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Abstract 
 

Traditional vector architectures have shown to be very 
effective for regular codes where the compiler can detect 
data-level parallelism. However, this SIMD parallelism is 
also present in irregular or pointer-rich codes, for which 
the compiler is quite limited to discover it. In this paper we 
propose a microarchitecture extension in order to exploit 
SIMD parallelism in a speculative way. The idea is to 
predict when certain operations are likely to be 
vectorizable, based on some previous history information. 
In this case, these scalar instructions are executed in a 
vector mode. These vector instructions operate on several 
elements (vector operands) that are anticipated to be their 
input operands and produce a number of outputs that are 
stored on a vector register in order to be used by further 
instructions. Verification of the correctness of the applied 
vectorization eventually changes the status of a given 
vector element from speculative to non-speculative, or 
alternatively, generates a recovery action in case of 
misspeculation.  
The proposed microarchitecture extension applied to a 4-
way issue superscalar processor with one wide bus is 19% 
faster than the same processor with 4 scalar buses to L1 
data cache. This speed up is due basically to 1) the 
reduction in number of memory accesses, 15% for SpecInt 
and 20% for SpecFP, 2) the transformation of scalar 
arithmetic instructions into their vector counterpart, 28% 
for SpecInt and 23% for SpecFP, and 3) the exploitation of 
control independence for mispredicted branches. 
 
1. Introduction 
 
Vector processors [2, 6, 10, 16] are very effective to 
exploit SIMD parallelism, which is present in numerical 
and multimedia applications. Vector instructions� 
efficiency comes from streamed memory accesses and 
streamed arithmetic operations. Traditionally, the burden 
to exploit this type of parallelism has been put on the 
compiler and/or the programmer [1, 24].  

 
 
 

The average programmer can deal with codes whose 
vectorization is relatively straightforward. The compiler 
has a partial knowledge of the program (i.e. it has a limited 
knowledge of the values of the variables). Because of that, 
it generates code that is safe for any possible scenario 
according to its knowledge, and thus, it may loose 
significant opportunities to exploit SIMD parallelism. On 
top of that, we have the problem of legacy codes that have 
been compiled for former versions of the ISA with no 
SIMD extensions and therefore are not able to exploit new 
SIMD extensions incorporated in newer ISA versions. 
 In this paper we present a mechanism for dynamically 
generating SIMD instructions (also referred to as vector 
instructions). These SIMD instructions speculatively fetch 
and precompute data using the vector units of the 
processor. This vectorization scheme works even for codes 
in which a typical vectorizing compiler would fail to find 
SIMD parallelism. The vectorization process begins when 
the processor identifies a load operation that is likely to 
have a constant stride (based on its past history). Any 
instruction whose operands have been vectorized is also 
vectorized. In this way, the �vectorizable� attribute is 
propagated down the dependence graph. The scalar unit 
has to verify the correctness of the vectorization. For this 
purpose, the corresponding scalar instructions are 
converted into �check� operations that basically validate 
that the operands used by the vector instructions are 
correct. This is very similar in concept to other checker 
proposed in the past for other purposes such as fault 
tolerance [3, 13]. In case of a vectorization misspeculation, 
the current instances of the vector instructions are 
executed in scalar mode. 
 The proposed mechanism also allows the processor to 
exploit control-flow independence. When a branch is 
mispredicted, the scalar pipeline is flushed but the vector 
operations are not squashed. The new scalar instructions 
corresponding to the correct path will check whether the 
operations performed by the vector instructions are still 
correct and if this is the case, their results will be 
committed. Otherwise, a vectorization misspeculation will 
be fired, which will discard the vector results. 
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   With the dynamic vectorization mechanism the number 
of memory requests decreases by 15% for SpecInt and 
20% for SpecFP, and the number of executed arithmetic 
instructions is 25% lower for SpecInt in a 4-way 
superscalar processor with one wide bus. This reduction in 
memory requests and executed instructions results in 
significant speedups. For instance, a 4-way superscalar 
processor with dynamic vectorization and one wide data 
cache bus is 19% faster than a 4-way superscalar processor 
with 4 scalar buses and no dynamic vectorization. 
   The rest of the paper is organized as follows. Section 2 
motivates this work by presenting some statistics about 
strided memory accesses. Section 3 presents the hardware 
implementation of the dynamic vectorization mechanism. 
Performance statistics are discussed in section 4. Section 5 
outlines the related work. We conclude in section 6. 
 
2. Motivation 
 
Strided memory loads [7,8] are the instructions that fire 
the proposed speculative dynamic vectorization 
mechanism. To identify a strided load, at least three 
dynamic instances of the static load are needed. The first 
dynamic instance sets the first memory address that is 
accessed. The second dynamic instance computes the 
initial stride, subtracting the memory address of the first 
dynamic instance from the current address. The third 
dynamic instance checks if the stride is repeated 
computing the current stride and comparing it with the 
first computed stride. 
   Figure 1 shows the stride distribution for SpecInt95 and 
SpecFP95 (for this figure, the stride is computed dividing 
the difference of memory addresses by the size of the 
accessed data). Details of the evaluation framework can be 
found in section 4.1. 
   As shown in Figure 1, the most frequent stride for 
SpecInt95 and SpecFP95 is 0. This means that dynamic 
instances of the same static load access the same memory 
address. For SpecInt this stride is due, mainly, to the 
accesses of local variables and memory addresses 
referenced through pointers. For SpecFP the stride 0 is 
mainly due to spill code. 
   Usually, for SpecFP, the most frequent stride is stride 1 
because these applications execute the same operations 
over every element of some array structures. However, due 
to the code optimizations [4,9] included by the scalar 
compiler, such as loop unrolling, some stride 1 accesses 
become stride 2, 4 or 8. The bottom line of this statistics is 
that strided accesses are quite common both in integer and 
FP applications. 
   The results in Figure 1 also suggest that a wide bus to 
the L1 data cache can be very effective at reducing the 
number of memory requests. For instance, if the cache line 
size is 4 elements, multiple accesses with stride lower than 
4 can be served with a single request if the bus width is 

equal to the line size. These types of strides represent 
97,9% and 81,3% of the total strided loads for SpecInt95 
and SpecFP95 respectively. 
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Figure 1. Stride distribution for SpecInt95 and SpecFP95. 
 
3. Dynamic vectorization 
 
The microarchitecture proposed in this work is a 
superscalar core extended with a vector register file and 
some vector functional units. Figure 2 shows the block 
diagram of the processor where black boxes are the 
additional vector resources and related structures not 
usually found in a superscalar processor, and grey boxes 
are the modified structures to implement the speculative 
dynamic vectorization mechanism. 
 
3.1. Overview 
 
Speculative dynamic vectorization begins when a strided 
load is detected. When this happens, a vectorized instance 
of the instruction is created and it is executed in a vector 
functional unit storing the results in a vector register. Next 
instances of the same static instruction are not executed 
but they just validate if the corresponding speculatively 
loaded element is valid. This basically consists in checking 
that the predicted address is correct and the loaded element 
has not been invalidated by a succeeding store. Every new 
instance of the scalar load instruction validates one 
element of the corresponding destination vector register. 
 Arithmetic instructions are vectorized when any of the 
source operands is a vector register. Succeeding dynamic 
instances of this instruction just check that the 
corresponding source operands are still valid vector 
elements (details on how the state of each element is kept 
is later explained).  
   When a validation fails, the current and following 
instances of the corresponding instruction are executed in 
scalar mode, until the vectorizing engine detects again a 
new vectorizable pattern. With this dynamic vectorization 
mechanism, as shown in Figure 3, with unbounded 
resources, 47% of the SpecInt95 instructions and 51% of 
the SpecFP95 instructions can be vectorized. 
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 Figure 3: Percentage of vectorizable instructions. 
 
3.2. Instruction vectorization 
 
The first step to create vector instances of an instruction is 
detecting a strided load [7,8]. To do this, it is necessary to 
know the recent history of memory accesses for every load 
instruction. To store this history the processor includes a 
Table of Loads (TL in Figure 2) where, for every load, the 
PC, the current address, the stride and a confidence 
counter are stored as shown in Figure 4. 
 
 
 
Figure 4.Table of Loads. 
 
 When a load instruction is decoded, it looks for its PC in 
the TL. If the PC is not in this table, the last address field 
is initialized with the current address of the load and the 
stride and confidence counter fields are set to 0.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Next dynamic instances compute the new stride and 
compare the result with the stride stored in the table, 
increasing the confidence counter when both strides are 
equal or resetting it to 0 otherwise. When the confidence 
counter is 2 or higher, a new vectorized instance of the 
instruction is generated. The last address field is always 
modified with the current memory address of the dynamic 
instance. 
   When a vectorized instance of an instruction is 
generated, the processor allocates a vector register to store 
its result. The processor maintains the associations of 
vector registers and vector instructions in the Vector 
Register Map Table (VRMT in Figure 2).  This table 
contains, for every vector register the PC of the associated 
instruction, the vector element (offset) corresponding to 
the last fetched scalar instruction that will validate (or has 
validated) an element of this vector, the source operands of 
the associated instruction, and, if the instruction is 
vectorized with one scalar operand and one vector 
operand, the value of the scalar register is also stored, as 
shown in Figure 5. 
 
 
 
 
Figure 5.Contents of each entry of the Vector Register 
Map Table. 
 
   Every time a scalar instruction is fetched, this table is 
checked and if its PC is found the instruction is turned into 
a validation operation. In this case, the offset field 
determines which vector element must be validated and 
then, the offset is incremented. In the case that the offset is 
equal to the vector register length, another vectorized 

Figure 2.Block diagram of a superscalar processor with the speculative dynamic vectorization mechanism. Black
blocks are structures or resources added and gray blocks are structures modified. 
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version of the instruction is generated and a free vector 
register is allocated to it. The VRMT table entry 
corresponding to this new vector register is initialized with 
the content of the entry corresponding to the previous 
instance, excepting the field offset, which is set to 0. 
 The register rename table is also modified (see Figure 6) 
to reflect the two kind of physical registers (scalar and 
vector). Every logical register is mapped to either a 
physical scalar register or a physical vector register, 
depending on whether the last instruction that used this 
register as destination was vectorized or not. Every entry 
of the table contains a V/S flag to mark if the physical 
register is a scalar or a vector register and the field offset 
indicates the latest element for which a validation has 
entered in the pipeline. 
 
 
 
Figure 6.Entry of the modified Rename Table. 
 
   When every instruction is decoded the V/S flags 
(vector/scalar) of their source operands are read and if any 
of the two is set to V, the instruction is vectorized. In 
parallel, the VRMT table is accessed to check if the 
instruction was already vectorized in a previous dynamic 
instance. If so, the instruction is turned into a validation 
operation. Validation is performed by checking if the 
source operands in the VRMT table and those in the 
rename table are the same. If they differ, a new vectorized 
version of the instruction is generated. Otherwise, the 
current element pointed by offset is validated and this 
validation is dispatched to the reorder buffer in order to be 
later committed (see next section for further explanation). 
Besides, if the validated element is the last one of the 
vector, a new instance of the vectorized instruction is 
dispatched to the vector data-path. 
   An arithmetic instruction that has been vectorized with 
one vector source operand and one scalar register operand, 
waits in the decode stage, blocking the next instructions, 
until the value of the physical register associated to the 
scalar source operand is available. Then, it checks if the 
value of the register matches the value found in the VRMT 
and if so, a validation is dispatched to the reorder buffer. 
Otherwise, a new vectorized instance of the instruction is 
created. This stalls do not impact much performance since 
the number of vectorized instructions with one scalar 
operand that is not ready at decode is low. Figure 7 shows 
the differents IPC�s obtained blocking these instructions 
(black bar) and the ideal case (white bar) where no one of 
these instructions are blocked. 
 Note that the cost of a context switch is not increased 
since only the scalar state of the processor needs to be 
saved. The additional structures for vectorization are just 
invalidated on a context switch. When the process restarts 

again the vectorization of the code starts from scratch at 
the point where the process was interrupted. 
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 Figure 7.IPCs obtained blocking (real) and not blocking 
(ideal) the vector instructions with one scalar register not 
ready for a 4-way processor with 1 port and 128 vector 
registers. 
 
3.3. Vector registers 
 
Vector register is one of the most critical resources in the 
processor because they determine the number of scalar 
instructions that can be vectorized. Vector registers can be 
regarded as a set of scalar registers grouped with the same 
name. 
   A vector register is assigned to an instruction in the 
decode stage when this instruction is vectorized. If no free 
vector register is available, the instruction is not 
vectorized, and continues executing in a scalar mode.  
   To manage the allocation/deallocation of vector 
registers, each register contains a global tag and each 
element includes a set of flags of bits as shown in Figure 
8. 
 
 
 
 
 
 
 
 

Figure 8.(Top) Vector register structure for dynamic 
vectorization. 
 
   The V (Valid) flag indicates whether the element holds 
committed data. This bit is set to 1 when the validation 
associated to the corresponding scalar instruction commits.  
   The R (Ready) flag indicates whether the element has 
been computed. Depending on the kind of instruction the 
data will be ready when is brought from memory or 
computed by a vector functional unit. 
   When a validation of an element has been dispatched 
but not committed yet, the U (Used) flag is set to 1. This 
prevents the freeing of the physical register until the 

Physical Register V/S Offset 

Position 1 Position 2 ... Position n MRBB 

DATA V R U F 
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validation is committed (details on the conditions to free a 
vector register are described below).  
   The F (Free) flag indicates whether the element is not 
longer needed. This flag is set to 1 when the next scalar 
instruction having the same logical destination register or 
its corresponding validation commits.  
   A vector register will be release when all its computed 
elements have been freed (i.e. are not needed any more). 
Besides, a register is also released if all validated elements 
are freed and no more elements need to be produced. In 
order to estimate when no more elements will be 
computed, we assume that this will happen when the 
current loop is terminated. For this purpose, the processor 
includes a register that is referred to as GMRBB (Global 
Most Recent Backward Branch) that holds the PC of the 
last backward branch that has been committed [19]. Each 
vector register stores in the MRBB (Most Recent 
Backward Branch) tag the PC of the most recently 
committed backward branch when the vector register was 
allocated. This backward branch, usually, coincides with 
the last branch of a loop, associating a vector register to an 
instruction during some iterations. 
A vector register is freed when one of the following two 
conditions holds: 
1) All vector elements have the flags R and F set to 1. This 
means that all elements have been computed and freed by 
scalar instructions. 
2) Every element with the flags V set, has the flag F set, 
and all the elements have the flag R set and flag U cleared, 
and the content of the tag MRBB is different of the 
register GMRBB. This means that all the validated 
elements have been freed. Furthermore, all elements have 
been computed and no element is in use by a validation 
instruction. It is very likely that the loop where the vector 
operation that allocated the register was, has been 
terminated. 
 
3.4. Vector data path 
 
Vector instructions wait in the vector instruction queues 
until their operands are ready and a vector functional unit 
is available (i.e. instruction are issued out-of-order). 
Vector functional units are pipelined and hence can begin 
the computation of a new vector element every cycle. 
Every time an element is calculated, the vector functional 
unit sets to 1 the flag R associated to that position, 
allowing others functional units to use it. 
   Vector functional units can compute operations having 
one vector operand and one scalar operand. To do this, the 
functional units must have access to the scalar register file 
and the vector register file. In the case of the scalar 
register, the element is read just once. 
   Note that some vector instruction can be executed 
having a different initial offset for their source vector 
operands. This can happen, for example, when two load 

instructions begin vectorization in different iterations and 
their destination vector registers are source operands of an 
arithmetic instruction. To deal with these cases, vector 
functional units compare these offsets to obtain the 
greatest. The difference between this offset and the vector 
register length determines the number of elements to 
compute. Fortunately, the percentage of the vector 
instructions whose source operands� offsets are different 
from 0 is very low, as shown in Figure 9. 
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Figure 9.Percentage of vector instructions with offset 
different of 0 in any of the vector source operands for an 
8-way processor with 128 vector registers. 
 
3.5. Branch mispredictions and control-flow 
independence 
 
When a branch misprediction is detected, a superscalar 
processor recovers the state of the machine by restoring 
the register map table and squashing the instructions after 
the branch. 
   In the proposed microarchitecture, the scalar core works 
in the same way as a conventional processor, i.e. a precise 
state is recovered, but vector resources are not modified: 
vector registers are not freed, and no vector functional unit 
aborts the execution because they can be computing data 
that can be used in the future. The objective is to exploit 
control-flow independence [14, 15, 18]. When the new 
path enters again in the scalar pipeline, the source 
operands of each instruction will be checked again, and if 
it happens that the vector operands are still valid, the 
instruction does not need to be executed. Figure 10 shows 
the percentage of instructions in the 100 instructions (100 
is a size arbitrarily chosen) that follow a mispredicted 
branch that do not need to be executed since they were 
executed in vector mode and continue to have the same 
source operands after the misprediction. 
 Note that when a scalar instruction in a wrongly 
predicted speculative path is vectorized, the vector register 
may remain allocated until the end of the loop to which the 
instruction belongs. This wastes vector registers but 
fortunately only happens for less than 1% of the vector 
instructions in our benchmarks. 
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 Figure 10: Percentage of scalar instructions that are 
reused after a branch misprediction (limited to the 100 
instructions that follow each mispredicted branch). 
 
3.6. Memory coherence 
 
To ensure memory coherence, stores are critical 
instructions because these instructions make changes in 
memory that the processor cannot recover. For this reason, 
a store instruction modifies the memory hierarchy only 
when it commits. 
   A vectorized load copies memory values into a register. 
However, there may be intervening stores before the scalar 
load operation that would have made the access in a non-
vectorized implementation. Thus, stores must check the 
data in vector registers to maintain coherence.  
   For this purpose, every vector register has two fields, the 
first and the last address of the corresponding memory 
elements (used only if the associated vector instruction is a 
load) to indicate the range of memory positions accessed. 
Stores check whether the addresses that are going to 
modify are inside the range of addresses of any vector 
register. If so, the VRMT entry associated to this vector 
register is invalidated. Then, when the corresponding 
scalar instruction is decoded, it will not find its PC in the 
VRMT and another vector instance of this instruction will 
be created. Besides, all the instructions following the store 
are squashed. 
   Fortunately, the percentage of the stores whose memory 
address is inside the range of addresses of any vector 
register is low (4,5% for SpecInt and 2,5% for SpecFP). 
   Due to the complexity of the logic associated to store 
instructions, only two store instructions can commit in the 
same cycle. 
 
3.7. Wide bus 
 
To exploit spatial locality a wide bus of 4 words has been 
implemented. This bus is able to bring a whole cache line 
every time the cache is accessed. In parallel, the range of 
addresses held in this cache line are compared with the 
addresses of pending loads, and all loads that access to the 
same line are served from the single access (in our 
approach, only 4 pending loads can be served at the same 

cycle). This organization has been previously proposed 
elsewhere [11, 12, 22, 23].   
 Wide buses are especially attractive in the presence of 
vectorized loads, since multiple elements can be retrieved 
by a single access if the stride is small, as it is in most 
cases.  
 
4. Performance evaluation 
 
4.1. Experimental framework 
 
For the performance evaluation we have extended the 
SimpleScalar v3.0a [5], which is a cycle-level simulator of 
a dynamically scheduled superscalar processor, to include 
the microarchitectural extensions described above. 
   To evaluate the mechanism we use 2 superscalar 
configurations with different issue width: 4-way and 8-
way. To evaluate the memory impact of the wide bus and 
the dynamic vectorization mechanism we will use 
configurations with 1, 2 and 4 L1 data cache ports (scalar 
or wide). Other parameters of the microarchitecture are 
shown in Table 1. 

 

Parameter 4-way 8-way 
Fetch 
width 

4 instructions (up to 1 taken 
branch) 

8 instructions (up to 1 taken 
branch) 

I-cache 
64Kb, 2-way set associative, 
64 byte lines, 1 cycle hit, 6 

cycle miss time 

64Kb, 2-way set associative, 
64 byte lines, 1 cycle hit, 6 

cycle miss time 
Branch 

Predictor Gshare with 64K entries Gshare with 64K entries 

Inst. 
window 

size 
128 entries 256 entries 

Scalar 
functional 

units 
(latency in 
brackets)

3 simple int(1); 2 int mul/div 
(2 for mult and 12 for div);  

2 simple FP(2); 1 FP mul/div 
(4 for mult and 14 for div);  

1 to 4 loads/stores 

6 simple int(1); 3 int mul/div 
(2 for mult and 12 for div);  

4 simple FP(2); 2 FP mul/div 
(4 for mult and 14 for div);  

1 to 4 loads/stores 
Load/Store 

queue 
32 entries with store-load 

forwarding 
64 entries with store-load 

forwarding 

Issue 
mechanism

4-way out of order issue 
loads may execute when prior 

store addresses are known 

8-way out of order issue 
loads may execute when prior 

store addresses are known 

D-cache 

64KB, 2-way set associative, 
32 byte lines, 1 cycle hit time, 
write-back, 6 cycle miss time 

up to 16 outstanding miss 

64KB, 2-way set associative, 
32 byte lines, 1 cycle hit time, 
write-back, 6 cycle miss time 

up to 16 outstanding miss 

L2 cache
256Kb,4-way set associative, 

32 byte lines, 6 cycles hit time, 
18 cycle miss time 

256Kb,4-way set associative, 
32 byte lines, 6 cycles hit time, 

18 cycle miss time 
Commit 

width 4 instructions 8 instructions 

Vector 
registers 

128 registers of 4 64-bit 
elements each 

128 registers of 4 64-bit 
elements each 

Vector 
functional 

units 
(latency in 
brackets)

Pipelined; 3 simple int(1);  
2 int mul/div (2 mult, 12 div);  
2 simple FP(2); 1 FP mul/div 

(4 mult and 14 div);  
1 to 4 loads 

Pipelined; 6 simple int(1);  
3 int mul/div (2 mult, 12 div); 
4 simple FP(2); 2 FP mul/div 

(4 mult and 14 div);  
1 to 4 loads 

TL 4-way set assoc. with 512 sets 4-way set assoc. with 512 sets
VRMT 4-way set assoc. with 64 sets 4-way set assoc. with 64 sets

 

Table 1. Processor microarchitectural parameters. 
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   For the experiments we use the complete SpecInt95 
benchmark suite and four SpecFP95 benchmarks (swim, 
applu, turb3d and fpppp). Programs were compiled with 
the Compaq/Alpha compiler using �O5 �ifo �non_shared 
optimization flags. Each program was simulated for 100 
million instructions after skipping the initialization part. 
 We have chosen vector registers with 4 elements 
because the average vector length for our benchmarks is 
relatively small: 8,84 for SpecInt and 7,37 for SpecFP 
applications. 
   For both configurations, the size of the required 
additional resources is the same: 
 

• The vector register file requires 4 kilobytes (4 element 
per vector register * 8 bytes per element * 128 vector 
registers).  

• The VRMT requires 4608 bytes (4 ways * 64 elements 
per way * 18 bytes per element). 

• The TL requires 49152 bytes (4 ways * 512 elements 
per way * 24 bytes per element). 

 

 This results in a total of 56Kbytes of extra storage. 
Although this is not negligible this is certainly affordable 
in current designs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3. Performance results 
 
Figure 11 shows the performance for the 8-way and 4-way 
processors depending on the number of ports to L1 data 
cache. Each figure compares the performance of a 
superscalar processor (xpnoIM), a superscalar processor 
with a wide bus (xpIM) and a superscalar processor with a 
wide bus and dynamic vectorization (xpV) for a different 
number (x) of L1 data cache ports. 
   As shown in Figure 11, in most cases the configurations 
with wide buses increase clearly the performance of the 
configurations with scalar buses. The main reason is the 
bottlenecks due to the memory systems in configurations 
like an 8-way superscalar processor with 1 scalar bus. For 
this configuration the average IPC increased from 1,77 to 
2,16 when a wide bus substitutes the scalar bus. The 
benefits for the configurations with 2 or 4 scalar buses are 
smaller since they already have a significant memory 
bandwidth. 
   Speculative dynamic vectorization reduces the pressure 
on the memory ports as shown in Figure 12. This Figure 
shows the memory port occupancy for the different 
processor configurations. 
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Figure 11. IPC for the baseline configuration (xpnoIM), wide buses (xpIM), wide buses plus dynamic vectorization 
(xpV), for different number (x) of L1 data cache ports for an 8-way and a 4-way processor. 
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  Speculative dynamic vectorization increases the 
memory elements that need to be read/written due to 
misspeculations. However, this is shadowed by the 
increase in the effectiveness of the wide ports, since most 
vector instructions have a small stride and thus, multiple 
elements can be read in a single access. 
 Figure 13 shows the percentage of memory lines read 
from cache that contribute with 1, 2, 3 or 4 useful words, 
and the percentage of speculative (unused) accesses. It can 
be observed that a significant percentage of memory 
accesses serve multiple words and the number of useless 
accesses is relatively small except for compress. 
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 Figure 13. Percentage of read lines that contribute with 
1,2,3 or 4 useful words for a 4-way processor with 1 
memory port. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Figure 14 shows the percentage of scalar instructions 
that are turned into a validation operation for an 8-way 
superscalar processor with one wide bus. These 
instructions represent 28% and 23% of the total 
instructions for the integer and FP benchmarks 
respectively. 
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 Figure 14. Percentage of instructions that validate a 
position in a vector register for an 8-way superscalar 
processor with one wide bus and the dynamic 
vectorization mechanism. 
 
 Figure 15 shows the average number of vector elements 
that have been computed by the vector functional units and 
validated (comp. used), have been computed but not 
validated (comp. not used) and have not been computed 
(not comp) for an 8-way processor with 128 vector 
registers. 
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 Figure 12. Bus occupancy for the baseline configuration (xpnoIM), wide buses (xpIM), wide buses plus dynamic 
vectorization (xpV), for different number (x) of L1 data cache ports.
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Figure 15. Average number of vector elements that have 
been computed and used (comp. used), computed but not 
used (comp. not used) and not computed (not comp.) for 
an 8-way processor with 128 vector registers with 4 
elements per register. 
 
On average only 1,75 elements are validated out of the 
3,75 computed elements. This means that more than half 
of the speculative work is useless due to mispredictions. 
Although these misspeculations have a minor impact on 
performance, there may be an issue for power 
consumption. Reducing the number of misspeculations is 
an area that is left for future work. 
 As described in section 3.6, the recovery mechanism 
does not squash vector instructions after branch 
mispredictions. Due to this, the control-flow independence 
instructions can reuse the data computed in vector 
registers. As shown in Figure 10, among the first 100 
instructions following a mispredicted branch (this suppose 
the 10,53% of total executed instructions for SpecInt95 on 
a 4-way superscalar processor with 1 bus and a gshare 
branch predictor with 64K entries), 17% of them can reuse 
the data stored in vector registers. 
 To summarize, speculative dynamic vectorization results 
in significant speedups that are mainly due to: a) the 
exploitation of SIMD parallelism, b) the ability to exploit 
control-flow independence, and c) the increase in the 
effectiveness of wide buses. 
 
5. Related work 
 
Vajapeyam [21] presents a dynamic vectorization 
mechanism based on trace processors. The mechanism 
executes in parallel some iterations of a loop. This 
mechanism tries to enlarge the instruction window 
capturing in vector form the body of the loops. The whole 
loop body is vectorized provided that all iterations of the 
loop follow the same control flow. The mechanism 
proposed in this paper is more flexible/general in the sense 
that it can vectorize just parts of the loop body and may 
allow different control flows in some parts of the loop. 

   The CONDEL architecture [20] proposed by Uht 
captures a single copy of complex loops in a static 
instruction window. It uses state bits per iteration to 
determine the control paths taken by different loop 
iterations and to correctly enforce dependences. 
   The use of wide buses has been previously considered to 
improve the efficiency of the memory system for different 
microarchitectures [12, 22, 23]. 
 Rotenberg et al. present a mechanism to exploit control 
flow independence in superscalar [14] and trace [15] 
processors. Their approach is based on identifying control 
independent points dynamically, and a hardware 
organization of the instruction window that allows the 
processor to insert the instructions after a branch 
misprediction between instructions previously dispatched, 
i.e., after the mispredicted branch and before the control 
independent point. 
 Lopez et al. [11] propose and evaluate aggressive wide 
VLIW architectures oriented to numerical applications. 
The main idea is to take advantage on the existence of 
stride one in numerical and multimedia loops. The 
compiler detects load instructions to consecutive addresses 
and combines them into a single wide load instruction that 
can be efficiently executed in VLIW architectures with 
wide buses. The same concept is applied to groups of 
instructions that make computations. In some cases, these 
wide architectures achieve similar performance, compared 
to architectures where the buses and functional units are 
replicated, but at reduced cost. 
 
6. Conclusions 
 
In this paper we have proposed a speculative dynamic 
vectorization scheme as an extension to superscalar 
processors. This scheme allows the processor to prefetch 
data into vector registers and to speculatively manipulate 
these data through vector arithmetic instructions. The main 
benefits of this microarchitecture are a) the use of SIMD 
parallelism, even in irregular codes; b) the exploitation of 
control-flow independence; and c) the increase in the 
effectiveness of wide memory buses.  
   We have shown that these benefits result in significant 
speedups for a broad range of microarchitectural 
configurations. For instance, a 4-way superscalar 
processor with one wide port and speculative dynamic 
vectorization is 3% faster than an 8-way superscalar 
processor with 4 scalar ports. Speculative dynamic 
vectorization increases the IPC of a 4-way superscalar 
processor with one wide bus by 21,2% for SpecInt and 
8,1% for SpecFP. 
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