Software Prefetching for Software Pipelined Loops

F. Jesus Sanchez and Antonio Gonzalez

Department of Computer Architecture
Universitat Politécnica de Catalunya
Campus Nord - ¢./ Jordi Girona, 1-3 - Modul D6
08034 - Barcelona (SPAIN)

E-mail: {fran,antonio}@ac.upc.es

Abstract 2. Software prefetching schemes
This paper investigates the interaction between software o i)
pipelining and different software prefetching techniques Software prefetching is an effective technique to toler-

ate memory latency. When it is used with a nonblocking

cache, this technique allows the processor to hide part or all
the memory latency by overlapping the fetch of data and
the computation.

Software prefetching can be performed through two
alternative schemes: binding and nonbinding prefetching.
1. Introduction The first alterna_ttive, also known as ea_trly sch_eduling of

memory operations, moves memory instructions away

Software pipelining represents a family of loop sched- from th(_)se i_nstructions .that depend on thfem.-The sgcond
uling techniques that tries to exploit ILP by executing in alternative introduces in the code special instructions,
parallel consecutive iterations of a loop. The most popular Which are called prefetch instructions. These are nonfault-
scheme is called modulo scheduling, and it consists of find- iNg instructions that perform a cache lookup but do not

for VLIW machines. It is shown that processor stalls due to
memory dependences have a great impact into execution
time. A novel heuristic is proposed and it is show to outper-
form previous proposals.

ing a fixed pattern of operations (of lengtror initiation modify any register. o

interval) from distinct iterations([3]). In the study presented in this paper we have evaluated
Several schemes have been proposed in the literaturetwo techniques of binding prefetching:

with the goal of minimize thé and/or register pressure, * Early scheduling alway$ESA): all memory opera-

but none of them has evaluated the effect of memory. When tions of the loop are scheduled using cache-miss

software pipelining is applied in VLIW architectures, latency.

where instruction latencies and scheduling are fixed at . Early scheduling according to locali(gSL): sched-

compile-time, execution time can be highly degraded due ule instructions that have some type of locality using

to the stall time provoked by dependences with memory
instructions. Even if a nonblocking cache is used, true
dependences with previous memory operations at a near -
distancé can make the processor to stall afterwards. The . We have alsc_) evalu_ated three_ d|_st|nct schemes for
choice of scheduling all loads using the cache-miss latency NSerting prefetch instructions (nonbinding prefetch):
requires considerable ILP and increases register pres- * Insert prefetch alway8PA): insert a prefetch instruc-

the cache-hit latency and schedule the remaining ones
using the cache-miss latency.

sure([1]). tion for every memory operation.

Different techniques to improve memory behavior « Insert prefetch according to temporal localityT):
exist and are well-known, and software prefetching is one insert prefetch for those references without temporal
of them. The main idea of this method is to bring to cache locality even if they exhibit spatial locality.

the data that will be used in a near future([2]).

In this paper we investigate the interactions between
software pipelining and software prefetching in a VLIW
architecture. Some alternatives to perform software
prefetching are described, and a novel heuristic is pre-
sented. An evaluation in execution time terms is reported as

well as some conclusions. The proposed software prefetching scheme is called
cache sensitive modulo schedulif@sMs), and it tries to
minimize both the compute time and the stall time. These

1.Almost all modulo scheduling schemes use a fixed cache-hit terms are not independent and reducing one of them may
latency for all memory operations

* Insert prefetch according to localityiPL): insert
prefetch for those instructions without any type of
locality.

3. A novel software prefetching technique

1060-3425/98 $10.00 (c) 1998 IEEE

25
28
a3

1.0 1.0+

0.8 0.8
0.6 1 0.6

0.4+

0.4

0.2

Normalized L oop Execution Time
Normalized L oop Execution Time

0.0-
N 09 o Y o9 o °9 o 09 o o9 N 09 Y 09 o °9 o 09 o o9
FFGELLES FPGELLFs FFYTELFs SPITEFs FIeTERps FFeELess FFGELLES FPGELLFs FFYTELFs STITEFs FPeTERps FFeELess

tomcatv swim su2cor hydro2d mgrid turb3d tomcatv swim su2cor hydro2d mgrid turb3d

Simple architecture Aggressive ar chitecture

Figure 1. Software prefetching schemes performance

result in an increase in the other. The proposed algorithm 4. Some performance results
tries to find the best trade-off between the two terms.

The csMs algorithm is based on early scheduling of The performance of the software prefetching schemes
some selectively chosen memory operations. Scheduling ahas been studied for some SPECfp95 benhmarks, and for
memory operation using the cache-miss latency can hidetwo VLIW architectures: simple (4-issue and the cache-
almost all memory latency without increasing much the miss latency is 10 cycles) and aggressive (8-issue and the
number of instructions (as opposed to the use of prefetch cache-miss latency is 20 cycles).

instructions). However, it can increase the execution time In addition to the above-mentioned schemes,we have

in three ways: measured the scheduling using cache-hit latency always
- It may increase the register pressure, and therefore, it (CHL) and a lower bound of the execution tiri8ND).

may increase thi due to spill code. In Figure 1 results are presented. Black bars represents

« It may increasl .. because the latency of memory stall time, and grey bar represents compute time, all of
. . rec them normalized t@HL. It is show that th€SMSscheme
operatpns is augmented. achieves the best trade-off between stall and compute time,
« It may increase th&C (stage counter) because the and its performance is close to the lower bound.
length of individual loop iterations may be increased.
Two of the main issues of tt@sMs algorithm is the 5. Conclusions
reduction of the impact of recurrences on thand the .
minimization of the stall time. The problem of the cost of In this paper we have compared the effect that some
the prolog and epilog is handled by computing two alterna- software prefetchlng.techmques have in software pipelined
tive schedules. Both focus on minimizing the stall time and 100ps for VLIW architectures. We have seen that the pro-
thell. However, one of them reduces the impact of the pro- PosedcSMSscheme significally outperforms previous pro-
log and the epilog at the expense of an increase in the stallPosals.
time whereas the other does not care about the prolog and
epilog cost. Then, depending on the number of iterations of ~ R€ferences

the I_Ic_)gp, tf|1e mt?]St effectl.V(ta onfe IS cf:pser:\.N d d [1] S.G. Abraham, R.A. Sugumar, B.R. Rau and R. Gupta, “Pre-
€ algorithm consIsts or crealing two dependence = = qicapijity of Load/Store Instruction Latencies”, Riocs. of

graphs, one using the cache-miss latency for scheduling 26th Int. Symp. on Microarchitectynep. 129-152, Dec. 1993
each memory operation, and anot_her one using ca_che-m|ss[2] D. Callahan, K. Kennedy and A. Porterfield, “Software
or hit latency according to a static locality analysis. The ~ " prefetching”, inProcs of the IV Symp. on Arch. Support for

effect of recurrences that limit de initiation interval is Prog. Lang. and Oper. Syst. (ASPLQOS). 40-52, April 1991

reduced by changing, from cache-miss to cache-hit, the [3] M.S. Lam, “Software Pipelining: an Effective Scheduling

latency of some memory operations (following a locality Technique for VLIW Machines”, ifProcs. of Conf. on Prog.

order) until this recurrence minimizes thie An upper Lang. Desing and Impl. (PLDIpp. 43-53, May 1991

bound in the number of iterations of the loop help us to [4] F.J. Sanchez and A. Gonzélez, “Cache Sensitive Modulo

choose between the scheduling of both graphs. Scheduling”, inProcs. of 30th Int. Symp. on Microarchitec-
More details about the CSMS algorithm are reported ture, Dec. 1997

in [4].

1060-3425/98 $10.00 (c) 1998 IEEE

