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SUMMARY

This work focuses on providing accurate low-cost approximations of stochastic finite elements simulations in the framework of linear
elasticity. In [E. Florentin, P. Diez, Adaptive reduced basis strategy based on goal oriented error assessment for stochastic problems, Comput.
Methods Appl. Mech. Engrg. 225-228 (2012) 116-127], an adaptive strategy has been introduced as an improved Monte-Carlo method for
multi-dimensional large stochastic problems. We provide here a complete analysis of the method including a new enhanced goal-oriented
error estimator and estimates of CPU cost gain. Technical insight of these two topics are presented in details and numerical examples show
the interest of these new developments.
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INTRODUCTION

Stochastic finite element methods (SFEM) are currently an essential tool for the quantitative prediction of the response of

mechanical models. Uncertainties can be modelled via random variables and their associated probability distributions. A state

of the art of stochastic methods can be found in [1, 2, 3] and the references provided therein.

The numerical approximation of any stochastic model is affected by errors originated from two distinct sources. The space

functions (e.g. displacement field) are approximated in a discrete functional space, associated with a Finite Element (FE)

discretization, for example. The stochastic dependence of the solution is resolved also discretely, either with a simple non-intrusive

approach like the Monte Carlo (MC) methodology of with a more sophisticated (and intrusive) strategy. In the simpler case, the

FE error depends on the mesh parameter,h, and the MC error in the stochastic description of the outcome depends of the number

of throws, NMC. The computational cost increases when h decreases (the cost of each FE problem is much larger) and when NMC

increases (there are more FE problems to solve). In this work, we consider h and NMC fixed by the user and we focus in providing

techniques to efficiently compute each of the NMC, by, in most of the throws, avoiding solving the full FE problem and replacing

it by a reduced order model.

In that sense, using a Reduced Basis method to solve a given Monte Carlo throw is an alternative to different approaches using

response surface based meta-models, see [4, 5, 6, 7]. The main conceptual difference lies in the fact that the Reduced Basis

approach does solve the original equation in the new configuration (in anapproximation functional space spanned by the set of

available solutions, corresponding to other configurations). This is in contrast with the response surface approach, in which the

solution corresponding to a new configuration is interpolated using the solutions available (the equation to be solved is actually

used to compute the solutions available, not the new one). Here, we complement the methodology with an error assessment

strategy based on the residual of the equation solved for the new configuration, which is fully consistent with the Reduced Basis

approach. A different strategy that could be also treated within a similar framework is solving the full FE problem of the new

configuration with a smart preconditioning based on previous solutions, see [8].

In [9], a reduced basis methodology to reduce the cost of Monte Carlo simulations is presented, offering an attractive framework

for solving stochastic problems with a large number of parameters. The idea is simple and effective because the different Monte

Carlo shots lead to similar FE problems and therefore the reduced basis approach is highly competitive. Other interesting recent

references on this subject are [10, 11, 12, 13, 14, 15]. An adaptative Reduced-Basis (RB) strategy, based on local error estimator

was introduced in [16] and a sensibility analysis on a Quantity of Interest (QOI) was performed. Recently, a different solution has

been presented in [17] to obtain a reliable and uncostly solution in the same framework.

We provide here an improvement of the method developed in [16] regarding two different aspects: quality and cost. Specifically,

the quality is improved by using reduced basis both for the original primal problem and for the adjoint problem associated to a



2 K. SERAFIN, B. MAGNAIN, E. FLORENTIN, N. PARÉS AND P. DÍEZ

given quantity of interest (and not only in the original problem). The computational cost is reduced by an optimal implementation

of the adaptive strategy. The efficiency of the proposed implementation is tested using a C++ code which in turn uses appropriate

open source libraries.

The paper is structured as follows. The first section introduces the mechanical problem to solve in the framework of

stochastic modeling. Section 2 presents the improvement of the error estimator presented in [16] by introducing a reduced basis

approximation of the adjoint problem, along with some numerical examples that validate the presented technique. In section 3, a

precise analysis of the Computational Processing Unit (CPU) gain obtained thanks to the proposed new optimal implementation is

given. A parametric analysis of the method is performed on a 2D example, both regarding the computational cost and the quality

of the provided approximations. Finally, section 4 shows the results of the presented goal-oriented error estimation techniques on

a large 3D mechanical simulation with heterogeneous material.

1. STOCHASTIC PROBLEM

1.1. Continuous model

Let Ω be a bounded domain representing a mechanical structure and let (Θ, T , P ) be a complete probability space, where Θ is the

set of outcomes, T is the σ-algebra of events and P : T → [0, 1] is a probability measure. The stochastic linear elasticity boundary

value problem consists in finding the random displacement field u(x, θ), where x ∈ Ω stands for the position vector and θ ∈ Θ is

used to denote the randomness, such that P -almost surely in Θ the following equations hold

−div (K(x, θ) pε [u(x, θ)]) = fd(x) in Ω (1a)

K(x, θ) pε [u(x, θ)] · n = gd(x) on ∂NΩ (1b)

u(x, θ) = 0 on ∂DΩ. (1c)

The sets ∂DΩ and ∂NΩ are the two complementary disjoint parts in which the boundary of the domain ∂Ω is divided, that is,

∂DΩ ∪ ∂NΩ = ∂Ω and ∂DΩ ∩ ∂NΩ = ∅. Furthermore, the Dirichlet boundary ∂DΩ is assumed to be a non-empty set.

For simplicity of presentation, the stochastic behavior of the model is only included in the material parameters, assuming that

the Hooke tensor is a random field K(x, θ). However, the presented techniques are also readily applicable to problems including a

non-homogeneous random displacement field ud(x, θ) imposed on ∂DΩ, or including a random prescribed traction field gd(x, θ)
or a random prescribed body force field fd(x, θ). As a random field, K(x, θ) is a function mapping each position vector x to

a random variable, which, in the following, it is assumed to be a second-order stochastic process with continuous covariance

function, depending on the distance between the locations. Ideally, the full law of the field K(x, θ) should be known, or either

the infinite set of n-th order marginal densities should be given. For instance, sometimes it is possible to assume that K(x, θ) is a

Gaussian process. However, in practice, K(x, θ) may represent a more complex stochastic processes, where fewer information is

known. Typically, if no precise information on K(x, θ) is given, one can assume that the first-order marginal Probability Density

Functions (PDF) are the same and known for all the position vectors x, assume a fixed form of the cross-correlation, and define

the random process K(x, θ) using only this information.

The strong problem (1) is equivalent to its standard weak form: find u(x, θ) ∈ U such that

a(u(x, θ),w(x)) = ℓ(w(x)) ∀ w(x) ∈ U (2)

where the bilinear form expressing the energy product a(·, ·) and the linear form including the loading ℓ(·) are

a(u,w) =

∫

Ω

pσ(u) : pε(w) dΩ , ℓ(w) =

∫

Ω

fd ·w dΩ+

∫

∂NΩ

gd ·w dΓ,

and U is the set of admissible displacements (verifying the homogeneous boundary conditions (1c)), namely U = [H1
0(Ω)]

d ⊗
L2P (Θ), where H1

0(Ω) is the standard Sobolev space of functions defined in Ω such that they verify the homogeneous Dirichlet

boundary conditions and that both the functions and their first derivatives are square-integrable, the superscript d denoting the

spatial dimension of the problem, and L2P (Θ) is the space of square-integrable functions with respect to the probability P .

Here, pε(v) is the second order deformation tensor, which is defined as the symmetric part of the gradient tensor ∇v, that is,

pε(v) = (∇v +∇vT )/2, and the stress tensor pσ(v), is related to the deformation tensor through the linear constitutive relation

pσ(v) = K pε(v).

1.2. Quantity of interest

The purpose of the stochastic analysis is to determine reliable statistical information of a response quantity of interest (QoI). Note

that since the solution u(x, θ) is a random field, any output computed from this solution is a random quantity, and therefore the

statistics of this output (expected value, variance, . . . ) are the relevant information to be estimated. Here, it is assumed that the

quantity of interest is a scalar quantity expressed as a linear output of u(x, θ), namely

Q(θ) = ℓQ(u(x, θ)), (3)
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where ℓQ(·) is a linear functional having the same form of ℓ(·), namely

ℓQ(w) =

∫

Ω

fAd

d ·w dΩ+

∫

∂NΩ

gAd

d ·w dΓ,

where for simplicity of presentation, the prescribed adjoint traction and body force fields, gAd

d (x) and fAd

d (x) respectively, are

assumed to be deterministic fields, not depending on θ.

It is worth noting that here the quantity of interest is restricted to be linear with respect to the displacement field. However,

nonlinear quantities of interest may also be handled using linearization techniques like the ones introduced in [18, 19].

Given a numerical approximation uh of the problem solution, the QoI is approximated by Qh(θ) = ℓQ(uh(x, θ)) and the error

in the quantity of interest is

eQ(θ) = Q(θ)−Qh(θ).

In order to obtain an alternative representation to the error in the QoI, an auxiliary adjoint problem is introduced: find v(x, θ) ∈ U
such that

a(w(x),v(x, θ)) = ℓQ(w(x)) ∀ w(x) ∈ U . (4)

Then, using equations (4) and (2), the error in the QoI can be expressed as an explicit function of the residual in the weak form of

the problem

eQ(θ) = ℓQ(u)− ℓQ(uh) = a(u,v)− a(uh,v) = ℓ(v) − a(uh,v) =: R(uh;v).

1.3. Discrete surrogate model

As previously mentioned, the goal of this work is to approximate the PDF of Q(θ) with a controlled prescribed accuracy. Since

the dependence of the solution u(x, θ) with respect to the variable θ is usually given by a nonlinear intricate transformation,

determining the exact distribution of Q(θ) requires an analytic determination of this intricate functional transformation. Non-

intrusive approaches seek to approximate the PDF of Q(θ) without any analytic determination of this functional transformation

while only using standard available computational codes to approximate the underlying deterministic boundary value problem

associated to (1), for instance taking a particular realization of θ.

Here the Monte Carlo technique along with the finite element method is used to get an approximation of the statistics of Q(θ)
in a non-intrusive manner. The sketch of the strategy can be outlined as follows:

• Discretization of the input random field: First, the stochasticity of the system is simplified to be able to represent the

stochastic input K(x, θ) as a finite-dimensional linear combination of independent random variables.

• Monte Carlo assessment of the QoI: Then, the Monte Carlo method is used to assess the statistics of Q(θ) using the three

standard steps described below:

– Monte Carlo sampling: Given the discretization of the input random field, it is trivial to generate NMC realizations of

the random input, namely K(x, θk), k = 1, . . . , NMC.

– Spatial discretization: For each of these realizations, the deterministic boundary value problem (1) (freezing

randomness) is approximated using the finite element method.

– Statistics of Q(θ): Gathering all the information given by the finite element approximations uh(x, θk), approximated

probability density functions of both u(x, θ) and Q(θ) are obtained.

The basic steps of this approach are described below in order to introduce the necessary notations.

1.3.1. Discretization of the input random field: finite stochastic dimension The uncertainty of the problem at hand is taken into

account in the Hooke tensor K(x, θ). In particular, the variability of the Hooke tensor is modeled through the Young modulus

E(x, θ). E(x, θ) represents a random scalar at each point of the domain, and thus consists of an infinite number of usually

correlated random variables. For computational purposes, here the random field E is discretized, i.e. expressed as a finite number

of uncorrelated random variables, using the truncated Karhunen-Loève decomposition [20, 21].

Assuming that the spatial correlation function cov(E(x, θ), E(x′, θ)) is regular enough (essentially, it reduces to have square-

integrable probability distributions and symmetric correlation functions), the Karhunen-Loève decomposition allows representing

a random field by a sum of mutually uncorrelated (zero-mean) scalar random variables multiplied by deterministic functions of x,

namely

E(x, θ) = E0(x) +

+∞∑

i=1

√
λiEi(x)ξi(θ), (5)

where Ei(x) and λi, i = 1, 2, . . ., are the eigenfunctions and eigenvalues of the covariance operator associated with the random

field E(x, θ) and E0(x) is the mean value of E(x, θ).
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Then, thanks to the linearity of the Hooke tensor with respect to the Young modulus, the truncated Karhunen-Loève

approximation of the Hooke tensor K(x, θ) is

K(x, θ) ≈ K0(x) +

NKL∑

i=1

√
λiKi(x)ξi(θ) (6)

where K0(x) and Ki(x) are the Hooke tensors associated to E0(x) and Ei(x) respectively.

Thus, the stochasticity of the system is approximated by NKL uncorrelated (zero-mean) random variables ξi(θ), i = 1, 2, . . .NKL.

If E(x, θ) can be assumed to be a Gaussian process, uncorrelation and independence are equivalent, and furthermore, linear

combinations of Gaussian random variables remain Gaussian-distributed. Therefore, if E(x, θ) is a Gaussian process, the random

variables ξi(θ) are independent Gaussian random variables and (6) provides a way to parameterize a Gaussian process by a finite

number of independent Gaussian random variables. When the input random process E(x, θ) can not be assumed to be Gaussian,

its parametrization in terms of ξi(θ) is more challenging. If the full stochastic law of E(x, θ) is known, the uncorrelated random

variables can be computed explicitly as

ξi(θ) =
1

λi

∫

Ω

(E(x, θ) − E0(x))Ei(x)dΩ. (7)

However usually no precise information on K(x, θ) is given, and equation (7) can not be used to compute the uncorrelated

random variables ξi(θ) describing the process. The computation of appropriate uncorrelated random variables ξi(θ) parametrizing

the problem is still and open research topic (see for instance [22, 23]) and it is not discussed in the present work. Here a simplified

approach frequent in the literature is used (see [24, 25, 26, 27]). To simplify the stochasticity of the system, two additional

assumptions are introduced: first, the random variables {ξi(θ), 1 ≤ i ≤ NKL} are assumed to be independent (and thus mutually

uncorrelated) and second, they are assumed to be identically distributed random variables (for instance, uniformly distributed

random variables in the range [−
√
3,
√
3]). The second assumption is only made to uniquely determine the Hooke tensor and

other distributions may be considered, as will be seen in the numerical examples, while the first assumption is useful in order to

be able to easily generate realizations of K(x, θ). The independence assumption reduces the problem of generating a realization

of K(x, θ) to generate the NKL independent realizations of the random variables ξi(θ). It is worth noting that the assumptions

introduced here are only made to simplify the problem of generating the realizations of E(x, θ) (Monte-Carlo sampling step), and

thus the present work is valid also for any more general Karhunen-Loeve decomposition given in the form of (5) or also to any

other linear or nonlinear approximation of the input random field allowing to explicitly generate proper realizations of E(x, θ),
including for instance modelling E(x, θ) using a polynomial chaos expansion [3, 28].

1.3.2. Spatial discretisation For each Monte Carlo realization K(x, θk), the corresponding solution u(x, θk) of problem (1) has

to be properly approximated. Note that for a fixed given value of θ, namely θk, problem (1) is just a deterministic linear elasticity

problem associated with the spatially-dependent Hooke tensor K(x, θk). Here, the infinite-dimensional elasticity problem is

approximated using the standard Galerkin finite element method.

Let Ni(x), i = 1, 2, . . . , NFE be the finite element shape functions associated to the finite dimensional mesh of characteristic

size h which defines the finite-dimensional space Uh ⊂ U

Uh = span
{
N1, N2, . . . , NNFE

}
. (8)

Then, the numerical approximation of u(x, θk) in Uh is

u(x, θk) ≈ uh(x, θk) =

NFE∑

i=1

ui(θk)Ni(x), (9)

where ui(θk) are the vector nodal values of the approximation at the mesh nodes xi. Introducing the global vector of unknowns

U(θk) = [u1(θk)
T u2(θk)

T . . . uNFE
(θk)

T ]T the corresponding discretized form of (2) can be written as a linear system of

equations

K(θk)U(θk) = F, (10)

where K is the finite element stiffness matrix (discretized form of a(·, ·)) and F is the nodal force vector (discretized form of ℓ(·)
). The size of this system of equations is (d ·NFE)× (d ·NFE) where d is the spatial dimension of the problem.

It is worth noting that, since the Hooke tensor associated with the realization θk is computed using equation (6) and since the

bilinear form a(·, ·) is a linear expression on the Hooke tensor, the stiffness matrix corresponding to the realization θk reads

K(θk) ≈ K0 +

NKL∑

i=1

√
λiKiξi(θk) (11)

where K0 and Ki are the (deterministic) stiffness matrices corresponding to the Hooke tensor distributions described by K0(x)
and Ki(x) respectively.
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1.3.3. Statistics of Q(θ) The Monte Carlo technique approximates the statistics of a given random quantity of interest Q(θ) by

generating a large number of realizations of θ, namely {θk}k=1,...,NMC
, and properly aggregating the computed approximations

{uh(x, θk)}k=1,...,NMC
.

That is, NMC realizations of K(θ) are generated using independent realizations of the random variables {ξi(θ)}i=1,...,NKL

appearing in (11), and then, the realizations {uh(x, θk)}k=1,...,NMC
(or equivalently {U(θk)}k=1,...,NMC

) are obtained by solving

NMC linear systems of equations (10). The PDF of Q(θ) is then characterized by its expectation and variance as:

E[Q(θ)] ≈ 1

NMC

NMC∑

i=1

Qh(θk)= EMC , V[Q(θ)] ≈ 1

NMC − 1

NMC∑

i=1

(
Qh(θk)

2 − E
2
MC

)
(12)

Also, higher order moments of Q(θ) or its different percentiles can be analogously obtained.

In order to have an accurate approximation of the PDF of Q(θ), the number of realizations NMC must be very large. Note that the

Monte Carlo simulation process converges very slowly to the answer associated with the quantity of interest Qh(θ) (approximated

in space, exact in the stochastic dimension), which is ideally obtained after an infinite number of realizations. The convergence rate

is estimated to be of order O(1/√NMC), see for example [29]. Therefore, a fast and competitive method to obtain the realizations

of uh(x, θk) is necessary to be able to get accurate approximations of the QoI by including a large number of Monte Carlo runs in

(12).

1.4. 2D test case

To fix the ideas, a 2D simple test case similar to the one proposed in [16] is introduced here. As figure 1 shows, a square domain

of side L = 100 is compressed by a uniform pressure (P = 0.03) to a portion of its upper face ∂NΩ = {(x, L/2) ∈ R2, x ∈
(−2L/5, 2L/5)}. Vertical displacements are set to zero on the bottom of the square (with free horizontal displacements) and

horizontal displacements are set to zero on the lateral sides (with free vertical displacements).

its upper face ∂NΩ

Figure 1. 2D test case: geometry and boundary conditions.

The spatial meshes consist of linear 4-node squares where the number of elements is nel = n2
L

for different values of the number

of 1D elements nL of the sides of the square. Table I provides the precise relation between nL and the number of degrees of

freedom of the problem ndof for the considered meshes, where the total number of degrees of freedom is computed as 2(nL + 1)2

minus the number of prescribed zero displacements.

nL 10 20 40 80 160

ndof 209 819 3 239 12 879 51 359

Table I. 2D test case: number of degrees of freedom of the spatial finite element meshes

The mechanical behavior of the material is modeled by the linear elastic Hooke’s law, where the uncertainty of the problem is

taken into account in the Hooke tensor K(x, θ) through the Young modulus E(x, θ). This random field E(x, θ) is characterized

by its uniform average E[E(x, θ)] = E0(x) = 1 and its spatial correlation function C(x,x′) given by the exponential kernel.

C(x,x′) = cov(E(x, θ), E(x′, θ)) = α2e−
‖x−x

′‖
L , (13)
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where ‖x− x′‖ is the standard euclidean distance between x and x′. It is worth noting that since the variance of E(x, θ) is

V[E(x, θ)] = α2, α is the standard deviation of the random variable E(x, θ). This parameter is used to modulate the deviation

of the randomness of the problem from the mean field, which allows testing the sensitivity of the method with respect to the

magnitude of the randomness. In this case, the truncated Karhunen-Loeve decomposition of E(x, θ) is

E(x, θ) = E0(x) + α

NKL∑

i=1

√
λiEi(x)ξi(θ), (14)

where now the deviation α is shown explicitly in the equation, and λi and Ei(x) are the eigenvalues and eigenvectors of the

unit-variance covariance operator C1(x,x′) = e−‖x−x
′‖/L.

The eigenvalues and eigenvectors, λi and Ei, solution of the Fredholm equation for the unit-variance covariance operator

C1(x,x′) ∫

Ω

C1(x,x′)Ei(x
′)dx′ = λiEi(x)

are approximated by sampling in NFE points (xi, for i = 1, . . . , NFE, possibly the nodes of the spatial discretization used in the

FEM, see table I ) and using a numerical integration scheme with the same points and uniform weights (thus, equal to |Ω|/NFE),

see [30] for a detailed explanation. Moreover, the orthonormality property of the eigenvectors is also enforced with respect to the

scalar product corresponding to the same numerical integration scheme.

In this case, the eigenvalues λi and eigenvectors Ei are computed using a singular value decomposition (SVD) of the discrete

covariance matrix C where Cij = C1(xi,xj) for i, j = 1, . . . , NFE. The eigenvalues and normalized eigenvectors of the covariance

function coincide with the singular values and singular vectors of C after a scaling factor is applied: the eigenvalues λi are

obtained from the singular values by multiplying them by |Ω|/NFE while the normalized eigenvectors are obtained by multiplying

the singular vectors (which are orthonormal with respect to the Euclidean norm in RNFE) by
√

NFE/|Ω|. Note that, if the values

of λi and Ei are computed only to be used in (14), there is no need to apply the scaling factor, since the product
√
λiEi(x) has the

same value before and after the scaling factor is applied.

Among the ndof/2 eigenvalues of C, the NKL greatest values are kept. Figure 2 shows the 20 largest eigenvalues obtained in this

example.
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Figure 2. 2D test case: 20 largest eigenvalues λi of the Fredholm equation obtained using the SVD technique, normal (left) and semilog
(right) scales.

In this test case, the number of terms in the Karhunen-Loeve decomposition is set to NKL = 20 and the uncorrelated zero-mean

random variables {ξi(θ)}i=1...,NKL
appearing in the Karhunen-Loeve decomposition are assumed to be identically distributed with

a non-standard nonlinear distribution obtained as

ξi =
2√

π2 − 8
arcsin

(
Erf

(N (0, 1)√
2

))
(15)

where N (0, 1) stands for the standard normal distribution and Erf is the error function. This specific distribution allows

dealing with zero-mean and unit-variance random variables with a finite support ξi(θ) ∈
[
−π/
√
π2 − 8, π/

√
π2 − 8

]
. With this

information at hand, the value of α is chosen carefully so that E(x, θ) is guaranteed to be strictly positive for all NKL.

The quantity of interest considered here is the vertical displacement at the middle point of the upper surface, namely:

Q(θ) = ℓQ(u(x, θ)) = uy(x
Q, θ) with xQ = [0, L/2]T , (16)
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where uy(x
Q, θ) denotes the vertical displacement of u(x, θ) at point xQ. Due to the symmetry of the elasticity operator, the

adjoint problem takes the same form as (1) where the external loads are fAd

d (x) = 0 and

gAd

d (x) =

{
[0,−1]T for x = xQ

0 elsewhere in ∂NΩ.

To obtain good approximations of the statistics of the quantity of interest E[Q(θ)] and V[Q(θ)] a Monte Carlo simulation with

NMC = 105 is performed. The resulting statistics for different values of the deviation α and for the mesh with ndof = 51359 are

shown in table II.

α 5% 10% 20% 25%
E[Q(θ)] -1.6901 -1.7016 -1.7512 -1.7942

V[Q(θ)] 0.0048 0.02 0.0952 0.1742

Table II. 2D test cast: statistics of Q(θ) obtained for the mesh with ndof = 51359.

In the forthcoming sections, the robustness of the presented techniques is analyzed by keeping NMC constant and increasing the

difficulty of the problem by either decreasing the size of the finite element mesh (or equivalently increasing ndof) or by increasing

the value of the deviation α. Note that the parameter α allows varying the spatial variability of the random field E(x, θ). A larger

deviation yields a tougher problem since the Young modulus E(x, θ) will strongly differ from its mean value E0(x), and therefore

the difference between the solutions u(x, θ) of two different realizations will also be large.

Table III shows the CPU time of the full Monte-Carlo analysis, denoted by tMC, as the computational complexity of the Finite

Element Method is increased. Hereafter, the phrasing full is used in contraposition to reduced-basis. Thus, a full Monte-Carlo

analysis uses standard non-reduced finite element approximations for all the Monte-Carlo realizations. It can be appreciated that

ndof 209 819 3 239 12 879 51 359

tMC 32 s 3 min 17 min 2h30 21h20

Table III. 2D test case: evolution of the CPU time as ndof is increased.

if the computation of all the different Monte-Carlo throws is performed independently (without benefitting from the information

obtained as the process advances to reduce the computational cost), the CPU time associated to the finer finite element meshes

becomes very large.

2. ADAPTIVE REDUCED BASED METHOD WITH IMPROVED ERROR ESTIMATOR

The proposed non-intrusive strategy to obtain the statistics of Q(θ) is extremely simple because it decouples the approximation

of the stochastic behavior and the solution of the deterministic mechanical model. The deterministic numerical solver can be

used as a black box, without any modification in the code associated with the stochasticity. The random character is accounted

for by generating a large number of realizations and solving the corresponding deterministic problems. However, as shown in

the previous section, the numerical cost is very large unless the cost of the deterministic numerical solver is drastically reduced.

The reduced basis method is particularly interesting in this case, since we need to solve a large number of problems with similar

characteristics. By creating a data base of NRB solutions the approximation of the deterministic solution for a new realization can

be computed by solving a small NRB ×NRB linear system of equations instead of (10). The key point is that in general NRB is

much smaller than d ·NFE.

2.1. Reduced basis approximation

Let {uh(1),uh(2), . . . ,uh(NRB)} be a collection of NRB linearly independent solutions (corresponding to different realizations

of θ) described by the corresponding vectors of nodal values {U1,U2, . . . ,UNRB
} and let URB = [U1 U2 . . . UNRB

] be the

(d ·NFE)×NRB matrix storing all the snapshot solutions. Then, for a given new realization θk, the reduced basis approximation

of uh(x, θk) is

uh,RB(x, θk) =

NRB∑

i=1

ai(θk)uh(i)(x)

which can also be written in vector form as

URB(θk) =

NRB∑

i=1

ai(θk)Ui = URB a(θk)
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where the reduced base vector a(θk) = [a1(θk) a2(θk) . . . aRB(θk)]
T is the solution of

(UT
RB
K(θk)URB)a(θk) = U

T
RB
F. (17)

2.2. Error assessment

For each realization θk, the error in the approximation of u(x, θk) given by the reduced basis solution uh,RB(x, θk) can be

decomposed into

eRB(x, θk) = eh(x, θk) + eh,RB(x, θk)

where eh(x, θk) = u(x, θk)− uh(x, θk) accounts for the error introduced by the finite element approximation of the problem

and eh,RB(x, θk) = uh(x, θk)− uh,RB(x, θk) accounts for the error introduced by approximating the finite element problem using

a reduced basis. The error eh is reduced by refining the finite element mesh, while reducing the error eh,RB involves properly

enriching the reduced basis so that it is representative enough. Here, it is assumed that a sufficiently refined finite element mesh

is given, so that only the reduced basis error has to be controlled. Therefore, no error estimates are made to enrich the finite

element mesh. The error estimates given here concentrate only on deciding whether the reduced basis has to be enriched so

that eh,RB is kept under a prescribed given tolerance. Specifically, the goal is to control the error in the quantity of interest

eQ

RB
= ℓQ(eh,RB). Alternatively, one may also include a posterior error estimates controlling the spatial error, see references

[31, 32, 33, 34, 35, 36, 37].

In order to assess the reduced basis error eh,RB(x, θk) which in vector form is

ERB(θk) = U(θk)−URB(θk) (18)

the discretized form of the adjoint problem (4) has to be introduced. Let

v(x, θk) ≈ vh(x, θk) =

NFE∑

i=1

vi(θk)Ni(x), (19)

and introduce the global vector of unknowns V(θk) = [v1(θk)
T v2(θk)

T . . . vNFE
(θk)

T ]T . Then, the corresponding discretized

form of (4) can be written as a linear system of equations.

K(θk)V(θk) = G, (20)

where G is the nodal vector associated to the QoI functional ℓQ(·). Note that the vector G can also be used to evaluate the value

of the QoI for any function w ∈ Uh. In particular, the finite element approximations of Q(θk) can be evaluated as

Qh(θk) = GTU(θk) , QRB(θk) = GTURB(θk),

and the error in the quantity of interest due to the introduction of a reduced basis is

eQ

RB
(θk) = Qh(θk)−QRB(θk) = ℓQ(eh,RB) = GTERB(θk). (21)

From this expression, an alternative representation for the error in the quantity of interest eQ

RB
(θk) is obtained using equations (21)

and (20), the symmetry of the stiffness matrix K and equations (18) and (10)

eQ

RB
(θk) = GTERB(θk) = V(θk)

T
K(θk)ERB(θk)

= V(θk)
T (F−K(θk)URB(θk)) = V(θk)

TRRB(θk), (22)

where RRB(θk) is identified as the residual of (10) associated with the reduced basis approximation.

This error expression cannot be used in this form because it requires computing V(θk) for each realization θk, thus involving

the solution of a large number of linear system of equations of the same size of the original finite element problem. The idea

introduced in [16] to overcome this problem consists in approximating eQ

RB
(θk) by replacing the exact finite element solution of

the adjoint problem in (22) by its mean value VT
0 . Namely

eQ

RB
(θk) ≈ VT

0 RRB(θk) = ηQ

MEAN
(θk). (23)

Using this approach, the cost of evaluating an error estimate for eQ

RB
(θk) is reduced to compute the residual of its corresponding

reduced basis approximation. In [16], it is shown that this approximation is precise for problems where the variability in the

adjoint problem is small. This error estimate is going to be represented in the following by ηQ

MEAN
, where the subscript MEAN

clearly indicates that the estimate is obtained using the mean value of the adjoint problem.

In this work, a more elaborate approach is used. Instead of approximating the adjoint solution V(θk) by its mean value

VT
0 , a reduced basis approach is used. That is, a collection of NAd

RB
linearly independent solutions of the adjoint problem

{vh(1),vh(2), . . . ,vh(NAd
RB

)} described by the corresponding matrix of nodal values VRB = [V1 V2 . . . VNAd
RB

], and the adjoint
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solution V(θk) is approximated by

VRB(θk) = VRB d(θk)

where the reduced basis coefficients d(θk) are computed solving the adjoint reduced basis system of equations

(VT
RB
K(θk)VRB)d(θk) = V

T
RB
G. (24)

Using this reduced basis approach also for the adjoint problem yields the new estimate for the reduced basis error in the quantity

of interest

eQ

RB
(θk) ≈ (VRB(θk))

TRRB(θk) = ηQ

DB
(θk). (25)

Note that this approach does not substantially increase the computational cost, since the cost of computing the reduced basis

approximation of the adjoint problem is comparable to the cost of computing the reduced basis finite element approximation of

the direct problem. This error estimate, represented in the following by ηQ

DB
is going to be named after improved or double base

error estimate, the DB in the subscript representing the double base denomination.

2.3. Adaptative Algorithm

The goal of the adaptive algorithm presented here is, given a large number of realizations of θ, namely {θk}k=1,...,NMC
, return the

corresponding series of approximated quantities of interest {QRB(θk)}k=1,...,NMC
, where the error (with respect to the full finite

element computation) in these approximations is below a certain given prescribed accuracy ǫ0, that is

|eQ

RB
(θk)| = |Qh(θk)−QRB(θk)| < ǫ0 ∀k = 1, . . . , NMC. (26)

Note that low values of ǫ0 will require more snapshots in the reduced basis approximation of the direct problem, and therefore the

cost of the adaptive algorithm is strongly related to the prescribed accuracy.

Guaranteeing the quality of the approximations of the QoI using the full finite element error eQ

RB
(θk) implies computing the full

finite element adjoint problem (20) for each realization of θk which is computationally unaffordable, therefore, as mentioned in

the previous section, the previous accuracy requirements are in practice substituted by ensuring that

|ηQ

DB
(θk)| = |(VRB(θk))

TRRB(θk)| < ǫ0 ∀k = 1, . . . , NMC. (27)

However, this modified criteria only ensures a good quality for the approximation QRB(θk) if VRB(θk) is a good approximation

of V(θk). Therefore, to use (27) as an acceptance criteria for QRB(θk), the adaptive algorithm has to enforce a good quality of

the adjoint reduced basis approximation. The quality of the reduced basis approximation of the adjoint problem can be measured

using the residual

RAd

RB
(θk) = G−K(θk)VRB(θk),

since equation (20) ensures that the residual is zero for VRB(θk) = V(θk). Here the quality of the adjoint approximation is

measured using the scalar value.

ηAd

DB
= (URB(θk))

TRAd

RB
(θk). (28)

Remark 1

Equation (22) is indeed a representation of the error introduced by the reduced basis approximation involving the dual solution

and the direct residual. In the case of homogeneous Dirichlet boundary conditions this can also be written in terms of the direct

solution and the dual residual, namely

eQ

RB
(θk) = V(θk)

TRRB(θk) = U(θk)
TRAd

RB
(θk). (29)

Actually, estimate (28) is obtained replacing the exact finite element solution of the direct problem U(θk) by its reduced basis

approximation URB(θk). It is worth noting that the estimate would provide good approximations of the error in the quantity of

interest if: 1) URB(θk) is a good approximation of U(θk) and 2) if URB(θk) cannot be exactly described using the reduced basis

for the adjoint problem, since in this case the orthogonality condition of the adjoint residual yields ηAd

DB
= 0 even though the

error eQ

RB
(θk) may not be zero, thus producing an underestimation of the error. As shown in the numerical examples presented

in the forthcoming sections, the direct and adjoint basis are not too different and, consequently, this non-desired behavior is not

appreciated in the results,. The estimate ηAd

DB
is therefore performing well in these examples. The possibility of using more accurate

and robust error estimates for the adjoint problem may bring some advantages in some cases and is to be addressed in forthcoming

works.

Therefore, the problem of computing {Qh(θk)}k=1,...,NMC
which involves calling NMC times the direct problem solver

associated to the full finite element mesh, is replaced to compute the approximations {QRB(θk)}k=1,...,NMC
. This approximation

only involves solving NMC small versions of the direct problem (its reduced basis projection) along with the solution of NMC small

versions of the adjoint problem to ensure the quality of the approximations for the quantity of interest. The direct and adjoint

reduced bases are initially set to one snapshot and are enhanced as the adaptive algorithm advance using the two error estimates

ηQ

DB
and ηAd

DB
for the direct and adjoint problem respectively. The adaptation of the reduced basis as the adaptive algorithm is

performed allows ensuring the quality of the approximated QoI, QRB(θk), while ensuring a minimal size of the snapshot basis for

the direct and adjoint problems.

The proposed adaptive algorithm is detailed hereafter in Algorithm 1.
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Data: ǫ0, the realizations {θk}k=1,...,NMC
, and the routines generating K(θk), F and G

Result: A number of NMC realizations of the QoI, {QRB(θk)}k=1,...,NMC
, with error lower than ǫ0

First Monte Carlo throw (k = 1)

generate K(θ1), F, G;

compute U1 solving K(θ1)U1 = F and V1 solving K(θ1)V1 = G;

compute and store Q1 = GTU1;

initialize URB = [U1] and NRB = 1;

initialize VRB = [V1] and NAd

RB
= 1;

Subsequent Monte Carlo throws

for k = 2 . . .NMC do

generate K(θk);

compute KRB(θk) := UT
RB
K(θk)URB and FRB := UT

RB
F ;

compute KAd

RB
(θk) := VT

RB
K(θk)VRB and GRB := VT

RB
G ;

solve the direct and adjoint reduced basis problems

compute a solving KRB(θk)a = FRB;

compute d solving KAd

RB
(θk)d = GRB;

compute Uk
RB

= URBa and Vk
RB

= VRBd;

assess the error of the reduced basis solutions

compute the residuals RRB = F−K(θk)U
k
RB

and RAd

RB
= G−K(θk)V

k
RB

;

compute the error estimates ηQ

DB
= (Vk

RB
)TRRB and ηAd

DB
= (Uk

RB
)TRAd

RB
;

if |ηQ

DB
| > ǫ0 and |ηAd

DB
| > ǫ0 then

solution not admissible: re-computing the full solutions and enriching the two basis

compute Uk solving K(θk)Uk = F;

set Uk
RB

= Uk;

update URB =
[
U1 · · ·UNRB

Uk

]
and NRB ← NRB + 1;

compute Vk solving K(θk)Vk = G;

update VRB =
[
V1 · · ·VNRB

Vk

]
and NAd

RB
← NAd

RB
+ 1 ;

else if |ηQ

DB
| > ǫ0 and |ηAd

DB
| < ǫ0 then

solution not admissible: re-computing the direct full solution and enriching URB

compute Uk solving K(θk)Uk = F;

set Uk
RB

= Uk;

update URB =
[
U1 · · ·UNRB

Uk

]
and NRB ← NRB + 1;

else if |ηQ

DB
| < ǫ0 and |ηAd

DB
| > ǫ0 then

solution not admissible: re-computing the adjoint full solution and enriching VRB

compute Vk solving K(θk)Vk = G;

update VRB =
[
V1 · · ·VNRB

Vk

]
and NAd

RB
← NAd

RB
+ 1 ;

else

admissible solution: no extra computations required;

end

compute and store QRB(θk) = GTUk
RB

;

end

Algorithm 1: Adaptive reduced basis solver with double base update.

2.4. Numerical results

The performance of the goal oriented adaptive procedure given in Algorithm 1 is compared to the approach developed in [16], for

the 2D test case presented in section 1.4. The difference between these two approaches is that, in the new approach, the acceptance

criterion for an approximation of the quantity of interest Q(θk) is driven by the double base error estimate, i.e. |ηQ

DB
(θk)| < ǫ0,

while in [16] the mean error estimate (also named after classic error estimate) is used, i.e. |ηQ

MEAN
(θk)| < ǫ0. In other words, the

error estimate eQ

RB
(θk) given in equation (22) is approximated replacing the exact finite element approximation of the adjoint

problem V(θk) by its mean V0 in the classic approach, while in the double base approach, V(θk) is replaced by a sufficiently

accurate reduced basis approximation VRB(θ).
At the end of the goal-oriented Monte-Carlo simulation, both strategies provide approximations of the quantities of

interest {QRB(θk)}k=1,...,NMC
approximating the exact finite element values {Qh(θk)}k=1,...,NMC

, with associated errors

{eQ

RB
(θk)}k=1,...,NMC

which are expected to be below the prescribed error threshold ǫ0. To verify the accuracy of the proposed

error estimates when used in the acceptance criterion, i.e. to verify that the estimates correctly enforce the prescribed tolerance ǫ0,
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the index

EQ

max
=

maxk∈1..NMC
|eQ

RB
(θk)|

ε0

is introduced. Note that EQ

max
is the ratio between the maximum error committed in all the Monte-Carlo simulations and the

prescribed maximum error. Ideally, one would wish for EQ

max
to be less than or equal to one, i.e. EQ

max
≤ 1, since in this case all the

approximations {Qh(θk)}k=1,...,NMC
would have a certified maximum error below the threshold ǫ0. However, since the proposed

estimates |ηQ

DB
(θk)| and |ηQ

MEAN
(θk)| are not a guaranteed error estimates for |eQ

RB
(θk)|, EQ

max
may exceed one and the accuracy of

the goal-oriented adaptive algorithms will be measured by the surplus of EQ

max
from 1.

Figure 3 shows the obtained EQ

max
values, both for the classical and double base techniques, when varying the prescribed error

ǫ0 and for different values of the standard deviation α. In this case, the underlying finite element computations are performed with

a mesh with ndof = 12879 (or equivalently nL = 80). The results obtained using underlying finite element meshes of ndof = 819
(nL = 20) and ndof = 3239 (nL = 40) are not detailed here since the obtained results are similar to the ones reported in figure 3.
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Figure 3. Accuracy of the error estimates when varying both ǫ0 and α. Computations performed using the underlying finite element mesh of
ndof = 12879 (nL = 80).

It can be seen that for low values of the standard deviation, α ranging from 5% to 10%, both methods properly impose the

prescribed error. For all the values ǫ0 ∈ [10−6; 10−1] and for the three different computational meshes, the value of EQ

max
remains

close to one. However, for larger values of the standard deviation, the index EQ

max
only remains close to one for the double basis

approach. This is due to the fact that the hypothesis introduced in equation (23) that the adjoint problem can be approximated by

its mean value is only reasonable for low values of the standard deviation α. Changing the mean value of the adjoint problem by

a reduced basis approximation to estimate the error as in equation (25) allows using this methodology also for high values of α,

by just adjusting the number of snapshots used in the adjoint reduced basis approximation. It will be seen in section 2.4 that, this

gain in the accuracy is in detriment of the computational cost of the method, but that this increase in the cost remains still very

competitive.

Figure 4 shows the distribution of errors eQ

RB
for ǫ0 = 10−3 , α = 5% and ndof = 3239. The distribution obtained using both

the classical and double base approaches, again show that better estimates are obtained when the adjoint problem is approximated

using the reduced basis approach. Indeed, the double base error distribution is more concentrated around zero. It can also be seen

that, for this particular case, the double base approach guarantees that |eQ

RB
| < ǫ0 for all the occurrences (EQ

max
= 0.6 ≤ 1). On the

other hand, even though for the classical approach EQ

max
= 1.1 > 1, the histogram shows that only very few Monte-Carlo throws

are not meeting the error requirements. In fact, less that 1% of the occurrences do not meet this criteria.

Therefore, even though figures 3 show that, for some values of ǫ0 and ndof , the error is not strictly enforced in all the Monte-Carlo

throws (EQ

max
> 1), the number of occurrences not meeting the error requirements are a very small fraction of the occurrences.

3. OPTIMAL IMPLEMENTATION AND COMPUTATIONAL ASPECTS

This section provides some computational details of the presented techniques. A poor implementation of the adaptive reduced

basis techniques presented above may paradoxically yield to a method with higher cost than a classic Monte-Carlo simulation, or

at most achieve a suboptimal CPU gain with respect to it. Therefore, an efficient implementation is crucial to yield the desired

CPU gains.

The core ingredient of reduced basis techniques is to solve small systems of equations (17) rather than the original larger ones

(10), which a-priori are cheaper. However, several aspects have to be carefully dealt with in order to yield an optimal CPU time:
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Figure 4. Histogram showing the occurrences of eQ

RB (in semi-log) scale for the classic approach (in grey) and the developed double basis

method (in blue) for ǫ0 = 10−3 , α = 5% and ndof = 3239. The yellow region shows the occurrences ensuring |eQ

RB| < ǫ0.

• the matrices K(θk) associated to the original systems of equations are sparse matrices while the associated reduced ones

KRB(θk) are full matrices,

• the time to generate matrices K and KRB used is Algorithm 1 can be large compared with the time that takes to solve the

reduced systems (17),

• the need to introduce error estimates (and the computations they require like the residual computation) can yield a non-

neglegible computational increase.

These aspects are discussed in this section and specific techniques are provided to efficiently implement the reduced basis

technique. It is worth noting that these computational aspects are a major improvement, not only for the adaptive reduced basis

solver with double base update described in algorithm 1 but also for the same algorithm when only the classical error estimate

based on the mean adjoint solution is used. Thus, this strategy is also bringing an important improvement to the results presented

in [16], in terms of computational its cost.

3.1. Efficient computation of the stiffness matrices (offline precomputation)

As mentioned before, even though the solution of the reduced basis direct (resp. adjoint) problem given in equation (17) (resp.

(24)) is really fast since it involves solving a NRB ×NRB (resp. NAd

RB
×NAd

RB
) linear system of equations. However, the assembling

of the reduced stiffness matrix KRB(θk) (resp. KAd

RB
(θk) requires assembling the global matrix K(θk) and then projecting it to the

reduced basis space URB (resp. VRB). When the cost in CPU time of the algorithm is carefully examined, this assembly procedure,

that has to be done for each throw and both for the direct and adjoint problem, has a significant cost and therefore it has to be

efficiently implemented.

3.1.1. Computation of K(θk) The non-intrusive approach summarized in Algorithm 1 requires generatingK(θk) for all the Monte-

Carlo throws {θk}k=1,...,NMC
. Each realization θk is associated to the Hooke operator K(x, θk) given by the truncated Karhunen-

Loeve decomposition (6) and therefore it is possible to generate the stiffness matrix K(θk) from K(x, θk) using a standard finite

element assembly procedure. This approach requires to make a global assembly operation for each throw θk. In order to optimize

the CPU cost, it is crucial to use the linearity of the bilinear form of the problem with respect to the Hooke tensor and use formula

(11) to compute K(θk).
In the offline stage where the Young’s modulus random field is discretized using a truncated Karhunen-Loeve decomposition,

the eigenvectors {Ei(x)}i=1,...,NKL
of the covariance function are obtained. These functions defining the different Young modules

in turn define the Hooke tensors {Ki(x)}i=1,...,NKL
and its finite element global assembled stiffness matrices {Ki}i=1,...,NKL

.

These global stiffness matrices are calculated and stored in the offline stage. Note that in general NKL is a small number, and

therefore the cost of storing the matrices Ki remains reasonable as far as NKL remains reasonable. Then, during the online Monte-

Carlo stage, the stiffness matrix K(θk) associated with each throw is generated using (11) as a simple linear combination of the

pre-computed global stiffness matrices.
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3.1.2. Computation of KRB(θk) and KAd

RB
(θk) Using a reduced basis approach to compute the direct and adjoint computation

requires also computing the reduced basis matrices KRB(θk) and KAd

RB
(θk) for each throw {θk}k=1,...,NMC

. These matrices can be

obtained from the global stiffness matrix K(θk) as

KRB(θk) = U
T
RB
K(θk)URB and K

Ad

RB
(θk) = V

T
RB
K(θk)VRB.

However, from a computational point of view it is preferable to take advantage of the Karhunen-Loeve expansion (11) to compute

the reduced basis matrix. Namely, precomputing the reduced stiffness matrices KRB,i and KAd

RB,i associated with each of the

Karhunen-Loeve modes (eigenvectors)

KRB,i = U
T
RB
KiURB and K

Ad

RB,i = V
T
RB
KiVRB (30)

in the off-line stage, allows readily computing the reduced basis stiffness matrices for each throw by just using a linear combination

of the pre-computed matrices as

KRB(θk) =

NKL∑

i=0

√
λiKRB,iξi(θ) and K

Ad

RB
(θk) =

NKL∑

i=0

√
λiK

Ad

RB,iξi(θ). (31)

where we have set λ0 = 1 and ξ0(θ) = 1 to simplify the previous expressions. The computation of the reduced basis stiffness

matrices using (31) is computationally inexpensive, and it only requires the storage of the pre-computed reduced stiffness direct

and adjoint for each Karhunen-Loeve modes. As mentioned before, since usually NKL is not large, this cost in memory remains

reasonable in general.

Remark 2

For problems including random terms in the source and/or tractions terms fd(x, θ) and gd(x, θ) respectively, the load vector F

also depends on θ, namely F(θ). An optimal computation of the reduced basis load vector for each throw FRB(θk) = UT
RB
F(θk)

also requires preforming a Karhunen-Loeve decomposition of the loads fd(x, θ) and gd(x, θ) which allow computing FRB(θk) as

a linear combination of the pre-computed vectors FRB,i associated to the eigenvectors of the loads of the problem respectively.

3.1.3. Efficient Reduced Basis growing When the quality of the reduced basis approximations is not deemed sufficient, the size

of the reduced basis is increased (NRB ← NRB + 1 in Algorithm 1). The enhancement of the basis is done both for the direct and

adjoint problem. Here the details of this growing procedure is given only for the direct problem but the same applies to the adjoint

problem.

Increasing the basis for the direct problem reduces to add a vector Ũ in the last column of matrix URB to obtain the new basis

ŨRB,

ŨRB = [URB , Ũ]. (32)

Since the matrices {KRB,i}i=1,...,NKL
are a projection of Ki onto URB these matrices have to be recomputed each time a new

snapshot is introduced in URB.

A simple, but computationally expensive, procedure consists in generating the new set of NKL matrices from scratch by replacing

URB by ŨRB in (30). However, a simple alternative procedure can be used to optimize the CPU cost of computing the reduced basis

matrices {K̃RB,i}i=1,...,NKL
by using the already available information stored in {KRB,i}i=1,...,NKL

. Indeed, taking advantage of the

block form of matrix K̃RB,i allows rewriting the (NRB + 1)× (NRB + 1) matrix K̃RB,i as

K̃RB,i = Ũ
T
RB
KiŨRB =

[
UT

RB

ŨT

]
Ki[URB , Ũ] =

[
UT

RB
KiURB UT

RB
KiŨ

ŨTKiURB ŨTKiŨ

]
=

[
KRB,i XT

i Ũ

ŨTXi ci

]
.

Therefore the computation of the enhanced matrices K̃RB,i requires only computing the matrices Xi = KiURB and then do

the products involved in ŨTXi and ci = ŨTKiŨ. In principle, the computation of the matrices Xi require a matrix times

matrix operations. However, if no memory restrictions apply, these matrices can be stored and then, for each enhancement, the

computation of the new matrix X̃i is done just performing a matrix times vector operation (of size d ·NFE)

X̃i = KiŨRB = [Xi , KiŨ]. (33)

The computation of the scalar value ci is more demanding since it involves two matrix times vector operations of size d ·NFE

which cannot be simplified by storing previously computed information.
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3.2. Efficient evaluating of the goal oriented error estimates ηQ

MEAN
and ηQ

DB

3.2.1. Mean estimation: ηQ

MEAN
The Karhunen-Loeve decomposition of the stiffness matrix K(θk) can also be used in this context

to alleviate the computational cost of computing ηQ

MEAN
(θk) for each throw. Indeed, expanding equation (23) and using (11) yields

ηQ

MEAN
(θk) = VT

0 RRB(θk) = VT
0 F−VT

0 K(θk)URBa = VT
0 F−

(
NKL∑

i=0

√
λiξi(θ)V

T
0 KiURB

)
a

= VT
0 F−

(
NKL∑

i=0

√
λiξi(θ)V

T
0 Xi

)
a,

where again we have set λ0 = 1 and ξ0(θ) = 1. Then, the error estimate ηQ

MEAN
can be efficiently computed by storing the scalar

value VT
0 F and the vectors {VT

0 Xi}i=1,...,NKL
. Each evaluation of the mean estimate requires then to compute a proper linear

combination of the stored vectors and a vector times vector computation of size d ·NFE.

Of course, each time a new snapshot is introduced in URB, the vectors VT
0 Xi have to be recomputed. However, once the low cost

enrichment strategy proposed in the previous section is used to update X̃i, the new vectors are updated as

VT
0 X̃i = [VT

0 Xi , V
T
0 KiŨ],

where the computation of the new (last) scalar position of the vectors VT
0 KiŨ only require a vector times vector operation since

the products KiŨ have already been computed in (33).

3.2.2. Double basis estimation: ηQ

DB
The double base estimate ηQ

DB
(θk) can also be computed efficiently by storing the small

NKL ×NKL matrices

KDB,i = V
T
RB
KiURB i = 1, . . . , NKL. (34)

Indeed expanding (25) and using (11) yields

ηQ

DB
(θk) = (VRB(θk))

TRRB(θk) = dT
V

T
RB
F− dT

V
T
RB
K(θk)URBa = dT

V
T
RB
F−

(
NKL∑

i=0

√
λiξi(θ)d

T
V

T
RB
KiURB

)
a

= dT
V

T
RB
F−

(
NKL∑

i=0

√
λiξi(θ)d

T
KDB,i

)
a.

Obviously, these matrices have to be recomputed each time that either the direct or adjoint reduced basis is enhanced. However, an

enrichment strategy similar to those used in the previous section can be used to drastically decrease the computational complexity.

Indeed,

K̃DB,i = Ṽ
T
RB
KiŨRB =

[
VT

RB

ṼT

]
Ki[URB , Ũ] =

[
VT

RB
KiURB VT

RB
KiŨ

ṼTKiURB ṼTKiŨ

]
=

[
KDB,i (XAd

i )T Ũ

ṼTXi ĉi

]
,

where the matrices Xi = KiURB and XAd

i = KiVRB are stored in the process of enlarging the stiffness matrices K̃RB,i and K̃Ad

RB,i

respectively.

It goes without saying that if just one of the basis is enhanced, the equivalent simplified formulas are used (for an enhancement

of the direct and adjoint basis respectively)

K̃DB,i =
[
KDB,i , (X

Ad

i )T Ũ
]

, K̃DB,i =

[
KDB,i

ṼTXi

]
.

3.3. Global browsing with minimal snapshot basis

In [16] an adaptive algorithm for reduced basis enrichment is proposed. The basic idea is to successively generate the reduced

basis along the Monte Carlo simulation process, increasing the number of elements of the direct and adjoint reduced basis when

it is required. The major inconvenience of this approach is that, once the reduced basis is enriched, the cost of computing every

subsequent throw is increased despite the fact that maybe the new solutions may be precisely described using a smaller basis.

Therefore, the cost of this approach clearly depends on the ordering of the realizations {θk}k=1,...,NMC
. Optimally, one should

order the realizations starting from those whose accuracy requirements can be met with a lower number of terms on the reduced

basis expansion and ending with the more complex realizations that need all the snapshots to be properly described.

To overcome this drawback a new strategy is proposed relying on Algorithm 1. The main idea is that given a reduced basis,

all the realizations which meet the accuracy requirements with this basis are handled and removed from the list of remaining

realizations to be dealt with. After this step is finished, the information provided by the current reduced basis is not sufficient

to properly deal with the remaining realizations and the reduced basis is enriched. The algorithm continues dealing with all the

realizations that can be precisely computed with this new basis. The procedure ends when there are no more realizations to run.
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The key point of this new approach is that it optimizes the use of each intermediate reduced basis (from the starting basis with

only one snapshot to the full basis with NRB snapshot), since at each step it solves the maximum number of realizations which

verity the given error criteria.

The algorithm associated with this procedure is detailed hereafter in Algorithm 2. The acceptance error criteria for the quantities

of interest QRB(θk) is assessed here using the classical mean approach, that is, the estimate ηQ

MEAN
(θk) is used to approximate

eQ

RB
(θk) for each throw. Therefore the reduced basis method is only used in the direct problem, since the exact finite element

solution of the adjoint problem V(θk) is replaced by its mean value V0 which is computed in the full finite element mesh before

starting the Monte-Carlo simulation. Future works, will include also a minimal snapshot approach including the improved error

estimate ηQ

DB
(θk) which requires to optimally enhance both the direct and adjoint reduced basis.

Data: ǫ0, the realizations {θk}k=1,...,NMC
, F, G, V0, URB = [U1], NRB = 1,

{Ki , KRB,i = UT
RB
KiURB , Xi = KiURB , V

T
0 Xi}i=1,...,NKL

and the routine generating K(θk)
Result: A number of NMC realizations of the QoI, {QRB(θk)}k=1,...,NMC

, with approximated error lower than ǫ0
while all the throws are not solved do

for all the not-solved throws do

compute KRB(θk) =
∑NKL

i=0

√
λiKRB,iξi(θ);

compute FRB = UT
RB
F;

compute a solving KRB(θk)a = FRB;

assess the error of the reduced basis solution

compute the error estimate ηQ

MEAN
(θk) = VT

0 F−
(∑NKL

i=0

√
λiξi(θ)V

T
0 Xi

)
a

if |ηQ

MEAN
(θk)| > ǫ0 then

solution not admissible;

tag the throw as not solved
else

solution admissible;

tag the throw as solved;

compute Uk
RB

= URBa;

compute and store QRB(θk) = GTUk
RB

;

end

end

select one off the not-solved throw and compute the full solution associated to this throw compute K(θk);
compute Uk solving K(θk)Uk = F;

compute and store QRB(θk) = GTUk
RB

;

tag the throw as solved;

enrich the basis

update URB = [U1 · · ·UNRB
Uk] and NRB ← NRB + 1;

for i = 1, . . . , NKL do

update VT
0 Xi ← [VT

0 Xi , V
T
0 KiUk];

update Xi ← [Xi , KiUk];

update KRB,i ←
[

KRB,i XT
i Uk

UT
kXi UT

kKiUk

]
;

end

end

Algorithm 2: Adaptive reduced basis solver (efficient browsing of the throws) with reduced basis update only for the direct

problem.

It may seem that this approach is more computationally demanding than the approach with successively enrich reduced basis,

since for each basis all the unresolved throws are computed, and therefore, the direct problem associated to a given realization

θk is solved as many times as necessary to meet the precision requirements. However, note that the problems are really small

(for instance, for the initial step URB = [U1] where all the throws are computed, the direct problem consists of a simple division).

Moreover, if no memory restrictions apply, the optimization techniques introduced for the basis enrichment allows performing the

full Monte-Carlo simulation in very reasonable computational times. Additionally, the main advantage of this new algorithm is

that it can be completely parallelized.
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4. NUMERICAL ILLUSTRATION OF THE COMPUTATIONAL COST OF THE METHOD

4.1. Improvement in the computational cost

The proposed algorithms have been implemented in C++, using the Eigen library (FER numerical modelling software [38]). The

Eigen library allows using a sparse storage for problems with a large number of degrees of freedom while using linear solvers

involving a Cholesky decomposition of the form LDL
T . The linear solver is the same for dense matrices (matrices involved in the

reduced basis problems) and for sparse matrices (matrices involved in the resolution of the full finite element direct and adjoint

problems). It is therefore well suited to use in the proposed algorithms since it is applicable for both dense and sparse linear

systems, allowing to easily perform comparisons between the different CPU computational times.

A study of the computational time gain, achieved using the proposed method, is given in the following. A similar study is

presented in [16] where the study of the evolution of the size of the reduced basis for the direct problem as the Monte-Carlo

simulation advances shows the potential of the therein proposed method (classical/mean approach). The size of the reduced basis

remains small compared to the size of the full finite element problem, and therefore a substantial gain in the computational cost

is observed. However, in [16] it is already observed that this gain in cost is only achieved if special attention is paid in using an

efficient implementation of all the computations. That is, it is critical that the reduced basis strategy is used along with techniques

like the ones presented in section 3 to optimize the computational cost. Specifically, the goal-oriented reduced-basis Monte-Carlo

simulation requires constructing, solving and verifying a large number of small dense linear systems of equations. A non-optimal

implementation of these three steps can greatly compromise the efficiency of the proposed methods.

As in section 2.4, a comparison of the performance of the goal oriented adaptive procedure given in Algorithm 1 is compared to

the approach developed in [16], for the 2D numerical example described in section 1.4. The comparison presented here, however,

focuses on its computational efficiency.

A Monte-Carlo simulation with NMC = 105 is performed for three different values of the deviation parameter α = 5%, 10% and

20%, the five different fixed finite element meshes (table I) and for six different values of the prescribed error ǫ0 (from ǫ0 = 10−1

to ǫ0 = 10−6). The computational cost of the two methods is measured with the aid of the ratio RCPU

RCPU =
tRB

tMC

, (35)

which divides the computational time of the Monte-Carlo analysis using the reduced basis approach to solve the finite element

problems (tRB) by the computational time of the Monte-Carlo analysis using the full finite element computations (tMC) given in

table III. Note that, to simplify the notation, the time tRB both refers to the computational time of the reduced basis approach where

the adjoint problem is approximated by either its mean or by using the reduced basis approach. Obviously, one expects RCPU << 1
since it means that the gain in cost when using a reduced basis approach is considerable. Also, it is expected that RMEAN

CPU
< RDB

CPU

since the first approach (classic/mean) does not require dealing with a reduced base for the adjoint problem (double base approach).

Figure 5 shows the computational times of the classical and double base approaches, highlighting the benefits of both approaches

in terms of computational cost. From the figures, the following major conclusions can be extracted:

• For almost all computations, the computational time of the classical/mean approach is smaller than the computational time

of the double base approach. However, this difference is not very significative and decreases as the reference finite element

mesh is refined. Recalling that the double base approach provides much better accuracy than the classical approach, the

extra computational effort is worth it.

• For a fixed value of the desired precision ǫ0, the ratios RCPU decrease as the number of degrees of freedom increase. This

is due to the fact that the number of snapshots needed in the reduced basis approximations is hardly sensitive to the mesh

refinements. As the mesh is refined, the computational cost of the full finite element approximations required in the full

Monte-Carlo approach is greatly increased whereas the size of the small linear systems that have to be solved to obtain the

reduced basis approximations remain nearly constant. Therefore, since the ratio between the size of the full finite element

system of equations and the size of the reduced basis systems substantially increase, the ration RCPU rapidly decreases.

• For a fixed reference finite element problem, a demanding prescribed error ǫ0 yields less gain in the computational cost

of the method. Of course this is due to the fact that in order to ensure small prescribed errors, the number of terms in the

reduced basis approximations needs to be larger. Obviously, as the number of the reduced basis snapshots increases, the

reduced basis approach becomes less appealing and more computationally demanding.

• Finally, a larger deviation parameter α also yields less computational gains. As in the case where the prescribed error ǫ0
is small, in general a large deviation parameter α imply a larger variability between the solutions associated with different

random realizations θk and therefore more number of snapshots are needed to properly describe both the direct and adjoint

approximations using a reduced basis approach.

Consequently, the results show that the proposed double-base approach perfectly meets the expectations in terms of CPU time

gain. Only one somewhat unrealistic configuration, combining both a coarse reference finite element mesh and a very small

prescribed error, yields larger computational times than the full Monte-Carlo simulation.
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Figure 5. Computational gain of the classical and double base approaches versus the full Monte-Carlo simulation (RCPU) for α = 5%, 10%
and 20%, the finite element meshes referred in table I and various prescribed errors ǫ0.

4.2. Computational gain when using a global browsing with minimal snapshot basis

This section presents a comparison between the computational cost of the global browsing reduced basis adaptive strategy

presented in Algorithm 2, and its sequentially computed equivalent version. That is, the global browsing technique is compared

to the improved adaptive strategy presented in [16] based on classical estimate (ηQ

MEAN
), where the term improved refers to the fact

that the technique introduced in [16] is now optimally implemented using the previously discussed computational aspects.

The approach presented in algorithm 2 guarantees that, for each constructed intermediate reduced basis, all the realizations

which meet the accuracy requirements with this basis are handled and therefore removed from the list of remaining realizations

to be dealt with. Consequently, each realization is computed using a minimum size reduced basis. Although the final size of the

reduced basis remains unchanged, the computational cost of the intermediate realization is greatly reduced.

The computational gain introduced by the global browsing is measured introducing the CPU time ratio

Ralgo =
t0
RB

t2
RB

, (36)

where t2
RB

is the CPU time associated with algorithm 2 and t0
RB

is the CPU time associated with its sequential version. Note that

the desired scenario is that the global browsing alleviates the computational cost and therefore t2
RB
≤ t0

RB
which implies Ralgo ≥ 1.

Thus, a larger computational gain is associated with large values of Ralgo.

Figure 6 shows the obtained computational quotients Ralgo for α = 5% and α = 10%. As can be seen, the global browsing

strategy is advantageous for low values of the prescribed errors ǫ0 and low values of the deviation parameter. As the error

requirements become more restrictive, the finite element approximations have to be solved more precisely and therefore the

number of needed snapshots in the reduced basis becomes more problem dependent. In this case, the cost of global browsing

becomes larger since using less snapshots in some of the occurrences does not compensate the fact that most of the occurrences

are solved more than once. It can also be observed that the gain when using the global browsing is also increased as the reference

finite element mesh is refined.

Finally, even though a direct gain in the computational time is not obtained in all the cases, a crucial feature of the global

browsing method described in algorithm 2 is that the method is a perfect candidate for parallelization, just like in a classic Monte

Carlo simulation. Indeed, for a given fixed reduced basis, all the realizations that have to be computed and tested for accuracy are
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Figure 6. Comparison of the computational cost of the global browsing strategy versus the standard incremental adaptive procedure (Ralgo)
for α = 5% (left) and α = 10% (right), the finite element meshes referred in table I and various prescribed errors ǫ0. The green region shows

the computations for which the global browsing is advantageous.

completely independent and should be run in parallel. Only after all the realizations have been computed, the results have to be

regrouped to enrich the reduced basis and then throw all the remaining occurrences again in a parallel form.

Therefore, the global browsing, although in some cases slightly degrades the computational cost of the standard reduced basis

approach, has the advantage of being completely parallelized.

4.3. Robustness of the reduced basis techniques with respect to ordering

In this section, the influence of the ordering of the realizations that have to be computed is studied. Note that while in a full Monte

Carlo simulation the order of the realizations that have to be computed has no effect on the computational time of the method since

all the computations are mutually independent, when using a reduced basis technique with no global browsing, the ordering of

the realizations can a priori be important since the reduced basis is enriched as the finite element computations associated to each

realization cannot be properly solved using the previous computations. Once the basis is enriched, the subsequent computations

become costlier regardless of its complexity.

To study this influence, a Monte-Carlo simulation with NMC = 100.000 is performed for a the deviation parameter α = 5%, the

finite element mesh with ndof = 819 and for two prescribed errors ǫ0 = 10−4 and ǫ0 = 10−6. As mentioned above, the classical

mean approach and the double basis approach present very close results for low values of the standard deviation (e.g. α = 5% as in

this case, where further enriching the adjoint base does not bring a significant improvement). Thus, the robustness of the method

is only checked here for the improved version of the algorithm presented in [16].

The independence assumption on the random variables ξi(θ) appearing in the Karhunen-Loeve decomposition of the Young’s

Modulus E(x, θ), see (14), allows obtaining the NMC realizations defined by {E(x, θk)}k=1,...,NMC
, by just generating a normally

distributed NMC ×NKL random matrix, denoted in the following by MN(0,1), and compute the NMC values of E(x, θk) using the

values of each row of MN(0,1) in equation (15) along with (14). Recall that in this test case NKL is set to 20.

Four different sorting strategies are tested before using the values {E(x, θk)}k=1,...,NMC
(resp. {K(θk)}k=1,...,NMC

) in the Monte

Carlo simulation. In order to set the different sorting strategies, first a set of functions

E(x) = [E1(x),E2(x), . . . ,ENMC
(x)]

is computed as detailed above using the values in the rows of MN(0,1) in equations (15) and (14). The four different sorting

strategies are then:

• Sorting 1: take the values of the Young’s modulus as initially obtained E(x)
• Sorting 2: randomly reorder the functions in E(x)
• Sorting 3: sort E(x) by its associated value ξ1(θ) (first column of MN(0,1)) in increasing order

• Sorting 4: sort E(x) by its associated value ξ1(θ) (taking absolute values) in increasing order

Figure 7 shows that the final size of the basis and the profile of its enrichment are only slightly affected by the different sorting

strategies, both for the prescribed errors ǫ0 = 10−4 and ǫ0 = 10−6. This illustrates the robustness of the method because the size

of the basis is mainly depending on the overall complexity of the problem to be treated (prescribed errors, quantity of interest,

number of realizations, size of the stochastic space...), and the influence of sorting the sampling is nearly negligible in the presented

numerical results. In practice, the difference of the results due to the various sorting strategies of the realizations act as a small

noise source.
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5. A 3D NUMERICAL EXAMPLE

Here, a 3D numerical example is presented to confirm the good performance of the presented techniques when applied to finite

element problems of significant size. As shown in figure 8, the goal is to predict the mechanical behavior of a 3D cubic structure

of side L = 10 formed by a heterogeneous material. The domain is composed of a 75% matrix while the remaining 25% of the

volume corresponds to 40 spherical inclusions, of random sizes and positions. The four lateral faces and the base of the cube are

fixed while a uniform pressure P = 20 is applied to a small square centered on the top of the cube (with sides parallel to those of

the edges of the cube), of size l = 2. Finally, the quantity of interest examined here is the vertical displacement of the node placed

in the center of the top of the cube (corresponding to a punctual force for the adjoint problem).

Figure 8. 3D numerical example: model problem.

The randomness of the problem is given by having 41 different materials each varying independently around a prescribed mean

value. Specifically, denoting by ω0 the domain occupied by the matrix and by ωi, i = 1, . . . , 40 the different subdomains of the
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spherical inclusions, the value of the Young’s modulus in each domain ωi is of the form:

Ei(ξi(θ)) = Ei
0(1 + αiξi(θ)). (37)

where ξi(θ) are independent and identically distributed random variables. Note that, in this case, Young’s modulus can be rewritten

as

E(x, θ) =

40∑

i=0

1ωi
(x)Ei(ξi(θ)) =

40∑

i=0

1ωi
(x)Ei

0 +

40∑

i=0

αi1ωi
(x)ξi(θ), (38)

where E0 =
∑40

i=0 1ωi
(x)Ei

0 is the mean spatial distribution. Therefore, the input random field E(x, θ) is already given by a

linear combination of 41 independent random variables {ξi(θ)}i=0,...,40, and hence there is no need to use the Karhunen-Loeve

decomposition to discretize the input random field.

In particular, the parameters associated to the random field E(x, θ) for this problem are: E0
0 = 1 for the matrix, E0

i = 2 for

all the spheres and a standard deviation of αi = 5% for all the subdomain including the cube matrix. The independent random

variables {ξi(θ)}i=0...,NKL
are defined using the non-standard nonlinear distribution given in equation (15).

The statistics of the quantity of interest are approximated using a Monte-Carlo simulation with NMC = 100.000 realizations for

three different finite element meshes formed of linear tetrahedral elements with ndof = 50746, ndof = 86493 and ndof = 276736.

The results presented herein are computed using both the improved version of the algorithm presented in [16] based on a mean

approach and the double base adaptive algorithm presented in algorithm 1. Is is worth noting that in this 3D example where

the computational requirements are demanding, the new proposed implementation is crucial to obtain the desired results in a

competitive computational time.

The approximated PDFs of Q(θ) for the finer mesh with ndof = 276736 characterized by the mean and variance values

EMEAN[Q(θ)] ≈ 0.987731 and VMEAN[Q(θ)] ≈ 0.001536

for the mean approach and

EDB[Q(θ)] ≈ 0.98755 and VDB[Q(θ)] ≈ 0.00153

for the double base approach are given in figure 9. Actually, figure 9 shows the histogram of the occurrences of Q(θ). The

approximated PDF of Q(θ) is obtained from this histogram by just scaling the ordinate axis (dividing by NMC = 105). As can be
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Figure 9. 3D numerical example: histogram showing the occurrences of Q(θ) for the mesh with ndof = 276736 for the mean approach (left)
and the new double base approach (right).

seen, since the considered deviations are small (αi = 5%) the use of the reduced basis only for the primal problem or for both the

primal and adjoint problem yields similar results.

This example is representative of the crucial advance that the present work provides in the context of goal-oriented stochastic

finite element adaptive strategies. Indeed, the resolution of the complete direct problem takes 42 minutes for the finest mesh, and

hence a full analysis of the stochastic behavior of the QoI would take 8 years of a single-processor computation.

Table IV shows the computational times associated with strategies presented in this work for the three different finite element

meshes and for different values of the prescribed error ǫ0. It is worth noting that, of course, the Full Monte-Carlo simulations

have not been performed, and therefore the CPU times regarding the Full Monte-Carlo simulations detailed in table IV have been

estimated by extrapolation (multiplying the CPU time spent in solving 100 complete direct problems by 1000 to obtain the CPU
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cost of NMC = 105). The final number of snapshots in the reduced basis NRB and NAd

RB
are also reported in the table for the double

base approach given in algorithm 1.

Double base Mean

ndof TimeDB RDB

CPU
NRB NAd

RB
TimeMEAN RMEAN

CPU

5
0
7
4
6

Full Monte-Carlo 4 100 000

RB ǫ0 =10% 96 2.3410−5 1 1 55 1.3410−5

RB ǫ0 =1% 141 3.4310−5 1 2 55 1.3410−5

RB ǫ0 =0.1% 1 289 3.1410−4 7 9 277 6.7510−5

RB ǫ0 =0.01% 7932 1.9310−3 43 43 1 896 4.6210−4

RB ǫ0 =0.001% 17 570 4.2910−3 73 65 5 124 1.2510−3

8
6
4
9
3

Full Monte-Carlo 1.098 107

RB ǫ0 =10% 226 2.0610−5 1 1 124 1.1310−5

RB ǫ0 =1% 340 3.1010−5 1 2 124 1.1310−5

RB ǫ0 =0.1% 1 363 1.2410−5 8 9 346 3.1410−5

RB ǫ0 =0.01% 8 368 7.6210−4 43 43 1 965 1.7910−4

RB ǫ0 =0.001% 19 624 1.7910−3 79 56 5 193 4.7210−4

2
7
6
7
3
6

Full Monte-Carlo 2.5323 108

RB ǫ0 =10% 5126 2.0210−5 1 1 2 594 1.0210−5

RB ǫ0 =1% 7 264 2.8710−5 1 2 2 594 1.0210−5

RB ǫ0 =0.1% 55 644 2.2010−4 7 9 14 881 5.8710−5

RB ǫ0 =0.01% 301 120 1.1910−3 43 44 89 152 3.5210−4

Table IV. Time (in seconds) to solve the 3D example for the full Monte-Carlo simulation and the Reduced basis (RB) adaptive procedure for
different meshes and values of the prescribed error using algorithm 1 both for the double base and mean approach. The sizes NRB and NAd

RB

of the double base approach are also reported.

The results confirm that the new procedure allows drastically reducing the computational cost of the Monte-Carlo simulation.

Moreover, it is observed that the improvement in the RCPU cost increases as the size of the problem increases (larger ndof ), but

that this gain is less important for demanding accuracy requirements (small values of ǫ0). However, in all the cases, the proposed

methodology allows obtaining good statistics of the quantity of interest in a reasonable computational time.

6. CONCLUSIONS

In this paper a method based on an adaptive reduced basis strategy has been presented in the framework of linear elasticity. A

complete analysis of the method is given including a new enhanced goal-oriented error estimator and estimates of CPU cost

gain. The new method is an improvement of the method developed in [16] both regarding the accuracy of the results and the

computational cost. Indeed, the accuracy improvements are obtained introducing a reduced basis for the adjoint problem which

allows introducing a more accurate error estimate which in terms allows better controlling the adaptive algorithm. This makes

it possible to reach good level of accuracy for a quantity of interest even for problems with large variations in the stochastic

behaviour. On the other hand, the computational cost is reduced introducing an optimal implementation that allows enhancing the

CPU cost of the adaptive method: 1) the reduced basis stiffness matrices are computed using pre-computed reduced stiffness for

the direct and adjoint problem for each Karhunen-Loeve mode, 2) the reduced basis growing is efficiently implemented providing

a very cheap construction of the stiffness matrices, and 3) an efficient browsing of the Monte-Carlo throws is presented.

A parametric analysis of the method is performed regarding cost and quality on a 2D example. The results illustrate the obtained

gain in terms of both quality and cost. Also, different simulations are introduced to show the robustness of the method. Finally,

the technique is applied to a large 3D mechanical simulation with heterogeneous material where performing a full Monte Carlo

simulation is unaffordable (regarding its CPU time). The proposed methodology allows obtaining very accurate statistics for the

quantity of interest in reasonable CPU times.
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