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Abstract—A major goal in modern flight control systems is the
need of improving the reliability. This work presents a reliable
control approach of an octorotor UAV that allows distributing
the control effort among the actuators using health actuator
information. The octorotor is an over-actuated system where
the redundancy of the actuators allows the redistribution of the
control effort among the existing actuators according to a given
control strategy. The priority is given to each actuator according
to the capabilities and reliability of this actuator.
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I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are well-suited to a wide
range of mission scenarios, such as search, rescue, vigilance
and inspection, among others. However, the overall mission
performance can be strongly influenced by vehicle sensors and
actuators failures or degradations.

Moreover, for these kind of systems it could be more
appropriate to avoid the fault occurrence than tolerate them.
In this sense, a new paradigm in which the use of both control
and reliability theory has emerged in terms of Health-Aware
Control (HAC).

The aim is to modify the control inputs or change the
mission objective, using system reliability information that is
provided by a proper on-line prognostic tool. This leads to an
increase of the operation time of the system [1, 2].

This work presents the benefit of taking into account
system and component reliabilities in a linear quadratic control
(LQR) algorithm of an overactuated system. In this kind of
systems, the existence of some actuator redundancies allows
the design of controllers that can optimise the distribution of
the control effort in such a way that the reliability of the
system is preserved or even extended. The objective is to
combine a deterministic part related to the system dynamics
and a stochastic part related to system reliability. The resulting
scheme provides control performance and preserves the system
reliability.

In particular, multirotors UAVs as overactuated systems
have the potential to improve safety and reliability. Several
control techniques have been applied to multirotors, such as
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Model Predictive Control (MPC) [3, 4, 5], PID [6] and LQR
[7, 8]. Some control techniques have been used to design HAC
strategies, i.e. with MPC [9] or control allocation [10].

The case study is an octorotor UAV system that has eight
propellers in I configuration (Fig. 1). Four propellers can
rotate in a clockwise direction, while the remaining can rotate
anticlockwisely. The octorotor is moved by changing the rotor
speeds. For example, increasing or decreasing together the
eight propellers speeds, vertical motion is achieved. Changing
only the speeds of the propellers situated oppositely produces
either roll or pitch rotation, coupled with the corresponding lat-
eral motion. Finally, yaw rotation results from the difference in
the counter-torque between each pair of propellers. Moreover,
the octorotor is an overactuated system which can function
with at least four propellers forming a quadrotor structure.

The subsequent sections are as follows: in Section II the
octorotor dynamics is presented, in Section III the reliability
modelling is presented, in Section IV the dependence on
system reliability in the control algorithm is discussed, in
Section V the simulation results are presented, and finally,
some conclusions are given in Section VI.

II. OCTOROTOR DYNAMICS

To describe the dynamics of a multirotor, it is necessary to
define the two frames in which it will operate: Inertial frame
and Body frame. The inertial frame {I} is static and represents
the reference of the multirotor while the body frame {B} is
defined by the orientation of the multirotor and is situated in
its center of mass. The two frames are related by the rotation
matrix (1). RI

C transforms a vector in body reference to a
vector in inertial reference. In this case, the Euler angles,
namely roll angle (φ), pitch angle (θ) and yaw angle (ψ), are
used to model this rotation.

RI
C =

[
c(ψ)c(θ) c(ψ)s(θ)s(φ)− s(ψ)c(φ)
s(ψ)c(θ) s(ψ)s(θ)s(φ) + c(ψ)c(φ)
−s(θ) c(θ)s(φ)

c(ψ)s(θ)c(φ) + s(ψ)s(φ)
s(ψ)s(θ)c(φ)− c(ψ)s(φ)

c(θ)c(φ)

]
(1)

where s(·) and c(·) represent sin(·) and cos(·), respectively.

The dynamics of a multirotor [11] can be defined using
the Newton and Euler equations (2)-(5), that describe the



translation and rotation of a rigid body.

ξ̇I = vI (2)

v̇I =
1

m
(fI) (3)

η̇I = WηωB (4)

ω̇B =
1

J
(τB − ω × Jω) (5)

where, ξI = [x y z]T is the position vector, vI = [vx vy vz]
T

is the linear speed vector in the inertial frame, η = [φ θ ψ]T is
the orientation vector, ω = [p q r]T is the body angular speed
vector, m is the mass of the vehicle, J is the inertia tensor, fI
and τB represent the external forces and torques applied to the
UAV and Wη which represents the transformation matrix for
angular velocities from the inertial frame to the body frame
[12] is given by:

Wη =


1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0
sinφ

cos θ

cosφ

cos θ

 (6)

The external forces interacting with the vehicle are: the lift
of the rotors (T ), the translational drag and the gravity. The
external torques are: the motor torque (τm) and the rotational
drag.

The model has been developed under the following as-
sumptions [13]:

• The structure of the UAV is symmetrical.

• The body is rigid.

• The propellers are rigid.

• The free stream air velocity is zero.

• The motor dynamics is relatively fast and it can be
neglected.

• The flexibility of the blade is relatively small and it can
be neglected.

• The inertia tensor of the octorotor body is diagonal J =
diag(Jxx, Jyy, Jzz).

• The inertia of the octorotor body is much larger than the
inertia of the propeller (it includes the rotating parts of
the rotor) J� Jprop.

• Translational and rotational drag are negligible.

The multirotor model is obtained expanding the equations
(2)-(5) and applying the previous assumptions:

ẋI =vx (7)

ẏI =vy (8)

żI =vz (9)

v̇x =
1

m
[cos(φI) sin(θI) cos(ψI) + sin(φI) sin(ψI)]T (10)

v̇y =
1

m
[cos(φI) sin(θI) sin(ψI)− sin(φI) cos(ψI)]T (11)

v̇z =
1

m
[cos(φI) cos(θI)]T − g (12)

φ̇I =p+ sin(φ) tan(θ)q + cos(φ) tan(θ)r (13)

θ̇I = cos(φ)q − sin(φ)r (14)

ψ̇I =
sin(φ)

cos(θ)
q +

cos(φ)

cos(θ)
r (15)

ṗ =
1

Jxx
[−(Jzz − Jyy)qr − JpqΩp + τx] (16)

q̇ =
1

Jyy
[(Jzz − Jxx)pr + JppΩp + τy] (17)

ṙ =
1

Jzz
[−(Jyy − Jxx)pq + τz] (18)

where Jp is the inertia moment of the motor (rotating parts)
and the propeller around z axis and T is the lift force.

Then, for the octorotor with the following structure PPN-
NPPNN as the one presented in Fig.1, where P and N define
a positive and negative reactive motor torque respectively
(represented as arrows), Ωp is:

Ωp = −|Ω1|−|Ω2|+|Ω3|+|Ω4|−|Ω5|−|Ω6|+|Ω7|+|Ω8| (19)

where Ωi is the angular velocity of the ith motor.

Fig. 1. Octorotor PPNNPPNN structure.

Furthermore, the system inputs Ωi produce a lift force T
and torques τ in x, y, and z axis given by:

uv = BstruΩ (20)

which in its complete form is:

Tτxτy
τz

 =

 kb kb kb kb kb
0 −kbls(45) −kbl −kbls(45) 0
−kbl −kblc(45) 0 +kblc(45) kbl
+kd +kd −kd −kd +kd



kb kb kb
kbls(45) kbl kbls(45)
kblc(45) 0 −kblc(45)

+kd −kd −kd





Ω2
1

Ω2
2

Ω2
3

Ω2
4

Ω2
5

Ω2
6

Ω2
7

Ω2
8


(21)

where kb and kd are coefficients of the motor and l is the
distance between the center of mass and the center of the rotor.
The parameters value which define the octorotor model are
presented in Table I.

TABLE I. PARAMETERS VALUE

Parameter Symbol Value

Body inertia Jxx = Jyy 25 · 10−3 [kgm2]
Body inertia Jzz 42 · 10−3 [kgm2]
Propeller inertia Jp 104 · 10−6 [kgm2]
Mass m 1.86 [kg]
Arm length l 0.4 [m]
Thrust factor kb 54.2 · 10−6 [Ns2]
Drag factor kd 1.1 · 10−6 [Nms2]

Equations (7)-(18) define the non linear state space model
of an octorotor that should be linearized to apply a health
aware linear quadratic controller (LQR) for the UAV system.
The state and inputs vectors considered are x = [x y z φ θ
ψ vx vy vz p q r]

T and u = [Ω2
1 Ω2

2 Ω2
3 Ω2

4 Ω2
5 Ω2

6 Ω2
7 Ω2

8 ]T ,
respectively, the Taylor series approximation at the hover
position is applied. The hover position corresponds to the
situation where the planes xy of both frames ({I} and {B})
are in parallel and the motors are generating a lifting force
equal to the weight of the octorotor.

In this work, the control of the UAV consists in a cascade
structure (Fig. 2). Therefore, the linear model will be divided
into two subsystems:

• For the inner control loop, let eI be the inner state vector
denoted as:

eI = Xrefi −Xi = [ez eφ eθ eψ evz ep eq er]
T (22)

and ∆uI be the inner input vector denoted as:

∆uI =
[
∆Ω2

1 ∆Ω2
2 ∆Ω2

3 ∆Ω2
4 ∆Ω2

5 ∆Ω2
6 ∆Ω2

7 ∆Ω2
8

]T
(23)

with ∆Ω2
i = Ω2

i − uff = Ω2
i −mg/(8kb), where uff stands

for the input providing the equilibrium point.
Therefore, the inner loop model is given by:

ėI(t) =AIeI(t) + BIBstr∆uI(t)

ėI(t) =

[
04×4 I4×4

04×4 04×4

]
eI(t) +

[
04×4

βI

]
Bstr∆uI(t)

(24)

where βI = diag(1/m, 1/Jxx, 1/Jyy, 1/Jzz) is a diagonal
matrix, I4×4 is the identity matrix and Bstr is the structural
matrix (21).

• For the outer control loop, let eo be the outer state vector
denoted as:

eo = Xrefo −Xo =
[
ex ey evx evy

]T
(25)

and ∆uo be the outer input vector denoted as:

∆uo = [∆φ ∆θ]
T

= [φref θref ]
T (26)

Therefore, the outer loop model is:

ėo(t) =Aoeo(t) + Bo∆uo(t)

ėo(t) =

[
02×2 I2×2

02×2 02×2

]
eo(t) +

 0 0
0 0
0 g
−g 0

∆uo(t)
(27)

where g is the gravitational acceleration equal to 9.81 [m/s2].

Fig. 2. Control scheme.

III. RELIABILITY MODELLING

Reliability is defined as the probability that units, com-
ponents, equipment and systems will perform its functioning
satisfactorily for a specified period of time under specified
operating conditions and environments [14].

In particular, the reliability of the ith component of the
system can be described by the exponential distribution as:

Ri(t) = e−
∫ t
0
λi(v)dv ∀ i = 1, . . . ,m (28)

where λi is the failure rate of the ith component. Several
definitions of the failure rate can be found in the literature. In
this work, the proportional hazard proposed by [15], is used:

λi(t) = λ0
i · g(`, ϑ) ∀ i = 1, . . . ,m (29)

where λ0
i represents the nominal failure rate of the ith com-

ponent and g(`, ϑ) is a load function also known as covariate
which represents the effect of stress on the component failure
rate as a function of the applied load (`) and a component
parameter (ϑ).

Different definitions of function g(`, ϑ) exists in the liter-
ature. In [16] the authors propose the load function based on
the root-mean-square of the applied control input until the end
of the mission (tM ), and an actuator parameter defined from
the upper and lower saturation bound of ui. This load function
is used to distribute the control efforts between the redundant
actuators, and the control action is calculated using a reliable
state feedback controller.

In this work, the covariate is expressed as a function of the
load and the age of the actuator:

gi(ui(t)) = 1 + βi

∫ t

0

|ui(v)|dv ∀ i = 1, . . . ,m (30)

where gi(ui(t)) is defined as the cumulative applied control
effort of the ith actuator from the beginning of the mission up
to the current time t and βi is a constant parameter.



Replacing (30) in (29) it yields,

λi(t) = λ0
i

(
1 + βi

∫ t

0

|ui(v)|dv
)
∀ i = 1, . . . ,m (31)

This definition implies that actuators are under a reliability
decay due to the baseline failure rate which is increased when
the actuators are used.

The overall system reliability can be computed by means
of its structure function. The system structure function allows
determining the system reliability based on their components
and is determined by the structure of the system. It could be
serial, parallel or a combination of both. In complex structures,
i.e. bridge structure, it can be computed following the pivotal
decomposition method [14]. Alternatively, system reliability
can be modelled using a Dynamic Bayesian Network (DBN)
[1].

In this work it is assumed that the overall system reliability
is determined by the reliability of its actuators and the system
controllability.

Although the octorotor system has 8 actuators (ri ∀ i ∈
[1, 8]) in terms of controllability, it can flight without any
problem with at least 4 of them. In this case the system
becomes a quadrotor. Among all 4-rotor configurations, the
following minimal path sets which guarantee controllability
can be found:

ζ1 :{r1, r3, r5, r7}
ζ2 :{r2, r4, r6, r8}
ζ3 :{r2, r3, r6, r7}
ζ4 :{r1, r4, r5, r8}

(32)

Figure 3 presents the reliability block diagram based on
the minimal path sets (ζi) where Ri is the ith rotor reliability.

Fig. 3. Reliability block diagram.

Then the system reliability can be computed from the
minimal path set by:

RS = 1−
4∏
j=1

(1−Rζj) (33)

where Rζj is the reliability of the jth minimal path set, given
by:

Rζj =

l∏
i=k

Ri ∀ k, l ∈ ζj (34)

IV. RELIABILITY BASED LQR CONTROLLER

A. LQR Controller

Consider the discrete-time, linear time-invariant (LTI) sys-
tem, {

x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k]
(35)

where x ∈ Rnx is the state vector, u ∈ Rnu is the input
vector, y ∈ Rny is the measurement vector, and A ∈ Rnx×nx ,
B ∈ Rnx×nu and C ∈ Rny×nx are the state, input and output
matrix, respectively.

Given a cost function defined in a quadratic form,

JLQR =
1

2

∞∑
k=0

(
xT [k] ·Q · x[k] + uT [k] ·R · u[k]

)
(36)

where Q ∈ Rnx×nx and R ∈ Rnu×nu are Hermitian posi-
tive definite. If the system is controllable and observable, a
feedback control law can be defined as:

u[k] = −Kx[k] (37)

where the optimal feedback gain (K) is the solution of the
cost function (36):

K = (R + BTPB)−1BTPA (38)

The positive-definite symmetric matrix P is the solution of
the discrete-time algebraic Riccati equation [17]:

P = Q + ATPA−ATPB(R + BTPB)−1BTPA (39)

B. Reliability

In this work, an approach based on the sensitivity of
the system reliability to actuator reliability [18] (Birnbaum’s
measure) is used to tune the gain matrix R in the LQR cost
function (36), in order to achieve a higher level of system
reliability.

The system reliability sensitivity for the ith actuator is
given by:

IBi(t) =
∂RS(t)

∂Ri(t)
= RS(1i, t)−RS(0i, t) (40)

where RS(1i, t) denotes the system reliability where the ith
actuator is perfectly reliable, and RS(0i, t) denotes the system
reliability when the ith actuator is faulty. This index indicates
how sensitive is the system reliability against changes of a
particular actuator reliability.

Thus, matrix R is modified at each sample time according
to the system reliability sensitivity.

R(t) = diag(IB(t)) (41)

For comparison purposes, an additional scenario will be
considered, where no actuator reliability is taken into account
in the LQR cost function. In this second scenario R will
be set according to R = I (I is the identity matrix of
appropriate dimensions) and the corresponding system relia-
bility will be denoted as RI

S whereas the one obtained when
R(t) =diag(IB(t)) will be denoted as RIBS .



V. SIMULATION RESULTS

The simulation consists in a corn field aerial supervision
application. The corn field of 5000m2 is overflown by the
octorotor at an altitude of 5m following the grid path and
returning to the starting point presented in Fig. 4.

Fig. 4. UAV reference trajectory.

The simulation parameters are presented in Table II.

TABLE II. SIMULATION PARAMETERS

Parameter Symbol Value

Outer sampling time tsi [s] 0.05
Inner sampling time tso [s] 0.25
Simulation time tf [s] 2000
Rotor parameter βi 10−2 ∀ i ∈ [1, 8]

Rotors failure rate λ0
i {21, 25, 2, 5, 16, 29, 9, 8} ·10−6 [s−1]

Rotor upper bounds ui [N ] 7 ∀ i ∈ [1, 8]
Rotor lower bounds ui [N ] 0 ∀ i ∈ [1, 8]
Initial controlled outputs y(0) 0x, 0y , 0z , 0ψ
Initial states x(0) 0[12×1]

Feed-Forward input uff mg/8[8×1]

The tracking performance under both scenarios is almost
identical. Figure 5 presents the tracking results of the LQR
controller for the first 200 seconds in the scenario where
R(t) = diag(IB(t)).

Fig. 5. System states response with R(t) =diag(IB(t)).

However, R(t) = diag(IB(t)) preserves the critical rotors
which cause a larger impact on the system reliability. Figure 6
shows the control efforts (angular velocities) in the scenarios
where R(t) = diag(IB(t)) and R(t) = I (i.e. ΩIBi , and
ΩIi ). The overall system reliability enhancement is achieved by
relieving the control efforts of those rotors which are the most
critical to the system. According to Fig. 6, this corresponds
to rotors r1, r2, r5 and r6, which have a higher failure rate
according to Table II, and cover all to the minimal path sets
(see Fig. 3).

Fig. 6. Angular velocities Ω
IB
i and ΩI

i .

Figure 7 provides a comparison between the system reli-
ability RI

S and RIBS after having performed several missions.
Under R(t) = diag(IB(t)), safety of the system is increased
by allowing its operation until the end of the mission with a
higher reliability level.

Fig. 7. Difference between system reliabilities R
IB
S and RI

S .

VI. CONCLUSION

In this work, an LQR tuning method based on the Birn-
baum’s reliability importance measure applied to an UAV
octorotor is presented. The aim is to perform the control of the
system and preserve its reliability by distributing the control



efforts among the actuators based on their importance to the
system reliability. The tuning method uses the information
about system and actuators reliabilities and their importance
as a policy to adjust the gain matrix R accordingly.

As a key contribution, in this work the system reliability
block diagram has been obtained from the system control-
lability analysis. At least 4 rotors are required to assure
system controllability. Therefore, the minimal path sets have
been determined based on those 4-rotor configurations that
guarantee system controllability.

Simulation results demonstrates the validity of this ap-
proach in terms of reliability and controllability of the oc-
torotor through an effective health management of the UAV
actuators effort.
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