

Speculative Dynamic Vectorization

Alex Pajuelo, Antonio González and Mateo Valero
Departament d�Arquitectura de Computadors

Universitat Politècnica de Catalunya
Barcelona � Spain

 {mpajuelo, antonio, mateo}@ac.upc.es

Abstract

Traditional vector architectures have shown to be very
effective for regular codes where the compiler can detect
data-level parallelism. However, this SIMD parallelism is
also present in irregular or pointer-rich codes, for which
the compiler is quite limited to discover it. In this paper we
propose a microarchitecture extension in order to exploit
SIMD parallelism in a speculative way. The idea is to
predict when certain operations are likely to be
vectorizable, based on some previous history information.
In this case, these scalar instructions are executed in a
vector mode. These vector instructions operate on several
elements (vector operands) that are anticipated to be their
input operands and produce a number of outputs that are
stored on a vector register in order to be used by further
instructions. Verification of the correctness of the applied
vectorization eventually changes the status of a given
vector element from speculative to non-speculative, or
alternatively, generates a recovery action in case of
misspeculation.
The proposed microarchitecture extension applied to a 4-
way issue superscalar processor with one wide bus is 19%
faster than the same processor with 4 scalar buses to L1
data cache. This speed up is due basically to 1) the
reduction in number of memory accesses, 15% for SpecInt
and 20% for SpecFP, 2) the transformation of scalar
arithmetic instructions into their vector counterpart, 28%
for SpecInt and 23% for SpecFP, and 3) the exploitation of
control independence for mispredicted branches.

1. Introduction

Vector processors [2, 6, 10, 16] are very effective to
exploit SIMD parallelism, which is present in numerical
and multimedia applications. Vector instructions�
efficiency comes from streamed memory accesses and
streamed arithmetic operations. Traditionally, the burden
to exploit this type of parallelism has been put on the
compiler and/or the programmer [1, 24].

The average programmer can deal with codes whose
vectorization is relatively straightforward. The compiler
has a partial knowledge of the program (i.e. it has a limited
knowledge of the values of the variables). Because of that,
it generates code that is safe for any possible scenario
according to its knowledge, and thus, it may loose
significant opportunities to exploit SIMD parallelism. On
top of that, we have the problem of legacy codes that have
been compiled for former versions of the ISA with no
SIMD extensions and therefore are not able to exploit new
SIMD extensions incorporated in newer ISA versions.
 In this paper we present a mechanism for dynamically
generating SIMD instructions (also referred to as vector
instructions). These SIMD instructions speculatively fetch
and precompute data using the vector units of the
processor. This vectorization scheme works even for codes
in which a typical vectorizing compiler would fail to find
SIMD parallelism. The vectorization process begins when
the processor identifies a load operation that is likely to
have a constant stride (based on its past history). Any
instruction whose operands have been vectorized is also
vectorized. In this way, the �vectorizable� attribute is
propagated down the dependence graph. The scalar unit
has to verify the correctness of the vectorization. For this
purpose, the corresponding scalar instructions are
converted into �check� operations that basically validate
that the operands used by the vector instructions are
correct. This is very similar in concept to other checker
proposed in the past for other purposes such as fault
tolerance [3, 13]. In case of a vectorization misspeculation,
the current instances of the vector instructions are
executed in scalar mode.
 The proposed mechanism also allows the processor to
exploit control-flow independence. When a branch is
mispredicted, the scalar pipeline is flushed but the vector
operations are not squashed. The new scalar instructions
corresponding to the correct path will check whether the
operations performed by the vector instructions are still
correct and if this is the case, their results will be
committed. Otherwise, a vectorization misspeculation will
be fired, which will discard the vector results.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

 With the dynamic vectorization mechanism the number
of memory requests decreases by 15% for SpecInt and
20% for SpecFP, and the number of executed arithmetic
instructions is 25% lower for SpecInt in a 4-way
superscalar processor with one wide bus. This reduction in
memory requests and executed instructions results in
significant speedups. For instance, a 4-way superscalar
processor with dynamic vectorization and one wide data
cache bus is 19% faster than a 4-way superscalar processor
with 4 scalar buses and no dynamic vectorization.
 The rest of the paper is organized as follows. Section 2
motivates this work by presenting some statistics about
strided memory accesses. Section 3 presents the hardware
implementation of the dynamic vectorization mechanism.
Performance statistics are discussed in section 4. Section 5
outlines the related work. We conclude in section 6.

2. Motivation

Strided memory loads [7,8] are the instructions that fire
the proposed speculative dynamic vectorization
mechanism. To identify a strided load, at least three
dynamic instances of the static load are needed. The first
dynamic instance sets the first memory address that is
accessed. The second dynamic instance computes the
initial stride, subtracting the memory address of the first
dynamic instance from the current address. The third
dynamic instance checks if the stride is repeated
computing the current stride and comparing it with the
first computed stride.
 Figure 1 shows the stride distribution for SpecInt95 and
SpecFP95 (for this figure, the stride is computed dividing
the difference of memory addresses by the size of the
accessed data). Details of the evaluation framework can be
found in section 4.1.
 As shown in Figure 1, the most frequent stride for
SpecInt95 and SpecFP95 is 0. This means that dynamic
instances of the same static load access the same memory
address. For SpecInt this stride is due, mainly, to the
accesses of local variables and memory addresses
referenced through pointers. For SpecFP the stride 0 is
mainly due to spill code.
 Usually, for SpecFP, the most frequent stride is stride 1
because these applications execute the same operations
over every element of some array structures. However, due
to the code optimizations [4,9] included by the scalar
compiler, such as loop unrolling, some stride 1 accesses
become stride 2, 4 or 8. The bottom line of this statistics is
that strided accesses are quite common both in integer and
FP applications.
 The results in Figure 1 also suggest that a wide bus to
the L1 data cache can be very effective at reducing the
number of memory requests. For instance, if the cache line
size is 4 elements, multiple accesses with stride lower than
4 can be served with a single request if the bus width is

equal to the line size. These types of strides represent
97,9% and 81,3% of the total strided loads for SpecInt95
and SpecFP95 respectively.

Stride Distribution

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 3 4 5 6 7 8 9
Number of elements

P
er

ce
n

ta
g

e

SpecInt

SpecFP

Figure 1. Stride distribution for SpecInt95 and SpecFP95.

3. Dynamic vectorization

The microarchitecture proposed in this work is a
superscalar core extended with a vector register file and
some vector functional units. Figure 2 shows the block
diagram of the processor where black boxes are the
additional vector resources and related structures not
usually found in a superscalar processor, and grey boxes
are the modified structures to implement the speculative
dynamic vectorization mechanism.

3.1. Overview

Speculative dynamic vectorization begins when a strided
load is detected. When this happens, a vectorized instance
of the instruction is created and it is executed in a vector
functional unit storing the results in a vector register. Next
instances of the same static instruction are not executed
but they just validate if the corresponding speculatively
loaded element is valid. This basically consists in checking
that the predicted address is correct and the loaded element
has not been invalidated by a succeeding store. Every new
instance of the scalar load instruction validates one
element of the corresponding destination vector register.
 Arithmetic instructions are vectorized when any of the
source operands is a vector register. Succeeding dynamic
instances of this instruction just check that the
corresponding source operands are still valid vector
elements (details on how the state of each element is kept
is later explained).
 When a validation fails, the current and following
instances of the corresponding instruction are executed in
scalar mode, until the vectorizing engine detects again a
new vectorizable pattern. With this dynamic vectorization
mechanism, as shown in Figure 3, with unbounded
resources, 47% of the SpecInt95 instructions and 51% of
the SpecFP95 instructions can be vectorized.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

Percentage of vectorizable instructions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

go

m
88

ks
im gc
c

co
m

pr
es

s li

ijp
eg pe
rl

vo
rt

ex

IN
T

E
G

E
R

sw
im

ap
pl

u

tu
rb

3d

fp
pp F
P

T
O

T
A

L

Spec95

P
er

ce
n

ta
g

e

 Figure 3: Percentage of vectorizable instructions.

3.2. Instruction vectorization

The first step to create vector instances of an instruction is
detecting a strided load [7,8]. To do this, it is necessary to
know the recent history of memory accesses for every load
instruction. To store this history the processor includes a
Table of Loads (TL in Figure 2) where, for every load, the
PC, the current address, the stride and a confidence
counter are stored as shown in Figure 4.

Figure 4.Table of Loads.

 When a load instruction is decoded, it looks for its PC in
the TL. If the PC is not in this table, the last address field
is initialized with the current address of the load and the
stride and confidence counter fields are set to 0.

 Next dynamic instances compute the new stride and
compare the result with the stride stored in the table,
increasing the confidence counter when both strides are
equal or resetting it to 0 otherwise. When the confidence
counter is 2 or higher, a new vectorized instance of the
instruction is generated. The last address field is always
modified with the current memory address of the dynamic
instance.
 When a vectorized instance of an instruction is
generated, the processor allocates a vector register to store
its result. The processor maintains the associations of
vector registers and vector instructions in the Vector
Register Map Table (VRMT in Figure 2). This table
contains, for every vector register the PC of the associated
instruction, the vector element (offset) corresponding to
the last fetched scalar instruction that will validate (or has
validated) an element of this vector, the source operands of
the associated instruction, and, if the instruction is
vectorized with one scalar operand and one vector
operand, the value of the scalar register is also stored, as
shown in Figure 5.

Figure 5.Contents of each entry of the Vector Register
Map Table.

 Every time a scalar instruction is fetched, this table is
checked and if its PC is found the instruction is turned into
a validation operation. In this case, the offset field
determines which vector element must be validated and
then, the offset is incremented. In the case that the offset is
equal to the vector register length, another vectorized

Figure 2.Block diagram of a superscalar processor with the speculative dynamic vectorization mechanism. Black
blocks are structures or resources added and gray blocks are structures modified.

Fetch
Logic

Rename
Table

VRMT

TL

ISSUE
QUEUES

ICache L/SQ

Decode
Logic

GMRBB

ROB

Commit
Logic

Vector
Register

File

Scalar
Register

File

DCache

Vector
Functional

Units

Scalar
Functional

Units

PC Last Address Stride Confidence Counter

PC Offset Source
Operand 1

Source
Operand 2

Value

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

version of the instruction is generated and a free vector
register is allocated to it. The VRMT table entry
corresponding to this new vector register is initialized with
the content of the entry corresponding to the previous
instance, excepting the field offset, which is set to 0.
 The register rename table is also modified (see Figure 6)
to reflect the two kind of physical registers (scalar and
vector). Every logical register is mapped to either a
physical scalar register or a physical vector register,
depending on whether the last instruction that used this
register as destination was vectorized or not. Every entry
of the table contains a V/S flag to mark if the physical
register is a scalar or a vector register and the field offset
indicates the latest element for which a validation has
entered in the pipeline.

Figure 6.Entry of the modified Rename Table.

 When every instruction is decoded the V/S flags
(vector/scalar) of their source operands are read and if any
of the two is set to V, the instruction is vectorized. In
parallel, the VRMT table is accessed to check if the
instruction was already vectorized in a previous dynamic
instance. If so, the instruction is turned into a validation
operation. Validation is performed by checking if the
source operands in the VRMT table and those in the
rename table are the same. If they differ, a new vectorized
version of the instruction is generated. Otherwise, the
current element pointed by offset is validated and this
validation is dispatched to the reorder buffer in order to be
later committed (see next section for further explanation).
Besides, if the validated element is the last one of the
vector, a new instance of the vectorized instruction is
dispatched to the vector data-path.
 An arithmetic instruction that has been vectorized with
one vector source operand and one scalar register operand,
waits in the decode stage, blocking the next instructions,
until the value of the physical register associated to the
scalar source operand is available. Then, it checks if the
value of the register matches the value found in the VRMT
and if so, a validation is dispatched to the reorder buffer.
Otherwise, a new vectorized instance of the instruction is
created. This stalls do not impact much performance since
the number of vectorized instructions with one scalar
operand that is not ready at decode is low. Figure 7 shows
the differents IPC�s obtained blocking these instructions
(black bar) and the ideal case (white bar) where no one of
these instructions are blocked.
 Note that the cost of a context switch is not increased
since only the scalar state of the processor needs to be
saved. The additional structures for vectorization are just
invalidated on a context switch. When the process restarts

again the vectorization of the code starts from scratch at
the point where the process was interrupted.

IPC's blocking and not blocking the vector instructions with
one scalar register not ready

1,6

2,0

2,4

2,8

3,2

3,6

go

m
88

ks
im gc
c

co
m

pr
es

s li

ijp
eg

pe
rl

vo
rt

ex IN
T

sw
im

ap
pl

u

tu
rb

3d

fp
pp

p

F
P

Spec95

IP
C

real

ideal

 Figure 7.IPCs obtained blocking (real) and not blocking
(ideal) the vector instructions with one scalar register not
ready for a 4-way processor with 1 port and 128 vector
registers.

3.3. Vector registers

Vector register is one of the most critical resources in the
processor because they determine the number of scalar
instructions that can be vectorized. Vector registers can be
regarded as a set of scalar registers grouped with the same
name.
 A vector register is assigned to an instruction in the
decode stage when this instruction is vectorized. If no free
vector register is available, the instruction is not
vectorized, and continues executing in a scalar mode.
 To manage the allocation/deallocation of vector
registers, each register contains a global tag and each
element includes a set of flags of bits as shown in Figure
8.

Figure 8.(Top) Vector register structure for dynamic
vectorization.

 The V (Valid) flag indicates whether the element holds
committed data. This bit is set to 1 when the validation
associated to the corresponding scalar instruction commits.
 The R (Ready) flag indicates whether the element has
been computed. Depending on the kind of instruction the
data will be ready when is brought from memory or
computed by a vector functional unit.
 When a validation of an element has been dispatched
but not committed yet, the U (Used) flag is set to 1. This
prevents the freeing of the physical register until the

Physical Register V/S Offset

Position 1 Position 2 ... Position n MRBB

DATA V R U F

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

validation is committed (details on the conditions to free a
vector register are described below).
 The F (Free) flag indicates whether the element is not
longer needed. This flag is set to 1 when the next scalar
instruction having the same logical destination register or
its corresponding validation commits.
 A vector register will be release when all its computed
elements have been freed (i.e. are not needed any more).
Besides, a register is also released if all validated elements
are freed and no more elements need to be produced. In
order to estimate when no more elements will be
computed, we assume that this will happen when the
current loop is terminated. For this purpose, the processor
includes a register that is referred to as GMRBB (Global
Most Recent Backward Branch) that holds the PC of the
last backward branch that has been committed [19]. Each
vector register stores in the MRBB (Most Recent
Backward Branch) tag the PC of the most recently
committed backward branch when the vector register was
allocated. This backward branch, usually, coincides with
the last branch of a loop, associating a vector register to an
instruction during some iterations.
A vector register is freed when one of the following two
conditions holds:
1) All vector elements have the flags R and F set to 1. This
means that all elements have been computed and freed by
scalar instructions.
2) Every element with the flags V set, has the flag F set,
and all the elements have the flag R set and flag U cleared,
and the content of the tag MRBB is different of the
register GMRBB. This means that all the validated
elements have been freed. Furthermore, all elements have
been computed and no element is in use by a validation
instruction. It is very likely that the loop where the vector
operation that allocated the register was, has been
terminated.

3.4. Vector data path

Vector instructions wait in the vector instruction queues
until their operands are ready and a vector functional unit
is available (i.e. instruction are issued out-of-order).
Vector functional units are pipelined and hence can begin
the computation of a new vector element every cycle.
Every time an element is calculated, the vector functional
unit sets to 1 the flag R associated to that position,
allowing others functional units to use it.
 Vector functional units can compute operations having
one vector operand and one scalar operand. To do this, the
functional units must have access to the scalar register file
and the vector register file. In the case of the scalar
register, the element is read just once.
 Note that some vector instruction can be executed
having a different initial offset for their source vector
operands. This can happen, for example, when two load

instructions begin vectorization in different iterations and
their destination vector registers are source operands of an
arithmetic instruction. To deal with these cases, vector
functional units compare these offsets to obtain the
greatest. The difference between this offset and the vector
register length determines the number of elements to
compute. Fortunately, the percentage of the vector
instructions whose source operands� offsets are different
from 0 is very low, as shown in Figure 9.

Percentage of vector instructions with offset different of 0 in
any of the vector source operands

0%

5%

10%

15%

20%

25%

30%

go

m
88

ks
im gc
c

co
m

pr
es

s li

ijp
eg

pe
rl

vo
rt

ex IN
T

sw
im

ap
pl

u

tu
rb

3d

fp
pp

p

F
P

Spec95

P
er

ce
n

ta
g

e
o

f
in

st
ru

ct
io

n
s

Figure 9.Percentage of vector instructions with offset
different of 0 in any of the vector source operands for an
8-way processor with 128 vector registers.

3.5. Branch mispredictions and control-flow
independence

When a branch misprediction is detected, a superscalar
processor recovers the state of the machine by restoring
the register map table and squashing the instructions after
the branch.
 In the proposed microarchitecture, the scalar core works
in the same way as a conventional processor, i.e. a precise
state is recovered, but vector resources are not modified:
vector registers are not freed, and no vector functional unit
aborts the execution because they can be computing data
that can be used in the future. The objective is to exploit
control-flow independence [14, 15, 18]. When the new
path enters again in the scalar pipeline, the source
operands of each instruction will be checked again, and if
it happens that the vector operands are still valid, the
instruction does not need to be executed. Figure 10 shows
the percentage of instructions in the 100 instructions (100
is a size arbitrarily chosen) that follow a mispredicted
branch that do not need to be executed since they were
executed in vector mode and continue to have the same
source operands after the misprediction.
 Note that when a scalar instruction in a wrongly
predicted speculative path is vectorized, the vector register
may remain allocated until the end of the loop to which the
instruction belongs. This wastes vector registers but
fortunately only happens for less than 1% of the vector
instructions in our benchmarks.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

Control-flow independence

0%

5%

10%

15%

20%

25%

30%

go

m
88

ks
im gc
c

co
m

pr
es

s li

ijp
eg pe
rl

vo
rt

ex IN
T

sw
im

ap
pl

u

tu
rb

3d

fp
pp

p

F
P

Spec95

P
er

ce
n

ta
g

e
o

f
in

st
ru

ct
io

n
s

 Figure 10: Percentage of scalar instructions that are
reused after a branch misprediction (limited to the 100
instructions that follow each mispredicted branch).

3.6. Memory coherence

To ensure memory coherence, stores are critical
instructions because these instructions make changes in
memory that the processor cannot recover. For this reason,
a store instruction modifies the memory hierarchy only
when it commits.
 A vectorized load copies memory values into a register.
However, there may be intervening stores before the scalar
load operation that would have made the access in a non-
vectorized implementation. Thus, stores must check the
data in vector registers to maintain coherence.
 For this purpose, every vector register has two fields, the
first and the last address of the corresponding memory
elements (used only if the associated vector instruction is a
load) to indicate the range of memory positions accessed.
Stores check whether the addresses that are going to
modify are inside the range of addresses of any vector
register. If so, the VRMT entry associated to this vector
register is invalidated. Then, when the corresponding
scalar instruction is decoded, it will not find its PC in the
VRMT and another vector instance of this instruction will
be created. Besides, all the instructions following the store
are squashed.
 Fortunately, the percentage of the stores whose memory
address is inside the range of addresses of any vector
register is low (4,5% for SpecInt and 2,5% for SpecFP).
 Due to the complexity of the logic associated to store
instructions, only two store instructions can commit in the
same cycle.

3.7. Wide bus

To exploit spatial locality a wide bus of 4 words has been
implemented. This bus is able to bring a whole cache line
every time the cache is accessed. In parallel, the range of
addresses held in this cache line are compared with the
addresses of pending loads, and all loads that access to the
same line are served from the single access (in our
approach, only 4 pending loads can be served at the same

cycle). This organization has been previously proposed
elsewhere [11, 12, 22, 23].
 Wide buses are especially attractive in the presence of
vectorized loads, since multiple elements can be retrieved
by a single access if the stride is small, as it is in most
cases.

4. Performance evaluation

4.1. Experimental framework

For the performance evaluation we have extended the
SimpleScalar v3.0a [5], which is a cycle-level simulator of
a dynamically scheduled superscalar processor, to include
the microarchitectural extensions described above.
 To evaluate the mechanism we use 2 superscalar
configurations with different issue width: 4-way and 8-
way. To evaluate the memory impact of the wide bus and
the dynamic vectorization mechanism we will use
configurations with 1, 2 and 4 L1 data cache ports (scalar
or wide). Other parameters of the microarchitecture are
shown in Table 1.

Parameter 4-way 8-way
Fetch
width

4 instructions (up to 1 taken
branch)

8 instructions (up to 1 taken
branch)

I-cache
64Kb, 2-way set associative,
64 byte lines, 1 cycle hit, 6

cycle miss time

64Kb, 2-way set associative,
64 byte lines, 1 cycle hit, 6

cycle miss time
Branch

Predictor Gshare with 64K entries Gshare with 64K entries

Inst.
window

size
128 entries 256 entries

Scalar
functional

units
(latency in
brackets)

3 simple int(1); 2 int mul/div
(2 for mult and 12 for div);

2 simple FP(2); 1 FP mul/div
(4 for mult and 14 for div);

1 to 4 loads/stores

6 simple int(1); 3 int mul/div
(2 for mult and 12 for div);

4 simple FP(2); 2 FP mul/div
(4 for mult and 14 for div);

1 to 4 loads/stores
Load/Store

queue
32 entries with store-load

forwarding
64 entries with store-load

forwarding

Issue
mechanism

4-way out of order issue
loads may execute when prior

store addresses are known

8-way out of order issue
loads may execute when prior

store addresses are known

D-cache

64KB, 2-way set associative,
32 byte lines, 1 cycle hit time,
write-back, 6 cycle miss time

up to 16 outstanding miss

64KB, 2-way set associative,
32 byte lines, 1 cycle hit time,
write-back, 6 cycle miss time

up to 16 outstanding miss

L2 cache
256Kb,4-way set associative,

32 byte lines, 6 cycles hit time,
18 cycle miss time

256Kb,4-way set associative,
32 byte lines, 6 cycles hit time,

18 cycle miss time
Commit

width 4 instructions 8 instructions

Vector
registers

128 registers of 4 64-bit
elements each

128 registers of 4 64-bit
elements each

Vector
functional

units
(latency in
brackets)

Pipelined; 3 simple int(1);
2 int mul/div (2 mult, 12 div);
2 simple FP(2); 1 FP mul/div

(4 mult and 14 div);
1 to 4 loads

Pipelined; 6 simple int(1);
3 int mul/div (2 mult, 12 div);
4 simple FP(2); 2 FP mul/div

(4 mult and 14 div);
1 to 4 loads

TL 4-way set assoc. with 512 sets 4-way set assoc. with 512 sets
VRMT 4-way set assoc. with 64 sets 4-way set assoc. with 64 sets

Table 1. Processor microarchitectural parameters.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

 For the experiments we use the complete SpecInt95
benchmark suite and four SpecFP95 benchmarks (swim,
applu, turb3d and fpppp). Programs were compiled with
the Compaq/Alpha compiler using �O5 �ifo �non_shared
optimization flags. Each program was simulated for 100
million instructions after skipping the initialization part.
 We have chosen vector registers with 4 elements
because the average vector length for our benchmarks is
relatively small: 8,84 for SpecInt and 7,37 for SpecFP
applications.
 For both configurations, the size of the required
additional resources is the same:

• The vector register file requires 4 kilobytes (4 element
per vector register * 8 bytes per element * 128 vector
registers).

• The VRMT requires 4608 bytes (4 ways * 64 elements
per way * 18 bytes per element).

• The TL requires 49152 bytes (4 ways * 512 elements
per way * 24 bytes per element).

 This results in a total of 56Kbytes of extra storage.
Although this is not negligible this is certainly affordable
in current designs.

4.3. Performance results

Figure 11 shows the performance for the 8-way and 4-way
processors depending on the number of ports to L1 data
cache. Each figure compares the performance of a
superscalar processor (xpnoIM), a superscalar processor
with a wide bus (xpIM) and a superscalar processor with a
wide bus and dynamic vectorization (xpV) for a different
number (x) of L1 data cache ports.
 As shown in Figure 11, in most cases the configurations
with wide buses increase clearly the performance of the
configurations with scalar buses. The main reason is the
bottlenecks due to the memory systems in configurations
like an 8-way superscalar processor with 1 scalar bus. For
this configuration the average IPC increased from 1,77 to
2,16 when a wide bus substitutes the scalar bus. The
benefits for the configurations with 2 or 4 scalar buses are
smaller since they already have a significant memory
bandwidth.
 Speculative dynamic vectorization reduces the pressure
on the memory ports as shown in Figure 12. This Figure
shows the memory port occupancy for the different
processor configurations.

IPC depending on the number of ports for an 8-way processor

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

6,0

go m88ksim gcc compress li ijpeg perl vortex INT swim applu turb3d fpppp FP Spec95

IPC

1pnoIM

1pIM

1pV

2pnoIM

2pIM

2pV

4pnoIM

4pIM

4pV

4-way processor

1,0

1,5

2,0

2,5

3,0

3,5

4,0

go m88ksim gcc compress li ijpeg perl vortex INT swim applu turb3d fpppp FP Spec95

IPC

1pnoIM

1pIM

1pV

2pnoIM

2pIM

2pV

4pnoIM

4pIM

4pV

Figure 11. IPC for the baseline configuration (xpnoIM), wide buses (xpIM), wide buses plus dynamic vectorization
(xpV), for different number (x) of L1 data cache ports for an 8-way and a 4-way processor.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

 Speculative dynamic vectorization increases the
memory elements that need to be read/written due to
misspeculations. However, this is shadowed by the
increase in the effectiveness of the wide ports, since most
vector instructions have a small stride and thus, multiple
elements can be read in a single access.
 Figure 13 shows the percentage of memory lines read
from cache that contribute with 1, 2, 3 or 4 useful words,
and the percentage of speculative (unused) accesses. It can
be observed that a significant percentage of memory
accesses serve multiple words and the number of useless
accesses is relatively small except for compress.

Effectiveness of wide buses

60%

65%

70%

75%

80%

85%

90%

95%

100%

go

m
88

ks
im gc

c

co
m

pr
es

s li

ijp
eg pe
rl

vo
rt

ex

IN
T

sw
im

ap
pl

u

tu
rb

3d

fp
pp

p

F
P

Spec95

P
er

ce
n

ta
g

e
o

f
ac

ce
ss

es

Unused

4pos

3pos

2pos

1pos

 Figure 13. Percentage of read lines that contribute with
1,2,3 or 4 useful words for a 4-way processor with 1
memory port.

 Figure 14 shows the percentage of scalar instructions
that are turned into a validation operation for an 8-way
superscalar processor with one wide bus. These
instructions represent 28% and 23% of the total
instructions for the integer and FP benchmarks
respectively.

Percentage of validation instructions

0%

5%

10%

15%

20%

25%

30%

35%

40%

go

m
88

ks
im gc
c

co
m

pr
es

s li

ijp
eg pe
rl

vo
rt

ex IN
T

sw
im

ap
pl

u

tu
rb

3d

fp
pp

p

F
P

Spec95

P
er

ce
n

ta
g

e

 Figure 14. Percentage of instructions that validate a
position in a vector register for an 8-way superscalar
processor with one wide bus and the dynamic
vectorization mechanism.

 Figure 15 shows the average number of vector elements
that have been computed by the vector functional units and
validated (comp. used), have been computed but not
validated (comp. not used) and have not been computed
(not comp) for an 8-way processor with 128 vector
registers.

Port occupancy depending on the number of ports for an 8-way

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

go m88ksim gcc compress li ijpeg perl vortex INT swim applu turb3d fpppp FP Spec95

O
cc

u
p

an
cy

1pnoIM

1pIM

1pV

2pnoIM

2pIM

2pV

4pnoIM

4pIM

4pV

4-way

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

go m88ksim gcc compress li ijpeg perl vortex INT swim applu turb3d fpppp FP Spec95

O
cc

u
p

an
cy

1pnoIM

1pIM

1pV

2pnoIM

2pIM

2pV

4pnoIM

4pIM

4pV

 Figure 12. Bus occupancy for the baseline configuration (xpnoIM), wide buses (xpIM), wide buses plus dynamic
vectorization (xpV), for different number (x) of L1 data cache ports.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

Prediction accuracy

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

go

m
88

ks
im gc

c

co
m

pr
es

s li

ijp
eg pe
rl

vo
rt

ex

IN
T

sw
im

ap
pl

u

tu
rb

3d

fp
pp

p

F
P

Spec95

V
ec

to
r

re
g

is
te

r
el

em
en

ts

Not comp.

Comp. not used

Comp. used

Figure 15. Average number of vector elements that have
been computed and used (comp. used), computed but not
used (comp. not used) and not computed (not comp.) for
an 8-way processor with 128 vector registers with 4
elements per register.

On average only 1,75 elements are validated out of the
3,75 computed elements. This means that more than half
of the speculative work is useless due to mispredictions.
Although these misspeculations have a minor impact on
performance, there may be an issue for power
consumption. Reducing the number of misspeculations is
an area that is left for future work.
 As described in section 3.6, the recovery mechanism
does not squash vector instructions after branch
mispredictions. Due to this, the control-flow independence
instructions can reuse the data computed in vector
registers. As shown in Figure 10, among the first 100
instructions following a mispredicted branch (this suppose
the 10,53% of total executed instructions for SpecInt95 on
a 4-way superscalar processor with 1 bus and a gshare
branch predictor with 64K entries), 17% of them can reuse
the data stored in vector registers.
 To summarize, speculative dynamic vectorization results
in significant speedups that are mainly due to: a) the
exploitation of SIMD parallelism, b) the ability to exploit
control-flow independence, and c) the increase in the
effectiveness of wide buses.

5. Related work

Vajapeyam [21] presents a dynamic vectorization
mechanism based on trace processors. The mechanism
executes in parallel some iterations of a loop. This
mechanism tries to enlarge the instruction window
capturing in vector form the body of the loops. The whole
loop body is vectorized provided that all iterations of the
loop follow the same control flow. The mechanism
proposed in this paper is more flexible/general in the sense
that it can vectorize just parts of the loop body and may
allow different control flows in some parts of the loop.

 The CONDEL architecture [20] proposed by Uht
captures a single copy of complex loops in a static
instruction window. It uses state bits per iteration to
determine the control paths taken by different loop
iterations and to correctly enforce dependences.
 The use of wide buses has been previously considered to
improve the efficiency of the memory system for different
microarchitectures [12, 22, 23].
 Rotenberg et al. present a mechanism to exploit control
flow independence in superscalar [14] and trace [15]
processors. Their approach is based on identifying control
independent points dynamically, and a hardware
organization of the instruction window that allows the
processor to insert the instructions after a branch
misprediction between instructions previously dispatched,
i.e., after the mispredicted branch and before the control
independent point.
 Lopez et al. [11] propose and evaluate aggressive wide
VLIW architectures oriented to numerical applications.
The main idea is to take advantage on the existence of
stride one in numerical and multimedia loops. The
compiler detects load instructions to consecutive addresses
and combines them into a single wide load instruction that
can be efficiently executed in VLIW architectures with
wide buses. The same concept is applied to groups of
instructions that make computations. In some cases, these
wide architectures achieve similar performance, compared
to architectures where the buses and functional units are
replicated, but at reduced cost.

6. Conclusions

In this paper we have proposed a speculative dynamic
vectorization scheme as an extension to superscalar
processors. This scheme allows the processor to prefetch
data into vector registers and to speculatively manipulate
these data through vector arithmetic instructions. The main
benefits of this microarchitecture are a) the use of SIMD
parallelism, even in irregular codes; b) the exploitation of
control-flow independence; and c) the increase in the
effectiveness of wide memory buses.
 We have shown that these benefits result in significant
speedups for a broad range of microarchitectural
configurations. For instance, a 4-way superscalar
processor with one wide port and speculative dynamic
vectorization is 3% faster than an 8-way superscalar
processor with 4 scalar ports. Speculative dynamic
vectorization increases the IPC of a 4-way superscalar
processor with one wide bus by 21,2% for SpecInt and
8,1% for SpecFP.

Acknowledgments

This work has been supported by the Ministry of Science
and Technology of Spain and the European Union

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

(FEDER funds) under contract TIC2001-0995-C02-01 and
by a research grant from Intel Corporation. We also
acknowledge the European Center for Parallelism of
Barcelona (CEPBA) for supplying the computing
resources for our experiments.

References

[1] J. R. Allen and K. Kennedy, �Automatic Translation of

Fortran Programs to Vector Forms�, in ACM Transactions
on Programming Languages and Systems, Vol. 9, no. 4,
October 1987, pp. 491-452.

[2] K. Asanovic. "Vector Microprocessors". Phd Thesis.
University of California,Berkeley, Spring 1998.

[3] T. M. Austin, �DIVA: A Reliable Substrate for Deep
Submicron Microarchitecture Design�, in Proceedings of
the 32nd Symposium on Microarchitecture, Nov. 1999.

[4] D. F. Bacon, S. L. Graham and O. J. Sharp, �Compiler
Transformations for High Performance Computing�,
Technical Report No. UCB/CSD-93-781, University of
California-Berkeley, 1993.

[5] D. Burger and T. Austin, �The SimpleScalar Tool Set,
Version 2.0�, Technical Report No. CS-TR-97-1342,
University of Wisconsin-Madison, Jun. 1997.

[6] R. Espasa. "Advanced Vector Architectures", PhD Thesis.
Universitat Politècnica de Catalunya, Barcelona, February
1997.

[7] J. González, �Speculative Execution Through Value
Prediction�, PhD Thesis, Universitat Politècnica de
Catalunya, January 2000.

[8] J. González and A. González. "Memory Address Prediction
for Data Speculation", in Proceedings of Europar97,
Passau(Germany), August 1997.

[9] K. Kennedy, �A Survey of Compiler Optimization
Techniques," Le Point sur la Compilation, (M. Amirchahy
and N. Neel, editors), INRIA, Le Chesnay, France, (1978),
pages 115-161.

[10] Corinna G. Lee and Derek J. DeVries. "Initial Results on the
Performance and Cost of Vector Microprocessors", in
Proceedings of the 13th Annual IEEE/ACM International
Symposium on Microarchitecture, Research Triangle Pk
United States. December 1 - 3, 1997.

[11] D. López, J. Llosa, M. Valero and E. Ayguadé, �Widening
Resources: A Cost-Effective Technique for Aggressive ILP
Architectures�, in Proceedings of the 31st International
Symposium on Microarchitecture, pp 237-246, Nov-Dec
1998.

[12] J. A. Rivers, G. S. Tyson, E. S. Davidson and T. M. Austin,
�On High-Bandwidth Data Cache Design for Multi-Issue
Processors�, in Proceedings of the 30th Symposium on
Microarchitecture, 1997.

[13] E. Rotenberg, �AR-SMT: A Microarchitectural Approach to
Fault Tolerance in Microprocessors�, in 29th Fault-Tolerant
Computing Symposium, June 1999.

[14] E. Rotenberg, Q. Jacobson and J. Smith, �A Study of
Control Independence in Superscalar Processors�, in
Proceedings of the 5th International Symposium on High
Performance Computing Architecture, January 1999.

[15] E. Rotenberg and J. Smith, �Control Independence in Trace
Processors�, in Proceedings of 32nd Symposium on
Microarchitecture, January 1999.

[16] R. M. Russell, �The Cray-1 Computer System�, in
Communications of the ACM, 21(1) pp 63-72, January 1978.

[17] J. E. Smith, G. Faanes and R. Sugumar, �Vector Instructions
Set Support for Conditional Operations�, in Proceedings of
the 27th Symposium on Computer Architecture, 2000.

[18] A. Sodani and G. S. Sohi, �Dynamic Instruction Reuse�, in
Proceedings of the 24th International Symposium on
Computer Architecture, 1997.

[19] J. Tubella and A. González, �Control Speculation in
Multithread Processors through Dynamic Loop Detection�,
in Proceedings of the 4th International Symposium on High-
Performance Computer Architecture, Las Vegas (USA),
February, 1998.

[20] A. K. Uht, �Concurrency Extraction via Hardware Methods
Executing the Static Instruction Stream�, IEEE
Transactions on Computers, vol. 41, July 1992.

[21] S. Vajapeyam, J.P. Joseph and T. Mitra, �Dynamic
Vectorization: A Mechanism for Exploiting Far-Flung ILP
in Ordinary Programs�, in Proceedings of the 26th
International Symposium on Computer Architecture, May
1999.

[22] S. W. White and S. Dhawan, �Power2�, in IBM Journal of
Research and Development, v.38, n. 5, pp 493-502, Sept
1994.

[23] K. M. Wilson and K. Olukotun, �High Bandwidth On-Chip
Cache Design�, IEEE Transactions on Computers, vol. 50,
no. 4, April 2001.

[24] H. P. Zima and B. Chapman, �Supercompilers for Parallel
and Vector Processors�, in ACM Press Frontier
Series/Addison-Wesley, 1990.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

