of migrating vendor specific
hardware and software that implement their network functions towards the
Cloud. Virtualizing their infrastructure such as load-balancers, firewalls or
the whole Evolved Packet Core (EPC), and deploying them in virtualized5

data centers (vDC) leads to the concept of Network Function Virtualization
(NFV) [1], where Virtualized Network Functions (VNFs) run inside Virtual
Machines (VMs) under the control of a hypervisor on commodity servers.
This will dramatically reduce the cost of the infrastructure and simplify
deployment of new services. By changing VM resources dynamically (e.g.10

by adding more computing or memory resources, adding more VMs), the
VNFs may be scaled according to the load, which significantly simplifies the
VNF operation and management and drastically reduces costs of operation.
Virtualization enables resources consolidation, since more VMs may reside
on the same physical server leading towards green strategies inside a data15

center. For example, server consolidation tries to migrate the VMs towards
the fewest possible number of servers and consequently powers down unused
ones to save energy. However, the more VMs are hosted by the same physical
machine, the higher the potential for contention for e.g. CPU and, thus, the
possibility of Service Level Agreement (SLA) violations. As VNFs are com-20

posed of a set of VNF Components (VNFC) that need to exchange data over
the network under capacity and latency constraints, the networking plays
also an important part. Deploying each VNFC on a di↵erent server may
result in lower SLA violation due to CPU contention but will increase the
energy cost due to more active resources and additional tra�c exchanged,25

leading to higher router and link utilization, network contention and in-
creased energy cost for the network. By using Software Defined Networking,
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one can dynamically adjust the network topology and available capacity by
powering down unused switch ports or routers that are not needed to carry a
certain tra�c volume [2] and re-route the flows to consume the least amount30

of energy at a potential expense of higher latency.
In order to save the most energy, reduce the electricity costs and the

CO
2

footprint, it is evident to place the VNF components in the smallest
number of servers and adjust the network topology and capacity to match
the demands of the VNFCs. Such design of the VNF placement and net-35

work embedding can be formulated as a mathematical optimization problem,
which pursues the optimization of an objective function expressing the aim
of the data center administrator, while respecting a set of feasibility con-
straints that express the technical constraints of the computing and network
infrastructure and the requirements of the users. Unfortunately, many pa-40

rameters in such optimization problem are not known precisely when the
problem is solved. For instance, it is hard to predict how much CPU a VNF
will require or how much data a VNF v

i

will send towards a VNF v
j

dur-
ing its execution time. The presence of uncertain data in an optimization
problem can be very tricky: even small variations in the input parameters45

of an optimization problem may have very bad e↵ects, turning optimal so-
lutions into solutions of bad quality and even turning feasible solutions into
infeasible ones that are thus useless in practice [3, 4, 5]. For example, if the
CPU demands of a set of VNFCs allocated on the same server require more
CPU than the expected amount, contention for CPU may occur which may50

result in SLA violation and service degradation for the customer.
The fundamental question that we address in this paper is whether it

is possible to place a set of VNF Components in a robust way inside a
virtualized data center while trying to minimize the energy consumption,
given we do not know the input to the problem precisely. In particular, our55

main original contributions are the following. We propose an original robust
optimization model that jointly optimizes VNF placement and routing in
virtual networks and tackles variations in the resource demand of VNFCs.
The model takes into account tra�c demands and allows the specification of
latency constraints for VNF service chains. Our model improves our recent60

work [6], proposing a new purely binary linear programming formulation
which has reduced computational complexity. Moreover, we propose a fast
variable fixing heuristic that exploits structural information coming from the
linear relaxation of the problem. The solution of the heuristic can be used to
warm-start the solution process of the solver, accelerating the convergence65

towards the optimum. We applied our heuristic to the vEPC deployment
and our numerical results demonstrate that it is able to find a good solution
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in a very short time in comparison to the exact solver, which is not able to
output better results even in a longer run, as demonstrated by our numerical
evaluation. We also study the degree of robustness of a solution for a given70

protection level and the cost of additional energy needed because of the
usage of more computing resources and network elements.

The remainder of the paper is organized as follows. In Section 2, we
review the state of the art and point out the novelties of our work. Section
3 introduces our methodology. In Section 4, we present a robust optimization75

approach that is based on the theory of �-Robustness to cope with demand
uncertainties for the green VNF placement and network embedding problem.
Section 5 details our heuristic to solve the optimization problem fast. The
computational results are presented in Section 6 and in Section 7 we derive
conclusions and point out ideas for future work.80

2. Related Work

The need for adaptability and flexibility in the future network archi-
tectures (e.g., 5G) paves the way for Network Function Virtualization, a
new concept that Telecom Service Providers are incrementally deploying to
address their customers’ demands. The gains in energy e�ciency and flex-85

ibility enabled by virtualization have recently led the research community
to study the VNF placement problem in depth. Authors in [7] define a
generic VNF chain routing optimization problem and devise a MILP formu-
lation. [8] proposes a dynamic optimization problem that can be used as a
meta-scheduler to place and re-place VMs in the right cloud data centers90

in real-time, considering costs, QoS, energy consumption, and CO
2

emis-
sions. Authors in [9] consider tra�c flows with deadlines and formulate a
mathematical problem for mapping and scheduling flows to VNFs in the
most energy e�cient way. The proposed heuristic generates good results in
reasonable time. [10] presents a novel solution to the VM consolidated place-95

ment problem that uses the biogeography-based optimization technique to
optimize the VM placement, thus minimizing both the resource wastage and
the power consumption at the same time.

In [11], the authors present an optimization model for the embedding
of Virtual Mobile Core Networks. In their formulation latency is nicely100

modelled as a combination of processing, packet queuing and propagation
delay, where the first two variables depend on the tra�c utilization of the
node the VNF is placed on, while the last one is a function of the path
length. Authors show numerical results of the model on a real network
topology. [12] presents an Integer Linear Programming (ILP) model for105
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VNF orchestration. The problem consists in finding the number of necessary
VNFs and allocating them in order to minimize the total network related
cost and the resources fragmentation. In order to solve larger instances, the
authors propose a dynamic programming-based heuristic.

However, common to all these works is the assumption that input data is110

known precisely. As recently highlighted in [13], conventional optimization
models hardly take into account uncertainties in the spatial distribution of
demands, temporal variations of associated tra�c flow properties, or the
changes that arise in the underlying network topology. Consequently, ignor-
ing uncertainty in input data can lead to solutions which are suboptimal or115

even infeasible [3, 4, 14]. Authors in [15] show how the emerging area of
robust optimization can advance the network planning by a more accurate
mathematical description of the demand uncertainty. This concept is applied
in [16], where the VM consolidation problem is modeled as a robust MILP
and the resource requirements of the VMs are allowed to variate between120

specific bounds. The price of the robustness is quantified in terms of energy
saving against resource requirement violations. However, the robustness in
the network and VNF service chains is not studied there.

Robust Optimization has been considered in [17] for virtual network
embedding (VNE), namely the problem where a virtual network must be125

mapped to a physical network substrate. The objective is to maximize the
revenue that comes from the embedding of virtual nodes and links with a
constraint on the capacity budget. In order to solve large instances, the
authors propose a two-phase heuristic based on �-robustness to deal with
capacity requests variability. Again, they do not model service chains and130

resource demands for VNF components.
Regarding the joint robust VNF placement and network embedding,

there has not been much work. Recently, [6] proposes a joint robust place-
ment and network embedding problem assuming that resource demands of
VNF components are not known precisely. They model the problem using135

a set of service chains that are embedded into a network graph and con-
sider the latency for service chains, link capacities of the network and CPU,
memory and disc capacities of the computing infrastructure as constraints.
They apply the theory of �-Robustness to cope with demand uncertainties
for individual VNF components and study the exact solutions which may140

be computationally very expensive to obtain. In this paper, we improve [6]
by proposing a new purely binary linear programming formulation which
has reduced computational complexity. Moreover, we propose a fast vari-
able fixing heuristic suitable for online optimization that exploits structural
information coming from the linear relaxation of the problem.145
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3. Methodology

In this paper we investigate whether it is possible to place a set of ser-
vice chains in a robust way inside a virtualized data center while trying
to minimize the energy consumption. The proposed robust optimization
model jointly optimizes VNF placement and routing in virtual networks150

and tackles variations in the resource demand of VNFCs. First, the purely
binary linear optimization model is introduced in Section 4.1, where a set
of VNFCs have to be allocated into the available servers, each of which is
connected to di↵erent routers in the network. In this first model, we assume
perfect knowledge of the amount of resources available at each server, of the155

amount of resources requested by each VNFC, of the power consumption of
each router, of the tra�c demands between the VNFCs, of the bandwidth
of each link and of its maximum latency.

Motivated by the natural uncertainty of tra�c conditions in telecommu-
nication networks, we take a step further and propose a modification on the160

first model which takes into account the variability of the resource requests
of VNFs (see Section 4.2). The robust version of the problem, which follows
the theory of �-Robustness, is presented in Section 4.3. However, the so-
lution to this problem may require significant computational resources and
time, thus making it not suitable for online optimization, especially when165

the problem size grows (i.e., large network).
Thus, as a third step, a fast variable fixing heuristic that exploits struc-

tural information coming from the linear relaxation of the problem is also
proposed and presented in Section 5. The solution of the heuristic can be
used to warm-start the solution process of the solver, accelerating the con-170

vergence towards the optimum. Through the proposed heuristic, the VNFCs
can be placed inside a virtualized data center in a robust way, thus guaran-
teeing that the solution remains feasible disregarding the variability in the
resource demands.

4. Problem Formulation175

In this paper, we focus on an optimization problem that we call Power
E�cient VNF Placement and Flow Routing (E↵-VNF), which is defined as
follows. We consider a set S of servers, each of which characterized by a
peculiar linear power profile and a maximum amount of available resources
(e.g., individual CPU, memory and disc capacities, denoted as CPU, RAM,180

DISC - we also denote the set of such di↵erent type of resources by R).
We model the network topology by a graph G(N,L), where N is the set of
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network nodes and L is the set of links. Each link ` 2 L corresponds to a pair
(i, j) with i, j 2 N : i 6= j. For each server s 2 S, we denote by n(s) 2 N
the network node to which s is connected to. V is the set of VNFCs we185

intend to place on the hardware resources of the VNI. C is a family of sets
representing the set of service chains. Each C 2 C is an ordered subset of
V ⇥ V that represent the sequence of VNFCs included in a service chain.
Every C contains couples (v

1

, v
2

) with v
1

, v
2

2 V and is associated with its
own demands and latency bounds.190

The objective of the problem E↵-VNF is to find the optimal allocation
of all the service chains on the physical servers and, consequently, the flow
routing for all the tra�c demands, so that the total power consumption is
minimized, while satisfying the constraints on the server resources (CPU,
RAM, DISC) and link capacities, as well as the latency bounds for each195

service chain.
Figure 1 illustrates the problem where we have in total seven servers (s

1

until s
7

), each one with its own power profile (each server s has its own
idle power Pmin

s

and maximum power consumption Pmax

s

) and individual
CPU, memory and disc capacities. In the example given, server s

i

has200

installed a
1i

CPU, a
2i

RAM and a
3i

DISC. Each server is connected to
an unique router (for example, s

1

is connected to n
1

). Each link has a
dedicated capacity and latency (for example, the latency for the link between
n
1

and n
2

is denoted as l
12

- we omit bandwidth from Figure 1 to maintain
readability). The servers, their capacities, together with the network nodes205

and links with their capacities form the NFV Infrastructure in terms of
Computing Power, Storage and Network. In our example, we should embed
into this NFV Infrastructure three service chains (denoted as c

1

, c
2

and c
3

),
each one with their own latency bounds. In total, we have three di↵erent
VNFCs (v

1

, v
2

and v
3

) and we assume that the tra�c source for c
1

is the210

Sender S
1

, which is connected to router n
2

and injects a certain volume
of tra�c into the service chain towards v

1

. v
1

processes the packets (for
which it needs CPU, memory and disc) and forwards the processed tra�c
(which may have a di↵erent volume than the one injected) towards VNFC
v
2

, which again processes it and forwards a certain volume to the destination215

D
1

that is connected to router n
2

. Note that Figure 1 assumes additional
source/sink nodes where tra�c for a service chain is created/terminated,
which are not explicitly mentioned in our model but they could be introduced
by adding network nodes. The figure depicts an exemplary VNF placement
and network embedding into the physical substrate network. For example,220

the VNFC v
1

would be placed onto server s
3

, v
3

onto server s
4

and so on.
Servers hosting no VNFC would be powered down (e.g., s

1

, s
2

or s
5

) together
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with all the nodes not carrying any tra�c (e.g., only n
1

in this case).

l23 l45

l24

l35

l56

l46l12

l13

n1

n2

n3

n4

n5

n6

s2(a12,a22,a32)
s1 (a11,a21,a31)

l25
l34

s7(a17,a27,a37)

s6 (a16,a26,a36)

s5 (a15,a25,a35)

s4 (a14,a24,a34)
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v1 v2

v2 v3

v1 v3

n2

n4

S1 S2

D1 D2

S3D3

S1

S2

S3 n4

D1

D2

D3

n2

n5

n2

v1

v2

v3

Demand

Power

Pmin

Pmax

Demand

Power

Pmin

Pmax

Demand

Power

Pmin

Pmax

For each SC ci
- allocate VNFCs
- embed network

c1

c2

c3

Created by Unlicensed Version

Created by Unlicensed Version

Created by Unlicensed Version

Figure 1: The joint VNF placement and network embedding problem.

4.1. Binary Optimization Model

In Table 1 all the parameters and the decision variable of the optimiza-225

tion problem (E↵-VNF) are explained.
The power consumption of each server s 2 S is linearly increasing ac-

cording to the CPU utilization (given by the sum of the CPU demands of
the VNFCs allocated to the server) in the range [Pmin

s

, Pmax

s

]. The idle
power consumption of each activated node n 2 N is P

n

, whereas the power230

consumption of an activated link (i, j) 2 L is P
ij

. Each server s has an
amount a

rs

of available resource r; instead a
vr

is the amount of resource r
requested by VNFC v. The bandwidth requested for the data transfer of
VNFC couple (v

1

, v
2

) is bv1,v2 . b
ij

is the bandwidth of link (i, j) and l
ij

is
the latency of link (i, j). We denote by lv1,v2

C

the maximum latency allowed235

for each service chain C 2 C and couple (v
1

, v
2

) 2 C.
The complete Binary Linear Programming problem that we define to

model the problem (E↵-VNF) and that we denote by the acronym BLP is
presented in Table 2.

The VNFC-server allocation variables x
vs

2 {0, 1}, 8v 2 V , s 2 S are240

equal to 1 if VNFC v is allocated to server s and 0 otherwise. The server
activation variable y

s

2 {0, 1}, 8s 2 S is 1 if server s is active and is 0
otherwise (then the server is powered o↵). The activation of a network node
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Input Parameters:

G(N,L) network graph (N,L are the set of nodes and links, respectively)

S set of servers

V set of VNFCs

C set of service chains

R set of resources

n(s) is the network node to which server s is connected to

a

rs

is the amount of resource r available at server s

a

vr

is the amount of resource r requested by VNFC v

P

n

is the static power consumption of node n

P

ij

is the static power consumption of link (i, j)

P

min

s

, P

max

s

are the idle and maximum power consumption of server s

b

v

1

,v

2

is the tra�c demand between v

1

and v

2

b

ij

is the bandwidth of the link (i, j)

l

ij

is the latency of the link (i, j)

l

v

1

,v

2

C

is the maximum latency tolerable by (v

1

, v

2

) of service chain C

Decision variables:

x

vs

is 1 if VNFC v is allocated to server s, 0 otherwise

y

s

is 1 if server s is active, 0 otherwise

z

n

is 1 if node n is active, 0 otherwise

f

v

1

,v

2

ij

is 1 if the tra�c demand b

v

1

,v

2

is forwarded on link (i, j)

g

ij

is 1 if the link (i, j) is used for transmitting any tra�c

Table 1: Model Parameters and Decision Variables

is represented through the decision variables z
n

2 {0, 1}, 8n 2 N . If all
ports of a network node are not carrying tra�c, then the node is powered245

down. If a single port is carrying tra�c through a given link, then the node
is activated and powered on. A link activation variable g

ij

2 {0, 1}, 8(i, j) 2
L is equal to 1 if link (i, j) is used for carrying tra�c and 0 otherwise.
In the proposed model, we consider single-path transmissions (i.e., tra�c
exchanged between two network entities cannot be sent on multiple parallel250

paths) modelled through an unsplittable flow problem (see [5, 18] for an
introduction to splittable and unsplittable flow concepts): for this reason,
the variables fv1,v2

ij

2 {0, 1}, 8 (i, j) 2 L, (v
1

, v
2

) 2
S

C2{C}C are binary and

a generic variable fv1,v2
ij

equals 1 if the entire tra�c sent from v
1

to v
2

is
routed on link (i, j) and is 0 otherwise.255

The objective of the model, expressed in (1), is to minimize the total
power consumption in the VNI. This latter can be expressed as the sum
of three terms: the first summation is the power consumption due to the
usage of resources in all servers in S, obtained as the sum of the minimum
power associated with the activation of a server plus the linearly increasing260

power consumption due to the usage of the CPU of a server, induced by
the demands of the VNFCs allocated to that server; the second summation
takes into account the power consumption of the activated network nodes;
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Table 2: The Binary Liner Programming model BLP for problem (E↵-VNF)

min

P
s2S

h
P

min

s

· y
s

+ (P

max

s

� P

min

s

) · 1

a

rs

·
P

v2V

a

vr

· x
vs

i
(1)

+

P
n2N

P

n

· z
n

+

P
(i,j)2L

P

ij

· g
ij

r = CPU

P
s2S

x

vs

= 1 v 2 V (2)

y

s


P

v2V

x

vs

s 2 S (3)

x

vs

 y

s

s 2 S, v 2 V (4)

P
v2V

a

vr

· x
vs

 a

rs

· y
s

s 2 S, r 2 R (5)

P
(n,i)2L

b

v

1

,v

2 · fv

1

,v

2

ni

�
P

(i,n)2L

b

v

1

,v

2 · fv

1

,v

2

in

=

P
s2S: n(s)=n

b

v

1

,v

2 · (x
v

1

s

� x

v

2

s

) n 2 N, (v

1

, v

2

) 2
S

C2C C (6)

P
(v

1

,v

2

)2
S
C2C C

b

v

1

,v

2 · fv

1

,v

2

ij

 b

ij

· g
ij

(i, j) 2 L (7)

g

ij

 z

i

(i, j) 2 L (8)

g

ij

 z

j

(i, j) 2 L (9)

f

v

1

,v

2

ij

 z

i

(i, j) 2 L, (v

1

, v

2

) 2
S

C2C (10)

f

v

1

,v

2

ij

 z

j

(i, j) 2 L, (v

1

, v

2

) 2
S

C2C (11)

P
(i,j)2L

l

ij

· fv

1

,v

2

ij

 l

v

1

,v

2

C

C 2 C, (v
1

, v

2

) 2 C (12)

x

vs

2 {0, 1} , y

s

2 {0, 1} , z

n

2 {0, 1} , f

v

1

,v

2

i,j

2 {0, 1} , g

i,j

2 {0, 1}

the last summation expresses the power consumption of the activated links.
Constraints (2) express that each VNFC v must be allocated into exactly265

one server. Constraints (3) link the activation of a server and the allocation
of a VNFC to it: if no VNFC is allocated to a server, then the server is not
activated. Constraints (4) introduce a further linking between the activation
of a server and the allocation variables: if some VNFC is allocated to a
server, then the server must be activated. In (5), the resource capacity270

of a server is defined: given all the VNFCs allocated on the server, the
total used resources must not exceed the available ones. The flow model
taken into account does not use the continuous flow variables: instead the
flow conservation constraint (6) relies on binary variables expressing the
unsplittable nature of flows. The left-hand-side includes two summations275

that express the flow balance of a node n for the data sent for a couple
(v

1

, v
2

) of a service chain, considering the incoming flow over links (n, i) and
the outgoing flow over links (i, n). The right-hand-side includes a summation
over all the servers that are connected to node n. Its value depends on the
allocation of the VNFCs v

1

, v
2

to servers: if v
1

, v
2

are not allocated to any of280

the servers connected to n, then the summation is equal to 0 and the node is

10
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just a transition node with null flow conservation balance for (v
1

, v
2

); if only
one of v

1

, v
2

is allocated to a server connected to n, then the summation
is either equal to bv1,v2 or �bv1,v2 and the node n is either a source or a
sink for couple (v

1

, v
2

), respectively; finally, if both v
1

, v
2

are allocated to285

servers connected to n, then n is again associated with a null flow balance.
We then need the capacity constraints for the bandwidth, including the flow
conservation variables (7). These constraints also model the fact that if any
fv1,v2
ij

is equal to 1 and thus some tra�c is sent over (i, j), then the link
activation variable w

ij

must be equal to 1. The constraints (8-9) link the290

boolean status of link activation variables to the status of the node activation
variables: if a link is used, then its end-nodes must be activated; if a node
is not activated, then a link ending in it cannot be used. Furthermore, the
constraints (10-11) link the boolean status of flow variables to the status of
the node activation variables: if a flow variables is equal to 1, then the end-295

nodes of the corresponding link must activated; if a node is not activated,
then a link ending in it cannot be used and thus the corresponding flow
variables are forced to be equal to 0. Finally, constraints (12) express the
latency requirement for a service chain: for each chain C and couple (v

1

, v
2

)
of C, (12) impose that the summation of the latency over links used for300

sending data from v
1

to v
2

must respect the latency limit lv1,v2
C

.

4.2. Resource Request Uncertainty and Robust Optimization

Uncertainty of tra�c conditions is naturally present in telecommunica-
tions network design, since the future behaviour of users is generally not
known precisely in advance [15]. In the case of our optimization problem305

(E↵-VNF), we address in particular the uncertainty of resource requests of
VNFs: the amount of resources requested by each VNF can just be estimated
and these estimates can (deeply) di↵er from the actual amount requested in
the future. We thus assume that the amount a

vr

is uncertain for each VNFC
v and resource r, i.e. the value of a

vr

is not known exactly when (E↵-VNF)310

is solved. To better clarify the concept of resource request uncertainty, we
model data uncertainty through �-Robustness [4], a cardinality-constrained
interval deviation model. According to this model, we assume that for each
uncertain a

vr

we know a so-called nominal value ā
vr

and the maximum de-
viation �a

vr

� 0, from it. We therefore assume that the (unknown) actual315

value a
vr

lies in the interval: a
vr

2 [ā
vr

��a
vr

, ā
vr

+�a
vr

] .
In our direct experience with several real-world problems related to the

design of telecommunication networks (e.g., [5, 15, 19]), we have observed
that professionals often identify the nominal values of uncertain quantities
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with the value of forecast networks conditions (e.g., an expected value de-320

rived from historical data), whereas the deviation �a
vr

is identified as the
maximum deviation from the forecast considered relevant by the network
designer, again using historical data as reference.

As we sketched in the introduction, dealing with data uncertainty in
optimization problems is a very delicate issue: as it is well-known from325

sensitivity analysis, also small variations of the input data may fully com-
promise the optimality and feasibility of produced solutions. The feasibility
issue is particularly dangerous, because, due to uncertainty, we risk to pro-
duce solutions that will be completely useless in practice. For a detailed
discussion on the issues associated with data uncertainty in optimization,330

we refer the reader to [3, 14]. As a consequence, we cannot a↵ord to neglect
resource request uncertainty and thus risk that our design solution will turn
out to be infeasible or of bad quality when implemented. We have therefore
decided to tackle data uncertainty by adopting a Robust Optimization (RO)
approach. RO is a methodology for dealing with data uncertainty that has335

received a lot of attention and has been highly appreciated in recent time
w.r.t. more traditional methodologies like Stochastic Programming, espe-
cially thanks to its accessibility and computational tractability. We refer
the reader to [14] and [3] for an exhaustive introduction to RO and for a
discussion about its determinant advantages over Stochastic Programming.340

RO is based on two major facts: 1) the decision maker must define an
uncertainty set, which identifies the deviations in the nominal value of data
against which the decision maker wants to get protection; 2) protection
against deviations specified by the uncertainty set is guaranteed under the
form of hard constraints that cut o↵ all the feasible solutions that may
become infeasible for some deviations included in the uncertainty set. More
formally, we suppose that we are given a generic binary linear program:

v = min c0 x with x 2 F = {Ax � b, x 2 {0, 1}n}

and that the coe�cient matrix A is uncertain, i.e. we do not know the
exact value of its entries. However, we are able to identify a family A
of coe�cient matrices that represent possible realizations of the uncertain
matrix A, i.e. A 2 A. This family represents the uncertainty set of the
robust problem. Then we can produce a robust optimal solution, i.e. a
solution that is protected against data deviations, by considering the robust
counterpart of the original problem:

vR = min c0 x with x 2 R = {Ãx � b, 8Ã 2 A, x 2 {0, 1}n}

12



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

A solution in the feasible set R of the robust counterpart is feasible for all
the coe�cient matrices in the uncertainty set A. As a consequence, R is a
subset of the feasible set of the original problem, i.e. R ✓ F . The choice
of the coe�cient matrices included in A should reflect the risk aversion of
the decision maker. We note that such definition of robust counterpart can345

be extended to any mixed-integer linear program that involves continuous
and integer decision variables. Imposing protection according to an RO
paradigm leads to the so-called price of robustness [4, 19]: this is a deteri-
oration in the optimal value of the robust counterpart with respect to the
optimal value of the original deterministic problem (i.e., vR  v), which is350

caused by the presence of the additional hard constraints imposing robust-
ness. The price of robustness is a consequence of restricting the feasible set
to the (in general smaller) set of robust solutions. Such price reflects the
characteristics of the uncertainty set: uncertainty sets associated with higher
risk aversion consider more severe and unlikely deviations and lead to higher355

protection but also higher price of robustness; in contrast, uncertainty sets
expressing risky attitudes tend to not consider unlikely deviations, o↵ering
less protection and a reduced price of robustness.

We note that in practice it is really unlikely that all coe�cients devi-
ate to their worst possible value at the same time, so one of the aims of360

“smart” RO models is to define appropriate uncertainty sets that result not
too conservative, while guaranteeing a reasonable protection. In the next
paragraph, we describe the model of uncertainty that we adopt.

4.3. Adopting �-Robust Optimization

In problem (E↵-VNF), the constraints containing the uncertain data are
those expressing the capacity of a server s 2 S for each type of resource
r 2 R: X

v2V
ā
vr

· x
vs

 a
rs

· y
s

(13)

This is a deterministic version of the constraint that takes into account
only the nominal value of each uncertain coe�cient a

vr

. For each VNFC v
and resource r, we can write the uncertain version of the constraint taking
into account resource request uncertainty as:

X

v2V
ā
vr

· x
vs

+DEV
rs

(�, x)  a
rs

· y
s

(14)

which is the constraint (13) with the additional term DEV
rs

(�, x), which365

represents the worst deviation that the left-hand-side of the constraint may
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experience under �-ROB for an allocation vector x, when at most � coe�-
cients deviate from their nominal value ā

vr

.
Before giving a precise characterization of DEV

rs

(�, x) as the optimal
value of a suitable optimization problem, we notice that the worst deviation
that the nominal value ā

vr

may experience is +�a
vr

: the most positive
deviation indeed entails the highest increase in a resource request of a VNFC
v and thus brings towards the violation of the capacity constraint (13).
Under these premises, for a fixed allocation vector x, the value DEV

rs

(�, x)
corresponds to the optimal value of the following binary linear programming
problem:

DEV
rs

(�, x) = max
X

v2V
(�a

vr

· x
vs

) · y
rsv

X

v2V
y
rsv

 �

y
rsv

2 {0, 1} v 2 V .

In this problem, 1) a binary variable y
rsv

is equal to 1 if, in the capacity
constraint corresponding to the resource-server couple (r, s), the resource370

request coe�cient deviates from its nominal value and experiences the worst
deviation�a

vr

·x
vs

, whereas it is equal to 0 otherwise; 2) the single constraint
imposes an upper bound 0  �  |V | on the number of fading coe�cients
which may deviate in the considered constraint; 3) the objective function
maximizes the deviation from the nominal value for the allocation vector375

x. The parameter � controls the robustness of the model: for � = 0 no
coe�cient is allowed to deviate and the model equals the deterministic one
neglecting data uncertainty. As the value of � increases, the total deviation
increases, until for � = |V | we reach the highest possible total deviation,
when all coe�cients are allowed to deviate simultaneously and the solution380

protects against this fact.
We note that the robust version of the constraints (13) including the

terms DEV
rs

(�, x) actually includes inner maximization problems which in
turn contain the products of variables x

vs

· y
rsv

. Constraints (14) are thus
non-linear. However, as proved in [4], such non-linearities can be linearized
according to the following procedure. First, we note that for a fixed vector x,
the value DEV

rs

(�, x) is equal to the optimal value of its linear relaxation,
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where the integrality requirements on variables y
rsv

are dropped:

DEV
rs

(�, x) = max
X

v2V
(�a

vr

· x
vs

) · y
rsv

(DEV-primal) (15)

X

v2V
y
rsv

 � (16)

0  y
rsv

 1 v 2 V . (17)

We can then define the dual problem of the previous linear program, intro-
ducing the dual variables v

rs

, w
rsv

for v 2 V corresponding to the constraints
(16) and (17), respectively:

min � · v
rs

+
X

v2V
w
rsv

(DEV-dual)

v
rs

+ w
rsv

� �a
vr

· x
vs

v 2 V

v
rs

� 0

w
rsv

� 0 v 2 V .

Since the problem DEV-primal is feasible and bounded, on the basis of
strong duality we can conclude that also its dual problem DEV-dual is fea-
sible and bounded and their optimal values are equal. We can then substi-
tute each (non-linear) uncertain version of (14) with the following family of
linear constraints and decision variables obtained from DEV-dual [4]:

X

v2V
ā
vr

· x
vs

+

 
� · v

rs

+
X

v2V
w
rsv

!
 a

rs

· y
s

(18)

v
rs

+ w
rsv

� �a
vr

· x
vs

v 2 V (19)

v
rs

� 0 (20)

w
rsv

� 0 v 2 V . (21)

The robust version of the optimization problem BLP, which we denote by
ROB-BLP, is thus obtained by replacing the non-robust capacity constraints
(5) of BLP with the robust constraints and variables (18-21).

We remark that the increase in the dimension of the problem caused by385

the additional variables and constraints used in the dualization approach is
not excessive: the linear robust formulation is indeed compact, i.e. its size
is polynomial in the size of the input.

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

5. A Fast Fixing Heuristic

The robust version of problem (E↵-VNF) is a binary linear programming390

model and, at least in principle, can be solved by using any commercial op-
timization solver, such as IBM ILOG CPLEX. However, the problem can be
very hard to solve even for an advanced state-of-the-art solver like CPLEX
when the size of the instances increase: the solver may have di�culties in
identifying feasible solutions of good quality in a reasonable amount of time395

and can show a really slow convergence to an optimum. In this case, in order
to enhance the performance of the solver, we can profit from integrating the
solver with an e�cient warm-start heuristic, which provides an initial feasi-
ble solution of good quality used to “warm-start” the solver and accelerate
the convergence to an optimal solution.400

The warm-start heuristic that we propose to adopt in this paper is based
on two major phases:

• the execution of a deterministic variable fixing procedure, which ex-
ploits information coming from the linear relaxation of the problem.
Variable fixing is a procedure according to which a subset of decision405

variables of the problem has their value fixed a-priori on the basis of
some criteria: given all the decision variables V AR

i

2 {0, 1}, i 2 I of a
problem, variable fixing identifies two disjoint subset of variables with
indices IFIXto0, IFIXto1 ✓ I: IFIXto0 \ IFIXto1 = ; and the value of
decision variables is fixed as follows: V AR

i

= 0 for i 2 IFIXto0 and410

V AR
i

= 1 for i 2 IFIXto1. The fixed variables are thus not anymore
part of the decision process and we face a subproblem of the original
optimization problem that is in general easier to solve;

• the solution of a smaller version of the original binary linear program,
including the fixing of variables operated in the first phase. This phase415

exploits the power of a state-of-the-art MIP solver that, though not
being able to solve the entire original problem e�ciently and quickly,
can instead fast provide solution of high quality to appropriate sub-
problems.

The complete algorithm of the heuristic is presented in Algorithm 1.420

Here, we rely on the following notation: 1) ROB-BLP is the robust problem
containing only binary variables; 2) ROB-BLPrel is the linear relaxation
of the robust problem, i.e. the problem where the binary variables become
continuous and can assume any value in the interval [0, 1]); 3) ROB-BLPFIX

is a subproblem of the robust problem that includes additional constraints425
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fixing the value of a subset of variables (we must not decide anymore the
value of these variables).

The heuristic first provides for solving the linear relaxation ROB-BLPrel,
obtaining an optimal solution denoted by (x̄, ȳ, z̄, f̄ , ḡ, v̄, w̄) (we remark that
this solution may have fractional values). The optimal solution is used as430

basis for fixing the values of a subset of decision variables in the original
binary problem ROB-BLP, thus obtaining the problem ROB-BLPFIX . Our
fixing strategy essentially consists in defining ROB-BLPFIX by a-priori set-
ting to 1 the value of variables whose value in (x̄, ȳ, z̄, f̄ , ḡ, v̄, w̄) is su�ciently
close to 1. The rationale of this strategy is that if the value of a variable435

is su�ciently close to 1 in the optimal solution of the linear relaxation, we
have a pretty good indication that in a good feasible solution of the original
problem ROB-BLP we should fix the decision variable to that value. Note
that, in contrast to the general fixing rule previously presented, we do not
consider the fixing of variables to the value 0.440

More formally, we focus on the following fixing rule, which only in-
volve the VNFC-server allocation decision variables x

vs

. Let x̄ be the value
of the VNFC-server allocation decision variables in the optimal solution
(x̄, ȳ, z̄, f̄ , ḡ, v̄, w̄) of the linear relaxation ROB-BLPrel, then the rule is:

if x̄
vs

� 1� ✏ then set x̄
vs

= 1

where 0 < ✏ < 1 is a parameter that must be chosen.
Let FIXED be the set of couples (v, s) that satisfy the previous fixing

rule. After having established the set FIXED, we define and solve the sub-
problem ROB-BLPFIX obtained by adding to ROB-BLP the constraints:

x
vs

= 1 (v, s) 2 FIXED

ROB-BLPFIX is a more-constrained version of the original robust prob-
lem, where the value of the variables x

vs

with (v, s) 2 FIXED is set and
is not anymore part of the decision process. ROB-BLPFIX thus actually
constitutes a subproblem that can be solved faster to optimality (smaller445

feasible solution set to explore for the solver). It is solved by means of the
solver CPLEX. We stress that a feasible solution for the subproblem ROB-
BLPFIX is also feasible for the complete problem ROB-BLP. We use the
best solution found for ROB-BLPFIX within the time limit by CPLEX as
starting solution for solving the original problem ROB-BLP, thus supporting450

a warm-start for CPLEX.
We note that we just consider the fixing of the VNFC-server allocation

decision variables x
vs

since they are particularly important in the decision
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process and when we impose x
vs

= 1 for some couple (v, s), from constraint
(2) we know that we can impose at the same time x

v�

= 0 for any server455

� 2 S such that � 6= s, thus immediately determining the value of many
other relevant variables.

A very important thing to remark is that we should not fix the value of
too many variables x

vs

to 1, since this may reduce the possibility of finding
good quality solutions when solving ROB-BLPFIX (the problem would be460

too constrained). So we impose an upper bound UB > 0 on the number
of variables x

vs

that can be fixed to 1 for each server s. The aim of this is
to not assign too many VNFCs to the same server s, leading to a potential
overbooking of that server. Specifically, for each s 2 S, we sort the variables
x̄
vs

from the highest to the lowest value and then, we fix to 1 the UB > 0465

variables with highest value x̄
vs

� 1� ✏.

Algorithm 1 - Warm-start Heuristic

1: FIXED := ; //initialization of the subset of fixed variables
2: Solve ROB-BLPrel and get its optimal solution (x̄, ȳ, z̄, f̄ , ḡ, v̄, w̄)
3: for s = 1 to |S| do
4: NF := 0 //number of fixed variables
5: Sort the values x̄ non-increasingly and let ` = 1, ..., |V | be the corre-

sponding sorted indices v 2 V
6: for ` = 1 to |V | do
7: if xRELAX

`s

� 1� ✏ and NF  UB then
8: set x

vs

= 1
9: FIXED := FIXED [ (v, s)

10: NF := NF + 1
11: else
12: break
13: end if
14: end for
15: end for
16: Define ROB-BLPFIX by adding the fixing constraints x

vs

= 1, 8(v, s) 2
FIXED to ROB-BLP

17: Solve ROB-BLPFIX (with time limit)
18: Use the best solution found for ROB-BLPFIX as warm-start solution

for solving ROB-BLP with CPLEX
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6. Numerical Evaluation

We performed a numerical evaluation focusing on an important use-case
for VNF, namely the Evolved Packet Core (EPC), which represents the
cornerstone of next generation mobile networks. Each component belonging470

to this VNF has a particular task and can be run on a stand-alone VM.
The EPC architecture distinguishes between user data - user plane (UP),
and signalling tra�c - control plane (CP). Typically, both have di↵erent
latency constraints. We considered di↵erent configurations for the EPC,
which are determined by the actual load. The tra�c which the virtualized475

EPC is able to process can be expressed in terms of the number of events
generated by the users attached to the base stations during a time frame of
one hour (ev/h). This metric was used to dimension the VNF and, therefore,
the number of each component type (Base Station, Mobility Management
Entity, etc.) belonging to the EPC, by applying the dimensioning rules from480

[20].
In our evaluation, we considered uncertainty on the CPU demands re-

quested by each VNFC. Typically, such maximum demand deviation can be
obtained from workload traces by analyzing historical data or by workload
prediction mechanisms. For example, using collaborative filtering model-485

ing and prediction, authors in [21] were able to predict diverse workload
throughput values with low training overhead and within approximately
30% of the correct figure. Consequently, we assume that the components
may have a CPU utilization varying at maximum 30% from the nominal
demands in the worst case. In the evaluation, we consider the protection490

against the deviation of a given number of VNFCs, by using a protection
factor (�). The solution is protected from the deviation of a maximum num-
ber � of uncertain parameters, each one specifying the CPU demand of a
given VNFC. The service chains are composed of VNFCs that belong to a
particular communication path both for the CP and the UP.495

6.1. Comparison between full model and Fast Fixing (FF) Heuristic

First, we were interested to compare our heuristic against the optimal so-
lution provided by CPLEX through the standard branch-and-cut algorithm.
The problem we are facing is very hard to solve in the exact way, even by
considering very small instances, as also shown in our previous work [6].500

Therefore, the evaluation was conducted by considering three di↵erent hard
time limits (short, medium and large), with the aim of finding out if the
heuristic is able to output comparable or even better results, in comparison
to the optimal solver for a given time limit. The choice of the intervals was
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based on the fact that such problems need to be solved in a very short time,505

when dealing with TOs’ decision making processes:

• short - 200 seconds;

• medium - 600 seconds;

• large - 2500 seconds.
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Figure 2: CPLEX - FF Heuristic Comparison

For the heuristic, we used both the short and the medium time intervals,510

while CPLEX original model was run with the medium and large time limits.
Since the heuristic is composed of di↵erent phases, we split the available time
between the phase where we solve the problem ROB-BLPFIX , that includes
the additional fixing of variables, and the phase where we solve ROB-BLP
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with warm-start, where we try to improve the solution found solving ROB-515

BLPFIX (specifically, for the short interval we set 150s for solving ROB-
BLPFIX and 50s for solving ROB-BLP with warm-start, whereas and for
the medium interval we set 400s and 200s). This is because most of our
experiments showed that the first phase stage of the heuristic finds a very
good solution that is hard to improve even in longer runs by the warm520

start stage. As shown in Fig. 2, we compare the energy e�ciency of the
FF heuristic with the CPLEX solver for increasing problem sizes, defined
in number of events per hour, ranging from 1.3 millions up to 3.1 millions,
with a step size of 300,000 events. We compare the objective function (total
power consumption of both network and computing infrastructure) of the525

resulting VNF placement and network embedding. For the sake of brevity,
we only show the results for three di↵erent protection factors (�= 0, 2,
6). As displayed in Fig. 2, we consider two di↵erent runs of the heuristic
(short and medium) and two for the original CPLEX model (medium and
long). In the first three cases (up to 1.6M events) the results are almost530

comparable for all the � values, while for the other configurations there are
some di↵erences. In particular when � = 0, meaning that we are considering
no protection at all, the heuristic with the medium hard time limit (600 s)
shows very similar results to the original model solved in the long run (2500
s), and in two configurations it is able to achieve even better results. This is535

because CPLEX was not able to find the optimal solution within the given
time limit, but our FF heuristic found a better one due to the fixing rules
that limit the problem size.

Starting from the configuration characterized by a load of 2.2M events,
the total power consumption considerably increases. This is due to the acti-540

vation of several links and network nodes that are needed to accommodate
the tra�c and the higher number of components needed to implement the
service chains. If at maximum two components (� = 2) are allowed to de-
viate from their nominal demand, the results show the same trend and the
heuristic with the medium time limit is performing similarly to the CPLEX545

model solved in the long run. What is interesting to observe is that, when
� is increasing (e.g equal to 6), the heuristic with the short and medium
time limit is achieving almost the same results and they output even better
results in around 75% of the considered configurations, especially when the
number of events is considerably high. Despite the significant larger amount550

of time allowed for the optimal solver, the heuristic still provides excellent
solution qualities as depicted, even in the short run. These results are en-
couraging and show that our heuristic is able to achieve very good results in
short time for scenarios with high number of events if the allocation needs
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to be protected more.555

6.2. Solution Quality

Finally, we investigated the solution quality of our heuristic and the
original CPLEX model, in terms of robustness and additional cost for pro-
tecting against uncertainty for a given �. To this end, we solved the prob-
lem for a given � using our heuristic (short run), and the original CPLEX
model (medium run). By considering the output of the VNFC allocation
to the physical servers and the routing path, we created 10.000 di↵erent
instances of our problem in the following. For each instance, if a VNFC re-
quires a

vr

units of CPU, we allowed to deviate randomly its demand in the
range [ā

vr

��a
vr

, ā
vr

+�a
vr

]. After updating the CPU utilization on each
server according to the random values calculated within the given bounds,
we checked the resource budget constraint and computed the number of con-
straint violations due to the uncertainty. Two performance indicators are
considered: the robustness degree and the price of robustness. The former
is computed as:

robustness = 1� #violations

#runs
(22)

The price of robustness is computed, for a given �, as the increase in the
objective function (i.e., the total power consumption) compared to the best
value achieved when no protection is applied (� = 0):

price
(�=x)

=
total power

(�=x)

� total power
(�=0)

total power
(�=0)

(23)

Fig. 3 shows the robustness degree (in blue) and the price of robustness
(in red) as the protection factor increases for three di↵erent configurations
of the vEPC. In the case of � = 0, we do not protect against uncertainty560

and thus no additional resources are needed. Consequently, the degree and
price of robustness are zero as the objective function (i.e., the total power
consumption) is the minimum possible. When � increases, the objective
function increases because the solution requires more energy due to the ac-
tivation of more resources needed to protect the allocation from the demand565

deviations. What is interesting to observe is that the short run of our heuris-
tic o↵ers the same or even better robustness (e.g. � = 3 and ev/h=2.8M)
in comparison to the original CPLEX model by showing a lower price, in
almost all the cases. Our experiments show that the heuristic converges in
a very short time to solutions characterized by a high quality in terms of570

additional price for a given degree of protection. Selecting a proper � is up
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Figure 3: Degree and Price of Robustness

to the decision maker because it allows the trade-o↵ between the additional
price to pay and the desired level of robustness. An upper bound for con-
straint violation probability can be calculated as in [4]. If a given NFVI
operator wants to protect its VNF more from demand deviations, it would575

select a larger � at the expense of higher costs to run the infrastructure.
A more opportunistic operator would select a lower value leading to a po-
tential higher constraint violation probability, which may lead to increased
resource contention and ultimately also to SLA violations at the benefit of
significant cost savings.580

7. Conclusions and Future Work

Network Function Virtualization will be a key cornerstone for 5G net-
work infrastructure. In Network Function Virtualization, a set of network
functions are virtualized and run on commodity servers inside virtual dat-
acenters. In such a setup, it is crucial to optimize the deployment and585

operation of the Virtual Network Functions to be both energy e�cient for
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controlling the operational costs as well as robust to cope with fluctuations
or imprecise knowledge in resource demands for VNFCs.

In this paper, we tackled the problem of designing a power e�cient Vir-
tual Network Function placement and network embedding. The method-590

ology followed here is made up of three steps. First, an exact formulation
using binary programming has been developed, which places a set of VNF
Components inside a virtualized data center while trying to minimize the
energy consumption. Second, the theory of �-Robustness has been applied
and a robust version of the problem has been proposed, where input to the595

problem is not known precisely but rather resource demands are allowed
to deviate within bounds; the robust algorithm has reduced computational
complexity compared to our previous work [6]. Third, a fast variable fixing
heuristic that exploits structural information coming from the linear relax-
ation of the problem has been developed, aiming at solving the robust model600

faster. Our robust model and heuristic can tradeo↵ energy e�ciency and
robustness under uncertainty constraints.

We compared the heuristic against the optimal solution provided by
CPLEX, by imposing a hard time limit for solving in both approaches. We
showed that our heuristic achieves better results with respect to the state-605

of-the-art branch-and-bound algorithm performed by CPLEX in reasonable
time and is therefore suited for online optimization. Also, we investigated
the solution qualities of our heuristic in terms of robustness and additional
cost for protecting against uncertainty for a given �. We found that the
cost for achieving a given robustness degree has a stable trend for all � 6= 0,610

while the degree of robustness increases with �, as expected.
There are several interesting aspects to be tackled for future work. First,

having better knowledge of the distribution of the uncertainty in the form of
a more accurate description would allow us to calculate more precise solu-
tions for the given input parameters using the theory of Multiband Robust615

Optimization (e.g., [19]). Also, di↵erent heuristic solutions could be explored
that would allow faster computation of solutions using e.g. global first fit
based approaches that need to be modified to cope with the uncertainty
of the input data. Finally, we intend to integrate our online algorithm into
open source cloud platforms such as OpenStack with the Watcher framework620

or NFV platforms such as OpenBaton.
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