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Electrospun scaffolds from an amino acid containing poly(ester urea) (PEU)were developed as promising mate-
rials in the biomedical field and specifically in tissue engineering applications. The selected poly(ester urea) was
obtained with a high yield and molecular weight by reaction of phosgene with a bis(α-aminoacyl)-α,ω-diol-
diester monomer. The polymer having L-leucine, 1,6-hexanediol and carbonic acid units had a semicrystalline
character and relatively high glass transition and melting temperatures. Furthermore it was highly soluble in
most organic solvents, an interesting feature that facilitated the electrospinning process and the effective
incorporation of drugs with bactericidal activity (e.g. biguanide derivatives such as clorhexidine and
polyhexamethylenebiguanide) and enzymes (e.g. α-chymotrypsin) that accelerated the degradation process.
Continuous micro/nanofibers were obtained under a wide range of processing conditions, being diameters of
electrospun fibers dependent on the drug and solvent used.
Poly(ester urea) samples were degradable in media containing lipases and proteinases but the degradation rate
was highly dependent on the surface area, being specifically greater for scaffolds with respect to films. The high
hydrophobicity of new scaffolds had repercussions on enzymatic degradability since different weight loss rates
were found depending on how samples were exposed to the medium (e.g. forced or non-forced immersion).
New scaffolds were biocompatible, as demonstrated by adhesion and proliferation assays performed with fibro-
blast and epithelial cells.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Poly(ester urea)s (PEUs) have been proposed as a new class of α-
amino acid-based polymers with bioabsorbable properties. These poly-
mers can be easily prepared from bis(α-amino acid)-alkylene diester
monomers, which can undergo either nonspecific (chemical) or specific
(enzymatic) hydrolysis due to the presence of two ester linkages per el-
emental unit in the molecule. The first syntheses were reported in the
late 1970s by Huang et al. [1] and yielded low molecular weight
powdery samples (Mn close to 2000 g/mol). Later, Yoneyama et al.
synthesized high molecular weight PEUs by condensing the above
diester–diamine monomers with non-physiological diisocyanates [2].
In order to avoid the use of diisocyanates, other syntheses based
on polycondesation processes through active carbonates (e.g. di-p-
nitrophenyl carbonate)were investigated [3]. However, presumably in-
tramolecular cyclization with hydantoin formation, which represent a
chain scission process, led to low molecular weight polymers.

Problemswere solved when an acid chloride of carbonic acid (phos-
gene, diphosgene, triphosgene) was entered into the polycondensation
reaction with a di-p-toluenesulfonic acid salt of a bis(α-amino acid)-
alkylene diester (Fig. 1a) [4]. In the interfacial polycondensation reac-
tion, the nucleophilic amino group was readily revealed by addition of
an inorganic base, such asNaOH, NaHCO3 andNa2CO3. Thismethod pro-
vides high-yield, high-molecular weight PEUs potentially useful for bio-
medical applications because of their advantageous mechanical,
chemical and biodegradation properties over well-known, chemically
similar poly(ester amide)s also derived from α-amino acids [5]. For ex-
ample, the PEU derived from carbonic acid, L-leucine, and 1,6-
hexanediol (named 1L6, as indicated in Fig. 1a) has tensile strength at
yield, elongation at break and Young's modulus of 21 MPa, 114% and
622 MPa, respectively [4]. Its melting temperature is 114 °C and its
glass transition temperature is 47 °C. New PEUs were proposed to be
useful as implantable surgical devices such as vascular stents and hard
tissue replacement implants, and also for delivery of a variety of phar-
maceutical and biologically active agents to humans and other
mammals.

Micro/nanofiber nonwoven scaffolds produced by electrospinning
have shown great potential for tissue engineering applications because
of their typically high surface area and porosity. Electrospinning is a
well-known electrostatic technique that uses a high voltage field to
charge the surface of a polymer solution droplet at the end of a capillary
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a) 

b) 

Fig. 1. a) Synthesis scheme for thepoly(ester urea) derived from L-lysine, 1,6-hexanediol and carbonic acid. b) Chemical structures of selected antibacterial drugs: chlorhexidine (CHX) and
polyhexamethylenebiguanide hydrochloride (PHMB).
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tube and induce the ejection of a liquid jet towards a grounded target
(collector) [6–9]. Morphology of fibers obtained in the collector de-
pends on the solution properties (e.g. viscosity, dielectric constant, vol-
atility and concentration) and operational parameters (e.g. strength of
the applied electric field, deposition distance and flow rate), which
should be conveniently addressed [10,11].

The unique properties of electrospun fibers have triggered a wide
range of other potential applications [12], including composites [13,
14], sensors [15], protective clothing [16], filtration membranes
[17–20], magneto-responsive fibers and superhydrophobic membranes
[21]. In addition, the electrospinning process provides a simple way to
encapsulate drugs within a micro/nanofiber matrix that can lead
to a controlled and sustained release. Several natural and synthetic
biodegradable polymers have been successfully electrospun (e.g.
polyglycolide [22], polylactide [22,23], polycaprolactone [24], collagen
[25,26] and chitosan [26,27]).

The main goal of the present work is to explore the possibilities of
PEUs, and specifically of the 1L6 sample, for preparing electrospun scaf-
folds. Furthermore, loading with anti-bactericidal agents having
biguanide groups is explored, as well as the possibility of incorporating
degrading agents such as a proteolytic enzyme like α-chymotrypsin. To
the best of our knowledge, this is the first time that a poly(ester urea)
has been assayed as an electrospinnable polymer, which is in itself an
interesting topic because it adds to the range of materials useful for tis-
sue engineering applications. Furthermore, development of antibacteri-
al nanofibers through electrospinning is nowadays a relevant topic for
wound dressing applications as has recently been reviewed by Gao
et al. [28]. Different systems have been considered taking into account
the substrate polymer (e.g., polylactide and polycaprolactone), the anti-
bacterial agent (e.g., antibiotic, bactericide, silver andmetal oxide nano-
particles and chitosan) and the applied procedure (incorporation of the
agent in the electrospinning solution, coaxial electrospinning, previous
encapsulation of the antibacterial agent, conversion of a precursor to
its active form by a post-treatment and attachment of the active agent
onto the fiber surface). Specific systems based on the use of bactericide
agents are summarized in Table 1 [28], which also reveals the relevance
of the use of biguanide derivatives.

Biguanide (Fig. 1b), commonly known as chlorhexidine (1,1′-
hexamethylene-bis-5-(4-chlorophenyl) biguanide, CHX), is a widely
employed antimicrobial agent [42]. Specifically, CHX is an important an-
tiseptic, disinfectant, pharmaceutical and cosmetic preservative and an-
tiplaque agent. Its high activity against microorganisms is provided by
the presence of secondary amines that can be protonated, and therefore
positively charged under normal pH conditions [43]. Immobilization of
antimicrobial agents may reduce patient exposure to active agents and
potentially increase the duration of antimicrobial efficacy [44,45]. One
way to achieve immobilization is by loading micro/nanofibers of
electrospun scaffolds with the desired drug.

Other chemical compounds bearing biguanide groups have been de-
veloped [46,47]. For example, polyhexamethylenebiguanide hydrochlo-
ride (PHMB) is a cationic oligomer having an average of 7–11 biguanide
groups spaced by flexible hexamethylene segments (Fig. 1b). PHMB has
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Table 1
Electrospun scaffolds loaded with bactericide agents.a

Electrospun polymer Solvent Concentration Antibacterial agent Reference

PCL/PLA CF/acetone 3:1 v/v 10% w/v Triclosan [29]
PLA CF/DMF 9:1 v/v 8% w/v Triclosan [30]
CA DMF 3 wt.% Chlorhexidine [31]
PAN DMSO 15 wt.% QACs [32]
CA/PEU DMF/THF 50:50 v/v 20/10 wt.% PHMB [33]
PAN DMF 10% w/v PHMB [34]
PAN DMF 10 wt.% N-halamine [35]
PEO/Chitosan H2O/Acetic acid 3–4 wt.% K5N8Q [36]
PDLLA, PEO DMF 20–24 wt.% Antibacterial peptides [37]
PADAS HFIP 10 wt.% Chlorhexidine [38]
PLA/PCL CF-acetone 2:1 v/v 10–2.5 wt.% Triclosan [39]
PLA/PEG DCM/DMF 70:30 v/v 7–35 wt.% Triclosan [40]
PHB/PEO DMF/CF 80:20 v/v 10% w/w Chlorhexidine [41]

a PCL (polycaprolactone), PLA (polylactide), PDLLA (poly(D,L-lactide)), PEG (poly(ethylene glycol)), CA (cellulose acetate), PAN (polyacrylonitrile), PEU (poly (ester urea)),
PEO (poly(ethylene oxide)), PADAS (poly(ester amide) derived from alanine, 1,12-dodecanediol and sebacic acid units), QACs (N,N-didecyl-N,N-dimethylammonium chloride
and bis-(3-aminopropyl)-dodecylamine), PHMB (polyhexamethylenebiguanide hydrochloride), K5N8Q (potassium 5-nitro-8-quinolinolate), DMF (N,N-dimethylformamide),
DMSO (dimethyl sulfoxide), THF (tetrahydrifuran), HFIP (hexafluoroisopropanol), PHB (poly(hydroxybutyrate)), CF (Chloroform), DCM (dichloromethane).
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chemical stability, low toxicity, high effectiveness against microorgan-
isms and reasonable cost [48–50]. Gilbert et al. demonstrated that activ-
ity increased with the number of biguanide groups and that maximum
biocidal efficiency was obtained when the hexamethylene group was
employed as spacer [51].

2. Experimental section

2.1. Materials

The poly(ester urea) 1L6 was synthesized with a 91–93% yield, as
shown in the scheme in Fig. 1, following the procedure previously re-
ported by Gomurashvili et al. [4].

All solvents, clorhexidine (CHX ≥98% (HPLC)), 3-(4,5-dimethyl-
thiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), enzymes
(lipase, proteinase K and α-chymotrypsin) and cell culture
labware were purchased from Sigma-Aldrich (Spain). Cosmocil®
(polyhexamethylenebiguanide hydrochloride, PHMB) (Batch No.
10GR140505) was purchased from Arch UK Biocides (20% aqueous so-
lution), then lyophilized and provided by B. Braun Surgical, S.A. Themi-
crobial culture was prepared with reagents and labware from Scharlab
(Spain).

Escherichia coli CECT 101 and Micrococcus luteus CECT 245 bacterial
strains were obtained from Spanish Collection of Type Culture (Valen-
cia, Spain). African greenmonkey kidney fibroblast (COS-7) and epithe-
lial (Vero) cells were purchased from ATCC (USA).

2.2. Molecular weight characterization of the poly(ester urea) 1L6

Weight and number average molecular weights determined by GPC
were 74,100 and 51,100 g/mol, respectively. The GPC (Waters Associ-
ates, Inc.,Milford, United States)was equippedwith a high-pressure liq-
uid chromatography pump (Waters 1525 binary HPLC), styragel
columns (HR4, HR3 and HR0.5) (7.8 mm × 300 mm) and a refractive
index detector (Waters 2414). The polymer was dissolved and eluted
in a solution of LiBr (0.1 M) in dimethylformamide at a flow rate
of 1.0 mL/min (injected volume 100 μL, sample concentration
2.0 mg/mL). The columns were calibrated with polyethylene glycol
standards.

2.3. Electrospinning

Electrospun fibers were collected on a target placed at different dis-
tances (10–25 cm) from the needle tip (inside diameter of 0.84 mm).
The voltage was varied between 10 and 30 kV and applied to the target
using a high-voltage supply (GammaHighVoltage Research, ES30-5W).
Polymer solutions were delivered via a KDS100 infusion syringe
pump (KD Scientific, USA) to control the mass-flow rate (from 0.5 to
10 mL/h). All electrospinning experiments were carried out at room
temperature. Unloaded and α-chymotrypsin, CHX and PHMB loaded
electrospun fibers were prepared using optimized parameters (i.e. nee-
dle tip-collector distance, voltage and flow rate) and solvent conditions
(i.e. solvent ratio, and polymer and drug concentration). Amounts of
CHX, PHMB and α-chymotrypsin in the electrospinning solution were
selected to render 1L6 scaffolds loaded with 2.8, 0.85 and 10 wt.% of
the respective compounds.

2.4. Morphology and properties of electrospun scaffolds

Optical microscopy studies were performed with a Zeiss Axioskop
40 microscope. Micrographs were taken with a Zeiss AxiosCam MRC5
digital camera.

Detailed inspection of texture and morphology of electrospun sam-
ples was conducted by scanning electron microscopy using a Focus Ion
Beam Zeiss Neon 40 instrument (Carl Zeiss, Germany). Carbon coating
was accomplished using a Mitec K950 Sputter Coater fitted with a film
thickness monitor k150×. Samples were visualized at an accelerating
voltage of 5 kV. The diameter of electrospun fibers was measured with
the SmartTiff software from Carl Zeiss SMT Ltd.

Contact angles (CA) were measured at room temperature with ses-
sile drops using anOCA-15 plus Contact AngleMicroscope (Dataphysics,
USA) and SCA20 software. Values of the right and left sides of distilled
water drops were measured 10 s after the drop (5 mL) was deposited
on the sample surface. All CA datawere an average of sixmeasurements
on different surface locations.

2.5. Degradation studies

Degradation study samples were cut from regular films of 1 × 1 cm2

and 200 μm in thickness prepared by melt pressing 300 mg of the ap-
propriate polymer at a temperature of 10 °C above the melting peak
temperature or from the mat with an approximate thickness of 60 μm
recovered from the electrospinning process.

Enzymatic degradation was conducted at 37 °C using Rhizopus
oryzae lipase (56–60 units/mg), proteinase K (1 unit/mL) and α-
chymotrypsin (40 units/mg). The enzymatic medium, 1 mL, consisted
of a pH 7.4 sodium phosphate buffer containing sodium azide (0.03
wt%) and 1, 0.1 and 1 mg of lipase, proteinase K, and α-chymotrypsin,
respectively. All enzymatic solutions were renewed every 48 h because
of enzymatic activity loss. After immersion, samples were rinsed with
water, dried to constant weight under vacuum and stored over P4O10

before analysis. Weight retention was then evaluated. Degradation
studies were performed in quadruplicate, with given data correspond-
ing to the average values.
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Morphology of degraded films was inspected by scanning electron
microscopy using a Focus Ion Beam Zeiss Neon 40 instrument (Carl
Zeiss, Germany). Carbon coating was performed using a Mitec K950
Sputter Coater fitted with a film thickness monitor k150×. Samples
were visualized at an accelerating voltage of 5 kV.

2.6. Release experiments

Controlled release measurements were made with square pieces
(weighing approximately 200 mg) of the electrospun scaffolds. These
pieces were weighed and incubated at 37 °C in an orbital shaker at
200 rpm in tubes of 50mL for 1 week. PBS buffer (hydrophilic medium)
and, alternatively, its mixture with ethanol (i.e. 3:7 v/v ratio) as a more
hydrophobic component, were used as release media. Drug concentra-
tion was evaluated by UV spectroscopy using a Shimadzu 3600 spec-
trometer. Calibration curves were obtained by plotting absorbance
measured at 252 and 234 nm versus CHX and PHMB concentration, re-
spectively, in the hydrophilic medium, whereas 261 (for CHX) and
236 nm (for PHMB)were consideredwhen ethanol was added. Samples
werewithdrawn from the releasemediumat predetermined time inter-
vals. The volume was kept constant by addition of fresh medium. All
drug release testswere carried out using three replicates and the results
were averaged.

Absorbancemeasurements (282 nm) were also performed to detect
the enzyme released in PBS medium from α-chymotrysin loaded
scaffolds.

2.7. Antimicrobial test

E. coli andM. luteus bacteria were selected to evaluate the antimicro-
bial effect of CHX and PHMB loaded electrospun fibers. The bacteria had
previously been grown aerobically to exponential phase in broth culture
(5 g/L beef extract, 5 g/L NaCl, 10 g/L peptone, pH 7.2).

Growth experiments were performed on a 24-well culture plate.
Square pieces (0.5 × 0.5 × 0.1 mm3) of the electrospun scaffolds were
placed into each well. Then, 1 mL of broth culture containing 103 CFU
was seeded on the electrospun fiber mats. The cultures were incubated
at 37 °C and agitated at 200 rpm. Aliquots of 50 μl were taken at
Abundant bead 
formation

Wide diameter 
distribution

S

Fig. 2.Opticalmicrographs showing the optimization sequence for the electrospinning paramete
mixture and a polymer concentration of 18 wt.%.
predetermined time intervals for absorbance measurements at
650 nm in a plate reader. Thus, turbiditywas directly related to bacterial
growth.

Bacterial adhesion onto scaffolds was also determined. The culture
media were aspirated after incubation and the material was washed
oncewith distilled water. Then, 0.5 mL of sterile 0.01M sodium thiosul-
fate was added to each well. After addition of 4 mL of broth culture, the
plate was incubated at 37 °C and agitated at 200 rpm for 24 h. The bac-
terial number was determined as indicated above. All assays were con-
ducted in triplicate and the results were averaged.

Scaffolds were fixed with 2.5% w/v formaldehyde at 4 °C overnight.
Then, they were washed three times with distilled water and Gram
stained for observation by light microscopy.

2.8. Cell adhesion and proliferation assays

Cos-7 and Vero cells were cultured in Dulbecco'smodified Eagleme-
dium (DMEM) as previously reported [52].

Square pieces (0.5 × 0.5 × 0.1 mm3) of the electrospun scaffolds
were placed and fixed in each well of a multiwell culture plate with a
small drop of silicone (Silbione®MED ADH 4300 RTV, Bluestar Silicones
France SAS, Lyon, France). They were then sterilized by UV-radiation in
a laminar flux cabinet for 15min. For the cell adhesion and proliferation
assays, aliquots of 50–100 μL containing 5 × 104 cells were seeded onto
the electrospun samples in each well and incubated for 24 h (adhesion
assay) or 4 days (proliferation assay).

Samples were evaluated by the standard adhesion and proliferation
method [52] using three replicates and the results were averaged. Sam-
pleswith adhered and grown cells on thematswerefixedwith 2.5%w/v
formaldehyde at 4 °C overnight. They were subsequently dehydrated
and processed for observation by scanning electronic microscopy.

3. Results and discussion

3.1. Electrospinning of poly(ester urea) 1L6

In order to select themost appropriate conditions to obtain continu-
ous 1L6microfibers, several solvents and binarymixtureswere tested at
olvent retention

rs and typicalmorphologies obtained by electrospinning of 1L6 from a CHCl3:EtOH 10:1 v/v
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different voltages, flow rates, polymer concentrations and needle tip-
collector distances. Selection of the appropriate solvent is fundamental
for continuous microfiber production [53,54], with a relatively high
polymer concentration being generally required to avoid the formation
of droplets and electrospun beads, especially when a good solvent is
chosen [55].

1L6 has good solubility in most organic solvents (e.g. chloroform,
ethanol and dimethylformamide), but the best results were attained
using a CHCl3:EtOH 10:1 v/v mixture and even when methanol was
employed instead of ethanol. Polymer concentration in the ethanolmix-
tures had to be higher than 18 wt.%. The high molecular weight of the
poly(ester urea) facilitated the electrospinning process and, in fact, con-
tinuous microfibers were obtained under a wide range of processing
conditions (i.e. needle tip-collector distance, flow rate and voltage).
Fig. 2 is an example of the optimization process as followed by optical
microscopy which shows that good fibers could be attained in most
test conditions.
90 µm

90 µm

a)

b)

c)

180 m

12 µm

Fig. 3. SEMmicrographs of electrospun microfibers obtained from a CHCl3:EtOH 10:1 v/v
mixture using different voltages, needle tip-collector distances, polymer concentrations
and flow conditions: 25 kV, 24.5 cm, 15 wt.% and 4 mL/h (a); 20 kV, 24.5 cm, 18 wt.%,
and 1.5 mL/h (b); 25 kV, 24.5 cm, 20 wt.% and 5 mL/h (c). Insets show highmagnification
images (scale bar 4 μm) for observation of fiber surface details.
Representative SEM micrographs showing different morphologies
are given in Fig. 3. Polymer concentration was varied to illustrate the
formation of droplets and very thin nanofibers (Fig. 3a) at concentra-
tions lower than the above value. At higher values, microfibers were
quite similar despite significant differences in conditions (Fig. 3b and
c). Long microfibers with a cylindrical morphology and randomly dis-
tributed in the fibrous mats were generally formed. Under optimal pro-
cess conditions, fibers had a dense but porous structure, a relatively
narrow monomodal distribution and an average diameter size of
2.70 μm (Fig. 4, Table 2). They were also characterized by a porous sur-
face texture, as shown in high magnification images (Fig. 4b).

Electrospinning could also be performedwithout changing the oper-
ational parameters upon incorporation of CHX and PHMB into the poly-
mer solution. CHX loaded electrospun fibers were highly similar to the
unloaded sampleswhile incorporation of PHMB resulted in significantly
smaller fiber diameters (i.e. from 2.70 to 1.20 μm) (Fig. 5a and b,
Table 1). This indicated a drastic change in the physicochemical charac-
teristic of the electrospinable solution caused by the presence of poly-
meric biguanide. No significant changes were found in the fiber
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Fig. 4. SEMmicrographs of 1L6 electrospun microfibers under optimized conditions (a,b)
and diameter distribution (c).
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Table 2
Optimal electrospinning conditions for 1L6-CHX, 1L6-PHMB and 1L6-α-chymotrypsin
samples and average diameter size.

Sample Voltage
(kV)

Rate
(mL/h)

Distance
(cm)

Diameter
(μm)

1L6a 20 1.5 24.5 2.70 ± 0.11
1L6-CHXa 20 1.5 24.5 2.64 ± 0.14
1L6-PHMBa 20 1.5 24.5 1.20 ± 0.05
1L6-α-Chymotrypsinb 25 0.5 24.5 0.458 ± 0.15

a From solutions containing 18 wt.% of PEU.
b From solutions containing 13 wt.% of PEU.
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surface since a porous texturewas detected in both kinds of drug loaded
samples.

3.2. Hydrophobicity of 1L6 samples

Although wettability of materials depends mostly on both surface
energy and roughness, the latter is the key factor after selecting their
a)

b)

c)

20 µm

20 µm

4 µm

Fig. 5. SEMmicrographs of 1L6 electrospun scaffolds loadedwith 2.8wt.% of CHX (a), 0.85wt.% o
components. Therefore, hydrophobicity may vary significantly with
the form (melt processed film or electrospun scaffold) of the material,
and even be affected by incorporation of a drug. Fig. 6 shows the
water contact angle values of 1L6 films and scaffolds, as well as CHX
and PHMB loaded scaffolds.

The contact angle of the 1L6microfiber scaffold increased drastically
compared to that of the film (i.e. from 89± 4° to 127°) since deposition
of microfibers led to a much greater surface roughness than expected
for a film sample.

The impact of roughness on the contact angle is given by theWenzel
equation: [56]

cosθW ¼ r cosθY ð1Þ

which relates the contact angle of a rough surface, θW, with the rough-
ness ratio of the surface, r, and the contact angle of a smooth surface, θY.

TheWenzel equation shows that contact angles on hydrophobic sur-
faces increase with surface roughness for a water droplet because the
ratio between the true surface area of a rough surface and that of a
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Fig. 7. Plots of weight loss versus exposure time for 1L6 films exposed to proteinase K (■),
α-chymotrypsin (▲) and lipase (♦) media.
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and α-chymotrypsin.
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comparably sized smooth surface is always greater than one. The mea-
sured value for the smooth 1L6 film was close to 90° which is strictly
the lower limit value for a hydrophobic substance.

The high increase of the contact angle seems however difficult to be
justified by the typical Wenzel equation and consequently microfiber
scaffolds seem to benefit from air pocket formation. Therefore, the
Cassie–Baxter equation [57] should also be considered:

cosθw ¼ f 1 cosθ1 þ f 2 cosθ2 ð2Þ

where f1 represents the fraction of each component (polymer and air)
and θ1 is the corresponding contact angles. When f2 represents the
area fraction of trapped air, Eq. (2) can be modified according to simple
Eq. (3):

cosθw ¼ f cosθY þ 1− fð Þ cos180∘ ¼ f cosθY þ f−1 ð3Þ

where f is an area fraction of the solid–liquid interface and (1− f) is that
of the air–liquid interface which contact can be considered to be 180°.

The contact angles of antibacterial drug loaded scaffolds and the
unloaded 1L6 scaffold were highly similar. Thus, the small change in
roughness/porosity caused by the lower fiber diameter (e.g. for PHMB
loaded samples) or the hydrophilic character of loaded drugs had amin-
imum impact.

3.3. Degradation of poly(ester urea) 1L6 films and scaffolds

Weight loss in the three media (i.e. lipase, proteinase K and Chymo-
trypsin) during enzymatic degradation is plotted in Fig. 7 for melt-
processedfilms of the studiedpoly(ester urea). As can be seen, all values
are higher than 50% after only 15 days of exposure to themedia, demon-
strating the susceptibility of the 1L6 sample to enzymatic attack. How-
ever, a significant delay in the last stages of degradation was observed
in the lipase medium. In fact, degradation was still similar after
21 days of exposure to both α-chymotrypsin and proteinase K media.
Weight loss reached a value close to 80% before films became complete-
ly brittle. Note also that weight loss was practically linearly dependent
on the exposure time to bothmedia. On the contrary, linearity was pro-
gressively lost after an initial period, and the maximum level of degra-
dation (80%) was reached after 31 days in the lipase medium. These
results suggest the ability of proteinase K and α-chymotrypsin to de-
grade ester groups aswell as CO–NH linkages of the urea group. By con-
trast, lipase was only effective with the ester linkages, causing a slightly
delayed degradation that becamemore evident at the endof the process
where more resistant urea enriched fragments should be predominant.
Degradation was also evaluated in PBS control solution because in this
case only hydrolytic attack was expected. Results (not shown) indicate
a weight loss of less than 5% after 31 days of exposure.

SEMmicrographs taken after exposure of film samples to the degra-
dation media show that degradation progressed steadily on their sur-
face, with abundant formation of deep cracks (e.g. Fig. 8b). This
contrasts with the practically unaltered surface of samples exposed to
a non-enzymatic PBS hydrolytic medium for a similar period (Fig. 8a).
High magnification images (Fig. 8c and d) also reveal that enzymatic
degradation eroded the sampleswithout retention of degradation prod-
ucts, suggesting their release in the media.

Fig. 9 shows the weight loss evolution of 1L6 electrospun scaffolds
that were fully immersed in the degradation media. In all cases, degra-
dation progressed very fast during the first three days of exposure
(e.g., weight loss was higher than 60%) and subsequently a steady evo-
lution at a lower degradation rate was detected (e.g. weight loss was
close to 90–95% after 10 days). Minor differences were observed be-
tween samples exposed to the three different enzymatic media. Poly-
mers logically appeared to be more easily degraded in microfiber than
in film form, especially at the beginning of exposure.

Fig. 10 shows SEMmicrographs of the scaffold during the enzymatic
attack. It is clear that only the fibers placed on the surface of the scaffold
were degraded at the beginning (Fig. 10a) due to the high hydrophobic-
ity of the sample that prevented the access of the aqueous medium to
the inner parts of the scaffold, which remained practically unaltered.
Obviously, the internal fibers become accessible to enzymes as
the fibers placed on the surface were degraded (Fig. 10b), being this
process slower than the initial step concerning the outer fibers. A prac-
tically complete degradation was reached after 10 days as shown in
Fig. 10c.

High magnification micrographs revealed some differences on the
texture of degraded fibers. Note for example that fibers exposed to pro-
teinase K seemed to retain more degradation products (Fig. 10f), a fea-
ture that may be related to the slightly lower weight loss observed in
this medium. These products were less evident during exposure to li-
pase medium and specifically a clear erosion of minority beads was de-
tected (Fig. 10e).

It is interesting to note that scaffolds tend to float on the medium
and consequently degradation could be clearly delayed by thewettabil-
ity effect as shown in Fig. 9 for a scaffold exposed to proteinase K medi-
um without a forced immersion.
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Fig. 8. Scanning electron micrographs of 1L6 films after 19 days of exposure to PBS (a), α-chymotrypsin (b,d) and lipase (c) media at 37 °C.
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3.4. Poly(ester urea) 1L6 electrospun scaffolds loadedwith α-chymotrypsin
as a degrading enzyme

The high solubility of 1L6 allowed the choice of the appropriate com-
bination of solvents to perform the electrospinning process and dissolve
potentially degrading enzymes without a remarkable inactivation/de-
naturation effect. α-Chymotrypsin was selected as the degrading
enzyme on account of its higher effectiveness, as found in the degrada-
tion experiments with film samples. To avoid protein denaturation,
methanol was preferred to ethanol; specifically a CHCl3:CH3OH 9:4 v/v
mixture and a polymer concentration of 13 wt.% were used. A high en-
zyme concentration (1.5w/v%)was also employed to ensure incorpora-
tion of a reasonable proportion of enzymes (i.e. 10 wt.%) with a suitable
activity within nanofibers. Electrospinning conditions were optimized
Fig. 9. Plots of weight loss versus exposure time for 1L6 scaffolds exposed to proteinase K
(▲) α-chymotrypsin (●) and lipase (♦) media. For comparative purposes degradation
data in a proteinase K medium are also given for a 1L6 film (–) and a not fully immersed
1L6 scaffold (■).
under these new values and some parameters should be significantly
varied, as indicated in Table 2. The most drastic change affected the
flow rate, which had to be significantly decreased to obtain continuous
and homogeneous fibers (Fig. 5c). Solvent evaporation was enhanced
and the average value of fiber diameters (i.e. 458 nm) was lower than
of ethanol containing mixtures and higher flow rates. In this case, con-
tact angle measurements (Fig. 6) indicated a slight decrease in hydro-
phobicity compared to the unloaded scaffold. The large amount of
loaded enzyme and the significant reduction in fiber diameter are
worth noting.

New scaffolds appear highly interesting because of their incorpora-
tion of agents, which could accelerate the degradation process
and tissue regeneration. Cell colonization could be enhanced by the
formation of a more porous structure and loss of the supporting syn-
thetic polymer. Since electrospun nanofibers have good characteristics
(e.g. size and surface morphology) to be enzyme immobilization
supports, several works have focused on achieving enzyme immobiliza-
tion via covalent attachment [58]. The simpler approach consisting in
the incorporation of enzymes (including α-chymotrypsin and lipase)
into the polymers was previously demonstrated for α-amino acid-
based poly(ester amide)s [59]. The present approach is similar because
the enzyme is directly incorporated in 1L6 during the electrospinning
process.

Micrographs in Fig. 11a reveal the degradation of scaffolds exposed
to a pH 7.4 sodium phosphate buffer at 37 °C without a forced immer-
sion and after only 2 days of exposure. More interestingly, only nanofi-
bers on the outer surface of the scaffold (i.e. those in direct contact with
the aqueous medium) are degraded. Furthermore, the process mainly
affects the inner part of fibers, where the maximum amount of enzyme
is loaded. As can be seen in the higher magnification image (Fig. 11b),
fibers appear longitudinally cracked or even as if they had exploded
and only their skin remained. The SEMmicrograph clearly demonstrat-
ed that enzymatic attack took place by simple exposure of the α-
chymotrypsin loaded fiber to the aqueous medium in contrast to the
low erosion detected when unloaded fibers were exposed to PBS (not
shown). The micrograph shows also that degradation products seemed
to be partially retained in the fibers due to their high insolubility. UV
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Fig. 10. Scanning electron micrographs of 1L6 scaffolds after exposure to α-chymotrypsin (a,b,c,d), lipase (e) and proteinase K (f) media at 37 °C for 3 (a,d,e,f), 6 (b) and 8 (c) days.
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absorbance measurements (282 nm) indicate that no α-chymotrypsin
was released to the PBS degradation medium after 3 days of exposure.
Thus, enzymes were effectively retained in the scaffold when exposed
to a hydrophilic medium.

Also interesting is the high hydrophobicity of the scaffold surface
(Fig. 6), which caused a progressive degradation that should evolve
from the outer to the inner surface. Thus, the scaffold should retain its
structural function for longer than expectedwhen all fibers were equal-
ly accessible to water molecules and started to degrade at the same
time.
a) 

 5 µm 

b) 

 1.2 µm 

Fig. 11. Scanning electron micrographs at different magnifications of 1L6 scaffolds loaded
with 10 wt.% of α-chymotrypsin after 2 days of exposure to PBS medium at 37 °C.
3.5. Biguanide release from 1L6 scaffolds

The release of biguanide compounds from an electrospun matrix is
intimately related to themorphology and structure of constituent fibers
and to the release environment. In fact, the rate of diffusion-controlled
drug release depends on three main factors: a) Solubility of the drug
in the release medium, b) ability of the medium to penetrate the poly-
mer matrix, and c) physical interactions between the polymer and
drug [60].

The release of CHX and PHMB from 1L6 scaffolds was studied in
media with different hydrophobicity/hydrophilicity ratios (i.e. PBS and
PBS-EtOH 3:7 v/v mixture). Specifically, ethanol is more hydrophobic
than water and has higher affinity with 1L6. PBS-EtOH may also have
a swelling effect that facilitated drug delivery. The release behavior of
both drugs in the two media was clearly different, i.e. a maximum re-
lease of 3% in PBS (data not shown) versus 91% in the mixture of sol-
vents after an exposure of only 90 h (Fig. 12).

Logically, differences in release behavior between CHX and PHMB
were insignificant in themore hydrophobic medium. In fact, the release
of PHMBwas slightly delayed during thefirst 10 h of exposure, probably
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Fig. 12. Drug release profiles of 1L6 scaffolds loaded with 0.05 wt.% of CHX (○) and
0.015 wt.% of PHMB (●) in PBS–EtOH 3:7 v/v.
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due to its higher molecular weight, which hindered diffusion through
the microfiber, and even to its slightly higher hydrophilicity. Neverthe-
less, measurements indicate a rapid release of both drugs from
electrospun scaffolds in amediawith similar hydrophobicity than phys-
iological serum-containing medium, and consequently a rapid antibac-
terial effect should be expected.
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3.6. Antibacterial assays of biguanide loaded 1L6 scaffolds

The antibacterial effect of CHX and PHMB released from microfiber
scaffolds was determined by studying bacterial growth inhibition in
broth culture. Unloaded 1L6 scaffolds appeared highly susceptible to
bacterial colonization, with bacterial growth levels similar to that of
the positive control (polystyrene plate), as can be seen in Fig. 13. Colo-
nization can be effectively avoided by loading a low PHMB and CHX
ratio, as also shown in Fig. 13. Thus, a significant decrease in the number
of both Gram-positive (M. luteus) and Gram-negative (E. coli) bacteria
was observed in drug loaded scaffolds compared to the control and
the unloaded scaffold. The greatest decreasewas found for the highmo-
lecular weight of PHMB (i.e. 97–95% versus 76–79% for PHMB and CHX,
respectively).

It should be pointed out that the number of active biguanide groups
in the CHXandPHMB loaded scaffoldswas similar because drug content
was specifically selected to this end. Furthermore, differences cannot be
attributed to a different release behavior, as explained above, and even a
slightly lower release rate was observed for PHMB. This suggests a
higher antimicrobial activity of biguanides in polymeric form, as has
also been reported [51]. In fact, the high effectiveness has been related
to a novel mechanism of action based on the interaction of PHMB with
nucleic acids that led to co-precipitation. At low bacteriostatic concen-
trations, the damage caused by this interaction could be tolerable and
the antibacterial effectwould bedue to disruption of the cellmembrane,
as usually expected [33]. However, because the binding between PHMB
and DNA is highly cooperative, a slightly higher drug dose can cause
massive perturbation of DNA function and/or precipitation leading
to cell death. An additional advantage of PHMB over CHX is that a
lower wt.% is required for similar biguanide contents. Logically, the
electrospinning conditions should be less affected, and moreover drug
activity can be increased by loading a higher amount of PHMB (e.g.
just that corresponding to CHX wt.%).

The effect of CHX and PHMB on studied bacteria was similar due to
thewide antibacterial spectrumof both drugs (Fig. 13). It is highly inter-
esting that CHX and PHMB could be loaded into the 1L6 microfibers by
electrospinning without loss of antimicrobial activity. Hence, solvent or
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Fig. 13. Escherichia coli and Micrococcus luteus bacterial growth in 1L6 scaffolds loaded
with CHX and PHMB and the positive control. The bars are mean ± SD (n = 4).
*p b 0.05 vs. control, ANOVA followed by Tukey test.
high voltage did not cause any adverse effect, allowing easy preparation
of scaffolds with an added value (e.g. antibacterial activity).
3.7. Biocompatibility of films and scaffolds of the poly(ester urea) 1L6

Adhesion and proliferation tests of epithelial (Vero) and fibroblast
(Cos-7) cells were performed on 1L6 films and scaffolds. These assays
are useful in following cell development because adhesion is an early
cellular event and proliferation is an evidence of metabolic cell activity.
While adhesion of both cell lines on scaffolds and the control was rather
similar, significant differences were detected between scaffolds and
films (Fig. 14a). Viability was significantly lower for films, especially
theVero cell line ones. This result is interesting because it reflects the ef-
fect of increased porosity of the scaffold sample (i.e. a 3D-structure
more favorable for rapid cell colonization), which is even sufficient to
counterbalance thenegative effect of its higher hydrophobicity. Prolifer-
ation assays gave similar results, as depicted in Fig. 14b, although en-
hancement of cell proliferation compared to the film was similar for
both Cos-7 and Vero cell line scaffolds.

Representative micrographs of morphological characteristics of cell
growth on 1L6 films are shown in Fig. 15. Fibroblast (Cos-7) and epithe-
lial (Vero) cells formedmonolayers on the 1L6film surface (Fig. 15a and
e) structured with close interactions between neighboring cells to form
a tissue (see arrows in Fig. 15b and f). Furthermore, cell adhesion on the
film surface promoted the formation of intercellular bridges (see double
arrows in Fig. 15c and g). These bridges correspond to filopodia devel-
oped from an early attachment (h), as evidenced by the rounded
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Fig. 14. Biocompatibility of PEUmatrices determinedby cell adhesion (a) and proliferation
(b) of fibroblast (Cos-7) and epithelial (Vero) cells. The bars are mean ± SD (n = 4).
*p b 0.05, scaffold vs. film, ANOVA followed by Tukey test.
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Fig. 15. Morphological characteristics of cell growth (fibroblast (Cos-7) cells (a–d) and epithelial (Vero) cells (e–i)) in 1L6 films.
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shape of cells. Moreover, the free surface of the material made it
possible to obtain a broad extension of cell cytoplasm through
lamellipodia (named cell spreading), which are auxiliaries for cell at-
tachment onto the material surface through filopodia (see arrows in
Fig. 15d and i).

Micrographs in Fig. 16a and g show that both types of cells were also
competent to formmonolayers over the fiber matrices. Fiber tracks can
be clearly seen below the Cos-7 cell monolayer (Fig. 16a) whereas the
tile morphology of Vero cells hinders their observation (Fig. 16g). Cos-
7 cells demonstrated their ability to invade the pores between fibers,
forming a tissue-like structure (arrows in Fig. 16b) where cells were
connected to each other by small filopodia (arrows in Fig. 16c). Material
colonization occurred locally, as evidenced by the formation of inter-
connected cell clusters (arrows in Fig. 16d). The 1L6 scaffolds facilitated
guided cell growth (Fig. 16e) and the establishment of cell connections
through extensions of filopodia that cross over the pores of the matrix
(arrows in Fig. 16f). Vero cells also grew over the polymer matrix in a
guided manner through the fibers (arrows in Fig. 16h).

4. Conclusions

A new α-amino acid containing poly(ester urea) was successfully
electrospun to form microfiber scaffolds. Continuous fibers with a
monomodal diameter distribution and slightly rough surface were
formed under a wide range of electrospinning conditions. The high sol-
ubility of the PEU derived from L-leucine, 1,6-hexanediol and carbonic
acid allowed the use of appropriate solvents to load different antibacte-
rial drugs and even enzymes without being denatured.

The 1L6 poly(ester urea) films were more susceptible to enzymatic
attack by proteases than by lipases because the latter mainly involved
hydrolysis of ester groups. Despite these minor differences, both en-
zymes led to rapid degradation of film samples. 1L6 scaffolds degraded
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faster than films due to the greater surface area of constitutive fibers.
The high hydrophobicity of 1L6 scaffolds had repercussions on enzy-
matic degradability since different weight loss rates were found de-
pending on how samples were exposed to the medium (e.g. forced or
non-forced immersion). In any case, hydrophobicity caused that inner
fibers were well-preserved at least during the first three days of
exposure.

Monomeric (CHX) and polymeric (PHMB) biguanide compounds
were effectively loaded into the electrospun scaffolds. Slight differences
in fiber morphology and antibacterial properties were found depending
on the loaded drug. Specifically, PHMB led to narrow fibers and had an
increased antibacterial effect against Gram-positive and Gram-
negative bacteria. α-Chymotrypsin could also be loaded into the 1L6
scaffolds, giving rise to materials with enzymes that could accelerate
degradation and tissue regeneration.

Adhesion and proliferation of epithelial (Vero) and fibroblast (Cos-
7) cells on 1L6 films and scaffolds demonstrated the biocompatibility
of the new poly(ester urea). Slight differences in cell viability were
found, with films exhibiting the lower values. The effect of increased po-
rosity of scaffold samples appears sufficient to counterbalance the neg-
ative effect of its higher hydrophobicity.
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