
 

 

Temperature Robust PCA Based Stress Monitoring Approach 

Jabid Quiroga1, a, John Quiroga2, b, Luis Mujica3,c, Rodolfo Villamizar1,d, 
Magda Ruiz3,e  

1Universidad Industrial de Santander, Cra. 27 Calle 9, Bucaramanga, Colombia 

2Universidad Santo Tomas, Cra 18 Calle 9, Bucaramanga, Colombia  

3Department of Mathematics, EEBest UPC Campus Diagonal-Besós, Barcelona, Spain. 

ajabib@uis.edu.co,bjolepiqi@gmail.com, cluis.eduardo.mujica@upc.edu, d rovillam@uis.edu.co,e 

magda.ruiz@upc.edu 

Keywords: Stress monitoring, Guided waves, PCA, Temperature robust. 

Abstract. In this paper, a guided wave temperature robust PCA-based stress monitoring 

methodology is proposed. It is based on the analysis of the longitudinal guided wave propagating 

along the path under stress. Slight changes in the wave are detected by means of PCA via statistical 

T
2
 and Q indices. Experimental and numerical simulations of the guided wave propagating in 

material under different temperatures have shown significant variations in the amplitude and the 

velocity of the wave. This condition can jeopardize the discrimination of the different stress 

scenarios detected by the PCA indices. Thus, it is proposed a methodology based on an extended 

knowledge base, composed by a PCA statistical model for different discrete temperatures to 

produce a robust classification of stress states under variable environmental conditions. 

Experimental results have shown a good agreement between the predicted scenarios and the real 

ones. 

INTRODUCTION 

Stresses in structures have great influence in the performance during the operation, affecting its 

strength, expected operational life and dimensional stability. A suitable alternative is the use of low-

frequency ultrasonic guided waves. The ultrasonic guided waves have the ability to propagate along 

relative long distances, compared to most bulk wave NDE methods, while still maintaining 

sensitivity to condition changes in the structure [1]. Guided waves are used for damage detection, 

damage localization and material characterization.  [2-7]. 

Guided waves propagating in materials under stress conditions present some changes in the wave 

pattern with respect to the pattern for different stresses, which can be monitored under two 

approaches. The first one is based on acoustoelasticity, which involves the evaluation of the 

ultrasonic bulk wave velocities. However, the acoustoelasticity in a specific material is difficult to 

generalize. In addition, the acoustoelastic effect is small for metals, typically about 0.001% per MPa 

of applied stress [8].The second one relies on particular features in the waveform attributed to the 

guided wave propagation in a medium under stress. These changes can be traced by using statistics 

tools, such as PCA. In this paper, a temperature robust alternative approach is being considered by 

using a PCA statistical data driven model of the guided wave pattern. 
 

Stress effect over the propagation of guided waves. The presence of external mechanical stresses 

in a material causes modification of its structural morphology and its mechanical and acoustic 

behavior. Then, the propagation of the guided waves is modified in terms of velocity and 

attenuation. Under stress, these quantities depend on the direction and polarization of the waves as 

well as on the direction of the applied stress [1]. The bulk wave velocity variations as a function of 

the stress applied to the propagating medium is governed by the acoustoelasticity effect. The 

acoustoelasticity effect is founded on the nonlinear elasticity theory. This new model includes three 

acoustoelastic constants (l,m,n), in addition to the Lamé constants (λ and µ) [2]. A first order 
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approximation of the bulk longitudinal wave velocity for an isotropic material subject to uniaxial 

stress is presented in Eq. 1 [3]. 

 = + + + + + ,    (1) 

  where σ is the uniaxial stress, ρ is the mass density, and = + / , is the bulk 

longitudinal wave velocity in a stress free medium. The expression inside of the curly brackets 

governs the velocity factor attributed to the stress, which is generally very small for most of 

metallic materials. Therefore, velocity of the ultrasonic waves is not significantly altered by the 

applied stresses becoming difficult to determine the velocity variation. Although, the 

acoustoelasticity predicts the change of ultrasonic bulk velocities, some recent works have shown 

their extensions to the guided waves [1][3].   

On the other hand, experimentally, the presence of stress produces changes in the wave pattern, in 

time domain. It is manifested by the arrival time of the wave, which can be mainly endorsed to a 

change in the length of the propagation path attributed to the elasticity, and changes in the 

propagation velocity (acoustoelasticity). The combination of both effects can be appreciated in a 

time delay when guided waves of different stresses conditions are compared. This slightly 

variations in the wave pattern can be revealed using a statistical model PCA based. 
 

Temperature effect over the propagation of guided waves.  There are many effects of 

temperature fluctuation in the guided wave pattern. The first effect and probably the most 

noticeable is the amplitude variation. In general, it is reported a magnitude reduction when the 

temperature is increasing [4]. In addition to the amplitude reduction is also found a velocity 

decrement (increase time of arrival) as the temperature is raising [5]. Temperature varying 

conditions in the system substantially alter the recorded waveform and its effects can jeopardize any 

intent to detect variations of the structure condition. In some conditions, the temperature varying 

effect in the wave can be relevant and influences directly the monitoring result [6]. Thus, 

temperature robustness is an obligate requirement of practical applications SHM schemes. 

PCA. Principal component analysis (PCA) has been used in Structural Health Monitoring (SHM), 

for extracting structural damage features and to discriminate features from damaged and undamaged 

structures [7][8][4][9]. In SHM PCA-based, data is arranged in a matrix X as follows in Eq. 2 
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  …
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…
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… = | |… | …  .  
(2) 

 

 

This X matrix contains information from the measurement j and n experimental trials. Each row 

vector xi represents measurements from the sensors attached to the structure for a specific 

experiment trial. In the same way, each column vector vi represents samples from sensors (one 

variable) in the whole set of experiment trials.  

Two statistics scores associated to the PCA are T
2
 and Q statistics. The first one is based on 

analyzing the residual data matrix to represent the variability of the data projection in the residual 

subspace. In other words, T
2
-statistic is a measure of the variation of each sample within the PCA 

model. Besides, Q-statistic denotes the change of the events that are not explained by the model of 

principal components. It is a measure of the difference, or residual between a sample and its 

projection into the model. Normally, Q-statistic is much more sensitive than T
2
-statistic. This is 

because Q is very small and therefore any minor change in the system characteristics will be 

observable. T
2
 has great variance and therefore requires a great change in the system characteristic 

to be detectable. 
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EXPERIMENTAL SETUP 

 

The test bench used in this research represents a scaled mimic of an actual installation. A 1” 6 m of 

length, Sch. 40 A-106 pipeline supported at the free ends by fixed support is used and a variable 

load is applied on the half of the length emulating the stress produced for a fault in the foundation. 

The different stress conditions are either produced by changing the magnitude of the reaction in the 

variable support located in the middle of the pipeline (L/2) or by adding a concentrated force at the 

middle part of the pipeline. A 2208 Picoscope® is used for signal generation (Gaussian pulse signal 

of nine cycles) and acquisition of the guided wave. The actuator and the sensor are located at 0.5 m 

equidistant from the middle, aligned with the pipe axis. A Matlab® script is implemented to 

perform processing of this signal. The baseline (nominal condition) is determined considering the 

absence of deflection in the middle part of the pipe. Now, the magnitude of the variable support is 

decreasing while the pipeline deflection is increasing in steps of 0.01 m down of the original axis 

position (baseline). Every 0.01 m, deflection constitutes a different stress scenario, denominated D1 

(5% of the yield strength) up to D4 (37.5% of the yield strength), where D1=-72.88 kPa, D2=10.31 

MPa, D3=20.96 MPa and D4=31.62 MPa, stresses in the middle of the pipe. The temperature 

varying conditions in the pipe are attained by irradiating it with infrared lamps. 

 

ROBUST Stress monitoring PCA based approach 
 

In this work the proposed scheme provides information about changes in the stress level but not the 

value of stress in itself. Information of the wave propagating along pipeline about its nominal stage 

is statistically processed by means of PCA, in order to obtain a statistical baseline model 

represented by the principal components. The stress conditions diagnosis stage is executed by 

projecting the captured data onto the baseline model, scores, T
2
, and Q-Statistics indices are 

computed to distinguish a new stress condition regard to the baseline case.vThe challenge for the 

proposed methodology, in a temperature-varying environment, is to discriminate between 

temperature variations and changes in stress because both produce the same signature in the wave, 

i.e. changes in amplitude and velocity, which in the studied cases are more pronounced for 

temperature variations.  

 

A general scheme of the proposed methodology is shown in Fig. 1. To reduce the dominant effect 

on the wave caused for changing temperature an autocorrelation and normalization is applied to the 

captured signal. The X matrix is assembled using the normalized cross-correlation between the 

actuated and sensed signals. To improve the signal-to-noise ratio, multiple sets of raw signals are 

captured. A number of 100 experiments have been performed and recorded for each scenario of 

stress condition. A extended baseline, which contains the wave pattern for a discrete range of 

temperatures between 24°C and 38°C is obtained. The principal components (the first 60) are 

determined using the data of the extended baseline. In the diagnosis stage, the X matrix for the 

current state signal is projected onto the PCA. Projections onto some of the first components are 

obtained and the stress indices (T
2
-statistic and Q-statistic) are calculated and compared with the 

baseline values.  

 

 

 

 

 

 

 

Figure 1. Schematic representation of the proposed robust temperature stress monitoring 

methodology. 
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Analysis of Results 

 

In Fig. 2, it is shown the result for the different stressed scenarios at different surrounding 

temperatures. The results are obtained using the proposed scheme. Comparing the statistical index 

clusters for different temperatures at different stresses scenarios in Fig. 2, it can be noted, they are 

grouping around a defined region. A substantial improvement is appreciated with respect to the 

scheme without the preprocessing and the extended knowledge base. 

 

 

 

Figure 2. Statistical PCA índices at different stress conditions and at different room temperatures a). 

at 28°C, b)at  30°C, c)at  33°C and d)at 38°C. 

Conclusions 

Based on the experimental results, we can conclude that the proposed scheme is effective 

unmasking the temperature effect in the statistical indices used in the monitoring. Some slightly 

variations are presented in the diagnosis stage under different surroundings temperatures. In order to 

assure an appropriate monitoring, the same piezo-actuation (PZT couple) must be maintained in the 

range of temperatures used in the setup stage. The guided wave pattern is highly dependent of the 

PZT parameters and the characteristics of the adhesive layer. Because the methodology is based on 

guided wave pattern recognition particular attention must be considered in subjects such as PZT 

aging, condition of the bounding layer, which are not covered in this paper.  
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