
Software Prefetching for Software Pipelined Loops

F. Jesús Sánchez and Antonio González

Department of Computer Architecture
Universitat Politècnica de Catalunya

Campus Nord - c./ Jordi Girona, 1-3 - Mòdul D6
08034 - Barcelona (SPAIN)

E-mail: {fran,antonio}@ac.upc.es
re
s

 to
tio
er-

d-
in
lar
nd

tur
,
e
,
 a
ue
ry

ue
ea
he
nc
es

r
ne
he

en

re
re
 a

ll

y

Abstract
This paper investigates the interaction between softwa
pipelining and different software prefetching technique
for VLIW machines. It is shown that processor stalls due
memory dependences have a great impact into execu
time. A novel heuristic is proposed and it is show to outp
form previous proposals.

1. Introduction

Software pipelining represents a family of loop sche
uling techniques that tries to exploit ILP by executing
parallel consecutive iterations of a loop. The most popu
scheme is called modulo scheduling, and it consists of fi
ing a fixed pattern of operations (of lengthII or initiation
interval) from distinct iterations([3]).

Several schemes have been proposed in the litera
with the goal of minimize theII and/or register pressure
but none of them has evaluated the effect of memory. Wh
software pipelining is applied in VLIW architectures
where instruction latencies and scheduling are fixed
compile-time, execution time can be highly degraded d
to the stall time provoked by dependences with memo
instructions. Even if a nonblocking cache is used, tr
dependences with previous memory operations at a n
distance1 can make the processor to stall afterwards. T
choice of scheduling all loads using the cache-miss late
requires considerable ILP and increases register pr
sure([1]).

Different techniques to improve memory behavio
exist and are well-known, and software prefetching is o
of them. The main idea of this method is to bring to cac
the data that will be used in a near future([2]).

In this paper we investigate the interactions betwe
software pipelining and software prefetching in a VLIW
architecture. Some alternatives to perform softwa
prefetching are described, and a novel heuristic is p
sented. An evaluation in execution time terms is reported
well as some conclusions.

1.Almost all modulo scheduling schemes use a fixed cache-hit
latency for all memory operations
1060-3425/98 $10.0
n

-

e

n

t

r

y
-

-
s

2. Software prefetching schemes

Software prefetching is an effective technique to toler-
ate memory latency. When it is used with a nonblocking
cache, this technique allows the processor to hide part or a
the memory latency by overlapping the fetch of data and
the computation.

Software prefetching can be performed through two
alternative schemes: binding and nonbinding prefetching.
The first alternative, also known as early scheduling of
memory operations, moves memory instructions away
from those instructions that depend on them. The second
alternative introduces in the code special instructions,
which are called prefetch instructions. These are nonfault-
ing instructions that perform a cache lookup but do not
modify any register.

In the study presented in this paper we have evaluated
two techniques of binding prefetching:

• Early scheduling always (ESA): all memory opera-
tions of the loop are scheduled using cache-miss
latency.

• Early scheduling according to locality (ESL): sched-
ule instructions that have some type of locality using
the cache-hit latency and schedule the remaining ones
using the cache-miss latency.

We have also evaluated three distinct schemes for
inserting prefetch instructions (nonbinding prefetch):

• Insert prefetch always (IPA): insert a prefetch instruc-
tion for every memory operation.

• Insert prefetch according to temporal locality (IPT):
insert prefetch for those references without temporal
locality even if they exhibit spatial locality.

• Insert prefetch according to locality (IPL): insert
prefetch for those instructions without any type of
locality.

3. A novel software prefetching technique

The proposed software prefetching scheme is called
cache sensitive modulo scheduling (CSMS), and it tries to
minimize both the compute time and the stall time. These
terms are not independent and reducing one of them ma
0 (c) 1998 IEEE

C
H

L
ES

A
ES

L
IP

A
IP

T
IP

L
C

SM
S

LB
N

D

C
H

L
ES

A
ES

L
IP

A
IP

T
IP

L
C

SM
S

LB
N

D

C
H

L
ES

A
ES

L
IP

A
IP

T
IP

L
C

SM
S

LB
N

D

C
H

L
ES

A
ES

L
IP

A
IP

T
IP

L
C

SM
S

LB
N

D

C
H

L
ES

A
ES

L
IP

A
IP

T
IP

L
C

SM
S

LB
N

D

C
H

L
ES

A
ES

L
IP

A
IP

T
IP

L
C

SM
S

LB
N

D

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 L
oo

p
 E

xe
cu

ti
on

 T
im

e

tomcatv swim su2cor hydro2d mgrid turb3d

Simple architecture

1.
59

3
1.

37
1

C
H

L
ES

A
ES

L
IP

A
IP

T
IP

L
C

SM
S

LB
N

D

C
H

L
ES

A
ES

L
IP

A
IP

T
IP

L
C

SM
S

LB
N

D

C
H

L
ES

A
ES

L
IP

A
IP

T
IP

L
C

SM
S

LB
N

D

C
H

L
ES

A
ES

L
IP

A
IP

T
IP

L
C

SM
S

LB
N

D

C
H

L
ES

A
ES

L
IP

A
IP

T
IP

L
C

SM
S

LB
N

D

C
H

L
ES

A
ES

L
IP

A
IP

T
IP

L
C

SM
S

LB
N

D

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 L
oo

p
 E

xe
cu

ti
on

 T
im

e

tomcatv swim su2cor hydro2d mgrid turb3d

Aggressive architecture

1.
25

7

3.
61

8
3.

03
4

Figure 1. Software prefetching schemes performance
hm

f
g
id
e
tc

,

y

e
d.

f
a

nd
ro
st
a
 o

ce
lin

e
s
th
ty

to

ed

r

,

result in an increase in the other. The proposed algorit
tries to find the best trade-off between the two terms.

The CSMS algorithm is based on early scheduling o
some selectively chosen memory operations. Schedulin
memory operation using the cache-miss latency can h
almost all memory latency without increasing much th
number of instructions (as opposed to the use of prefe
instructions). However, it can increase the execution tim
in three ways:

• It may increase the register pressure, and therefore
may increase theII due to spill code.

• It may increaseII rec because the latency of memor
operations is augmented.

• It may increase theSC (stage counter) because th
length of individual loop iterations may be increase

Two of the main issues of theCSMS algorithm is the
reduction of the impact of recurrences on theII and the
minimization of the stall time. The problem of the cost o
the prolog and epilog is handled by computing two altern
tive schedules. Both focus on minimizing the stall time a
theII . However, one of them reduces the impact of the p
log and the epilog at the expense of an increase in the
time whereas the other does not care about the prolog
epilog cost. Then, depending on the number of iterations
the loop, the most effective one is chosen.

The algorithm consists of creating two dependen
graphs, one using the cache-miss latency for schedu
each memory operation, and another one using cache-m
or hit latency according to a static locality analysis. Th
effect of recurrences that limit de initiation interval i
reduced by changing, from cache-miss to cache-hit,
latency of some memory operations (following a locali
order) until this recurrence minimizes theII . An upper
bound in the number of iterations of the loop help us
choose between the scheduling of both graphs.

More details about the CSMS algorithm are report
in [4].
1060-3425/98 $10.
 a
e

h
e

 it

-

-
all
nd
f

g
iss

e

4. Some performance results

The performance of the software prefetching schemes
has been studied for some SPECfp95 benhmarks, and fo
two VLIW architectures: simple (4-issue and the cache-
miss latency is 10 cycles) and aggressive (8-issue and the
cache-miss latency is 20 cycles).

In addition to the above-mentioned schemes,we have
measured the scheduling using cache-hit latency always
(CHL) and a lower bound of the execution time (LBND).

In Figure 1 results are presented. Black bars represents
stall time, and grey bar represents compute time, all of
them normalized toCHL. It is show that theCSMS scheme
achieves the best trade-off between stall and compute time
and its performance is close to the lower bound.

5. Conclusions

In this paper we have compared the effect that some
software prefetching techniques have in software pipelined
loops for VLIW architectures. We have seen that the pro-
posedCSMS scheme significally outperforms previous pro-
posals.

References

[1] S.G. Abraham, R.A. Sugumar, B.R. Rau and R. Gupta, “Pre-
dictability of Load/Store Instruction Latencies”, inProcs. of
26th Int. Symp. on Microarchitecture, pp. 129-152, Dec. 1993

[2] D. Callahan, K. Kennedy and A. Porterfield, “Software
Prefetching”, inProcs of the IV Symp. on Arch. Support for
Prog. Lang. and Oper. Syst. (ASPLOS), pp. 40-52, April 1991

[3] M.S. Lam, “Software Pipelining: an Effective Scheduling
Technique for VLIW Machines”, inProcs. of Conf. on Prog.
Lang. Desing and Impl. (PLDI), pp. 43-53, May 1991

[4] F.J. Sánchez and A. González, “Cache Sensitive Modulo
Scheduling”, inProcs. of 30th Int. Symp. on Microarchitec-
ture, Dec. 1997
00 (c) 1998 IEEE

