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Structure of the work

Our main goals along this project were two: first of all, understand and
explain, from a mathematically rigorous point of view, the modeling of an
evolutionary process as a continuous Markov process, and why Lie Markov
models are an adequate option for this task. Secondly, we wanted to improve
a previous implementation of Lie Markov models in IQ-TREE, an algorithm
for inferring phylogenies.

The distribution of the chapters follows this aim:

• Chapter 1 contains a description of every object necessary to deal with
continuous-time Markov models. The reference we used is [1], which
we recommend for students who start learning the matter.

• Chapter 2 is nothing but a detailed explanation of some parts of the
article [4]. Since we did not have the space limits and the formal
requirements which a paper normally has, we could give abundant ex-
planations when we considered convenient, and omit technical results
which are not necessary for the understanding of the theory.

• Chapter 3 includes a plot of the article [5], plus our results regarding
the implementation of Lie Markov models to IQ-TREE. For a descrip-
tion of this software, see [9].

• Chapter 4 is composed by mathematical results which can be used in
much broader contexts than ours, and whose description could distract
the attention of the reader when following the rest of the chapters.
Apart from the mentioned references, the main source of results is the
excellently written book ”The symmetric group”, [8].

Apart from these references, we used notes from the course Mathematical
Models of Biology, given by Marta Casanellas and Jesús Fernández Sánchez.
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Notation

There is only one notation convention which we follow and must be carefully
taken into account by the reader. Our transition matrices do not follow the
stochastic convention of having rows which sum 1, but have columns which
sum 1. We do this in order to follow the articles [4] and [5], for otherwise
the reader of both would be confused. Moreover, it is justified to follow
this convention, since it allows us to write most of biologically meaningful
vectors as rows, which is more comfortable for mathematicians. In any case,
we ask to the reader not to forget about this fact.
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Chapter 1

First steps

1.1 The discrete model

Given a set of m species with a common ancestor, the evolutionary process
suffered by the original gene is modeled by a tree T which is rooted and has
m labeled leaves. For example, if m = 3 and the root is called π, we could
have:

b

1 2 3

π

a

c d

Figure 1.1: Tree of three leaves.

We assume than only substitution of bases can occur (i.e. no deletion nor
addition) and also that substitutions are inter-independent, so we can focus
on a single position of the gene. Therefore it is enough to set each node of the
tree T to be a random variable with n possible states (we will take n = 4 for
the nucleotides {A,C,G, T}). At the root, π at Figure 1.1, the distribution
of states is given by (we abuse of he notation) πT = (π1, · · · , πn).
We will assume that on each edge e of the tree there is a n × n transition
matrix Me whose entries are indeterminates representing the probabilities of
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transition between the states. Since we follow the column-sum-1 convention,
in a matrix M e the element me

i,j would represent the probability of the
father node with state j to become the son node with state i. In Figure
1.1, e ∈ {a, b, c, d}. It is important to note that in discrete models the
edge lengths are not meaningful. The random variables at the leaves
are observed, while the ones at the interior nodes are hidden.

The entries of the matricesMe and the vector π are the model parameters,
on which normally many restrictions are imposed, for example forcing some
elements to be identical. Moreover, in order to be biologically meaningful,
this objects must satisfy some properties, which we define:

Definition 1.1. A matrix M = (mij) ∈Mn(R) is called a Markov matrix
if its elements are nonnegative and, for every column of M , the sum of its
elements is 1. Differently explained, if for all i, j ∈ [n] we have mij ≥ 0 and

(1, · · · , 1)M = (1, · · · , 1)

.

Definition 1.2. A column vector πT = (π1, · · · , πn) is said to be a distri-
bution vector if its elements are nonnegative and their sum is 1. In other
words, if for all i ∈ [n] we have πi ≥ 0 and

(1, · · · , 1)π = 1.

With these definitions, we can say that the properties which the objects
π and M e must satisfy are the following:

• Every M e must be a Markov matrix.

• The root π must be a distribution vector.

Markov matrices satisfy the following property, which we will repeatedly
use:

Proposition 1.3. Let as M1,M2 ∈ Mn(R) be Markov matrices. Then
M1M2 is a Markov matrix.

Proof. It is obvious that matrix M1M2 will be nonnegative. Moreover, we
easily see that

(1, · · · , 1)M1M2 = (1, · · · , 1)M2 = (1, · · · , 1),

which finishes the proof.
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The multiplicative closeness of Markov matrices is important because it
allows us to set one matrix which is equivalent to the action of two matrices
(and so on). For example, let us look at the tree in Figure 1.2. The random
distribution at node 1 will be

MaMbπ = (MaMb)π,

hence this process is equivalent to the process in Figure 1.3, in which
Mc = MaMb. This will turn out to be a very relevant discussion along this
work.

π

a b

1

Figure 1.2: Evolution process in two steps.

π

c

1

Figure 1.3: Evolution process in one step.

However, discrete modeling has obvious disadvantages, among which the
most important one is that it ignores, or at least considers as known, the
time which has passed between one node and another. In other words, the
variable time (i.e. edge length) is not considered as an unknown we should
determine. This posses the necessity of using more complex models for
biological research, which we introduce in next section.

1.2 From discrete to continuous-time Markov mod-
els

Continuous-time Markov models are the usual approach preferred by biolo-
gists for inferring phylogenies. First of all we will justify the election of the
modeling and then expose its substitution matrices and their mathematical
properties. The interested reader can find more information in [1]. For the
sake of clarity we simply state the case where only four states are involved



CHAPTER 1. FIRST STEPS 6

(one for each of the bases A,C,G, T ), although every result we will state
applies also for the general case with nearly identical proofs.

Our assumptions when inferring the model will be the following:

• All sites in a nucleotide sequence evolve independently and following
the same stochastic process.

• Evolution follows a Markov process (any future state is independent
of the past, given the present state).

• The rate of change (which we will soon explain) does not change over
time. This property is called homogeneity.

When saying we aim to model evolution as a continuous Markov process,
we refer to expressing the transition matrix as some smooth, time dependent
function. Therefore our first definition will be the following:

Definition 1.4. The Markov-matrix function M(t) is a (smooth) transition
matrix if it has the form

M(t) :=


pA,A(t) pC,A(t) pG,A(t) pT,A(t)
pA,C(t) pC,C(t) pG,C(t) pT,C(t)
pA,G(t) pC,G(t) pG,G(t) pT,G(t)
pA,T (t) pC,T (t) pG,T (t) pT,T (t)

 ,

where the smooth function pX,Y (t) := P (Y |X, t) is the probability that nu-
cleotide X changes to nucleotide Y after some time t ∈ R≥0.

The degree of smoothness is not specifically determined, but we want every
function to be at least C1. As we will see, this will naturally be the case.
Another point which should be taken into account is that in this definition we
are following the convention of making the rows sum 1. However, biologists
may prefer the rows-sum-1 convention (i.e. to use the transpose of our
M(t)). Any of these two methods can be chosen, but one must be careful
so no mistake is made.

Our substitution matrix has a disadvantage: attending to its definition, it
has no invariant, i.e. a quantity which remains unchanged while t increases.
It is convenient to restrict our definition in order to create one, which makes
computations much simpler. However, we will proceed backwards: we will
assume its existence and arrive to the proper definition of our new M(t).

For every two different nucleotides X and Y , we will write qX,Y to refer
to the instantaneous rate of substitutions of X by Y . In other words, qX,Y is
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the speed of X being replaced by Y when time goes to zero (i.e. there is some
derivative involved, although the differential equation will be deduced later).
We define qX,X : −

∑
X 6=Y qX,Y . Therefore these qX,Y are our invariants; we

are assuming the instantaneous rates of change are constant.

All these rates of change can be condensed in one sole matrix Q. We
give a definition of this matrix Q ab ovo, i.e. without the need of a previous
definition of the rates qX,Y :

Definition 1.5. A rate-matrix is a matrix Q ∈M4(R) with the form

Q :=


qA,A qC,A qG,A qT,A
qA,C qC,C qG,C qT,C
qA,G qC,G qG,G qT,G
qA,T qC,T qG,T qT,T

 ,

which satisfies the following conditions:

• qX,Y ≥ 0 for X 6= Y .

• qX,X < 0 for any X.

•
∑

Y qX,Y = 0, i.e. (1, 1, 1, 1)Q = 0.

We aim to justify the differential equation we will use to define M(t)
depending on Q. If we return now to our interpretation of qX,Y as the
instantaneous rate of substitution which is included in our matrix Q, we can
infer the following equation:

pX,Y (t+ ∆t) = pX,Y (t)−
( ∑
Z 6=Y

qY,Z ∆t
)
pX,Y (t) +

∑
Z 6=Y

qZ,Y ∆t pX,Z(t).

It can be easily understood helping ourselves with the following figure:

Figure 1.4: Rates of change after t and ∆t has passed.

Figure 1.4 represents the following: we consider states X and Y , and an
undetermined state Z 6= Y . Along a mutation process suffered by X starting
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at time t0 = 0 until time t, we know that pX,Y measures the probability of
X becoming Y . Provided this was the case, after ∆t, either this Y mutated
to Z or it remained unchanged. Moreover, at time t there were some X
mutated to Z which after time ∆t became Y . At time t + ∆t, all possible
cases are exhausted in the three scenarios of the figure, each of which has
its analogue term in the equation.
This equation can give us our differential equation in terms of M(t) and
Q. To that end, first of all we write it with its matrix form, which is the
following:

M(t+ ∆t) = M(t) + ∆tQM(t),

which can be rearranged as

M(t+ ∆t)−M(t)

∆t
= QM(t),

and after making ∆t tend to zero, the differential equation comes up:

M ′(t) = QM(t). (1.1)

We can invoke corollary 4.3 in order to determine the unique solution of this
equation. We set M(0) = 1, since at time 0 no mutation has occurred, and
the aforementioned corollary gives that, for t ≥ 0,

M(t) = eQt.

For a brief review of the definition of the exponential of a matrix, vid.
chapter 4. For some of its most relevant properties, vid. proposition 4.2.
Since all this discussion was simply a justification of this equation, it is
pertinent, for the sake of formality, to give a new definition of this transition
matrix:

Definition 1.6. Given a continuous-time substitution process associated to
a rate-matrix Q, the time-dependent transition matrix M(t) associated to
this process is

M(t) := eQt,

where t ≥ 0. Since Q does not depend on t, we will say this is a homogeneous
model.

Therefore when we aim to study a stationary model, there are two main
ingredients: the matrices Q and the respective duration t of the processes.
Roughly speaking, inferring phylogenies can be based on these two objects,
as we will explain later in more detail.
Before going forward, we must prove that definition 1.6 satisfies our expec-
tations, i.e. that this M(t) is a Markov matrix (with columns sums equal 1
and nonnegative elements). Actually we have a stronger result, which estab-
lishes the connexion between rate matrices and transition matrices, whose
proof will use the following lemma:
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Lemma 1.7. Given the column vector v, and any rate matrix Q with asso-
ciated transition matrix M(t), then for any t ≥ 0 we have:

• If vTQ = 0, then vTM(t) = v.

• If Qv = 0, then M(t)v = v.

Proof. One simply has to use the definition of exponential. We have

vTM(
t

m
) = vT1 +

∞∑
k=1

vT
Qk

k!
(
t

m
)k = vT

where we used vTQk = vTQQk−1 = ~0TQk−1 = ~0T .
The second part of the proposition is proved analogously.

Proposition 1.8. Q is a rate matrix if and only if M(t) := eQt is a Markov
matrix for all t ≥ 0.

Proof. (⇐) If M(t) is a Markov matrix for all t ≥ 0, then for t ∈ R≥0 and
any j ∈ [4] we have ∑

i

Mij(t) = 1.

We can differentiate this equation with respect to t and get∑
i

M ′ij(t) = 0.

Moreover, from 1.1, and using that M(0) = 1, we infer that

M ′(0) = QM(0) = Q.

Combining these two equations, we conclude that∑
i

Qij(t) = 0.

Moreover, using again M ′(0) = Q, we can guarantee that Qij ≥ 0 provided
i 6= j. Indeed, since M(0) = 1 and M(t) must be a Markov matrix for every
t, it cannot happen that for i 6= j we had M ′ij(0) < 0, because if this was
the case, there would be a neighborhood of t = 0, let us say (0, ε), in which
M ′ij(t) < 0, hence after integrating we would get

Mij(ε) = 0 +

∫ ε

0
M ′ij(t) < 0,
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which contradicts our initial hypothesis of M(t) being a Markov matrix for
every t.
All in all, we conclude Q is a rate matrix, as desired.

(⇒) Suppose we are given a rate matrix Q and t ∈ R≥0. First of all, we
must note that, for any m ∈ N,(

M(
t

m
)
)m

= (e
t
m
Q)m = em·

t
m
Q = eQt.

The second equality is not trivial, for exponentiating a matrix does not work
as doing so with a complex number. In our case, however, this equality
follows from the BCH formula, stated in 4.1, and the commutativity of any
matrix with itself (hence [Q,Q] = 0).

Now let us suppose we are given a real number t ∈ R≥0. We aim to
prove that eQt is a Markov matrix.
If t = 0, the result follow immediately, so let us assume t > 0. We claim
that there exists an m ∈ N big enough such that M( tm) is a Markov matrix.
Indeed, the definition of exponential of a matrix yields

M(
t

m
) = 1 +

t

m
Q+

t2

m2
O(1),

where the O(1) term simply indicates that the rest of the series converges
to some matrix, whose matrix norm (we mention this just in case someone
is skeptical about this fact) is actually bounded by

δ = ||Q||2e||Q||t,

where || · || is the norm induced by, let us say, the square norm.
We take m big enough, for example

m > 2 max{1, |t|2δ, |t| · ||Q||, tδ

mini 6=j |qij |
},

which forces any diagonal term in t
mQ and t2

m2O(1) to be smaller than 1
2 ,

hence we get that M( tm) has positive diagonal. Regarding the non diagonal
terms of M( tm), it is enough to prove the non negativity of the non diagonal
terms of the matrix

Q+
t

m
O(1),

which is actually the case attending to the definition of m.
Putting all this together, we have proved that matrix M(t/m) is nonnega-
tive. Moreover, it is Markov since, by lemma 1.7,

(1, 1, 1, 1)M(t) = (1, 1, 1, 1).
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Finally, attending to proposition 1.3, the product of Markov matrices is
Markov, hence M(t) = M( tm)m must be Markov too, as we wanted to
prove.

Last proposition could make us think that every transition matrix we can
come up with must be the exponential of a rate matrix. On the contrary,
we can easily find a counterexample using item 6 in proposition 4.2, which
states

det(eQt) = eTr(Q).

Therefore the exponential of a rate matrix has positive discriminant. It is
enough to find a Markov matrix with negative discriminant, and this will
be out counterexample. Let us say, for example:

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,

whose determinant is −1.

1.3 Equilibrium base frequency

Given any time-dependent transition matrix M(t), an interesting feature is
the existence of equilibrium base frequencies.

Definition 1.9. The column distribution vector πT = {πA, πC , πG, πT } is an
equilibrium base frequency of the transition matrix M(t) if, for any t ∈ R,

M(t)π = π,

i.e. π is a fixed point of M(t).

Studying the fixed points of the smooth function M(t), without any
other restriction, is a difficult task which cannot be solved with all general-
ity. However, a time-dependent homogeneous model, determined by a rate
matrix Q, is easier to deal with, as the reader may check in a moment.

We know that the rate matrix Q, by definition, satisfies the equality

(1, 1, 1, 1)Q = ~0,

which implies these two straightforward statements:
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• The rank of Q is less or equal 3.

• The rate matrix Q has the left eigenvector (1, 1, 1, 1) with associated
eigenvalue 0.

We would like to have an appropriate equilibrium base frequency for every
Q. Before attacking this problem, we should recall a version of the Perron-
Frobenious theorem, as included in [2]:

Theorem 1.10 (Perron-Frobenious theorem). Let A = (aij) be a n × n
positive matrix, i.e. such that aij > 0 for i, j ∈ [n]. Then there exists a
positive real number r ∈ R+ such that r is an eigenvalue of A and any other
eigenvalue λ ∈ Spec(A) satisfies |λ| < r. This eigenvalue is simple, hence its
associated eigenspace is one-dimensional.
Moreover, there exists an eigenvector v with eigenvalue r such that all its
components are positive, and there are no other positive (or even nonnega-
tive) eigenvectors with the exception of positive multiples of v.

Proposition 1.11. A homogeneous model associated to a rate matrix Q has
a unique equilibrium base frequency π.

Proof. We consider firstly the strict case when qij > 0 for any i 6= j. Let
us consider the matrix P = α1 + Q, where α ∈ R+ is chosen such that
α+qii > 0, i.e. matrix P is positive, and so it is P T . Therefore we can apply
the Perron-Frobenious theorem to P , although we also apply this theorem
to P T : this matrix has a unique positive eigenvector, which corresponds to
the maximum eigenvalue r ∈ R+. However, we have that

P T (1, 1, 1, 1)T = (α1 +QT )(1, 1, 1, 1)T = α(1, 1, 1, 1),

hence this eigenvector must be (1, 1, 1, 1)T and, more importantly,

r = α.

Since P and P T have the same eigenvalues, the Perron-Frobenious theorem
implies that there exists a unique positive eigenvector of P . We normalize
this eigenvector, so its elements sum 1, and we will call it π. The eigenvector
π has eigenvalue α, which implies

Qπ = (P − α1)π = 0,

hence we are done for this case.

Now we have to prove the non strict case in which qij ≥ 0. Let us
consider the sequence of matrices (Qm)m∈N whose elements are defined as
qmij := qij + 1

m for i 6= j, and qmii = qii − n−1
m .
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Any of these Qm belongs to the case we proved below, hence for each of them
there exists a positive eigenvector πm such that |πm| = 1 and Qmπm = 0.
Using that the unit sphere is a compact set, there must exist a converging
sequence

πmk
→ π,

where mk →∞ as k →∞, hence Qmk
→ Q. All in all,

Qπ = lim
k→∞

Qmk
πmk
≡ 0.

Moreover, this vector π is the limit of a sequence of positive vectors πmk
,

hence it has nonnegative elements. This π is the equilibrium base frequency
we aimed to find.



Chapter 2

Lie Markov models

2.1 Definitions and basic properties

Most of likelihood methods for phylogenetic inference try to fit a single
rate-matrix globally across a proposed evolutionary tree history. These rate-
matrices are chosen from a model, i.e. a set of matrices defined by a certain
set of constraints on the elements of a generic rate-matrix. All these objects
will be formally defined later. Along this chapter we will need to redefine
some of the concepts we introduced before. The justification for this is,
first of all, that we aim to follow the papers closely so it is easier to compare
their content with our explanations; secondly, that there are good reasons to
follow these conventions, being the principal one the mathematical simplicity
they bring to our statements.

A homogeneous Markov chain is a sequential evolution process in which
probability transition rates are constant in time. This is used as an approx-
imation to biological reality, for it is known that this may not be the case.
Therefore, as it happens with every model in scientific research, we are sim-
plifying reality for the sake of computability. However, methods have been
developed to deal with this fact, among which Lie Markov models count
themselves as a very interesting one.

From now on, unless the contrary is stated, we will work over the com-
plex field C, since this generalization makes it easier to use well-known
mathematical tools. First of all we need some definitions:

Notation 2.1. We will write θ to refer to the column n-vector with all
entries equal to 1, i.e. θT = (1, · · · , 1).

Definition 2.2. A matrix M ∈ Mn(C) is called a Markov matrix if, for

14
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every column of M , the sum of its elements is 1. Therefore θTM = θT .

Definition 2.3. The general Markov model, MGMM , is the set of all n×n
Markov matrices. Differently explained:

MGMM := {M ∈Mn(C) : θTM = θT }.

Definition 2.4. The subset of matrices in MGMM with non-zero determi-
nant is denoted as GL1(n,C). Therefore

GL1(n,C) := {M ∈Mn(C) : θTM = θT , det(M) 6= 0}.

Since M,N ∈ GL1(n.C) satisfy

θT = θTM−1; θTMN = θT ,

it is infered thatGL1(n,C) is a subgroup of the general linear groupGL(n,C).
We are interested in avoiding the degenerated cases which can arise when
considering MGMM , hence along this work we will not leave the group
GL1(n,C). This is not a great loss since the set of Markov matrices with
zero discriminant is of measure zero in MGMM .

Regarding continuous-time processes, we have the following definitions:

Definition 2.5. A matrix Q ∈ Mn(C) is called a rate matrix if, for every
column of Q, the sum of its elements is 0. Therefore θTQ = 0T .

Definition 2.6. The set LGMM is compounded by all n× n rate matrices.
Equivalently:

LGMM := {Q ∈Mn(C) : θTQ = 0T }.

Definition 2.7. The general rate-matrix model, eLGMM , is the set of expo-
nentials of all rate matrices. Therefore:

eLGMM := {eQ : Q ∈ LGMM}.

As we proved in proposition 1.8, given Q ∈ LGMM , eQt is a Markov
matrix for every t ∈ R. (However, one should note that we have redefined
the terms involved, although with these new and weaker definitions the
statement continues holding; a formal proof can be made by taking the ap-
propriate parts of the proof of proposition 1.8). Moreover, the exponential
of a matrix is invertible, attending to item 7 in proposition 4.2. One more
property would be interesting for us, its closeness under multiplication. For-
tunately, we have the Baker-Campbell-Hausdorff (BCH) formula, stated in
equation 4.1:

eXeY = exp{X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]] + · · · },
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where [X,Y ] := XY − Y X is the commutator of X and Y . Provided it
converges, this series must be an element of LGMM , since LGMM is a (topo-
logically) closed set which is closed under sum and multiplication, as one
can easily check. Therefore, we conclude eLGMM is a subgroup of GL1(n.C).

Summarizing, so far we have the following group hierarchy:

eLGMM < GL1(n,C) < GL(n,C).

However, one is normally interested in not considering such vast sets,
hence more tractable ones must be defined.

Definition 2.8. A Markov modelM is a well defined subsetM⊂MGMM .

Definition 2.9. A rate-matrix model eL is the set of exponentials of a well
defined subset L ⊂ LGMM . Differently explained, eL := {eQ | Q ∈ L}.

Again by proposition 1.8, it is easy to see that all rate-matrix models
are Markov models. Our interest yields on the case M = eL, hence we will
commit an abuse of notation and refer to L as a model.

2.2 Multiplicative closeness

When introducing the sets GL1(n,C) and eLGMM , we were interested in
proving they are actually groups. As we will see along this section, this
property, or more precisely a weaker demand as the following one, is crucial:

Definition 2.10. A Markov model M is multiplicatively closed iff

M1,M2 ∈M⇒M1M2 ∈M,

i.e. if M forms a semigroup under matrix multiplication.
When eL is multiplicatively closed, we will also say that L is multiplicatively
closed.

First of all, we would like to find sufficient conditions for a rate-matrix
model L to be a multiplicatively closed one. This problem was partially
commented when introducing the BCH formula in 4.1, which we write again:

eXeY = exp{X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]] + · · · }.

Therefore we are looking for conditions on every X,Y ∈ L to force

X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]] + · · · ∈ L.
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Let us recall definition 4.14: a closed set L, with the required operators
defined, is a Lie algebra if t1X + t2Y ∈ L and [X,Y ] ∈ L, for all X,Y ∈ L
and t1, t2 ∈ C. We have the following result:

Proposition 2.11. If L is a Lie algebra, then L is multiplicatively closed.

Proof. From the property t1X+ t2Y ∈ L we infer L must be an affine space,
hence a closed set. Moreover, since [X,Y ] ∈ L, we deduce any of the Lie
brackets of the sum belong to L, hence also each of the summands. All in
all, the series is a convergent sum of elements in L (a closed set), hence it
converges to an element Z ∈ L, as we aimed to prove.

Therefore the condition we were seeking for L was ”being a Lie algebra”.
At this point it is pertinent to expose why being multiplicatively closed is
a significant property in biological terms. To that end, let us consider a
phylogenetic tree in which each of the edges e has an associated rate-matrix
Qe from some model L.
Now let us look at the following figure:

Figure 2.1: Decomposition of the orbits of G4 into irreducible modules.

We take an edge ea = (ua, va), whose associated rate-matrix is Qea and
hence its associated Markov matrix is eQaτa , where τa is the length of the
edge ea. We also consider the edge eb = (ub, vb) with length τb and ub = va,
i.e. it leaves from the tip of ea. We aim to remove the taxon va = ub, and
find an equivalent edge eab = (ua, vb) with length τa + τb and an adequate
Qab which satisfies

exp[Qab(τa + τb)] = exp[Qaτa] exp[Qbτb].

In other words, we have applied a marginalization procedure with respect to
the vertex ua = vb. We have already proved that such a matrix Qab exists
in LGMM . However, we need to ask for more, since we are using a model L
which we want to respect, i.e. we need Qab ∈ L. If we write X := Qaτa and
Y := Qbtb, we can clearly see that, to this end, L must be multiplicatively
closed.
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This virtue which multiplicatively closed models have can be taken fur-
ther. Let us suppose the model L forms a Lie algebra and consider the
rate-matrices Q1, · · · , Qm ∈ L and the parameters τ1, · · · τm ∈ C, as in the
following figure:

Figure 2.2: Inhomogeneous process.

This inhomogeneous evolutionary process has a substitution matrix given
by

eτmQm · · · eτ1Q1 := M(t),

where t = τ1 + · · ·+ τm. We can repeatedly apply the multiplicatively close-
ness of L and conclude that we can write

M(t) = eQ̂t,

for some matrix Q̂ ∈ L. Hence we have found a matrix Q̂ ∈ L which acts as
a homogeneous average of the inhomogeneous process given, which makes
evident the virtues of these models.

2.3 The GTR model is not multiplicatively closed

Among all possible rate-matrix models, the general time reversible model
(GTR) counts itself as the most frequently selected for phylogenetic infer-
ence. In this section we will show that it actually lacks of multiplicatively
closeness, hence alternative ones should be used if one wants to be consistent
with the priorities exposed below.

First of all let us introduce the pertinent definitions and the model.

Notation 2.12. We will write π to refer to any column n-vector with the
form

πT = (π1, · · ·πn), πi ∈ R+, π1 + · · ·πn = 1.

This π will be called a distribution vector.

Depending on our interest, in some cases it is more comfortable to have πi ∈
C. However, one should note that the distribution vector π is biologically
meaningful only provided πi ∈ R≥0. The case πi = 0 is excluded to avoid
unnecessary technical issues in the following discussion.
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Notation 2.13. We will write D(π) to refer to the diagonal matrix satis-
fying D(π)ii = πi, i.e. whose diagonal is the vector π.

Definition 2.14. The general time reversible model (GTR) is defined as

LGTR := {Q ∈ LGMM : ∃π | QD(π) = D(π)QT }

Since we also have QmD(π) = D(π)(Qm)T , one can use the absolute con-
vergence of the matrix exponential and infer

eLGTR = {M ∈ eLGMM : ∃π |MD(π) = D(π)MT }.

Let us go for the aforementioned proof:

Lemma 2.15. Let X = (Xij) ∈ Mn(C) satisfy XD(v) = −D(v)X for
some vector v = (v1, · · · vn)T . Then, for every i, j ∈ [n], either Xij = 0 or
vi = −vj .

Proof. This is a simple calculation. We have

(XD(v))ij = Xijvj and (D(v)X)ij = viXji,

hence the given equality implies that, for every i, j,

Xijvj = −viXij .

This implies exactly what we aimed to prove.

Proposition 2.16. The GTR model is not a Lie algebra.

Proof. We only discuss the case n ≥ 3. Otherwise it does not make much
sense to talk about the GTR model.
Let us consider two symmetric matrices Q1, Q2 ∈ LGMM (they obviously
exists, since, for any symmetric matrix in Mn(C), the diagonal terms may
be changed in order to make every column sum 0). Let us also consider the
distribution vector

πT :=
1

n
(1, · · · , 1) =

1

n
⇒ D(π) =

1

n
1n.

Therefore for i ∈ [2], it obviously holds that

QiD(π) = D(π)QT ,

which implies Qi ∈ LGTR.
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Now let us see what conditions are necessary for these two matrices to
make [Q1, Q2] ∈ LGTR. Suppose there existed a distribution vector π̂ which
satisfied

[Q1, Q2]D(π̂) = D(π̂)[Q1, Q2]
T .

Since Qi are symmetric, we have

[Q1, Q2]
T = (Q1Q2 −Q2Q1)

T = Q2Q1 −Q1Q2 = −[Q1, Q2].

Hence the existence of such a vector as π̂ implies that

[Q1, Q2]D(π̂) = −D(π̂)[Q1, Q2],

which according to previous lemma leads us to the following disjunction: for
every i, j, either π̂i = −π̂j or [Q1, Q2]ij = 0. However, the former equation
cannot hold attending to the definition of distribution vector, thus for every
i, j we must have [Q1, Q2]ij = 0, which is nothing but a complicated way to
say that [Q1, Q2] = 0.

Summarizing, so far we have proved that a necessary condition for the
GTR model to be a Lie algebra is that, for every two symmetric matrices
Q1, Q2 ∈ LGMM , they satisfy [Q1, Q2] = 0. It is only necessary to find a
counterexample of this statement to finish our prove. Indeed, let us consider
the following n× n symmetric matrices:

Q1 =



∗ α β 0 · · · 0
α ∗ 0 0 · · · 0
β 0 ∗ 0 · · · 0
0 0 0 0 0
...

...
...

. . .
...

0 0 0 0 · · · 0


, Q2 =



∗ α β′ 0 · · · 0
α ∗ 0 0 · · · 0
β′ 0 ∗ 0 · · · 0
0 0 0 0 0
...

...
...

. . .
...

0 0 0 0 · · · 0


,

where the asterisks are chosen so that they have zero-sum columns. As one
can easily calculate,

[Q1, Q2]1,3 = α(β − β′),

hence it is enough to choose α 6= 0 and β 6= β′ to have the desired coun-
terexample, which finishes the proof.

Since being a Lie algebra is a sufficient but not necessary condition to be
multiplicatively closed, last proposition does not finish our discussion about
the closeness of the GTR model, and we need another one. For this task, we
will need the Perron-Frobenious theorem, which we have stated in chapter
1 as theorem 1.10.
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Proposition 2.17. The GTR model is not multiplicatively closed.

Proof. We demonstrate this fact only for the case when n ≥ 3. Given two
symmetric matrices Q1, Q2 ∈ LGMM , (we know they must exist), let us
consider the two matrices M1 = eQ1 and M2 = eQ2 . Matrices M1,M2 not
only belong to eLGMM , but also to eLGTR , with associated distribution vector
equal to π = 1

nθ.

Let us assume that GTR is multiplicatively closed. Then we must have
M1M2 ∈ eLGTR , i.e. there must exist a distribution vector π̂ such that

M1M2D(π̂) = D(π̂(M1M2)
T ),

or differently expressed taking advantage on the symmetry of Mi,

(1) M1M2D(π̂) = D(π̂)M2M1.

Moreover, since Mi are symmetric and Markov, they satisfy Miθ = θ,
hence we also have

(2) M1M2θ = θ.

But that is not all, because we are still able to find another eigenvector of
matrix M1M2:

(3) M1M2π̂ = M1M2(D(π̂θ)) = D(π̂)M2M1θ = D(π̂)θ = π̂.

The moment has come to use the Perron-Frobenious theorem. We do know
that M1M2 is a symmetric matrix, although we cannot assure it is positive.
Let us assume this is true for a moment and state an example later in which
this is the case.
In equations (2) and (3) we have found two eigenvectors of M1M2, each of
them strictly positive. From the uniqueness of the positive eigenvector, we
infer they must be multiples of each other. Using the sum of their elements,
we conclude

π̂ =
1

n
θ.

When we plug this formula into (1), since D(θ) = 1n, we obtain

M1M2 = M2M1.

Therefore if we find Markov, symmetric matrices M1,M2 such that do not
commute and M1M2 is positive, we will have found a counterexample of
the multiplicatively closeness of the GTR model and our proposition will be
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finished.
Indeed, we can choose the n× n Markov matrices

M1 =



∗ a b c · · · c
a ∗ c c · · · c
b c ∗ c · · · c
c c c c c
...

...
...

. . .
...

c c c c · · · c


, M2 =



∗ a b′ c · · · c
a ∗ c c · · · c
b′ c ∗ c · · · c
c c c c c
...

...
...

. . .
...

c c c c · · · c


,

where the parameters must satisfy a, b, c > 0 and a+ b+ (n− 3)c < 1, and
similarly for b′, so that the asterisks can be chosen in order to make the
matrices Markov and positive. Moreover, the product of positive, Markov
matrices is also positive and Markov, hence M1M2 satisfies the demanded
conditions. It only remains to prove that M1M2 6= M2M1, which can be
easily checked to be the case as long as b 6= b′.

To finish this section, we derive the Lie algebra of the general Markov
model LGMM , which in [7] Johnson was the first one stating. The basic
definitions and some results of Lie theory are explained in section 4.2.

Let us consider the matrices {Eij}i,j∈[n], whose elements are [Eij ]kl =
δijδkl. The commutator of any two of them is easy to calculate:

[Eij , Ekl] = Eijδjk − Ekjδil.

Definition 2.18. The elementary rate matrices, {Lij}i 6=j, are defined as

Lij := Eij − Ejj .

Note that they are indeed rate matrices since θTL = 0, for every i, j ∈ [n]
with i 6= j. Moreover, given the generic rate matrix Q = (qij)i,j∈[n], it is
clear that

Q =
∑
i 6=j

qijLij ,

hence the elementary rate matrices generate LGMM . Actually we can give a
more sophisticated result:

Lemma 2.19. The matrices {Lij}i 6=j form a C-basis for the tangent space
of GL1(n,C) (the invertible Markov matrices).
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Proof. It is known that the dimension of a tangent space is equal to the
dimension of the Lie group as a manifold. In our case, the dimension of
GL1(n,C) as a manifold is n(n − 1). For every i 6= j, consider the smooth
well-defined path in GL1(n,C)

A(ij)(t) := eLijt,

which satisfies the well known conditions A(0) = 1 and A′(0) = Lij . There-
fore Lij belongs to the tangent space of GL1(n,C). Moreover, since there
are n(n − 1) of these matrices, it only remains to prove they are linearly
independent. But this is obvious, for a non trivial linear combination such
as ∑

i 6=j
αijLij = 0

would imply a non trivial linear combination∑
i,j

bijEij = 0,

which is an absurd.
Therefore we can conclude that the tangent space of GL1(nC) at the identity
is < {Lij}i 6=j >C .

Proposition 2.20. The rate matrices LGMM form a Lie algebra.

Proof. In previous lemma we have proved that LGMM is the Lie algebra of
the matrix group GL1(n,C). Moreover, in proposition 4.15 we proved that
the Lie algebra of a matrix group is a Lie algebra.

The Lie algebra structure (i.e. all he possible multiplications between
its generators) is easy to calculate:

[Lij , Lkl] = (Lil − Ljl)(δjk − δjl)− (Lkj − Llj)(δil − δjl).

Provided i, j, k, l are all distinct, some handy products are the following:

[Lij , Lkl] = 0, [Lij , Lil] = 0, [Lij , Lki] = Lij − Lkj

[Lij , Ljl] = Lil − Ljl, [Lij , Lkj ] = Lkj − Lij , [Lij , Lji] = Lij − Lji.
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With this basis, the biologically meaningful rate matrices can be nicely
written. By biologically meaningful we mean the stochastic rate matrices,
i.e. those with real and nonnegative off-diagonal entries; by nicely, we mean
that a matrix Q can be written as Q =

∑
i 6=j Lij , where the stochastic

condition is satisfied provided the coefficients αij are real and nonnegative.
This particular case suggests the following definition:

Definition 2.21. A Lie algebra L ⊂ LGMM has a stochastic basis if there
exists a basis BL = {L1, · · · , Ld} of L such that each Lk is a convex linear
combination of the Lij . In other words, if Lk =

∑
i 6=j αijLij where αij ≥ 0.

In this case, we will say that eL is a Lie Markov model.

Definition 2.22. The dimension of a Lie Markov model eL is the vector-
space dimension of L.

Regarding last definitions, in most of cases it is very intuitive: it coincides
to the number of free parameters of the model. In general Markov model,
we have n(n − 1) free parameters, hence the dimension is n(n − 1); in the
Jukes-Cantor model, we have one free parameter, hence the dimension is 1.

2.4 Permutation symmetries of Markov models

In general terms, looking for permutation symmetries means looking for
some invariant through permutations of nucleotides. Finding the correct
invariant is the delicate task we must accomplish. Along this section we will
label nucleotides A,C,G, T with the integers 1, 2, 3, 4 respectively.

Now let us imagine we start performing a maximum likelihood infer-
ence method, represented as F . Our model is, let us say, a two-dimensional
continuous-time Markov model with rate-matrix Q = α1L1 +α2L2. Attend-
ing to some data D, one numerical matrix of this kind is assigned to every
edge of our binary tree T , and also an edge weight θ. In other words, F is a
function that returns maximum likelihoods estimates of the free parameters
of the model, hence F (D) = (α̂1, α̂2, θ̂).
Let us now proceed analogously, although this time we will permutate the
rate parameters in Q, setting our new model to be Q′ = α2L1 +α1L2; let us
name this new process with the function F ′. We claim that this new func-
tion will return the same maximum likelihood estimates as F , more exactly
that the estimated parameters will be α2 = α̂1 and α1 = α̂2 i.e. that we
will have F ′(D) = (α̂2, α̂1, θ̂). The order changes, but we should obtain the
same values, for the difference between the two mute parameters α1 and α2

is simply the labeling, hence the rate matrix Q̂ should the same.
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This reasoning can be easily generalized to more free parameters and mo-
tivates the following way to characterize the symmetry of a model (section
4.3 explains some results on the symmetric group):

Definition 2.23. We will say that a Lie Markov model L has the symmetry
of the group G ≤ Gn if there is a basis BL = {L1, · · · , Ld} of L such that

σ ·BL = {KσL1K
−1
σ , · · ·KσLdK

−1
σ } = BL, ∀σ ∈ G

and G is the largest subgroup of Gn with this property.

Therefore the subgroup G acts by permutating the elements of a basis
BL. There is a interesting fact about this symmetry: if we fix a basis BL, it
induces a group homomorphism ρ : G ≤ Gn 7→ Gd, where d is the dimension
of the model. More explicitly said, if we are given a permutation σ ∈ G, we
can define a permutation of the d elements of the basis, exactly as

(L1, · · · , Ld) 7→ {KσL1K
−1
σ , · · ·KσLdK

−1
σ } = (Lρ(σ)(1), · · · , Lρ(σ)(n)),

where each ρ(σ)(i) is determined by the respective element of the base as-
signed to KσLiK

−1
σ . Therefore our application is exactly

ρ : G ≤ Gn → Gd
σ 7→ ρ(σ).

Moreover, our definition of symmetry implies that L is also invariant when
considered as a vector space: if L =< L1, · · · , Ld >C then σ · L = L.

Saying about a model that it has Gn symmetry is a relevant feature: it
means that the model does not distinguish any kind of preferred grouping
between its nucleotides. Therefore any statistical inference method we use
will return the same output no matter which order of the nucleotides we
use. We want to give an example of a Lie Markov model with Gn symmetry,
but first we need a lemma:

Lemma 2.24. If BGMM = {Lij}i 6=j is the base of the general Markov model,
and we are given σ ∈ Gn, then we have

KσLijK
−1
σ = Lσ(i)σ(j).

Proof. Let us consider the canonical basis vectors e1, · · · , en ∈ Cn, which
satisfy Kσei = eσ(i) for any σ ∈ Gn. One can easily check that

Lijek = δjk(ei − ek),

hence substituting i, j by σ(i), σ(j) we get

Lσ(i)σ(j)ek = δσ(j)k(ei − ek).
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Using again the first of these two equalities, together with the definition of
K−1σ , we get

KσLijK
−1
σ ek = KσLijeσ−1(k) = δjσ−1(k)(eσ(i) − ek).

If we prove that δjσ−1(k) = δσ(j)σ(k), we will be done, because both matrices
of the statement will have the same (ordered) image of the canonical base.
But actually this is obvious, because, nearly by definition, j = σ−1(k) iff
σ(j) = k. This finishes the proof.

Proposition 2.25. The general n-state Markov Lie algebra LGMM has Gn
symmetry.

Proof. Since LGMM has, as we have repeatedly said, basis BGMM = {Lij}ij ,
using the previous lemma we deduce that

σ ·BGMM = {Lσ(i)σ(j)}i 6=j = {Lij}i 6=j = BGMM

for any σ ∈ Gn, which respects our definition of symmetry.

2.5 Producing Markov models with G4 symmetry.

Given the number of states n, we would like to classify every Lie Markov
model. This is an ambitious task, which can be reformulated as finding all
subalgebras of LGMM . However, it is not only the subalgebra per se what
interests us, but also finding an appropriate stochastic base as the one given
in definition 2.21. This fact, together with the concept of symmetry stated
in last section, suggests an easier approach to state and study some Lie
Markov models: if we restrict ourselves to the models satisfying some kind
of symmetry (the most exigent one being Gn) we may come up with an easy
expression of the basis.
To this end, it is convenient to take advantage on some group representation
theory results, which we state in section 4.3. We will follow the notation
used in that section.

2.5.1 Decomposing LGMM

From now on, since we are interested in nucleotide evolution, we fix n = 4.
The first thing we aim to do is to decompose the general Markov model into
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irreducible representations of G4, which we will do following proposition
4.23. We will use the projection operators Θλ to find the integers cλ of the
decomposition

LGMM
∼= ⊕λcλV λ.

From now on, instead of V λ, we will abuse of the notation and simply write
the partition λ = {λn1

1 · · ·λns
s }. The partitions of n = 4, and therefore the

irreducible representations of G4, are {4}, {31}, {22}, {212}. The corre-
sponding character functions are given in the following table:

Table 1 : Characters of G4

χ{4} χ{31} χ{2
2} χ{21

2} χ{1
4}

e 1 3 2 3 1
[(12)] 1 1 0 -1 -1
[(123)] 1 0 -1 0 1
[(12)(34)] 1 -1 2 -1 1
[(1234)] 1 -1 0 1 -1

The brackets indicate we are referring to all the conjugacy class of the
permutation inside. They have, respectively, orders 1, 6, 8, 3 and 6. Recall
that the character function only depends on this class, i.e. χ(s−1σs) = χ(σ)
for any σ, s ∈ G4. It is noticeable that the first row, i.e. χλ(e), indicates the
dimension of the representation λ. Note also that there are exactly two one-
dimensional representations, which are {4}, the trivial representation (every
permutation is mapped to the identity), and {14}, the sign representation
in which each permutation is mapped to either 1 or −1 depending on the
sign of the permutation.

Before continuing, we need to study the defining representation of G4,
which is defined as follows: for the C4 vector space generated by ei, i ∈ [4],
we define the action of G as σei = eσ(i). We know that the partitions of
n = 4 are {4}, {31}, {22}, {212}, hence it is only necessary to find the
coefficients. Let us consider the operators

Θ4 =
1

24

∑
σ∈G4

χ{4}(σ)σ =
1

24

∑
σ∈G4

σ

Θ31 =
1

24

∑
σ∈G4

χ{31}(σ)σ =

=
1

24

(
3e+

∑
σ∈[(12)]

σ −
∑

σ∈[(12)(34)]

σ −
∑

σ∈[(1234)]

σ
)

Noticeably, we have Θ{4}(e1) = 1
4(e1 + e2 + e3 + e4) (actually for any ei,
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but that is not the point now) and Θ{31}(e1) = 1
24(6e1 − 2e2 − 2e3 − 2e4).

The important thing is that they are not zero, therefore our decomposition
of C4 must contain the irreducibles {4} and {31}. As we saw in the table,
the module {4} has dimension 1, while the module {31} has dimension 3.
Since the dimension of C4 is 4 = 3 + 1, we conclude that the irreducible
decomposition of C4 is

C4 = {4} ⊕ {31}.

We will use this result in order to decompose in irreducible components
the algebra LGMM =< {Lij}1≤i 6=j≤4 >C as a G4 representation, which, as
we proved in lemma 2.24, acts like σLij = Lσ(i)σ(j).
Our trick will consist on taking advantage on the similarities between this
representation and the one of G4 acting on the tensor product space

C4 ⊗ C4 ∼=< {ei ⊗ ej}i,j∈[4] >,

defined as
σ(ei ⊗ ej) = eσ(i) ⊗ eσ(j).

Indeed, both vector spaces behave similarly, except that the diagonal terms
in LGMM are determined by the rest of elements. Therefore, it is easy to
find an isomorphism between the action of G4 on LGMM and the one on
the subspace of {ψ ∈ C4 ⊗ C4 : ψii = 0, i ∈ [4]}. We know that doing
the tensorial product means doing the Kronecker product of the matrices
involved. Using proposition 4.21 and the table of characters, we see that

C4 ⊗ C4 ∼= ({4} ⊕ {31})⊗ ({4} ⊕ {31}) = 2{4} ⊕ 3{31} ⊕ {22} ⊕ {212},

and on the other side, the subspace spanned by ei ⊗ ei is isomorphic to the
defining representation spanned by ei (the isomorphism is obvious), hence

< {ei ⊗ ei}i∈[4] >∼= {4} ⊕ {31}.

Since this module must be contained in C4 ⊕ C4, and since its elements do
not satisfy ψii = 0, we conclude that LGMM is essentially contained in the
rest of moduli, explicitly {4} ⊕ 2{31} ⊕ {22} ⊕ {212}. Using the dimension
of these vector spaces, namely 12, we see they must be equal. Therefore we
can state the following:

Proposition 2.26. If n = 4, the decomposition of the general Markov model
LGMM as a G4 module is given by

LGMM
∼= {4} ⊕ 2{31} ⊕ {22} ⊕ {212},

whose dimension decomposition is 12 = 1 + 2× 3 + 2 + 3.
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2.5.2 A convenient basis for LGMM

We aim to state a basis for the decomposition of LGMM just stated in
proposition 2.26, making each submodule being associated to a basis.

To begin with, we come up with the vector

Lid :=
∑

1≤i 6=j≤4
Lij =


−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3

 ,

which is the generator of the well known G4-invariant module {4}, in which
every permutation σ is sent to the identity, i.e. σLid = Lid. Hence we have
the first module of proposition 2.26, {4}.

Let us define 8 new vectors, namely the row sum vectors and the column
sum vectors. For any i ∈ [4], the row sum vectors are

Ri :=
∑

j:1≤i 6=j≤4
Lij ,

while the column sum vectors are

Ci :=
∑

j:1≤i 6=j≤4
Lji.

The group G4 acts on these vectors as follows:

σRi =
∑

j:1≤i 6=j≤4
Lσ(i)σ(j) = Rσ(i),

σCi =
∑

i:1≤i 6=j≤4
Lσ(j)σ(i) = Cσ(i).

Nicely, the sets {Ri}i∈[4] and {Ci}i∈[4] are invariant under the action of G4.

And not only that, but we clearly see that these actions are isomorphic to
the defining representation σei = eσ(i). Therefore we can write

< R1, R2, R3, R4 >C∼=< C1, C2, C3, C4 >C∼= {4} ⊕ {31}.

Attending to their definitions, these vectors satisfy

R1 +R2 +R3 +R4 = C1 + C2 + C3 + C4 = Lid,

therefore we can say that

< Lid, {Ri}i∈[4], {Ci}i∈[4] >C∼= {4} ⊕ 2{31},
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hence we have already accounted the first two moduli in proposition 2.26.

Let us define 3 more vectors. We consider

Lα = L12 + L21 + L34 + L43,

Lβ = L13 + L31 + L24 + L42,

Lγ = L14 + L41 + L23 + L32.

First of all we must check that these three vectors are G4-invariant. In order
to do this, we consider the set of unordered bipartitions of G4:

S = {12|34, 13|24, 14|23},

where ij|kl indicates {{i, j}, {k, l}}. We consider the following map :

ij|kl 7→ Lij + Lji + Lkl + Llk,

which is well defined and establishes a bijection with the set {Lα, Lβ, Lγ}.
Easily we see that the set S is invariant under the following action of G4:

σ(ij|kl) = σ(i)σ(j)|σ(k)σ(l).

Therefore we conclude the same for the set {Lα, Lβ, Lγ}, which is essentially
what we wanted to prove. Moreover, since Lα + Lβ + Lγ = Lid, and taking
into account the dimensions of the decomposition of proposition 2.26, we
conclude that the only possibility is that

< Lα, Lβ, Lγ >C∼= {4} ⊕ {22},

hence with these three vectors we have accounted already the third module
of proposition 2.26.

It only remains to find generators for the module {212}. We will do this
using the projection operator Θ{212}. Let us consider the six antisymmetric
vectors

Aij = Lij − Lji,

where as always i, j ∈ [4] and i 6= j. Since we are considering all possible
combinations i, j, they are invariant under the action of G4. One can check
that

Pij := 12 ·Θ{212}Aij = 2Aij −Aik −Ail +Ajk +Ajl,

where all indexes are different and Pij = −Pji. This equality implies that

< {Pij}1≤i 6=j≤4 >C=< {Pij}1≤i<j≤4 >C

has at most dimension 6. But now we notice that, for any j, we have∑
i

Pij = 0,
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(if i = j the summand is ignored) which together with the previous equality
bounds the dimension by 4. Now we use the analogous for every j,∑

i

Pji = 0,

which bounds it up to 3. Since the projections of the G4-invariant Pij on the
module {22} are not zero, and since the dimension of {211} is 3, we conclude
that we must have

< {Pij}1≤i 6=j≤4 >C∼= {212},

as desired.
We can summarize all these results in a sole proposition:

Proposition 2.27. If n = 4, the Lie algebra of the general Markov model
LGMM can be expressed as

LGMM =< {Lij}1≤i 6=j≤4 >C=
∼=< {Lid} ∪ {Lα, Lβ, Lγ} ∪ {Ri}i∈[4] ∪ {Ci}i∈[4] ∪ {Pij}1≤i 6=j≤4 >C,

with the following linear dependences:

Lid = Lα + Lβ + Lγ =
∑
i

Ri =
∑
i

Ci∑
i

Pij =
∑
i

Pij = 0 for any j ∈ [4]

Pij = −Pji for any i, j ∈ [4] , i 6= j.

Moreover, the decomposition into modules is

< {Lid} >C {4} >C∼= {4}
< {Lα, Lβ, Lγ} >C∼= {4} ⊕ {22}
< {Ci}i∈[4] >C∼=< {Ri}i∈[4] >C∼= {4} ⊕ {31}
< {Pij}1≤i 6=j≤4 >C∼= {212}.

The Lie algebra of the general Markov model LGMM is stated in result
11 of [4]. The authors of this paper needed to carry out ”tedious matrix
computations”.

2.5.3 The Lie Markov models with G4 symmetry.

Our strategy will be the following: For every subgroup H ≤ G4, we will
consider the quotient group G = G4/H. As we did at the beginning of
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section 4.3.1, we will span it as a vector space, i.e. < G >C, and we can
define the action of G4 on the base of < G >C as

σ[s] = [σs],

where σ ∈ G4 and [s] ∈ G4/H. It is easy to check that this action is well
defined. Therefore what we will have after this process is a representation
of G4. We decompose it and check whether or not it can be contained in our
module decomposition of LGMM . If that is the case, we have to see whether
it exists or not a G4-symmetric base BL such that this representation induces
a Lie Markov model , i.e. such that < G4/H >C∼= L for some Lie Markov
model L (we have to check it is a Lie algebra and a stochastic basis exists).
We repeat the process for every H ≤ G4.
The virtue of this reasoning is that it essentially (i.e. up to module isomor-
phism) finds every Lie Markov model with G4 symmetry. We briefly justify
this claim:

Suppose we have a (this a is very important!) basis of some Lie Markov
model BL = {L1, · · · , Ld}, let us assume it satisfies definition 2.23 with G4,
i.e. BL has G4-symmetry. We will also assume that no subsets of B have
G4 symmetry, as later will be conveniently justified. Let us recall that this
base induces a group homomorphism ρ : G4 → Gd, depending on how the
base permutes. Therefore summarizing, on the one side we have that, for
any σ ∈ G4,

σBL = BL.

This invariance receives the following denomination: BL is an orbit of G4.
More concretely, BL is a minimal orbit of G4, since it has no suborbits, by
assumption. On the other side, if for some i ∈ [d] we write

G4Li := {σ(Li)}σ∈G4 = {Lρ(σ)(i)}σ∈G4 ,

we can see that
G4Li := BL.

Therefore orbits are determined by one of its elements. The orbit stabilizer
theorem states that there exists a bijection which makes our set G4Li = BL
correspond to G4/G4Li , where

GLi
4 = {σ ∈ G4 : σ(Li) := Lρ(σ)(i) = Li}

is the stabilizer of the element Li ∈ B. Actually, the element Li we consider
has no importance, because this will only conjugate our set GLi

4 , hence an
isomorphic group will be originated. Therefore we will write:

GBL4 := GL1
4 .
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Moreover the orbit stabilizer theorem implies

|BL| · |G4/G4BL | = |G4|,

and that is the most important part: the existence of a G4-symmetric base
BL of size d requires the existence of a subgroup GBL4 of size d. If we work
backwards, we can consider every H ≤ G4 (which would be our unknown
GBL4 ) and look for its associated basis BL. However, if we simply considered
some H and kindly tried to look for a base BL such that all its elements
were stabilized by H, this would be a very inefficient procedure. Hence
at this point the method we mentioned at the beginning of this subsection
comes into play: we will use the decomposition of < G/H >C to determine
whether or not it can be contained in

LGMM
∼= {4} ⊕ 2{31} ⊕ {22} ⊕ {212}.

It remains only a detail we must take into account. The sum of irreducible
components in the decomposition of LGMM is a consequence of the existence
of subsets of BL which also have G4-symmetry. Therefore, when our decom-
position of < G/H >C contains more than one irreducible, we will have to
construct subalgebras of L which are consistent with this decomposition.

In order to carry out the mentioned procedure, we copy here the decom-
position table which appears in the paper of Sumner et al. :

Figure 2.3: Decomposition of the orbits of G4 into irreducible modules.

In the last column of the table we have the Lie Markov models with G4
symmetry and isomorphic to < G4/H >. The only task which remains to
do is proving that indeed those and only those are the Lie Markov models
with G4 symmetry.

First of all, let us not that the module {4} appears exactly once in every
decomposition. This implies that the sum of modules < G4/H >C cannot
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compose new submodules of the GMM. Using the orbit stabilizer theorem,
this means that every orbit of the possible symmetric bases BL is minimal
(i.e. with no suborbits), as we mentioned before. Moreover, recall that the

cardinality of |G4||H| is the same as |BL|. Since the cardinalities 11, 10, 9, 7, 5
are not in the table, the only possibility remaining is that a Lie Markov
model with this dimension is the composition of other Lie Markov models.
However, in the decomposition of LGMM of proposition 2.26 and in each of
the < G/H >C the trivial module {4} appears exactly once, hence a sum
of them would contain 2{4}. But in such a case it is impossible that it is
contained in LGMM , hence we conclude:

Proposition 2.28. If n = 4, there are no G4-symmetric Lie Markov models
with dimension 11, 10, 9, 7, 5.

Actually, we can easily discard two more dimensions with no effort. Car-
dinalities 2 and 8 only contain decompositions with the module {14}, which
is not contained in the decomposition of LGMM . Therefore we can state
another proposition:

Proposition 2.29. If n = 4, there are no G4-symmetric Lie Markov models
with dimension 8, 2.

Now, since we start the difficult ones, let us work organizedly:

Dimension 1

From the table, we see that there is only one orbit with cardinality one.
Hence the associated Lie Markov model must be isomorphic to the trivial
{4}. The base of this model is obviously {Lid}, and it is evident we are
referring to the Jukes-Cantor model LJC . A generic rate-matrix is

Q = αLid = α


−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3

 .

Therefore:

Proposition 2.30. If n = 4, there exists exactly one Lie Markov model
with dimension 1, which is the Jukes-Cantor model.

Dimension 3

There is only one option with cardinality 3, with decomposition {4} ⊕
{22}. Using proposition 2.27, we choose

< {Lα, Lβ, Lγ} >C∼= {4} ⊕ {22},
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which has abelian Lie algebra, for

[Lα, Lβ] = [Lα, Lγ ] = [Lβ, Lγ ] = 0.

A generic rate matrix is

Q = αLa + βLb + γLγ =


∗ α β γ
α ∗ γ β
β γ ∗ α
γ β α ∗

 ,

where the asterisks are determined by the column sum zero condition. We
see it is actually the Kimura 3ST model, hence:

Proposition 2.31. If n = 4, there exists exactly one Lie Markov model
with dimension 3, which is the Kimura 3ST model.

Dimension 4

The sole option with cardinality 4 is {4}⊕{31}. Attending to proposition
2.27, we have the two options:

< {Ci}i∈[4] >C∼= {4} ⊕ {31},

< {Ri}i∈[4] >C∼= {4} ⊕ {31}.

However, [Ci, Cj ] = Rj−Ri−Pij , hence the first vector space does not form
a Lie algebra and only the second option remains. Indeed, it satisfies

[Ri, Rj ] = Ri −Rj ,

hence it forms a Lie algebra. A generic matrix of this model is

Q = aR1 + bR2 + cR3 + dR4 =


∗ a a a
b ∗ b b
c c ∗ c
d d d ∗

 ,

which is the Felsenstein 81 model. Therefore:

Proposition 2.32. If n = 4, there exists exactly one Lie Markov model
with dimension 4, which is the Felsenstein 81 model.

Dimension 6

Attending to the decomposition table, the only possibilities are the cases
H = Z4, which gives decomposition {4} ⊕ {22} ⊕ {212}, and H = Z2 × Z2,
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although only the one with decomposition {4} ⊕ {31 ⊕ {22} because the
other one has the submodule {14}, not contained in LGMM .

If H = Z4, we have

< G4/H >C∼= {4} ⊕ {22} ⊕ {212}.

Using proposition 2.27, we get

< {Pij}1≤i 6=j≤4 ∪ {Lα, Lβ, Lγ} >C∼= {4} ⊕ {22} ⊕ {212}.

However, this is not a Lie algebra, for

[Lα, P12] = 2Lα + 2Lβ + 2Lγ − 4R2 − 2R3 − 2R4 + 2C1 − 2C2,

hence we discard it.

If H = Z2 × Z2, as we said we have

< G4/H >C∼= {4} ⊕ {31} ⊕ {22},

hence using proposition 2.27 we come up with two possibilities:

< {Lα, Lβ, Lγ} ∪ {Ri}i∈[4] >C∼= {4} ⊕ {31} ⊕ {22},

< {Lα, Lβ, Lγ} ∪ {Ci}i∈[4] >C∼= {4} ⊕ {31} ⊕ {22},
with the linear dependences

Lid =
∑
i∈[4]

Ri =
∑
i∈[4]

Ci = Lα + Lβ + Lγ .

As for the second option, we have [Ci, Cj ] = Rj−Ri−Pij , hence it does not
form a Lie algebra. As for the first one, we have already proved that the
Kimura 3ST and the Felsenstein 81 are closed under Lie brackets, hence we
nly need to check the crossed ones, which gives

[Lij|kl, Ri] = Rj −Ri,

hence it forms a Lie algebra. This model will be referred as K3ST + F81.
Using the linear dependences given above, one can see that model K3ST +
F81 has indeed dimension 6.
In the article, it is proposed the stochastic base BK3ST+F81 with elements

W12 := Lα + (R1 +R2)

W13 := Lβ + (R1 +R3)

W14 := Lγ + (R1 +R4)

W23 := Lγ + (R2 +R3)

W24 := Lβ + (R2 +R4)

W34 := Lα + (R3 +R4),
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which yields that a generic matrix of this model has the form

Q = αW12 + αW34 + βW13 + βW24 + γW14 + γW23.

If ij|kl is a bipartition of [4], the Lie brackets are

[Wij ,Wkl] = 2(Wij −Wkl),

while if ij|i′j′ and kl|k′l′ are distinct bipartitions, then

[Wij ,Wkl] = 2(Wij −Wi′j′)− 2(Wkl −Wk′l′).

Finally, we can conclude:

Proposition 2.33. If n = 4, there exists exactly one Lie Markov model
with dimension 6, which is the K3ST + F81 model.

The conclusion of our discussion can be summarized in the following
theorem, with which we finish this section:

Theorem 2.34. On four states, there are exactly five Lie Markov models
with G4 symmetry. These are the Jukes Cantor model, with dimension 1;
the Kimura 3ST model, with dimension 3; the Felsenstein 81 model, with
dimension 4; the K3ST + F81 model, with dimension 6; and the General
Markov model, with dimension 12.



Chapter 3

Implementing Lie Markov
models in IQ-TREE

Woodhams et al. (2015), in their article [5], gave a detailed and clear ex-
position of Lie Markov models sensitive to the grouping of nucleotides into
purines (R) and pyrimidines (Y). Compared against the GTR model, they
concluded that their performance was satisfying. Moreover, their biological
interpretation is consistent with heterogeneity (due to their multiplicative
closeness), hence Lie Markov models have proved to deserve being taken into
account and implemented in algorithms for phylogenetic inference. Cur-
rently, this task is being carried out by the developers of the algorithm
IQ-TREE (also with the collaboration of Woodhams himself), exposed in
the article [9].
Along this section, we aim to briefly explain the necessary parts of the ar-
ticle [5] and our modest contribution to the implementation of Lie Markov
models in IQ-TREE.

3.1 The necessary objects, as taken from [5]

First of all, we should introduce some terminology. When considering the
four bases A,C,G, T , attending to their structure, they are typically grouped
in purines (R) and pyrimidines (Y). Purines include adenine (A) and guanine
(G), while pyrimidines include thymine (T ) and cytosine (C). Schematically
written, we have:

R = {A,G}; Y = {C, T}.
When a mutation occurs from a purine into a purine, or from a pyrimidine
into a pyrimidine, we call it a transition. A mutation from R into Y , or

38
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from Y into R, receives the name of transversion. All these classifications
are justified because of the biological fact that transitions occur at higher
rate than transversions, due to their structure resemblances.
The mathematical consequences of this fact is that, when modeling an evo-
lutionary process, one aims to choose rate-matrices which maintain this
RY-grouping. More rigorously speaking, and following the terminology of
last section, we want to use models such that its base B has F -symmetry,
being F the group generated by the A ⇐⇒ G and C ⇐⇒ T permutations.
Therefore, from now on we will forget the lexicographical order and
adopt the more convenient one {A,G,C, T}, which makes this sym-
metry more evident. Therefore the rows and columns of our rate matrices
Q will be indexed by the DNA bases in order A,G,C, T . As an example
of how this convention makes things easier, we can see how the group of
permutations F becomes the easily understandable

F =
{

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

}.
If we respect this symmetry and have enough number of parameters, it makes
sense to talk about transition and transversion rates and, more importantly,
they become independent of each other, making it possible that both achieve
their optimal (expectedly different) value. For example, between the Lie
Markov models with G4 symmetry we studied in last section, it is clear that
all ”are” F -symmetric (actually not, since we were forcing the symmwtry to
be maximal, but this is actually ignored in the paper). However, the Jukes-
Cantor is too poor to make tranversion and transition rates independent,
while the GMM is rich enough (and too much, actually). From now on, we
will omit the group F and refer to the RY-symmetry.

In the article [5], every and each of the 37 Lie Markov models with RY -
symmetry is clearly stated and organized. One of the nicest features of this
exposition is that they state a base of the general Markov model such that
every RY-Lie Markov model has a (not stochastic) base which is a subset
of this one. Note that we are not saying that these basis are stochastic as
explained in definition 2.21, because actually they are not. This problem is
successfully treated in the article and is not necessary for our work, hence
we will not explain it here.

The mentioned base of the GMM is composed by 12 matrices of Figure
3.1.
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Figure 3.1: The base of the GMM, compounded by 12 matrices.

In some cases it is more convenient to use the matrix A2 = 3A1 − A
instead of A1. This matrix A2 has the form

A2 =


0 +2 −1 −1

+2 0 −1 −1
−1 −1 0 2
−1 −1 +2 0

 .

Once we have this basis of the GMM, stating an RY-Lie Markov model is
nothing but selecting an adequate (not all generate one) subset of this basis.
This is systematically done in a table given in the article [5], which we copy
in Figure 3.2.

In this figure, the name of each model consists on the dimension of the
model, followed by the number of parameters necessary to write the matrix
as an stochastic matrix, followed by a letter which serves as distinguishable
mark. For example, attending to its name, model RY 5.6b has a basis formed
by 5 elements (namely A,A1, D,E1, E2,) and 6 parameters are needed to
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Figure 3.2: The RY Lie Markov models.

write its associated matrix Q5.6b as an stochastic matrix. The b indicates
the existence of a previous RY 5.6 model, whose associated letter is a.

This is everything we needed in order to carry out our task.

3.2 How to improve the performance of RY-Lie
Markov models

Given a model and a set of species, in order to find the phylogeny with
the maximum likelihood, IQ-TREE tries to optimize three kinds of objects:
the topology of the tree, the edge lengths and the rate-matrix parameters
of the model. Our work consisted in improving the execution time when
optimizing the last two of them.

The part of IQ-TREE which interests us can be summarized as follows:
We generate a set C of 98 (or some other required number) parsimony trees
attending to the given sequences. For each of these trees, we treat the
parameters of the rate matrices Qi as variables, as well as the edge lengths
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ti. We compute the associated transition matrix, i.e. Mi(ti) = eQiti , then
find the values for Qi and ti which maximize the likelihood.
We choose a random tree T from C and perturb it using which is called a
stochastic NNI. For this new tree T ∗, the likelihood is computed. If l(T ∗)
improves the lowest likelihood in C, then T ∗ replaces the tree with this
likelihood in C. If l(T ∗) improves the best likelihood in C, we re-optimize
T ∗: again we use the parameters of the rate matrices Qi as variables, as
well as the edge lengths ti, and proceed as with the parsimony trees, i.e. we
compute Mi(ti) = eQiti , then find the values for Qi and ti which maximize
the likelihood. These values completely determine a new tree T ∗. This tree
replaces the worst tree in C (i.e. the one with lowest likelihood).
The process is repeated until better trees have not appeared for a while.

The part of this algorithm which we have dealt with is the one of comput-
ing M(t) = eQt. There are multiple methods to carry out this computation,
among which IQ-TREE uses normally the following two, both approxima-
tive:

• Since for fixed t and n big enough we have

eQ
t
n ' Id +Q

t

n
+
Q2

2!
(
t

n
)2,

we choose a proper n and do

eQt = (eQ
t
n )n '

(
Id +Q

t

n
+
Q2

2!
(
t

n
)2
)n
.

Moreover it is chosen n = 2m, making it possible to compute the n-
power with m− 1 multiplications of matrices. Adding all of them up,
we will only do log2(n) multiplication of matrices, although we may
have precision problems.

• For the given matrix Q, using the EIGEN3 library we numerically
compute its Jordan matrix form J (in most of cases, the matrix whose
diagonal are the eigenvalues of Q) and its Jordan base S (in most
of cases, the columns of S are the eigenvectors of Q.) Then, using
proposition 4.10, we have

eQt = SeJtS−1,

and the computation of eJt is explained in the proposition. Besides the
cost of numerically computing the matrices S and J , the computing
time will be mainly used for the inverse of S and two multiplications of
matrices (the exponential of J should not be too expensive). Although
this approach is not too slow, it has the disadvantages of its precision
and the reliability of the algorithms for properly computing J and S
(in many cases, a non diagonalizable Q poses a problem).
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Our aim was to make a more precise, faster and more reliable version of the
second of the approaches. The idea of the improvement is straightforward
and can be stated in two sequences:

Given an RY-Lie Markov model, we aim to compute eQt using
the Jordan form of Q. If we efficiently write the analytical formulas
of J , S and S−1, there is no loss of precision and the executing time
may substantially decrease.

The first difficulty of this method which one comes up with is its imple-
mentation: there are 37 models, with many parameters, and we aim to give
a closed formula (in the friendly case) for their eigenvalues J , eigenvectors S
and the inverse of this matrix, S−1, which sums up dozens of kernels which
need to be calculated. To overcome this problem we have helped ourselves
with the software Mathematica. In our Notebook, we proceeded as follows:

1. Declare the base of Figure 3.1. We have used A2 instead of A1. More-
over, we have permutated the elements of the matrices so the natural
order of IQ-TREE, {A,C,G, T}, was respected.

2. Declare each of the models. For example, we would write

Q3.4 = aA+ a2A2 + dD,

choosing always the lower case for the parameter associated to the
uppercase base.

3. Compute J the eigenvalues of Q (0 is always one of them).

4. Compute S, the eigenvectors of Q ((1, · · · , 1)T is always one of them).

5. Compute S−1. Look for rows and columns with sum 1.

Once we had done this with each of the models, we observed the follow-
ing:

• With the exception of the models 9.20b and 12.12 (which no not have
closed formulas), all of them have the following eigenvalues:

J = {0, −4(a− a2), 2(−2a− a2 ±
√
b2 − c2 + d1)},

where non used parameters of the models must be taken equal 0. For
example, in model 1.1, we have to take a2 = 0, and so on. Attending to
the nesting between models, one simply has to compute the eigenvalues
of models 10.12 and 10.34 to check this formula.
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• When we have consider models with dimension 8 or more, eigenvectors
become too complicated (many operations involved). The most inter-
esting case is model 8.18: it is not especially difficult and we know,
from [5], that it gives good results when modeling. However, there are
denominators depending on the parameters in nearly every formula.

• When Mathematica gives a tractable closed formula for S, it also gives
one for S−1. It can happen that one of the elements of a vector is
complicated (i.e. it involves many sums and products). In those cases,
we try to take advantage on the rows and columns whose sum is 1.
Denominators depending on the parameters appear in nearly every
formula.

The importance of denominators is the following: on the one side, if they
are zero our computations will break; on the orher side, whenever they, in
the formulas of both S and S−1, are not zero, we have the guarantee that
these two matrix are well defined, i.e. we do not have any singularities. This
is a nice feature: we can check whether the denominators are zero or not,
and if they are, simply call another exponentiating method, such as the one
approximating the power series.

For example, for the model 3.4, with rate matrix Q3.4 = aA+a2A2+dD,
these formulas would look as stated below. We write δ = d

a−a2 :

J3.4 = {0, −4(a− a2), −2(2a2 + a2), −2(2a+ a2)}

S3.4 =


1 1− 2d

a−a2+d 0 −1

1 1 −1 0

1 −1 + 2d
a−a2+d 0 1

1 −1 1 0



(S3.4)
−1 =

1

4


1 + δ 1− δ 1 + δ 1− δ
−1− δ 1 + δ −1− δ 1 + δ

0 −2 0 2
−2 0 2 0

 .

In this case, the conditions which guarantee that both matrices are well
defined and our analytical method can be applied are the following:

a− a2 + d 6= 0; a− a2 6= 0.
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3.3 Results

We have found and programmed these formulas for every model which has
between 1 and 5 parameters, with the exception of 5.6a, because we con-
sidered its formulas where too complicated to be efficiently computed. In
total, these are 18 models.
In order to measure whether a decrease of execution time was achieved or
not, we chose five of the models and tested them against the EIGEN3 li-
brary. The chosen models where 1.1, 2.2b, 3.3a, 4.4b, 5.11c, while only one
input was used, the file example.phy given by IQ-TREE. In order to avoid
too much noise due to the machine, we ran the program 5 times for each of
the models, find the average of their executing time (exactly, the CPU time)
and divide this number by the executing time using the EIGEN3 library (
which we also ran 5 times). We would like this ratio to be as close to 0 as
possible. The results are given in the following table:

Table 2

Ratio analytical / EIGEN3 library

1.1 0.9848
2.2b 1.0137
3.3a 0.9807
2.2b 0.9805
1.1 1.0321

Therefore it is easy to infer that not a great difference, regarding the
executing time, has been made (never more than 3 per cent). This may
not seem intuitive, but actually we ignore the functioning of the EIGEN3
library, which could be very efficient. In any case, this result would be
good enough to support our method, for there is no precision lost along
the procedure. Moreover, we were able to give simple conditions in the
parameters to distinguish the cases in which the Jordan form of the rate
matrix Q may poses any computation problem.



Chapter 4

Mathematical tools

This chapter contains all the objects and results which are employed in much
broader contexts than phylogenetic reconstruction.

4.1 Exponential of a matrix

Before introducing the definition of exponential of a matrix, it is pertinent
to clarify some of the elements which underlie our discussion.

Given a sequence (ak)k∈N where ak ∈ C, it is well known that its conver-
gence to L ∈ C means that it satisfies the ε−N property, i.e. that for any
ε > 0 we are given, we can find an N such that |ak − L| < ε for any k ≥ N .
Such an L exists iff (ak) is a Cauchy sequence.

When dealing with a set partial of sums Sm =
∑k=m

k=0 ak, defined for all
m ∈ N, the same results apply to the sequence (Sm)m∈N . Provided the limit
of this sequence exists, we can define

∞∑
k=0

ak := lim
m→∞

Sm.

Generalizing these definitions to sequences of matrices is very easy. Given
a sequence (Ak)k∈N where Ak = (ai,jk ) ∈ Mn(C), i, j ∈ [n], we say this se-

quence converges to a matrix A = (ai,j) if each of the n2 sequences ai,jk
converges to the respective element ai,j .
However, this definition is a bit uncomfortable and one prefers to avoid con-
sidering the entries of the matrices. To solve this, there is an equivalent

46
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definition: given a matrix norm | · |, the sequence (Ak)k∈N converges to A iff
it satisfies the ε−N property as we stated it before.

Regarding partial sums of matrices, we proceed analogously as before
and state, for the converging sequence of well-defined partial sums
Sm =

∑k=m
k=0 Ak, the following definition

∞∑
k=0

Ak := lim
m→∞

Sm.

After this brief clarification, we can state the promised definition:

Definition 4.1. Given a matrix A ∈ Mn(C), the exponential of A, eA, is
defined as

eA := Id +
A

1!
+
A2

2!
· · · =

∞∑
k=0

Ak

k!
.

Note that we have set A0 := Id, including the case A = 0.

The exponential of a matrix arises naturally when dealing with linear
systems of differential equations, such as

x′ = Ax,

where A ∈Mn(C) and x(t) is a column vector whose elements are unknown
derivable functions of t. In this case,the matrix eAt comes up. Let us include
all these important characteristics, with others, in a complete proposition:

Proposition 4.2. Given a matrix A ∈Mn(C), let us define the function

eAt : R→Mn(C)

t 7→ eAt.

The function eAt satisfies the following properties:

1. eAt is absolutely convergent and uniformly convergent on compact sets
in R.

2. Dt(e
At) = AeAt.

3. Given the initial value problem x′ = Ax, x(t0) = x0, its sole solution
is x = e(t−t0)Ax0.

4. eA(t+s) = eAteAs.

5. If AB = BA, then e(A+B)t = eAteBt = eBteAt.
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6. det(eAt) = e(TrA)t

7. The matrix eAt is invertible for any t ∈ R, and (eAt)−1 = e−At.

8. If S has an inverse and A = SJS−1, then eAt = SeJtS−1.

Proof. 1. Let || · || be a sub-multiplicative matrix norm. Then

∞∑
k=0

||A
ktk

k!
|| ≤

∞∑
k=0

||A||ktk

k!
= e||A||

ktk <∞, ∀t ∈ R.

Therefore we can apply the Weierstrass M-test and conclude that the
series

∑∞
k=1

Ak

k! is absolutely convergent in R and uniformly convergent
on compact sets in R.

2. A power series which is uniformly convergent on compact sets in R,
such as the one we are dealing with, is analytical and can be derived
term by term. Therefore

Dt(e
At) =

∞∑
k=1

Aktk−1

(k − 1)!
= A

∞∑
k=1

Ak−1tk−1

(k − 1)!
= A

∞∑
k=0

Aktk

k!
= AeAt.

3. This is a consequence of Picard’s theorem for the uniqueness and
existence of first order ODEs. One only has to prove that indeed
x = e(t−t0)Ax0 is a solution.
On one side, (e(t−t0)Ax0)(t0) = x0. On the other side, Dt(e

(t−t0)Ax0) =
Ae(t−t0)Ax0. We conclude x = e(t−t0)Ax0 is the only solution of the
mentioned initial value problem.

4. Let us fix s ∈ R and consider the functions X1(t) = eA(t+s) and
X2(t) = eAteAs. We want to prove these two functions are equal. We
have:

X ′1 = AeA(t+s) = AX1, X ′2 = AeAteAs = AX2, X1(0) = eAs = X2(0).

Therefore X1(t) and X2(t) are solutions of the same initial value prob-
lem, hence using the uniqueness of solutions we conclude

X1(t) = X2(t) ∀s ∈ R,

as we wanted to prove.

5. Let us consider the functions Y1(t) = e(A+B)t and Y2(t) = eAt · eB. We
have:

Y ′1 = (A+B)e(A+B)t = (A+B)Y1, Y ′2 = AeAteBt+eAtBeBt = (A+B)Y2,
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where one must note that for last equation we used the fact that eAt

and B commute since A and B commute. Moreover,
Y1(0) = Id = Y2(0). All in all, Y1(t) and Y2(t) solve the same initial
value problem, hence they are identical, as we wanted to prove.

6. It is a consequence of Liouville’s formula.

7. Last result implies that the determinant of eAt is not zero for any
t ∈ R, hence its inverse exists. Moreover,

eAte(−A)t = e(A+(−A))t = e0t = Id.

8. Since (SJS−1)k = SJkS−1, we only have to apply the definition of
exponential:

eAt =
∞∑
k=0

Aktk

k!
=
∞∑
k=0

(SJS−1)ktk

k!
=
∞∑
k=0

SJkS−1tk

k!
= S

∞∑
k=0

Jktk

k!
S−1 = SeJtS−1,

as desired.

Corollary 4.3. Given the matrix initial value problem

M ′(t) = AM(t), M(t0) = M0,

where M(t) = (ai,j(t))i,j∈[n] is a differentiable matrix function, its sole so-
lution is

M(t) = e(t−t0)AM0.

Proof. It is a consequence of item 3 in last proposition. We can write

M(t) =
(
x1(t), · · ·xn(t)

)
,

where each xi(t)
T = (ai1(t), · · · , ain) (i.e. xi(t) equals the i column of M(t)),

and solving the matrix initial value problem equals solving n vectorial initial
value problems simultaneously.

We have seen how useful the exponential of a matrix is. Item 8 in propo-
sition 4.2 suggests it is necessary to expose one of the most convenient meth-
ods to calculate it, the diagonalization of a matrix and its generalization,
the Jordan canonical form of a matrix.
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Definition 4.4. Given a scalar λ ∈ C and a natural number r ∈ N, a Jordan
block Jr(λ) denotes the r×r-matrix whose entries are all zero except from the
subdiagonal entries, equal λ, and the diagonal entries, equal 1. Therefore:

J1(λ) =
(
λ
)
, J2(λ) =

(
λ 0
1 λ

)
, J3(λ) =

λ 0 0
1 λ 0
0 1 λ


and so on.

Definition 4.5. A block diagonal matrix whose blocks are Jordan blocks is
called a Jordan matrix.

Now we can state a very important and well-known theorem, hence we
will omit its proof in order to avoid a long digression:

Theorem 4.6. (Jordan canonical form) Given any square matrix
A ∈Mn(C), there exists a Jordan matrix

J = diag(J1, · · · , Jl) ∈Mn(C)

whose Jordan blocks are Jk = Jr(λk), 1 ≤ k ≤ l, and an invertible matrix
S ∈Mn(C) such that

A = SJS−1.

The Jordan form J of the matrix A is unique if we do not take into account
Jordan matrices whose blocks are permutations of these ones.

Definition 4.7. The columns of S, let us say S =
(
v1, · · · vn

)
, form a

Jordan base of the matrix A.

In the previous theorem, when all Jordan blocks have dimension 1 × 1,
J is the diagonal form of A, and the vectors v1, · · · vn compound the base
of eigenvectors of A, each of them with eigenvalue equal to the respective
diagonal entry. Since we do not dispose of the Jordan form when we are
given the matrix A, the method we employ to distinguish whether the matrix
A is diagonalizable or not is the comparison of algebraic multiplicity and
geometric multiplicityfor every eigenvalue λi.

Definition 4.8. Given a matrix A whose characteristic polynomial is
pA(x) = det(A− λId), and such that λi is an eigenvalue of A (hence
pA(λi) = 0), the algebraic multiplicity of λi, denoted as r(λi), is the biggest

natural number r such that (x− λi)r
∣∣∣ pA(x).
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Definition 4.9. Given a matrix A and one of its eigenvalues λi, the geo-
metric multiplicity of λi, which we will denote as g(λi), is the dimension of
the kernel of A− λiId, i.e.

g(λi) = dim ker(A− λiId).

It is easy to prove that, for any eigenvalue λi, 1 ≤ g(λi) ≤ r(λi). It is
only possible to diagonalize a matrix if, for every eigenvalue λi, we have
g(λi) = r(λi), which is the test we aimed to find.

The following proposition summarizes the technique one uses when aim-
ing to compute the exponential eAt:

Proposition 4.10. Let J = diag(J1, · · · , Jl) ∈Mn(C), where Jk = Jr(λk),
1 ≤ k ≤ l, be the Jordan canonical form of A ∈ Mn(C) and S an invertible
matrix such that A = SJS−1. Then:

1. eAt = SeJtS−1

2. eJt = diag (eJ1t, · · · , eJlt)

3. Given a Jordan block Jr(λ), it holds that

eJr(λ)t = exp (Jr(λ)t) =


1
t 1
t2

2 t 1
...

. . .
. . .

. . .
tr−1

(r−1)! · · ·
t2

2 t 1

 eλt

Proof. 1. It has been already proved in proposition 4.2.

2. It can be easily seen by computing the multiplication of J by itself:

J2 = diag(J2
1 , · · · , J2

l ),

and so on if one continues multiplying. Therefore the infinite sum of
eJt yields the mentioned result.

3. Let us introduce some notation so this proof is easier to write and
read. Given the dimension r ∈ N, we will denote by diagir(λ) the r×r-
matrix whose entries are all zeros except for the i-th subdiagonal,
whose entries are all λ. If i ≥ r, this is the null matrix. For example,
Id = diag0r(1), and more interestingly for our purposes,
Jr(λ) = λId + diag1r(1). It is very easy to prove that, for any α ∈ C,

(diag1r(α))k = diagkr (α
k),
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which implies that

(Jr(λ))k =
(
λId + diag1r(1)

)k
=

k∑
l=0

(
k

l

)
λk−l diaglr(λ

l),

hence, if we write J := Jr(λ), we have

eJt =
∞∑
k=0

Jk

k!
tk =

∞∑
k=0

∑k
l=0

(
k
l

)
λk−l diaglr(λ

l)

k!
tk

=
∞∑
l=0

∞∑
k=l

λk−l diaglr(λ
l)

(k − l)! · l!
tk

=
∞∑
l=0

diaglr(λ
l)

l!
tl
∞∑
k=l

(λt)k−l

(k − l)!

=

∞∑
l=0

diaglr(λ
l)

l!
tleλt

Since, by definition, diagl(α) := 0 when l ≥ r, we infer that

eJr(λ)t = eλt
r−1∑
l=0

diaglr(
λltl

l!
),

which is exactly what we wanted to prove.

When we are dealing with real or complex numbers, one of the most
useful properties of the exponential function is the fact that, for let us say
x, y ∈ C,

ex+y = exey.

Unfortunately, such an elegant formula does not exist for the exponential
of a matrix. However, it is possible to generalize it, which is known as the
Baker-Campbell-Hausdorff (BCH) formula:

eXeY = exp{X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]] + · · · }, (4.1)

where [X,Y ] := XY − Y X is called the commutator of X and Y , and the
rest of terms in the sum are also commutators of commutators of X and
Y . The convergence of this sum is not a trivial matter, although we will
take it for granted since this would distract us from our topic (for a detail
description, see [3]). As we do in other parts of this work, the BCH formula
has interesting applications when one aims to decide whether a given set of
exponential of matrices is a closed group under multiplications or not.
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4.2 Elementary Lie theory

We will introduce the elementary vocabulary used in Lie theory, as men-
tioned in section 2 of [4]. These are very general tools which we are using
with well-behaving objects, hence apparently difficult definitions will end up
being friendly.

Definition 4.11. A matrix group G is a topologically closed subgroup of
GL(n,C). In other words, if a sequence of elements of G converges to an
invertible matrix M , then M ∈ G.

Definition 4.12. If we regard G as a manifold, the tangent space of G at
a matrix M , TM (G), is the set of all X ∈ M(n,C) such that there exists a
smooth path A : [0, 1] 7→ G satisfying

A(0) = M and A′(0) :=
dA(t)

dt

∣∣∣
t=0

= X.

Definition 4.13. The Lie algebra of a matrix group G is T1(G), i.e. the
tangent space of G at the identity.

The previous definition has a reciprocal one, which is the following:

Definition 4.14. A closed set L ⊂Mn(C) is a Lie algebra if

t1X + t2Y ∈ L and [X,Y ] ∈ L,

for all X,Y ∈ L and t1, t2 ∈ R.

It is important to note that our definition of Lie algebra makes it a
R-vector space, not a complex one. The two last definitions seem to use am-
biguous or maybe contradictory terminology, hence it is convenient to prove
that the reciprocity of these definitions works well, which is our objective in
following proposition:

Proposition 4.15. The Lie algebra of a matrix group G is a Lie algebra.
Reciprocally, for every Lie algebra L, there exists a matrix group G such that
L is the Lie algebra of G.

Proof. As for the first part of the statement, firstly we should prove that G
is a vector space, i.e. that for any two matrices X,Y ∈ T1(G) and α ∈ R, the
matrix X +αY belongs to T1(G). We take the paths A and B, respectively
associated to X and Y . Let us consider the path

C(t) := A(t)B(αt).
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Obviously, C(t) ∈ G, and we have that

C(0) = A(0)B(0) = 1 and C ′(t)|0 = [A′B + αAB′]t=0 = X + αY,

as desired. Note that this implies that the Lie algebra of a matrix group is
a closed set. Now we should prove that, for any X,Y ∈ G, the commutator
[X,Y ] belongs to G. Let us take again the paths A and B, associated to X
and Y , and consider the smooth function

f(s) := A(s)B′(0)A(s)−1,

which satisfies f(s) ∈ T1(G) for any s ∈ [0, 1]. Indeed, for any fixed s ∈ [0, 1],
we can consider the well defined path in G:

D(t) := A(s)B(t)A(s)−1,

which fulfills the conditions D(0) = 1 and D′(0) = f(s).
Hence we have a function f(s) whose image is contained in T1(G). Therefore,
for s ∈ (0, 1) also the image of the smooth function

g(s) :=
f(s)− f(0)

s

is contained in T1(G). Since f is smooth, the limit lims→0+ g(s) must exist
and be equal to f ′(0), and using the fact that T1(G) is a closed set, the
existing limit of elements in T1(G) must be contained in T1(G), thus f ′(0) ∈
T1(G). It only remains to compute f ′(0). Regarding f ′(s), we have

f ′(s) = A′(s)Y A(s)−1 −A(s)Y A(s)−1A′(s)A(s)−1.

Substituting s = 0, we arrive to the desired f ′(0) = XY − Y X, which was
our purpose and finishes this part of the demonstration.

Regarding the second part of the proof, for a given Lie algebra L, let us
consider the set

G := eL = {eQ : Q ∈ L}.

Obviously, we aim to prove that G is the sought matrix group. We need to
prove that T1(G) = L.
First, let us go for the inclusion ⊂. Consider X ∈ T1(G). By definition,
there exists a path A : [0, 1] 7→ G such that A(0) = 1 and A′(0) = X. Using
the smoothness of the exponential and the inverse-function theorem, there
must exist at least one local inverse of the exponential of a matrix, log(·),
which we set to be defined in a neighborhood of A(0), let us say H ⊂ eL,
choosing the determination making log : H 7→ L . For ε small enough, and
t ∈ [0, ε] we define

B(t) := log(A(t)),
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whose image belongs to L. Therefore for t ∈ [0, ε], we have

A(t) = eB(t),

which implies B(0) = 0. Moreover, since

A′(t) = B′(t)eB(t),

we substitute t = 0 and arrive to

B′(0) = X.

But now we can use the same argument we used when proving the first part
of the proof: L is a closed set, and B(t) ∈ L for any t ∈ [0, ε], hence the

existing limit when s → 0 of the function B(s)−B(0
s must also be contained

in L, which takes us to B′(0) = X ∈ L, as desired.
Now let us prove the inclusion ⊃. For any X ∈ G = eL, let us consider the
path from [0, 1] to G defined as

A(t) = eXt.

It is a well-defined, smooth path, which satisfies A(0) = 1, and also A′(t) =
XeXt, hence A′(0) = X, which is nothing but the definition of X belonging
to T1(G), i.e. the Lie algebra of G. This finishes the proof.

Proposition 4.16. The Lie algebra of the general linear group, GL(n,C)
is Mn(C).

Proof. We have to prove that T1(GL(nC)) = Mn(C). The inclusion ⊂ is
obvious. We only have to prove the inclusion ⊃.
Assume we are given any X ∈ Mn(C). Consider the smooth path A(t) :=
eXt. It satisfies A(0) = 1 and A′(0) = X, which is the definition of X ∈
T1(GL(nC))

Last proposition hides an ambiguity. Attending to definition 4.13, the
Lie algebra of a matrix group, T1(GL(nC)), is a vector space over R, and
not over C, while one would usually consider Mn(C) as a complex vector
space. This difference is relevant, because the dimension, generators etc. of
any subspace will depend on this feature. Let us see this explicitly:
As for Mn(C), considered as a complex vector space, we know that it
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is generated by the elementary matrices {Eij}i,j∈[n], whose elements are
[Eij ]kl = δikδjl. In a briefer sentence,

Mn(C) =< {Eij}i,j∈[n] >C .

Regarding T1(GL(nC)), we have that it is a real vector space which has,
for example, the base {Eij}i,j∈[n] ∪ {iEkl}k,l∈[n], where as usual i =

√
−1.

Summarizing,

T1(GL(nC)) =< {Eij}i,j∈[n] ∪ {iEkl}k,l∈[n] >R .

Once we noted this fact, since it is not comfortable to work with a space
containing complex numbers considering it as a real vector space, and also
for the sake of homogeneity, we will use the following tool:

Definition 4.17. The complexification of a (real) Lie algebra T1(G) , de-
signed as T1(G)C, is the complex vector space T1(G) spanned by all linear
combinations c1X1 + c2X2 with X1, X2 ∈ T1(G) and c1, c2 ∈ C.
When T1(G) = T1(G)C as sets and T1(G) = T1(G)C =< X1, · · · , Xk >C,
where {Xi}i∈[k] is a set of linearly independent tangent vectors over C, we
say that {Xi}i∈[k] forms a C-basis of T1(G).

Regarding last definition, one only has T1(G) = T1(G)C when G is a man-
ifold over C. Along this work, when considering the matrix groups we are
interested in, that will be the case, hence we will be able to implicitly assume
that complexification has been performed. Therefore every Lie algebra we
deal with will be considered to be a vector space over C.

4.3 The symmetric group Gn.

For the references of the results of this section, vid. [8].
We will frequently need to permutate the elements of a matrix, which is
nicely done by using the symmetric group. For example, let us suppose we
are given the states [n] and consider the matrix M = (mij)i,j∈[n], such that
mij indicates hte probability of passing from one state to another one. If
now we relabel the states, we would like to know how the new matrix M is.
We can formulate this problem more formally. Given a permutation σ ∈ Gn,
it acts on the set [n] = {1, · · · , n} as

σ[n] = {σ(1), · · · , σ(n)}.
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Now if we want to consider the transition matrix whose possible states are
σ[n] and not [n], we claim that this matrix is

KσMK−1σ ,

where Kσ, the n× n permutation matrix representing σ ∈ Gn, is defined as
[Kσ] := δi,σ(j). This is easily explained as follows: given a vector v written
in the order (1, · · · , n), the matrix associated to σ[n] will act not on v, but
on the vector σv. Therefore we will do

KσMK−1σ σv = KσMv,

which will give as output the permutated version of Mv, as desired.

4.3.1 Representation theory

We aim to state some important results of representation theory. Giving
a detailed explanation of this theory as we did with the rest of objects in
our work would enlarge it too much, hence we will be forced to omit it.
The reader should consult the very well explained book ”The Symmetric
Group”, written by Bruce E. Sagan, cited in [8].

Assume we have a multiplicative group G, and also that we have either
a C-algebra A or C-vector space V . For the sake of simplicity, we will only
refer to the less restrictive V , and our results will obviously apply also for
A since algebras are vector spaces. To begin with, we will limit ourselves
for the case in which the canonical basis can be indexed by elements of G.
For example, if |G| = n, we could consider the elements of G, let us say
{g1, · · · , gn} as the canonical basis. Hence we would have

V :=< g1, · · · , gn >C= {α1g1 + · · ·+ αngn} ∼= Cn,

where one should note that the elements of G are like the coordinate we are
moving in, as if we had written ei instead. However, they allow us to define
the action of an element g ∈ G on an element v = α1g1 + · · ·+ αngn ∈ V as
follows:

gv = g

n∑
i=0

αigi =

n∑
i=0

αi(ggi) ∈ V.

Or more generally, we have defined an action of G on the module V , i.e. a
function ρ defined as

ρ : G× V → V

(g, v) 7→ gv
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which behaves very well, for g1(g2v) = (g1g2)v and g(v1 + v2) = gv1 + gv2.
This ρ is a representation of G (note that the representation is not only the
function, but also the domain where it is defined, hence includes the vector
space V .) Therefore, representations and G-modules are two faces of the
same coin, and actually these terms are used interchangeably.
Now we should take into account that talking about a group G is nothing
but talking about a subgroup of the symmetric group, Gn. Therefore it is
convenient to have an example with this specific group.
Let us consider the n!-dimensional vector space V =< Gn >C. We can define
the one-dimensional subspace

W :=<
∑
σ∈Gn

σ >C,

i.e. the multiples of the vector v =
∑

σ∈Gn σ. If we take any permutation
s ∈ Gn, we can see that

sv =
∑
σ∈Gn

sσ =
∑
σ∈Gn

σ = v,

hence we can infer that the subspace W is invariant under the action of
Gn, i.e. W is a submodule of the G−module V . On the other side, W is
one-dimensional, hence it cannot contain any Gn-submodule. Since W ∼= C,
actually we can redefine the restriction of ρ to W as :

ρ : Gn × C→ C
(g, α) 7→ α.

In general, any ρ is determined by the action of G on the basis of V . In last
case, the base of C is {1}, and we have σ 1 = 1 for any σ ∈ Gn. We will say
this is a trivial representation.

This is a very good opportunity to introduce more vocabulary:

Definition 4.18. If a representation ρ : G×V → V satisfies that V contains
a non-trivial G-submodule, we will say that ρ is a reducible representation.
Otherwise, we will say it is an irreducible representation.

For example, our representation ρ : Gn×W →W is not only trivial, but
also irreducible. Moreover, we know that a module can be decomposed in
submoduli, hence we can write Gn = W ⊕ U for some submodule U ≤ V .
We will say that the representation ρ : Gn × V → V has been decomposed
as ρ : Gn ×W ⊕ U → W ⊕ U, or simply abuse of the notation and say that
the representation decomposes as V = W ⊕ U.

Now let us forget our initial definition V :=< g1, · · · , gn >C and consider
a vector space V =< e1, · · · , em >C such that G, with |G| = n, acts on V
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through the representation ρ. For every g ∈ G, the application of g on the
base element ei determines a vector vi, i.e. gei = vi. We will informally
write

g ∼Mg =
(
v1| · · · |vm

)
,

where the matrix Mg has the vectors vi as columns. Therefore the represen-
tation ρ is completely determined by this nmatrices of size m×m. Somehow,
what we are doing is respectfully introducing the elements of G in GL(m,C)
(the inverse is necessary since it is a group). Note that we are not saying
nothing about one-to-one relationships, because actually we already saw for
the case m = 1 that every element of G was going to the identity. What
we do respect is the group operator, i.e. Mg1g2 = Mg1Mg2 . This is why a
representation can also be defined as an homomorphism φ : G→ GL(C,m).

In addition, this idea of the elements of G as matrices allow us to define
a new tool: the character function.

Definition 4.19. If we write φ(g) as the matrix associated to g as previously
explained, the character function is defined as

χ : G→ C
g 7→ Tr(φ(g)).

If a character is defined for a submodule W of V , we will write χW , and the
trace must only be computed for the elements concerning W .

Attending to last definition, if we consider χW , then for any g /∈ W ,
we will obviously have χW (g) = 0. We can even define an scalar operator
< ·, · >, for any two characters of different or equal representations of the
group G, as

< χ1, χ2 >=
1

|G|
∑
g∈G

χ1(g)χ2(g).

Before continuing, recall that a partition of n is a non increasing ordered
set of non-negative integers λ = (λ1, · · ·λr) such that

∑r
i=1 λi = n. We will

write λ = {λn1
1 · · ·λns

s } to denote the partition which has ni copies of integer
λi. For example λ = (3, 3, 1) = {321} is a partition of 7.

Now we are prepared to state, without demonstrating them, some im-
portant results:

Theorem 4.20. (Maschke’s theorem) Given a group G acting on V through
the representation ρ, we can write

V = W1 ⊕ · · · ⊕Wk,

where Wi are irreducible representations.
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Proposition 4.21. (Cor. 1.9.4 of [8]) Let us consider the representation V
of G, which can be decomposed as

V = m1W1 ⊕ · · · ⊕mkWk,

where the Wi are irreducible and pairwise inequivalent, and the mi indicates
the number of copies which appear in the decomposition. Moreover, let χi

be the character of module Wi. Then:

1. χ = m1χ
1 + · · ·+mkχ

k.

2. < χ,χj >= mj for all j.

3. < χi, χj >= 0 if i 6= j.

4. < χ,χ >= m2
1 + · · ·m2

k.

5. V is irreducible iff < χ,χ >= 1.

Proposition 4.22. The irreducible representations of Gn are in one-to-
one correspondence with the partitions of n. Differently explained, for each
partition λ of n, there exists essentially only one mλ-dimensional vector
space V λ and a representation (using the homomorphism definition)

φλ : Gn → GL(V λ) ∼= GL(mλ,C)

such that φλ is irreducible.

Proposition 4.23. Using the terms of last proposition, given a representa-
tion φ : Gn → GL(V ), we can decompose it into irreducible representations
as

V ∼= ⊕λcλV λ,

where the sum is taken over all partitions λ of n and the cλ are nonnega-
tive integers. Moreover, if we define the projection operator of Gn in the
irreducible representation λ as

Θλ :=
1

|Gn|
∑
σ∈Gn

χλ(σ)σ,

then we have
ΘλV = cλV

λ.

Regarding the projection operator, it will be handy when we want to
compute the integers cλ.
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