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Abstract

The modification (relaxation or intensification) of the antecedent or the consequent in a fuzzy “If, Then” conditional
is an important asset for an expert in order to agree with it. The usual method to modify fuzzy propositions is the use
of Zadeh’s quantifiers based on powers of t-norms. However, the invariance of the truth value of the fuzzy conditional
would be a desirable property when both the antecedent and the consequent are modified using the same quantifier.
In this paper, a novel family of fuzzy implication functions based on powers of continuous t-norms which ensure the
aforementioned property is presented. Other important additional properties are analyzed and from this study, it is
proved that they do not intersect the most well-known classes of fuzzy implication functions.

Keywords: Fuzzy implication function, continuous t-norm, powers of t-norms, fuzzy negation.

1. Introduction

The study of fuzzy implication functions has experienced sensational growth in the last decades due to their
applications in approximate reasoning and fuzzy control [3, 4]. Indeed, these operators are used to model fuzzy
conditionals and to perform fuzzy inference processes through Modus Ponens and Modus Tollens rules. Beyond
these fields, the applications of fuzzy implication functions extend to other domains such as image processing, fuzzy
relational equations, fuzzy DI-subsethood measures, computing with words, data mining and rough sets (see [3, 4]
and the references within).

Going back to the approximate reasoning field, although some other approaches exist based on the use of not
functionally expressible fuzzy implications [11], usually the truth value of a fuzzy conditional of the form P → Q,
where P and Q are fuzzy propositions, is functionally expressed from the truth values of the initial propositions
P and Q. Of course, this task is carried out through the so-called fuzzy implication functions. There are lots of
different models to construct fuzzy implication functions (see [2, 3]) and in fact this variety becomes necessary to
have a wide range of possibilities in order to find the more adequate in each context (see [19]). Indeed, each family of
fuzzy implication functions satisfies a subset of the most important additional properties: the exchange principle, the
ordering property, the law of importation, among many others which have been studied recently in detail [2, 3, 15].

There is a special property not usually required on fuzzy implication functions, but closely related to approximate
reasoning. To introduce this property let us recall the following classical example given in [16] based on tomatoes. It
is reasonable to think that the following fuzzy propositions:

If the tomato is red, then it is ripe.
If the tomato is very red, then it is very ripe.
If the tomato is little red, then it is little ripe.
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should have the same truth value. These fuzzy conditionals involve some linguistic modifiers such as very or little
which modify (intensify or relax, respectively) the involved fuzzy propositions. A usual method to model these lin-
guistic modifiers is through the use of the so-called Zadeh’s powering modifiers [6]. In particular, potential functions
are used in such a way that, for all x ∈ [0, 1], “very x” is computed as x2, or “little x” is computed as x1/2. Although
to define these linguistic modifiers Zadeh makes use of the product t-norm it is clear that the same task can be done
through powers of any continuous t-norm [21].

The previous property has not been studied yet for the most well-known fuzzy implication functions. In fact,
most of them fail to fulfill it. Thus, the main goal of this paper is to introduce a novel family of fuzzy implication
functions based on powers with respect to any continuous t-norm which satisfies the required property. In this way,
the contribution of this paper is not only the proposal of another family of fuzzy implication functions through a novel
construction method (see [2, 4], the references therein and the recent papers [1, 12, 13, 14, 18, 20]), but mainly the
relationship of this family with the property of invariance with respect to linguistic modifiers modeled through powers
of t-norms.

The structure of the paper is as follows. In Section 2, the basic concepts and results related to powers of t-
norms and fuzzy implication functions will be collected. Then, the definition of the novel family of fuzzy implication
functions based on powers of t-norms is presented in Section 3. The structure of these operators depending on the
chosen t-norm and some examples are given. In Section 4, it is proved that this family fulfills the invariance with
respect to linguistic modifiers modeled through powers of t-norms. In addition, other additional properties of fuzzy
implication functions are studied as well as their intersection with the most well-known families. The paper ends with
a section devoted to the conclusions and future work.

2. Preliminaries

We will suppose the reader is familiar with basic results on t-norms, t-conorms, fuzzy negations and fuzzy im-
plication functions (see [7, 21] for more details on t-norms and see [2, 3, 4, 5] for more details on fuzzy implication
functions). In this section we will recall only some concepts about fuzzy implication functions and also about powers
with respect to continuous t-norms to make the paper as self-contained as possible.

2.1. Fuzzy implication functions
First, we recall the definition of a fuzzy implication function.

Definition 1 ([3, 5]). A binary operation I : [0, 1]2 → [0, 1] is said to be a fuzzy implication function if it satisfies:

(I1) I(x, z) ≥ I(y, z) when x ≤ y, for all z ∈ [0, 1].

(I2) I(x, y) ≤ I(x, z) when y ≤ z, for all x ∈ [0, 1].

(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

It follows from the definition that I(0, x) = 1 and I(x, 1) = 1 for all x ∈ [0, 1] whereas the symmetrical values
I(x, 0) and I(1, x) are not derived from the definition. Fuzzy implication functions can satisfy additional properties
usually coming from tautologies in crisp logic. Let us recall here some of the most usual ones.

Definition 2 ([3, 5]). Let I be a fuzzy implication function.

• The function NI defined by NI(x) = I(x, 0) for all x ∈ [0, 1], is called the natural negation of I and it is
always a fuzzy negation.

• I can additionally satisfy the following properties:

1. Exchange Principle:
I(x, I(y, z)) = I(y, I(x, z)), for all x, y, z ∈ [0, 1]. (EP)

2. Law of importation with respect to a t-norm T :

I(T (x, y), z) = I(x, I(y, z)), for all x, y, z ∈ [0, 1]. (LIT)

2



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

3. Left-neutrality principle:
I(1, y) = y for all y ∈ [0, 1]. (NP)

4. Ordering Property:
x ≤ y ⇐⇒ I(x, y) = 1 for all x, y ∈ [0, 1]. (OP)

5. Identity Principle:
I(x, x) = 1 for all x ∈ [0, 1]. (IP)

6. The contrapositive symmetry with respect to a fuzzy negation N ,

I(x, y) = I(N(y), N(x)), for all x, y ∈ [0, 1]. (CP(N))

2.2. Powers with respect to continuous t-norms
We will suppose that all t-norms T used in this section and all along the paper are continuous. For more details

about the results included in this section see [21] where powers with respect to continuous t-norms were fully studied.
From the associativity of any t-norm T , integer powers with respect to T can be defined in the usual way, that is,

x
(n)
T = T (

n times︷ ︸︸ ︷
x, x, ..., x) for all x ∈ [0, 1], n ∈ Z+ and n ≥ 2,

with the conventions x(1)T = x and x(0)T = 1 for all x ∈ [0, 1].
Similarly, n-th roots and rational powers of an element x ∈ [0, 1] with respect to a t-norm T are defined as

x
( 1

n )
T = sup{z ∈ [0, 1] | z(n) ≤ x}, x

(m
n )

T =

(
x
( 1

n )
T

)(m)

for all m,n ∈ Z+.

Lemma 1 ([21]). Consider k,m, n ∈ Z+ and let T be a continuous t-norm. Then x(
km
kn )

T = x
(m

n )
T for all x ∈ [0, 1].

From the continuity of T , rational powers with respect to T can be extended to irrational powers through the
following definition.

Definition 3 ([21]). Let T be a continuous t-norm and r ∈ R+ a positive real number. Consider {an}n∈Z+ a sequence
of rational numbers such that lim

n→∞
an = r. For all x ∈ [0, 1], the power x(r)T is defined as

x
(r)
T = lim

n→∞
x
(an)
T .

The continuity of T ensures both, the existence of the limit and the independence of the considered sequence
{an}n∈Z+ . It is immediate to check that 0 ≤ x

(r)
T ≤ 1 and x(r)T ≤ y

(r)
T whenever x ≤ y for all x, y ∈ [0, 1] and

r ∈ R+.
When the selected t-norm is Archimedean, the expressions of these powers only depend on the additive generator

of the t-norm.

Proposition 2 ([21]). Let T be a continuous Archimedean t-norm with additive generator t. Then

x
(r)
T = t−1(min{t(0), rt(x)}) for all x ∈ [0, 1] and r ≥ 0.

Example 1. In the cases of the three basic continuous t-norms we have that for all x ∈ [0, 1]:

• When T (x, y) = TL(x, y) = max{x+ y − 1, 0} is the Łukasiewicz t-norm, then x(r)TL
= max{0, 1− r + rx}.

• When T (x, y) = TP(x, y) = xy is the Product t-norm, then x(r)TP
= xr.

• When T (x, y) = TM(x, y) = min{x, y} is the Minimum t-norm, then x(r)TM
=

{
x if r > 0,
1 if r = 0.

3
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3. Implication functions based on powers of continuous t-norms

In this section, the formal definition of the family of fuzzy implication functions based on powers of t-norms will
be presented. In addition, some examples of these operators will be given as well as the structure of these fuzzy
implication functions depending on the structure of the underlying t-norm.

Let us begin by analyzing first the idea behind the formal definition that will be presented later on (see Definition
4). As we have already mentioned in the introduction, fuzzy implication functions are usually the logical operators
that manage fuzzy “If, Then” conditionals in fuzzy logic and approximate reasoning 1.

Specifically, the truth value of a fuzzy conditional of the form P → Q, where P and Q are fuzzy propositions, is
functionally expressed from the truth values of the initial propositions P and Q, as follows

µP→Q(x, y) = I(µP (x), µQ(y)),

where I : [0, 1] × [0, 1] → [0, 1] is a fuzzy implication function. Let us consider the following example of a fuzzy
conditional:

“If the price of the computer is around 450 euros, then it is very good.”

It is quite sure that an expert will not agree with this sentence. Probably the expert will require to relax the
consequent and will suggest to change it by good or even by correct. A usual method to modify the consequent in
this way can be through the use of the Zadeh’s linguistic powering modifiers [6]. Indeed, the linguistic modifiers can
be modeled as xr where x ∈ [0, 1] and r ∈ R+ in such a way that the consequent is relaxed if r < 1 or intensified if
r > 1.

Based on this idea, the truth value of x→ y could be defined as the highest possible power of y such that y up to
this power becomes greater than or equal to x. For instance, (0.8→ 0.64) = 1

2 because of 0.64
1
2 = 0.8. Although to

define these linguistic modifiers Zadeh makes use of the product t-norm, any continuous2 t-norm T can be suitable to
compute its powers and to model the linguistic modifier.

From this previous idea we can formalize the definition as follows.

Definition 4. A binary operator I : [0, 1]2 → [0, 1] is said to be a T -power based implication if there exists a
continuous t-norm T such that

I(x, y) = sup{r ∈ [0, 1] | y(r)T ≥ x} for all x, y ∈ [0, 1].

If I is a T -power based implication, then it will be denoted by IT .

Let us prove first that the defined function IT is a fuzzy implication in the sense of Definition 1, for any continuous
t-norm T .

Proposition 3. Let T be a continuous t-norm and IT its power based implication. Then IT is a fuzzy implication
function.

PROOF. It is clear from the definition that IT is decreasing with respect to the first variable and increasing with
respect to the second one. Moreover, we also have:

• IT (0, 0) = sup{r ∈ [0, 1] | 0(r)T ≥ 0} = sup[0, 1] = 1.

• IT (1, 1) = sup{r ∈ [0, 1] | 1(r)T ≥ 1} = sup[0, 1] = 1.

• IT (1, 0) = sup{r ∈ [0, 1] | 0(r)T ≥ 1} = sup{0} = 0. �

1A different approach based in the use of not functionally expressible fuzzy implications was pointed out in [11].
2As it is recalled in the preliminaries (Section 2.2), powers of t-norms have been studied in detail for the case of continuous t-norms and for this

reason we limit ourselves to this case. It is possible to extend such study to more general t-norms like for instance left-continuous t-norms, but this
is a question that we will not deal with in this paper and that we will leave for a future work.

4
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Let us see now the general expression of the T -power based implications depending on the structure of the con-
tinuous t-norm T used in the process.

Proposition 4. Let T be a continuous t-norm and IT its power based implication.

• If T = TM is the minimum t-norm, then ITM agrees with the Rescher implication, that is:

ITM(x, y) = IRS(x, y) =

{
1 if x ≤ y,
0 if x > y.

• If T is an Archimedean t-norm with additive generator t, then

IT (x, y) =

 1 if x ≤ y,
t(x)

t(y)
if x > y,

with the convention that a
+∞ = 0 for all a ∈ [0, 1].

• If T is an ordinal sum t-norm of the form T = (〈ai, bi, Ti〉)i∈I , where Ti is an Archimedean t-norm with additive
generator ti for all i ∈ I , then

IT (x, y) =



1 if x ≤ y,

ti

(
x− ai
bi − ai

)
ti

(
y − ai
bi − ai

) if x, y ∈ [ai, bi] and x > y,

0 otherwise.

PROOF. From Proposition 7 we already know that IT (x, y) = 1 for all x ≤ y in all the cases. Thus, we only need to
prove the result for values x, y such that x > y and we will do it case by case.

i) If T = TM, taking x > y we have that y(r)T = y < x for all r > 0 and so,

IT (x, y) = sup{r ∈ [0, 1] | y(r)T ≥ x} = sup{0} = 0

for all x > y.

ii) Suppose now that T is an Archimedean t-norm with additive generator t. In this case, using Proposition 2 we
have

y
(r)
T ≥ x ⇐⇒ t−1(min{t(0), rt(y)}) ≥ x ⇐⇒ rt(y) ≤ t(x).

Now the result follows trivially when t(y) 6= +∞ and the formula holds also when t(y) = +∞ (i.e., when
y = 0 and T is strict) with the convention a

+∞ = 0.

iii) Suppose now that T is an ordinal sum of Archimedean t-norms of the form T = (〈ai, bi, Ti〉)i∈I . Take x > y
and let us distinguish two cases:

– If there is some idempotent element of T , say α, such that x > α > y. In this case we have

y
(r)
T ≤ α(r)

T = α < x for all r > 0

and we obtain again
IT (x, y) = sup{r ∈ [0, 1] | y(r)T ≥ x} = sup{0} = 0.

5
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– If there is some i ∈ I such that x, y ∈ [ai, bi], then we have x−ai

bi−ai
> y−ai

bi−ai
and applying a similar

reasoning to the one of item (ii) to the Archimedean t-norm Ti we obtain

ITi

(
x− ai
bi − ai

,
y − ai
bi − ai

)
= sup

{
r ∈ [0, 1] |

(
y − ai
bi − ai

)(r)

Ti

≥ x− ai
bi − ai

}
=
ti

(
x−ai

bi−ai

)
ti

(
y−ai

bi−ai

) .
However, if x, y ∈ [ai, bi] we have that

T (x, y) = ai + (bi − ai)Ti
(
x− ai
bi − ai

,
y − ai
bi − ai

)
and then, it is not difficult to check that

y
(r)
T =

(
y − ai
bi − ai

)(r)

Ti

.

Finally, the result follows from the fact that

y
(r)
T ≥ x ⇐⇒

(
y − ai
bi − ai

)(r)

Ti

≥ x− ai
bi − ai

.

�

The structure of the T -power based implications in the cases when the continuous t-norm is Archimedean or an
ordinal sum can be viewed in Figure 1.

�
�
�
�
�
�
�
�
�
�
�
�
�
��

1

t(x)

t(y)

(a) T Archimedean

�
�
�
�
�
�
�
�
�
�
�
�
�
��

1

ai bi

ai

bi

fi(x, y)

ai+1 bi+1

ai+1

bi+1

fi+1(x, y)

0

...

...

...

(b) T ordinal sum

Figure 1: Structure of T -power based implications IT when T is Archimedean and when T is an ordinal sum of the form T = (〈ai, bi, Ti〉)i∈I ,

where fi(x, y) stands by fi(x, y) =
ti

(
x−ai
bi−ai

)
ti

(
y−ai
bi−ai

) for all i ∈ I .

The following example gives the expression of the T -power based implications for some concrete t-norms.

Example 2. Let us consider the two classical Archimedean t-norms TP and TL as well as the ordinal sum t-norm
given by T = (〈0, 0.5, TP〉, 〈0.5, 1, TL〉).

• If T = TP is the Product t-norm then

ITP(x, y) =

{
1 if x ≤ y,
log x
log y if x > y.

6
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• If T = TL is the Łukasiewicz t-norm then

ITL(x, y) =

{
1 if x ≤ y,
1−x
1−y if x > y.

• If T = (〈0, 12 , TP〉, 〈
1
2 , 1, TL〉), then

ITP(x, y) =


1 if x ≤ y,
log (2x)
log (2y) if x, y ∈ [0, 12 ] and x > y,
2−2x
2−2y if x, y ∈ [ 12 , 1] and x > y,

0 otherwise.

To finish the study about the structure of these fuzzy implication functions, we present the following result that
will be useful along the paper. It proves that there is a close relationship between the t-norm T and its T -power based
implication. Recall before that an element x ∈ [0, 1] is said to be T -idempotent when T (x, x) = x.

Proposition 5. Let T be a continuous t-norm and IT its power based implication. For all x ∈ [0, 1] the following
items hold:

i) x is T -idempotent if, and only if, IT (x, y) = 0 for all y < x.

ii) If IT (y, x) = 0 for all y > x then x is T -idempotent.

iii) If ([ai, bi], Ti) is an Archimedean summand of T , then Ti is strict if, and only if, IT (x, ai) = 0 for all x > ai.

PROOF. The equivalences stated in items (i) and (ii) are straightforward from the structure of IT , see Proposition 4.
On the other hand, it is clear that IT (x, ai) = 0 for all x ≥ bi. However, for all x such that ai < x < bi we have

IT (x, ai) = 0 ⇐⇒
ti

(
x−ai

bi−ai

)
ti(0)

= 0 ⇐⇒ ti(0) = +∞.

that is, if, and only if, Ti is strict. �

4. Properties of T -power based implications

In this section, an in-depth analysis of T -power based implications will be carried out. In the first part of the
section, we will prove that this family fulfills the invariance with respect to linguistic modifiers modeled through
powers of t-norms. In a second part, we will study other additional properties which can be required to a fuzzy
implication function.

4.1. Invariance with respect to linguistic modifiers
As we have already commented in the introduction, there is a special property not usually required on fuzzy

implications, but closely related to approximate reasoning. This condition is the invariance with respect to linguistic
modifiers modeled through powers of t-norms which allows to assign the same truth value to fuzzy conditionals
where both the antecedent and the consequent are modified by the same power of t-norm (see the classical example
of tomatoes recalled in the introduction). This property is satisfied by all T -power based implications IT introduced
in this paper, as it will be proved in this subsection.

First of all, let us formalize this property.

Definition 5. Let I be a fuzzy implication function. It is said that I is invariant with respect to T -powers, or simply
that it is power invariant when

IT (x, y) = IT
(
x
(r)
T , y

(r)
T

)
(PIT )

holds for all r > 0 and for all x, y ∈ [0, 1] such that x(r)T , y
(r)
T 6= 0, 1.

7
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At this point, we can prove the result.

Proposition 6. Let T be a continuous t-norm and IT its power based implication. Then IT is power invariant.

PROOF. If x ≤ y, then x(r)T ≤ y(r)T and in this case

IT (x
(r)
T , y

(r)
T ) = IT (x, y) = 1.

Thus, we only need to prove the (PIT ) property for values x, y such that x > y. We will do it depending on the
t-norm T .

• If T = TM, x is T -idempotent for all x ∈ [0, 1] and the result is trivial because x(r)T = x for all r > 0.

• If T is Archimedean with additive generator t, take x > y such that x(r)T , y
(r)
T 6= 0, 1. Then x(r)T > y

(r)
T and

IT (x
(r)
T , y

(r)
T ) = IT (t−1(rt(x)), t−1(rt(y))) =

rt(x)

rt(y)
=
t(x)

t(y)
= IT (x, y).

• Consider T an ordinal sum of Archimedean t-norms of the form T = (〈ai, bi, Ti〉)i∈I , where each Ti has
additive generator ti for all i ∈ I . Take again x > y such that x(r)T , y

(r)
T 6= 0, 1 and let us distinguish two cases:

– If there is some T -idempotent element α such that x > α > y then x(r)T > α > y
(r)
T and

IT (x
(r)
T , y

(r)
T ) = IT (x, y) = 0.

– If there is some i ∈ I such that ai ≤ y < x ≤ bi then it is also ai ≤ y(r)T < x
(r)
T ≤ bi and

IT (x
(r)
T , y

(r)
T ) = IT

(
ai + (bi − ai)t−1i

(
rti

(
x−ai

bi−ai

))
, ai + (bi − ai)t−1i

(
rti

(
x−ai

bi−ai

)))
=

rti
(

x−ai
bi−ai

)
rti

(
y−ai
bi−ai

) =
ti
(

x−ai
bi−ai

)
ti
(

y−ai
bi−ai

) = IT (x, y).

�

4.2. Other additional properties

Let us study some other properties. It will be determined which additional properties usually required to a fuzzy
implication function are satisfied by power based implications. Whenever they do not satisfy a property in general,
the conditions to ensure that they fulfill it will be given.

There are some properties of T -power based implications that can be easily derived from the given definition.

Proposition 7. Let T be a continuous t-norm and IT its power based implication. Then

i) IT satisfies (OP ) and so it also satisfies (IP ).

ii) IT (1, y) = 0 for all y < 1. Consequently IT never satisfies (NP ).

PROOF. Let us prove the two statements.

i) Using Definition 4 we obtain:

IT (x, y) = 1⇐⇒ sup{r ∈ [0, 1] | y(r)T ≥ x} = 1⇐⇒ y
(1)
T = y ≥ x

from which we deduce (OP ) and consequently also (IP ).
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ii) Consider y < 1. First of all, if y = 0, since IT is a fuzzy implication function by Proposition 3 we have that
IT (1, 0) = 0. Otherwise, taking into account that T (x, y) = 1 if, and only if, x = y = 1, we get

IT (1, y) = sup{r ∈ [0, 1] | y(r)T = 1} = sup{0} = 0

for all 0 < y < 1, which proves the second item. �

Taking into account that all the most usual classes of fuzzy implication functions, namely R-implications, (S,N)-
implications, QL and D-implications, and Yager’s implications, satisfy (NP ), the previous proposition ensures in
particular that T -power based implications never agree with them. In fact, there is only one fuzzy implication function
from Table 1.3 in [3], which contains the most well-known of these operators, that belongs to the family of T -power
based implications. Specifically, the Rescher implication IRS introduced in [17] is also obtained as the power based
implication derived from the minimum t-norm as it has already been proved in Proposition 4.

Let us continue by studying the natural negation of IT that again depends on the structure of the continuous t-norm
T .

Proposition 8. Let T be a continuous t-norm and IT its power based implication. The natural negation of IT , NIT ,
is given by:

i) If T is the Minimum t-norm or T is a strict Archimedean t-norm then NIT = ND1 is the Gödel negation, that
is:

NIT (x) = ND1(x) =

{
1 if x = 0,
0 if x > 0.

ii) If T is a non-strict Archimedean t-norm with additive generator t then

NIT (x) =
t(x)

t(0)
for all x ∈ [0, 1].

iii) If T is an ordinal sum of Archimedean t-norms of the form T = (〈ai, bi, Ti〉)i∈I , where each Ti has additive
generator ti for all i ∈ I ,

– If ai 6= 0 for all i ∈ I or there is some i0 ∈ I such that ai0 = 0 and Ti0 is strict then NIT = ND1.

– If there is some i0 ∈ I such that ai0 = 0 and Ti0 is non-strict then

NIT (x) =


1 if x = 0,

ti0

(
x

bi0

)
ti0 (0)

if 0 < x ≤ bi0 ,
0 if x > bi0 .

PROOF. The result is straightforward taking y = 0 in Proposition 4. �

Moreover, from the above proposition we immediately deduce the following result which determines when the
natural negation of these fuzzy implication functions is strong.

Corollary 9. Let T be a continuous t-norm and IT its power based implication. Then its natural negation NIT is
strong if, and only if, T is a non-strict Archimedean t-norm such that its normalized3 additive generator t is involutive
(i.e., such that t2 = id).

PROOF. It is clear that when T is either the Minimum t-norm, a strict t-norm or an ordinal sum of Archimedean
t-norms, its natural negation can not be strong. Otherwise, if T is a non-strict Archimedean t-norm with normalized
additive generator t, we have that

NIT (NIT (x)) = t(t(x))

and the result follows. �

3An additive generator t of a non-strict Archimedean t-norm is said to be normalized when t(0) = 1.
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Example 3. To illustrate the previous result, let us consider the following two examples:

i) Let us consider the t-norm T given by the ordinal sum T = (〈0, 1/2, TL〉, 〈1/2, 1, TP〉). A straightforward
computation using Propositions 4 and 8 shows that the T -power based implication IT is given in this case by:

IT (x, y) =


1 if x ≤ y,
1−2x
1−2y if x, y ∈ [0, 1/2] and x > y,
log (2x−1)
log (2y−1) if x, y ∈ [1/2, 1] and x > y,

0 otherwise,

and its natural negation is given by:

NIT (x) =

{
1− 2x when x ≤ 1/2,
0 when x > 1/2.

In Figure 2 the structure of this T -power based implication IT as well as its natural negation NIT .

�
�
�
�
�
�
�
�
�
�
��

1

1−2x
1−2y

log (2x−1)
log (2y−1)

0

0

1

1

(a) IT

A
A
A
A
A
A
A
A
A
A
AA0

1

10.5

(b) NIT

Figure 2: Structure of IT and its natural negation NIT when T = (〈0, 1/2, TL〉, 〈1/2, 1, TP〉) is the t-norm given in Example 3-(i).

ii) Consider now the Łukasiewicz t-norm TL. The expression of its power based implication was already given in
Example 2-(ii). Note that its natural negation is strong sinceNITL (x) = NC(x) = 1−x, the classical negation.

Next, we want to deal with another important property of fuzzy implication functions, the contraposition with
respect to a fuzzy negation N . Again the result will depend on the structure of the t-norm T . However, to prove the
general result we need first some preliminary results. Let us denote by IdempT the set of all T -idempotent elements.

Lemma 10. Let T be a continuous t-norm, IT its power based implication and N a fuzzy negation. If IT satisfies
CP (N) then the following items hold:

i) N is strictly decreasing.

ii) The natural negation of IT is the Gödel negation.

iii) IfN is continuous then x is T -idempotent if, and only if,N(x) is T -idempotent (that is,N(IdempT ) =IdempT ).

(iv) If N is continuous and T is an ordinal sum of Archimedean t-norms of the form T = (〈ai, bi, Ti〉)i∈I then all
Ti must be strict.

PROOF. To prove (i), suppose that there exist x > y such that N(x) = N(y). Since IT satisfies CP (N), we have
that IT (x, y) = IT (N(y), N(x)), but by (OP ), IT (N(y), N(x)) = 1 and consequently, IT (x, y) = 1 from which
we deduce x ≤ y leading to a contradiction.
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To prove (ii) take x > 0. From the previous step we necessarily have N(x) < 1 and so, taking y = 0 in the
contraposition property, we obtain

NIT (x) = IT (x, 0) = IT (1, N(x)) = 0,

where the last equality is due to Proposition 7−(ii).
To prove item (iii) note that from Proposition 5, CP (N) and the fact that N is continuous and strictly decreasing

by item (i) we have:

x is T -idempotent =⇒ IT (x, y) = 0 for all y < x
=⇒ IT (N(y), N(x)) = 0 for all N(y) > N(x)
=⇒ IT (z,N(x)) = 0 for all z > N(x)
=⇒ N(x) is T -idempotent.

Reciprocally, ifN(x) is T -idempotent then IT (N(x), y) = 0 for all y < N(x). ByCP (N) we obtain IT (N−1(y), x) =
0 for all N−1(y) > x which implies that x is T -idempotent by Proposition 5-(ii).

Finally, to prove (iv) suppose that N is continuous and T is an ordinal sum of Archimedean t-norms of the form
T = (〈ai, bi, Ti〉)i∈I . First of all, by the previous point, N(ai) is T -idempotent for all i ∈ I . Now, for all i ∈ I and
for all x > ai, we have by CP (N) that

IT (x, ai) = IT (N(x), N(ai))

but sinceN(x) < N(ai) andN(ai) is T -idempotent, by Proposition 5-(ii), IT (N(x), N(ai)) = 0. Thus, IT (x, ai) =
0 for all x > ai and Ti must be strict by Proposition 5-(iii). �

Now we can give the characterization of all T -power based implications that satisfy CP (N) with respect to any
fuzzy negation, except for ordinal sum t-norms in which case we need to assume continuity of the fuzzy negation N .

Proposition 11. Let T be a continuous t-norm, IT its power based implication andN a fuzzy negation. The following
statements hold:

i) If T is the Minimum t-norm then IT satisfies CP (N) if, and only if, N is strictly decreasing.

ii) If T is strict with additive generator t then IT satisfies CP (N) if, and only if, N is a strong negation given by

N(x) = t−1
(

k

t(x)

)
for all x ∈ [0, 1], (1)

for some positive constant k.

iii) If T is a non-strict Archimedean t-norm then IT never satisfies CP (N).

iv) If N is continuous and T is an ordinal sum of Archimedean t-norms of the form T = (〈ai, bi, Ti〉)i∈I , where
each Ti has additive generator ti for all i ∈ I , then IT satisfies CP (N) if, and only if, Ti is strict for all i ∈ I
and N satisfies the following properties:

a) N is strict with N(IdempT ) =IdempT .

b) For all i ∈ I there is some j ∈ I such that N is given by

N(x) = aj + (bj − aj)t−1j

 ki

ti

(
x−ai

bi−ai

)
 , for some positive constant ki, (2)

for all x ∈ [ai, bi].

PROOF. Let us prove the result item by item.

11



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

i) If ITM satisfies CP (N) the fuzzy negation N is strictly decreasing by Lemma 10-(i). Conversely, since N
is strictly decreasing we have x ≤ y if, and only if, N(y) ≤ N(x) and the result follows directly from the
structure of ITM (see Proposition 4).

ii) Suppose now that T is strict with additive generator t. If IT satisfiesCP (N), we already know thatN is strictly
decreasing by Lemma 10-(i) and then taking x, y such that 1 > x > y > 0 we have N(y) > N(x). Thus,

t(N(y))

t(N(x))
= IT (N(y), N(x)) = IT (x, y) =

t(x)

t(y)
.

Consequently, there is a positive constant k such that for all x ∈]0, 1[ we have

t(x)t(N(x)) = k =⇒ N(x) = t−1
(

k

t(x)

)
.

Since N(0) = 1 and N(1) = 0 and assuming that k
+∞ = 0 we can write

N(x) = t−1
(

k

t(x)

)
for all x ∈ [0, 1].

Conversely, it is an easy computation to prove that IT satisfies CP (N) with respect to the negation N given by
Equation (1).

iii) If T is a non-strict Archimedean t-norm then NIT does not agree with the Gödel negation (see Proposition 8)
and the result follows from Lemma 10-(ii).

iv) Suppose now that N is continuous and T is given by the ordinal sum T = (〈ai, bi, Ti〉)i∈I . If IT satisfies
CP (N) we already know that all Ti are strict and that condition (a) holds by Lemma 10-(i), (iii) and (iv).
This ensures that for each i ∈ I there is some j ∈ I such that N([ai, bi]) = [aj , bj ]. Moreover, for all
bi > x > y > ai we have aj < N(x) < N(y) < bj and then

tj

(
N(y)−N(bi)
N(ai)−N(bi)

)
tj

(
N(y)−N(bi)
N(ai)−N(bi)

) = IT (N(y), N(x)) = IT (x, y) =
ti

(
x−ai

bi−ai

)
ti

(
y−ai

bi−ai

) .
Since N(ai) = bj and N(bi) = aj , similarly as in point (ii), there is a positive constant ki such that for all
x ∈ [0, 1] we have

ti

(
x− ai
bi − ai

)
tj

(
N(x)− aj
bj − aj

)
= ki,

from which we deduce

N(x) = aj + (bj − aj)t−1j

 ki

t
(

x−ai

bi−ai

)
 for all x ∈ [ai, bi].

Conversely, if conditions (a), (b) hold let us prove that IT satisfies CP (N) by distinguishing some cases.

– If x ≤ y then N(y) ≤ N(x) and

IT (N(y), N(x)) = IT (x, y) = 1.

– If x > y and there is some T -idempotent element α with x > α > y then N(y) > N(α) > N(x) and

IT (N(y), N(x)) = IT (x, y) = 0.
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– If x > y and there is some i ∈ I such that bi ≥ x > y ≥ ai. In this case there is some j ∈ I such that
aj ≤ N(y) < N(x) ≤ bj and then IT (x, y) and IT (N(y), N(x)) are respectively given by,

IT (x, y) =
ti

(
x−ai

bi−ai

)
ti

(
y−ai

bi−ai

) , and IT (N(y), N(x)) =
tj

(
N(y)−N(bi)
N(ai)−N(bi)

)
tj

(
N(y)−N(bi)
N(ai)−N(bi)

) .
Now, condition (b) ensures that the equality IT (N(y), N(x)) = IT (x, y) also holds in this case. �

Remark 1. Some remarks emerge regarding the fuzzy negation given by Equation (2).

i) For all i ∈ I , it holds that N(ai) = bj and N(bi) = aj .
ii) When T has an odd finite number of idempotent elements, the middle one must necessarily be the fixed point

of the strict negation N .
iii) Since N is a fuzzy negation, if there exist i1 and i2 such that ai1 ≤ bi1 ≤ ai2 ≤ bi2 , it must be

aj2 = N(bi2) ≤ bj2 = N(ai2) ≤ aj1 = N(bi1) ≤ bj1 = N(ai1).

Example 4. Let us consider two different t-norms and their corresponding power based implications in order to
compute the fuzzy negations with which they satisfy CP (N).

1. First, we consider the Product t-norm TP. Its corresponding power-based implication was already computed
in Example 2. Using Proposition 11, this fuzzy implication function satisfies CP (N) only with the following
family of strong fuzzy negations

Nk(x) = e
k

log x

for some positive constant k.
2. Now consider the t-norm T given by the ordinal sum T = (〈0, 1/2, TP〉, 〈1/2, 1, TP〉) and its power based

implication whose expression is as follows

IT (x, y) =


1 if x ≤ y,
log (2x)
log (2y) if x, y ∈ [0, 1/2] and x > y,
log (2x−1)
log (2y−1) if x, y ∈ [1/2, 1] and x > y,

0 otherwise,

Using Proposition 11 and assuming continuous fuzzy negations N , this fuzzy implication function satisfies
CP (N) with the following family of strict fuzzy negations:

Nk1,k2(x) =

{
1
2 + 1

2e
k1

log (2x) if 0 ≤ x ≤ 1
2 ,

1
2e

k2
log (2x−1) if 1

2 ≤ x ≤ 1,

for some positive constants k1 and k2.
In Figure 3 the structure of this T -power based implication IT as well as one of the fuzzy negations with which
it satisfies CP (N) are depicted.

With respect to other usual properties like the exchange principle and the law of importation, power based impli-
cations never satisfy them. We collect these negative results in the following proposition.

Proposition 12. Let T be a continuous t-norm and IT its power based implication. The following statements hold:

i) IT does not satisfy (EP ).

ii) IT does not satisfy (LIT ′) with respect to any t-norm T ′.
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1

log (2x)
log (2y)

log (2x−1)
log (2y−1)

0

0

1

1

(a) IT
0.2 0.4 0.6 0.8 1.0

0.2

0.4
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0.8

1.0

(b) N1,1

Figure 3: Structure of IT and the fuzzy negation N1,1 with which IT satisfies CP (N) when T = (〈0, 1/2, TP〉, 〈1/2, 1, TP〉) is the t-norm
given in Example 4-(ii).

PROOF. We only need to prove item (i) because item (ii) immediately follows from it (see Remark 7.3.1 in [3]).
Suppose that IT satisfies (EP ). Since it also satisfies (OP ) by Proposition 7-(i), it should satisfy also (NP ) by

Lemma 1.3.4 in [3]. However this is a contradiction with Proposition 7-(ii). Thus, IT does not satisfy (EP ). �

Finally, another important property is T -transitivity. Recall that we have already proved that T -power based
implications are in fact reflexive relations (i.e., IT (x, x) = 1 for all x ∈ [0, 1]). In case they also satisfy T -transitivity,
that is,

T (IT (x, y), IT (y, z)) ≤ IT (x, z) for all x, y, z ∈ [0, 1], (3)

we will obtain T -preorders on [0, 1]. T-preorders were introduced by Zadeh in [22] and are very important fuzzy
relations, since they fuzzify the concept of preorder on a set. Thus, let us deal now with the T -transitivity property.

Proposition 13. Let T be a continuous t-norm and IT its power based implication. Then IT satisfies T -transitivity
if, and only if, one of the following cases hold:

• T = TM.

• T is Archimedean with T ≤ TP.

• T is an ordinal sum of Archimedean t-norms of the form T = (〈ai, bi, Ti〉)i∈I , where Ti ≤ TP for all i ∈ I .

PROOF. Let us prove the result depending on the t-norm T .

• If T = TM, the Minimum t-norm, ITM is the Rescher implication and the result is just a matter of simple
computation.

• Let us consider an Archimedean t-norm T with additive generator t. First, if x ≤ y or y ≤ z, the result
is obvious using (OP ) and the monotonicities of a fuzzy implication function. Otherwise, we have that IT

satisfies T -transitivity if, and only if,

t(−1)
(
t

(
t(x)

t(y)

)
+ t

(
t(y)

t(z)

))
≤ t(x)

t(z)
.

Taking now a = t(x)
t(y) and b = t(y)

t(z) , the previous inequality is equivalent to

t(ab) ≤ t(a) + t(b), for all a, b ∈ [0, 1],

which in turn is equivalent to T ≤ TP.
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• Let us consider now an ordinal sum t-norm T of Archimedean t-norms of the form T = (〈ai, bi, Ti〉)i∈I ,
where each Ti has additive generator ti. First, if x ≤ y or y ≤ z, the result is obvious using (OP ) and the
monotonicities of a fuzzy implication function. Otherwise, consider x > y > z and let us distinguish two cases:

– If there is some idempotent element of T , say α, such that x > α > y or y > α > z), the result holds
since in this case T (IT (x, y), IT (y, z)) = 0.

– If there is some i ∈ I such that x, y, z ∈ [ai, bi], then we have that IT satisfies T -transitivity if, and only
if,

t
(−1)
i

(
ti

(
ti(x)

ti(y)

)
+ ti

(
ti(y)

ti(z)

))
≤ ti(x)

ti(z)
.

A similar argument to the previous item concludes that the previous inequality is equivalent to

ti(ab) ≤ ti(a) + ti(b), for all a, b ∈ [0, 1], i ∈ I,

and thus, to Ti ≤ TP for all i ∈ I . �

Example 5. The Product TP t-norm and the Łukasiewicz t-norms are examples of Archimedean t-norms which
generates T -power based implications satisfying the T -transitivity. In addition, the ordinal sum t-norms T1 =
(〈0, 1/2, TL〉, 〈1/2, 1, TP〉) and T2 = (〈0, 1/2, TP〉, 〈1/2, 1, TP〉) which have been used previously in this paper
are also valid choices to generate T -power based implications satisfying the T -transitivity.

5. Conclusions and future work

In this paper, we have introduced a new class of fuzzy implication functions based on the use of powers of a
continuous t-norm T . This family satisfies a useful property in approximate reasoning such as the invariance with
respect to powers of t-norms which have been usually used to model linguistic modifiers. The fulfillness of this
property ensures that the fuzzy conditionals of examples such as the classical one of tomatoes [16] have the same
truth value. Moreover, other additional properties have been studied. In particular, power based implications always
satisfy (OP ) and (IP ) and the conditions under which they satisfy the contrapositive symmetry and the T -transitivity
have been determined. The fact that these fuzzy implication functions do not satisfy the left neutrality principle proves
that they constitute a new family of these operators which does not intersect the most well-known families.

This paper constitutes only a first step in the study of this new family of fuzzy implication functions. Several open
problems are still open and they will be milestones in our future work. We can highlight:

• To axiomatically characterize power based implications. We are convinced that the invariance property with
respect to powers of t-norms will play a key role in the result.

• To study other important additional properties such as the Modus Ponens and the Modus Tollens. These prop-
erties could be studied not only with respect to the same t-norm T , but they could be generalized to any other
t-norm T1 (or more general conjunctor such as a conjunctive uninorm), see [8, 9].

• This paper has dealt only with continuous t-norms. An interesting future research line would be to extend this
study to left-continuous t-norms, whose powers can be easily adapted.
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[4] M. Baczyński, B. Jayaram, S. Massanet, J. Torrens, Fuzzy Implications: Past, Present, and Future, in J. Kacprzyk and W. Pedrycz (eds.),

Springer Handbook of Computational Intelligence, Springer Berlin Heidelberg, pp. 183–202 (2015).
[5] J. C. Fodor and M. Roubens. Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht, 1994.
[6] E.E. Kerre, M. De Cock, Linguistic Modifiers: An Overview, in G. Chen, M. Ying and K.-Y. Cai (eds.), Fuzzy Logic and Soft Computing,

69–85 (1999).
[7] E.P. Klement, R. Mesiar, E. Pap, Triangular norms, Kluwer Academic Publishers, Dordrecht, 2000.
[8] M. Mas, M. Monserrat, D. Ruiz-Aguilera, J. Torrens, RU and (U,N)-implications satisfying Modus Ponens, International Journal of

Approximate Reasoning, 73, 123–137 (2016).
[9] M. Mas, M. Monserrat, D. Ruiz-Aguilera, J. Torrens, On a generalization of the Modus Ponens: U -conditionality, in P.J. Carvalho et al., Infor-

mation Processing and Management of Uncertainty in Knowledge-Based Systems: 16th International Conference, IPMU 2016, Eindhoven,
The Netherlands, June 20-24, 2016, Proceedings, Part I, Springer International Publishing, 387–398 (2016).

[10] M. Mas, M. Monserrat, J. Torrens, E. Trillas, A survey on fuzzy implication functions, IEEE Transactions on Fuzzy Systems, Vol. 15(6),
1107-1121 (2007).

[11] S. Massanet, R. Mesiar, G. Mayor, J. Torrens, On fuzzy implications: An axiomatic approach, International Journal Approximate Reasoning,
Vol. 54(9), 1471-1482 (2013).

[12] S. Massanet, J. Torrens, On a new class of fuzzy implications: h-Implications and generalizations, Information Science, 181, 2111–2127
(2011).

[13] S. Massanet, J. Torrens, Threshold generation method of construction of a new implication from two given ones, Fuzzy Sets and Systems,
205, 50–75 (2012).

[14] S. Massanet, J. Torrens, On the vertical threshold generation method of fuzzy implication and its properties, Fuzzy Sets and Systems, 226,
232–252 (2013).

[15] S. Massanet, J. Torrens, Characterization of fuzzy implication functions with a continuous natural negation satisfying the law of importation
with a fixed t-norm, IEEE Transactions on Fuzzy Systems, In Press, doi: 10.1109/TFUZZ.2016.2551285.

[16] M. Mizumoto, H.-J. Zimmermann, Comparison of fuzzy reasoning methods, Fuzzy Sets and Systems, 8, 253–283 (1982).
[17] N. Rescher, Many-valued logic. McGraw-Hill, New York, 1969.
[18] Y. Su, A. Xie, H. Liu, On ordinal sum implications, Information Sciences, 293, 251–262 (2015).
[19] E. Trillas, M. Mas, M. Monserrat, J. Torrens, On the representation of fuzzy rules, International Journal of Approximate Reasoning 48, pp.

583–597, 2008.
[20] N.R. Vemuri, B. Jayaram, The~-composition of fuzzy implications: Closures with respect to properties, powers and families, Fuzzy Sets and

Systems, 275, 58–87 (2015).
[21] C. L. Walker, E. A. Walker, Powers of t-norms, Fuzzy Sets and Systems, 129, 1–18 (2002).
[22] L.A. Zadeh. Similarity relations and fuzzy orderings. Information Sciences 3, 177–200 (1971).

16




