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1 PROBLEM DEFINITION

In the general form of multiprocessor precedence scheduling problems a set of n tasks to be executed
on m processors is given. Each task requires exactly one unit of execution time and can run on
any processor. A directed acyclic graph specifies the precedence constraints where an edge from
task x to task y means task x must be completed before task y begins. A solution to the problem
is a schedule of shortest length indicating when each task is started. The work of Jung, Serna, and
Spirakis provides a parallel algorithm (on a PRAM machine) that solves the above problem for the
particular case that m = 2, that is where there are two parallel processors.

The two processor precedence constraint scheduling problem is defined by a directed acyclic
graph (dag) G = (V,E). The vertices of the graph represent unit time tasks, and the edges
specify precedence constraints among the tasks. If there is an edge from node x to node y then
x is an immediate predecessor of y. Predecessor is the transitive closure of the relation immediate
predecessor, and successor is its symmetric counterpart. A two processor schedule is an assignment
of the tasks to time units 1, . . . , t so that each task is assigned exactly one time unit, at most two
tasks are assigned to the same time unit, and if x is a predecessor of y then x is assigned to a lower
time unit than y. The length of the schedule is t. A schedule having minimum length is an optimal
schedule. Thus the problem is the following:

Name Two processor precedence constraint scheduling
Input A directed acyclic graph
Output A minimum length schedule preserving the precedence constraints.

Preliminaries The algorithm assume that tasks are partitioned into levels as follows:

(i) Every task will be assigned to only one level

(ii) Tasks having no successors will be assigned to level 1 and

(iii) For each level i, all tasks which are immediate predecessors of tasks in level i will be assigned
to level i+ 1.

Clearly topological sort will accomplish the above partition, and this can be done by an NC algo-
rithm that uses O(n3) processors and O(log n) time, see [3]. Thus, from now on, it is assumed that
a level partition is given as part of the input. For sake of convenience two special tasks, t0 and t∗

are added, in such a way that the original graph could be taught as the graph formed by all tasks
that are successors of t0 and predecessors of t∗. Thus t0 is a predecessor of all tasks in the system
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(actually an immediate predecessor of tasks in level the highest level L(G)) and t∗ is a successor of
all tasks in the system (an immediate successor of level 1 tasks).

Notice that if two tasks are at the same level they can be paired. But when x and y are at
different levels, they can be paired only when neither of them is a predecessor of the other. Let
L(G) denote the number of levels in a given precedence graph G. A level schedule schedules tasks
level by level. More precisely, suppose levels L(G), . . . , i+ 1 have already been scheduled and there
are k unscheduled tasks remaining on level i. When k is even, those tasks with are paired whith
each other. When k is odd, k− 1 of the tasks are paired with each other, while the remaining task
may (but not necessarily) be paired with a task from a lower level.

Given a level schedule level i jumps to level i′ (i′ < i) if the last time step containing a task
from level i also contains a task from level i′. If the last task from level i is scheduled with an
empty slot, it is said that level i jumps to level 0. The jump sequence of a level schedule is the list
of levels jumped to. A lexicographically first jump schedule is a level schedule whose jump sequence
is lexicographically greater than any other jump sequence resulting from a level schedule.

Given a graph G a level partition of G is a partition of the nodes in G into two sets in such a way
that levels 0, . . . , k are contained in one set (the upper part) denoted by U , and levels k + 1, . . . , L
in the other (the lower part) denoted by L. Given a graph G and a level i, the i-partition of G
(or the partition at level i) is formed by the graphs Ui and Li defined as Ui contains all nodes x
such that level(x) < i and Li contains all nodes x with level(x) > i. Note that each i-partition
determines two different level partitions depending on whether level i nodes are assigned to the
upper or the lower part. A task x ∈ Ui is called free with respect to a partition at level i if x has
no predecessors in Li.

Auxiliary problems The algorithm for the two processors precedence constraint scheduling
problem uses as a building block an algorithm for solving a matching problem in a particular graph
class.

A full convex bipartite graph G is a triple (V,W,E), where V = {v1, . . . , vk} and W =
{w1, . . . , wk′} are disjoint sets of vertices. Furthermore the edge set E satisfies the following prop-
erty: If (vi, wj) ∈ E then (vq, wj) ∈ E for all q ≥ i. Thus, from now on it is assumed that the graph
is connected.

A set F ⊆ E is a matching in the graph G = (V,W,E) iff no two edges in F have a common
endpoint. A maximal matching is a matching that cannot be extended by the addition of any edge
in G. A lexicographically first maximal matching is a maximal matching whose sorted list of edges
is lexicographically first among all maximal matchings in G.

2 KEY RESULTS

When the number of processors m is arbitrary the problem is known to be NP-complete [8]. For any
m ≥ 3, the complexity is open [6]. Here the case of interest has been m = 2. For two processors a
number of efficient algorithms has been given. For sequential algorithms see [2, 4, 5] among others.
The first deterministic parallel algorithm was given by Helmbold and Mayr [7], thus establishing
membership in the class NC. Previously [9] gave a randomized NC algorithm for the problem. Jung,
Serna and Spirakis present a new parallel algorithm for the two processors scheduling problem that
takes time O(log2 n) and uses O(n3) processors on a CREW PRAM. The algorithm improves the
number of processors of the algorithm given in [7] from O(n7L(G)2), where L(G) is the number
of levels in the precedence graph, to O(n3). Both algorithms compute a level schedule that has a
lexicographically first jump sequence.

To match jumps with tasks it is used a solution to the problem of computing the lexicographically
first matching for a special type of convex bipartite graphs, here called full convex bipartite graphs.
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A geometric interpretation of this problem leads to the discovery of an efficient parallel algorithm
to solve it.

Theorem 1. The lexicographically first maximal matching of full convex bipartite graphs can be
computed in time O(log n) on a CREW PRAM with O( n3

logn) processors, where n is the number of
nodes.

The previous algorithm is used to solve efficiently in parallel two related problems.

Theorem 2. Given a precedence graph G, there is a PRAM parallel algorithm that computes all
levels that jump to level 0 in the graph Li and all tasks in level i− 1 that can be scheduled together
with a task in level i, for i = 1, . . . , L(G), using O(n3) processors and O(log2 n) time.

Theorem 3. Given a level partition of a graph G together with the levels in the lower part in
which one task remains to be matched with some other task in the upper part of the graph. There
is a PRAM parallel algorithm that computes the corresponding tasks in time O(log n) using n3

logn
processors.

With those building blocks the algorithm for two processor precedence constraint scheduling
starts by doing some preprocessing and after that an adequate decomposition that insure that at
each recursive call a number of problems of half size are solved in parallel. This recursive schema
is the following:

Algorithm Schedule

0. Preprocessing

1. Find a level i such that |Ui| ≤ n/2 and |Li| ≤ n/2

2. Match levels that jump to free tasks in level i.

3. Match levels that jump to free tasks in Ui.

4. If level i (or i+ 1) remain unmatched try to match it with a non free task.

5. Delete all tasks used to match jumps.

6. Apply (1)–(5) in parallel to Li and the modified Ui.

Algorithm Schedule stops whenever the corresponding graph has only one level.
The correction an complexity bounds for algorithm Schedule follows from the previous results,

leading to:

Theorem 4. There is an NC algorithm which finds an optimal two processors schedule for any
precedence graph in time O(log2 n) using O(n3) processors.

3 APPLICATIONS

A fundamental problem in many applications is to devise a proper schedule to satisfy a set of
constrains. Assigning people to jobs, meetings to rooms, or courses to final exam periods are all
different examples of scheduling problems. A key and critical algorithm in parallel processing is the
one mapping tasks to processors. In the performance of such an algorithm relies many properties
of the system, like load balancing, total execution time, etc. Scheduling problems differ widely in
the nature of the constraints that must be satisfied, the type of processors, and the type of schedule
desired.
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The focus on precedence-constrained scheduling problems for directed acyclic graphs has a most
direct practical application in problems arising in parallel processing. In particular in systems where
computations are decomposed, prior to scheduling into approximately equal sized tasks and the
corresponding partial ordering among them is computed. These constraints must define a directed
acyclic graph, acyclic because a cycle in the precedence constraints represents a Catch situation
that can never be resolved.

4 OPEN PROBLEMS

The parallel deterministic algorithm for the two processors scheduling problem presented here im-
proves the number of processors of the Helmbold and Mayr algorithm for the problem [7]. However,
the complexity bounds are far from optimal: recall that the sequential algorithm given in [5] uses
time O(e+ nα(n)), where e is the number of edges in the precedence graph and α(n) is an inverse
Ackermann’s function. Such an optimal algorithm might have a quite different approach, in which
the levelling algorithm is not used.

Interestingly enough computing the lexicographically first matching for full convex bipartite
graphs is in NC, in contraposition with the results given in [1] which show that many problems
defined through a lexicographically first procedure in the plane are P-complete. It is an interesting
problem to show whether all these problems fall in NC when they are convex.

5 EXPERIMENTAL RESULTS

None is reported.

6 DATA SETS

None is reported.

7 URL to CODE

None is reported.
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