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Analysis of measurement and simulation errors in structural system identification 25 

by observability techniques. 26 

Summary 27 

During the process of structural system identification, it is unavoidable to introduce 28 

errors in measurement and errors in the identification technique. This paper analyzes the 29 

effects of these errors in structural system identification based on observability 30 

techniques. To illustrate the symbolic approach of this method a simply supported beam 31 

is analyzed step-by-step. This analysis provides, for the very first time in the literature, 32 

the parametric equations of the estimated parameters. The effects of several factors, 33 

such as errors in a particular measurement or in the whole measurement set, load 34 

location, location of the measurement or sign of the errors, on the accuracy of the 35 

identification results are also investigated. It is found that error in a particular 36 

measurement increases the errors of individual estimations and this effect can be 37 

significantly mitigated by introducing random errors in the whole measurement set. The 38 

propagation of simulation errors when using observability techniques is illustrated by 39 

two structures with different measurement sets and loading cases. A fluctuation of the 40 

observed parameters around the real values is proved to be a characteristic of this 41 

method. Also, it is suggested that a sufficient combination of different load cases should 42 

be utilized to avoid the inaccurate estimation at the location of low curvature zones.>> 43 

Keyword: structural system identification; stiffness method; observability technique; 44 

measurement error; simulation error; observability flow 45 

1. Introduction 46 

Structural System Identification (SSI) methods enable the estimation of stiffnesses 47 

and/or masses of actual structures from their monitored data. A wide number of SSI 48 

methods have been presented in the literature. In fact, the state of the art of these 49 

method have been reviewed in a number of works [1,2]. According to most of these 50 

works, system identification methods can be classified as parametric [3–6] and non-51 

parametric (genetic algorithms [7–9], evolutionary strategy [10–13], neural networks 52 

[14,15] or least-squares estimation [16–18]).  53 

The major difference between these two methods refers to the equations that link the 54 

input and output data, as only in the parametric methods those have a physical meaning. 55 

For this reason, parametric methods might be preferred over non-parametric ones. 56 



A major concern for the structural system identification in actual structures refers to the 57 

sensitivity of the SSI method to errors. Sanayei et al. [19] summarized the different 58 

errors that influence the accuracy of these methods as follows: (1) Measurement errors: 59 

Independent of the measurement device, error free measurements cannot be obtained in 60 

any actual nondestructive test. In this way, when these measurements are introduced 61 

into the SSI technique, deviations in the estimates appear. These unbiased errors can be 62 

reduced by technological developments but cannot be avoided. (2) Errors in the 63 

parameter estimation technique: Every SSI method is characterized by its characteristic 64 

simulation error. This error appears even when noise-free measurements are considered 65 

as it depends on the technique formulation. Examples of this error refer to the 66 

hypotheses of iterative or optimization processes used in the identification method or 67 

the loss of numerical accuracy in computer calculation. However, for the very first time 68 

in the literature, the explicit analytical solutions of these estimated parameters can be 69 

derived from the observability method in a symbolic way. Hence, those errors in 70 

parameter estimation might be avoided if noise-free data were used.  (3) Modeling 71 

errors: These errors are due to uncertainties in the parameters of the simplified Finite 72 

Element Model. Some examples of this error refer to the inaccuracy in material 73 

properties, the existence of elements which stiffness was not accounted for, or errors in 74 

the boundary conditions.  75 

Significant research has been carried out to study the impact of the different errors on 76 

parametric methods. Saneyei and Saletnik [20] proposed an error sensitivity analysis to 77 

evaluate the effect of noise in measurements. Saneyei et al. [21] compared the results of 78 

different error functions to evaluate the errors in the parameter estimation technique in a 79 

small scale model.  Saneyei et al. [19] studied the effects of modeling errors in frame 80 

structures with elastic supports. Yuen and Katafygiotis [22] studied the effects of noisy 81 

measurements in structural system identification. Caddemi and Greco [23] studied the 82 

influence of instrumental errors on the static identification of damage parameters for 83 

elastic beams. Zhang et al. [24] used intervals analyses to limit the values for the 84 

identified parameters under the effect of modeling errors. Wang [25] studied the effects 85 

of flexible joints and boundary conditions for model updating. Sanayei et al. [4] 86 

presented an error sensitivity analysis to study each parameter based on the load cases 87 

and measurement locations of the nondestructive tests.  88 



Lozano-Galant et al. [26,27] proposed the observability method [28] for structural 89 

system  identification from static tests. This parametric technique analyzes the stiffness 90 

matrix method as a monomial-ratio system of equations and enables the mathematical 91 

identification of element stiffnesses of the whole structure or of a portion of it using a 92 

subset of deflection and/or rotation measurements. In all these works, noise-free 93 

measurements were considered. Nevertheless, this assumption is far from reality as the 94 

data of actual nondestructive tests is always subjected to errors in measurement devices. 95 

In order to fill this gap, this paper analyzes the effects of measurement errors in 96 

structural identification by observability techniques. The simulation errors inherent to 97 

this identification method are also studied in detail.  98 

This article is organized as follows. In Section 2, the application of observability 99 

techniques to structural system identification is presented. In Section 3, a simply 100 

supported beam is analyzed to illustrate the different errors appearing in the 101 

observability technique. In Section 4 the measurement error is analyzed in an illustrative 102 

structure. Next, in Section 5 two structures are studied to illustrate the errors inherent to 103 

the observability technique. Finally, some conclusions are drawn in Section 6. 104 

2.  Structural System Identification by observability techniques 105 

Prior to the application of observability techniques, a FEM of the structure should be 106 

established based on the topology of the structure to be identified, which is a common 107 

preliminary step in many identification methods [29–31]. With this FEM and the 108 

stiffness matrix method, the equilibrium equations together with strength of materials 109 

theory might be written in terms of nodal displacements and nodal forces as presented 110 

in Equation 1.  111 

[K] · {δ} = {f}, (1) 

in which [K] is the stiffness matrix of the structure, {δ}, is a vector of nodal 112 

displacements and {f} is a vector of nodal forces. For 2D analysis, Matrix [K] includes 113 

the geometrical and mechanical properties of the beam elements of the structure, such as 114 

length, Lj, shear modulus, Gj, Young's modulus, Ej, area, Aj, inertia, Ij, and torsional 115 

stiffness, Jj, associated with the j-element.  116 

When the SSI is introduced in the stiffness matrix method, the matrix [K] is partially 117 

unknown. Usually, Lj is assumed known while the stiffnesses are traditionally assumed 118 



as unknown. The determination of the unknown parameters in [K] leads to a nonlinear 119 

problem as these parameters are multiplied by the displacements of the nodes (in 2D, 120 

horizontal and vertical deflection and rotation associated with the k-node uk, vk and wk, 121 

respectively). This implies that non-linear products of variables, such as EjAjuk, EjAjvk, 122 

EjIjuk, EjIjvk and EjIjwk, might appear, leading to a polynomial system of equations. 123 

Before further discussion, one thing should be kept in mind is that the major interest in 124 

structural identification is to assess the structural behavior, e.g. axial stiffnesses, EA, or 125 

flexural stiffnesses, EI. In order to reduce the number of parameter, these stiffnesses are, 126 

respectively, assimilated into areas, A , and inertias, I , by setting the modulus as a 127 

assumed value, e.g. unity or typical values from handbooks. When the identification by 128 

observability is completed, the axial stiffnesses and the flexural stiffnesses, respectively, 129 

can be recovered by the multiplication of the predefined modulus and the estimated 130 

area, �̂�𝐴, and the estimated inertia, 𝐼𝐼. This strategy is also followed in [32,33]. 131 

To solve these equations in a linear-form, system (1) can be rewritten as:   132 

[K∗] · {δ∗} = {f}, (2) 

in which the products of variables are located in the modified vector of displacements 133 

{δ∗} and the modified stiffness matrix [K∗] is a matrix of coefficients with different 134 

dimensions from the initial stiffness matrix [K]. Depending on the known information, 135 

the unknown variables of vector {δ∗} may be the non-linear products presented above, 136 

as well as other factors of single variables, such as  EjIj ,  EjAj ,  Ej,  Aj,  Ij  or node 137 

deflections.  138 

Once the boundary conditions and the applied forces at the nodes during the 139 

nondestructive test are introduced, it can be assumed that a subset of increments of 140 

deflections δ1∗  of {δ∗}  and a subset of forces in nodes f1 of {f}  are known and the 141 

remaining subset δ0∗  of {δ∗} and f0 of {f} are not. By the static condensation procedure, 142 

the system in (2) can be partitioned as follows: 143 

[K∗]{δ∗} = �
K00
∗ K01

∗

K10
∗ K11

∗ � �
δ0∗
δ1∗
� = �f0f1

� = {f}, (3) 

where K00
∗ , K01

∗ , K10
∗  and K11

∗  are partitioned matrices of [𝐾𝐾∗]and 𝛿𝛿0∗ , 𝛿𝛿1∗ , f0  and f1  are 144 

partitioned vectors of {𝛿𝛿∗} and {𝑓𝑓}. 145 



In order to join the unknowns, system (3) can be written in the equivalent form, as: 146 

[𝐵𝐵]{𝑧𝑧} = �
𝐾𝐾10∗ 0
𝐾𝐾00∗ −I� �

𝛿𝛿0∗
f0 � = �f1  − 𝐾𝐾11∗ × 𝛿𝛿1∗

−𝐾𝐾01∗ × 𝛿𝛿1∗
� = {𝐷𝐷},             (4) 

where 0 and 𝐼𝐼 are the null and the identity matrices, respectively. In this system the 147 

vector of unknown variables,  {z} , appears on the left-hand side and the vector of 148 

observations, {D} , on the right-hand side. Both vectors are related by a coefficient 149 

matrix[B]. For the system (4) to have a solution, it is sufficient to calculate the null 150 

space [V]  of [B]  and checking that [V][D] = {0} . Examination of matrix [V]  and 151 

identification of its null rows leads to identification of the observable variables (subset 152 

of variables with a unique solution) of vector {z}. The number of required deflections 153 

can be optimized by using a recursive process that takes advantage of the connectivity 154 

of the beams in the stiffness matrix. This connectivity is included in partitioned matrices 155 

of [𝐾𝐾∗]  and therefore, in system (4). In this way, when in the initial observability 156 

analysis any deflection, force or structural parameter is observed, this information might 157 

help to observe new parameters in the adjacent beam elements through a recursive 158 

process. In this analysis, the observed information in the previous step is successively 159 

introduced as input data in the observability simulation.  160 

A detailed step by step application of the observability techniques is presented in 161 

[26,27]. The readers are recommended to refer to those papers for a more detailed 162 

explanation of the peculiarities of the proposed methodology.  163 

The symbolical SSI algorithm presented above fails to address the numerical estimation of the 164 

observed parameters. To solve this problem, a numerical development of the observability 165 

techniques was presented in [2]. This algorithm combines two approaches: a symbolical and a 166 

numerical one. On the one hand, the symbolic approach is used for the observability analysis. 167 

This analysis reduces the effects of the unavoidable numerical errors during the computation of 168 

the null spaces of the system of equations. On the other hand, the second approach enables the 169 

numerical estimation of the observed parameters. This mixed algorithm also includes a 170 

recursive process, in which the new observed parameters are successively introduced into the 171 

analysis. One concern of this method is that a huge burden is expected in the 172 

computation of the null space [V] when confronted with a problem involving a large 173 

number of observable variables. However, this method has been applied to some large 174 

structures, including a 13-storeys frame building [26] and a cable stayed bridge [27,32]. 175 

The main time cost of the algorithm is in the computation of the null space, [𝑉𝑉], by 176 



symbolical approach whereas the time cost by the numeric approach is negligible. 177 

However, the computation of the null space by symbolical approach can be carried out 178 

efficiently in Matlab subroutine. In the case of the 13-storeys building, it has been 179 

checked that 396 seconds are needed, on a laptop with a 2.4 GHz i7 processor and a 16 180 

GB memory, to get the null space of a matrix [B] with the dimension of 258×462. Note 181 

that the number of rows in the matrix [B] is three times as the number of the nodes, 182 

which is unchanging,  while the number of columns in the matrix [B] equals the number 183 

of unknowns. Moreover, the number of unknowns decreases with the recursive steps 184 

since part of the unknowns has been observed in preceding steps. Thus, the computation 185 

of the null space of the matrix [B] will be accelerated during the recursive steps due to 186 

the decrease of the scale of [B]. In addition, if a larger structure of more observable 187 

parameters is provided, which could not be handled by this laptop, stronger machines, 188 

such as desktops or work stations can be employed. 189 

With regard to the ability of this method, until now, it is only applied in 2D structures 190 

simulated by 1D elements with 3 DOFs per node. Conceptually, as a mathematical tool, 191 

the observability technique is expected to be able to apply in different formulations of 192 

the FEM, including but not limited to 3D structures simulated by 1D elements with 6 193 

DOFs per node or 2D structures simulated by 2D elements with 3DOFs per node [34]. 194 

However, more work associated with this part needs to be done in future. 195 

To illustrate the application of this process, a simple structure is analyzed in the 196 

following section. This example also serves to point out the errors of the observability 197 

technique.  198 

3. Identifying errors in observability techniques 199 

To illustrate the mixed procedure presented above, the simply supported beam presented 200 

in Figure 1.A is analyzed. This structure is modeled by a simplified Finite Element 201 

Model (FEM) composed of 4 nodes and 3 beam elements. The Young’s modulus of all 202 

elements is assumed as unknown. Nevertheless, this is not the case of the inertias and 203 

the areas, as their values are considered different and unknown for the three different 204 

beam elements. To estimate the three unknown flexural stiffnesses of the system (EI1, 205 

EI2 and EI3), one rotation (w1) and two vertical deflections (v2 and v3) are measured. In 206 

this structure, the application of (4) leads to the following system of equations: 207 
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(5)           209 

In this system, the unknown variables {z} include the horizontal reaction, 𝐻𝐻1 , and 210 

vertical reactions,𝑉𝑉1 and 𝑉𝑉4, at the boundary, the inertias, EI1, EI2 and EI3, and nonlinear 211 

products of coupled areas and inertias, such as EA1u2, EA2u2, EA2u3, EA3u3, EA3u4, 212 

EI2w1, EI2w3, EI3w3 and EI3w4. With {p1}, being a vector of coefficients, the general 213 

solution of system (5) can be expressed in terms of a particular solution {zp1} and the 214 

null space [V1] of the matrix of the preceding system as follows: 215 

{𝑧𝑧1} = �𝑧𝑧𝑝𝑝1� + [𝑉𝑉1] · {𝑝𝑝1} =
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(6) 217 

The analysis of [V1] illustrates the importance of using a symbolic approach. 218 

Otherwise, numerical errors with values very close to zero might appear. This might 219 

result in reducing the observed parameters. Those variables whose associated rows of 220 

[V1] are null indicate that their value has a unique solution (that is to say, that is 221 

observable and the particular and general solutions are equal). The variables observed in 222 



the first step (H1, EI1, EI1w2, V1 and V4) are highlighted in bold in {z1} , (6). 223 

Obviously, when the value of EI1 is estimated, w2 can be deduced from EI1w2. The 224 

particular solution �𝑧𝑧𝑝𝑝1� of these parameters can be symbolically obtained from system 225 

(5) by the left divide, \, in Matlab [35]. Similar functions can be found in other 226 

commercial packages, e.g. solve function in both Maple [36] and Mathematica [37]. 227 

These functions can be used to provide solutions for symbolic systems of equations. 228 

According to the authors’ knowledge, such a type of parametric equations cannot be 229 

found in the literature for structural system identification. The obtained parametric 230 

equations of the estimates 𝐸𝐸𝐼𝐼�1, 𝑉𝑉�1 and 𝑉𝑉�4 are as follows: 231 

𝐸𝐸𝐼𝐼1� =
−(L2 · (8 ⋅ M1 − M2 − M3 − M4 + 2 · L · V2 + L · V3)

�18 · (𝑣𝑣2 − L · w1)�
 

                                                                                                                                                                                                                                                                   

(7) 

𝑉𝑉1� =
(M1 + M2 + M3 + M4 − 2 · L · V4 − L · V3)

3 · L  
(8) 

𝑉𝑉4� =
(M1 + M2 + M3 + M4 + L · V4 + 2 · L · V3)

3 · L  
(9) 

in which Mi and Vi are the bending Moments and the Vertical forces (external loads) 232 

applied at the ith node of the structure during the nondestructive test and L is the length 233 

of the beam elements in the model. In these equations, the super index ^ indicates that 234 

the value of the estimate is obtained by observability techniques. Obviously, a different 235 

equation would be obtained if either the measurement set or the geometry of the 236 

structure were changed It should be noted that the parametric equation (7) might lead to 237 

unrealistic estimation if the denominator tends to zero or is negative when errors are 238 

introduced. This is also discussed in detail in section 4. In order to fill this gap, the 239 

researchers are working on an optimization of the measurements which it will be 240 

presented in the near future. 241 

The analysis of Equation (5) shows that EI1 depends on the nodal forces applied at the 242 

loading case (M1 to M4, V2 and V3), the length of the beam elements L, and the 243 

measured deflection v2 and rotation w1. Both v2 and w1 are only found in the 244 

denominator of the equation. As the structure is simply supported, V1 and V4 can be 245 

geometrically determined in terms of the geometry and the forces applied in the loading 246 

case. For this reason, these parameters do not depend on the measured deflections.  247 

Once identified the observed parameters, their value can be numerically calculated. To 248 

illustrate the results of the method, let’s consider a concrete beam of 0.3m height and 249 

0.2m width. The inertia and the Young’s modulus are 4.5e-4m4 and 3.5e7kN/m2, 250 



respectively. The total length (3·L) of the beam is 3m. The loading case is assumed as a 251 

concentrated load of -55kN at node 2. This loading case is represented by the following 252 

nodal forces: M1=M2=M3=M4=V3=0 and V2=-55kN. Both the deflections and the 253 

rotations obtained throughout the beam for this loading case by FEM program are 254 

presented in Figure 1.B and 1.C, respectively for a loading location x=L. In this 255 

simulation the shear deformation is neglected.  256 

The numeric values of the estimated 𝐸𝐸𝐼𝐼�1, 𝑤𝑤�2, 𝑉𝑉�1, 𝑉𝑉�4 obtained by parametric equations 257 

are summarized in the first recursive step of Table 1. This table also includes the ratio of 258 

deviation between estimated and actual values. As showed in this table, the maximum 259 

deviation 0.017% in 𝐸𝐸𝐼𝐼�1, which is due to the round-off error, is negligible.  260 

After introducing the parameters observed in the first recursive step, the system (5) can 261 

be rearranged as presented in system (10). This analysis corresponds with the second 262 

recursive step. It is worth noticing that in this system the previously identified 263 

parameters (V1, V4, EI1 and w2) are moved from {z} to [B] and {D}.  264 
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(10) 265 

With [V2] being the null space of the matrix [B] in system (10), {p2} being a vector of 266 

coefficients, and {zp2} being the particular solution of the system, the general solution 267 

{z2} of the second recursive step can be expressed as follows:  268 

{𝑧𝑧2} = �𝑧𝑧𝑝𝑝2� + [𝑉𝑉2] · {𝑝𝑝2} =
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 · {𝑝𝑝2}                                                                    (11) 269 



The analysis of [V2] shows that the only observed parameters are EI2 and EI2w3. From 270 

this information the calculation of w3 is a straightforward task. The observed parameters 271 

are highlighted in bold in {z2}, (11). The parametric equation of EI2 is presented in 272 

Equation (12). This equation shows how EI2 depends on the values of EI1 and w2 273 

estimated in the preceding recursive step. The numerical values of EI2 and w3 are 274 

summarized in the second recursive step of Table 1. As showed in this table, the 275 

deviation between the actual value of EI2 and the estimated one 𝐸𝐸𝐼𝐼�2  (-0.014%) is 276 

negligible.  277 

𝐸𝐸𝐼𝐼�2 = −(L2·M3−2·L2·M2−12·I1·v2+ L2·M4+ L3·V4+4·I1·L·w1+ 8·L·w2)
�6·(𝑣𝑣2−𝑣𝑣3+L·w2)�

                                                                                                                (12) 278 

Finally, in the third recursive step all the parameters observed by the first two steps (V1, 279 

V4, EI1, w2, EI2 and w3) are introduced, and the system of equations (10) is updated to: 280 
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(13) 281 

With [V3] being the null space of the matrix [B] in system (13), {p3} being a vector of 282 

coefficients, and {zp3} being the particular solution of the system, the general solution 283 

{z3} can be expressed as follows: 284 

{𝑧𝑧3} = �𝑧𝑧𝑝𝑝3� + [𝑉𝑉3] · {𝑝𝑝3} =
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· {𝑝𝑝3}                                                                                                  (14) 285 

The analysis of matrix [V3] shows that in this step, EI3 and EI3w4 are observed. From 286 

this information w4 can be directly obtained. These parameters are highlighted in bold 287 

in Equation (14). The parametric equation of EI3 obtained from the particular solution of 288 

system (13) is presented in Equation (14). As in the case of EI2, this equation depends 289 

on the values of parameters (such as 𝐸𝐸𝐼𝐼�2 and 𝑤𝑤�3) estimated in preceding recursive steps 290 

and on measured deflections (v2 and v3). The numerical values of 𝐸𝐸𝐼𝐼� 3 and 𝑤𝑤� 4 are 291 



presented in the third recursive step of Table 1. This table shows that the deviation 292 

between the actual EI3 and the estimated 𝐸𝐸𝐼𝐼�3 (0.02%) is negligible. 293 

𝐸𝐸𝐼𝐼�3 =  −(30·𝐼𝐼2·𝑣𝑣2−30·𝐼𝐼2·𝑣𝑣3−3·L2·𝑀𝑀3+L3·𝑉𝑉3+12·𝐼𝐼2·L·𝑤𝑤2+18·𝐼𝐼2·L·𝑤𝑤3)
�6·(𝑣𝑣3+L·w3)�

                                                                                       (15)                                                                                                                       294 

Evidently, axial stiffness of the beam cannot be estimated due to the fact that the axial 295 

resistant mechanism was not excited by the external load. However, this did not impede 296 

the bending stiffness to be observable, and henceforth, to be estimated.  297 

The analysis of the parametric equations of EI1, EI2 and EI3 shows their dependence to 298 

the measurements and therefore, to their errors (measurement errors). These equations 299 

also show that the nature of the recursive process tends to increase the errors throughout 300 

the analysis (error associated to the simulation method). The sensitivity of the 301 

observability techniques to these two kinds of errors is analyzed in the following 302 

sections.  303 

Also, a flow chart of the mixed algorithm of structural identification by observability 304 

method is provided in Figure 2. All the procedures related with the symbolic approach 305 

are enclosed by dashed line whereas the procedures related with the numeric approach 306 

are enclosed by dotted line. In step 0, input the initial data containing the description of 307 

the FEM (nodes, element connectivity, external loads and the unknown set of areas and 308 

inertias) and the measurement set. In substep 1 of step i, absorb the measurements in the 309 

matrix [𝐾𝐾∗] and collect unknowns in the vector [𝛿𝛿∗] by static condensation. Next, move 310 

the unknowns and the observation, respectively, to the left-hand side and the left-hand 311 

side of the system in substep 2, by which the system [B] ⋅ {z} = {D} is generated. Then, 312 

in substep 3, the observability of the unknowns are determined by checking the null row 313 

of the symbolic null space, [V], of the matrix [B]. The value of the observed parameters 314 

will be evaluated by numeric approach in substep 4. And, in substep 5, it will be 315 

examined first whether the number of the observed parameters, 𝑁𝑁𝑖𝑖, is zero or the same 316 

as the number of Ni−1 from previous step. If so, the identification process is terminated 317 

since no more parameter can be observed. Otherwise, the numeric value of the observed 318 

parameters from substep 5 will be used to update the input and regarded as known 319 

parameters to initiate the succeeding recursive step.   320 

 321 



4. Measurement errors 322 

This section deals with the role of measurement error in structural system identification 323 

by observability techniques. With this aim, two sensitivity analyses of the simply 324 

supported beam in Figure 1 are presented. The first simulation analyzes the effects of 325 

individual errors in each measurement (deflection or rotation). The deviation in the 326 

estimation of 𝐼𝐼1 is also analyzed by means of partial derivatives. Finally, the second 327 

sensitivity analysis studies the effect of random errors in all measurements.  328 

- Analysis of errors in single measurement 329 

This section analyzes the sensitivity of parametric equations of I1, I2 and I3 obtained 330 

from Equations (7), (12) and (15) to errors in one measurement 331 

The measurement set used here is the same as before, one rotation (w1) and two 332 

deflections (v2 and v3). The Young’s modulus of the three beam elements is assumed as 333 

known (2.5e7kN/m2). 334 

The ratio between each estimated inertia, 𝐼𝐼𝑖𝑖, and the actual one, I, with errors from -5% 335 

to 5% in v2, w1 and v3 are presented in Figure 3.A. This figure shows how the 336 

sensitivity to errors in one of the measurements is increased throughout the recursive 337 

process. For example, the deviation between the estimated inertia and the actual one for 338 

an error of -5% in 𝑣𝑣2 changes from -16.7% in I1 to 47.1% in I2, and -45.5% in I3. In this 339 

structure, the deviations in I1 produced by errors in v2 correspond with those in I2 for 340 

errors in w1. Generally, the system is more sensitive to errors in deflections than in 341 

rotations. This figure also illustrates the importance of the error sign. In fact, the 342 

estimations based on the measured deflections are asymmetric. This asymmetry 343 

increases throughout the recursive process and is especially significant in the 344 

deflections, v. 345 

In Figure 3.B, the effect of the errors in measurements on the deviation in the estimation 346 

throughout the recursive process is presented. This figure also shows that I1 is not 347 

affected by errors in v3. This is because the parametric equations of these inertias do not 348 

depend on the deflection v3. 349 

The effects of the location of two concentrated loads are analyzed in Figure 4.A and 350 

4.B, respectively, to clarify the influence of the load case on the parametric equations of 351 

inertias. Load case one corresponds with a concentrated vertical load V=-55kN, located 352 



at an intermediate node (x=L or x=2L). The second load case corresponds with a 353 

concentrated bending moment, M=100kN∙m, located at the beam edge (x=0 or x=3L). 354 

These figures present the deviation between the actual inertia, I, and the 𝐼𝐼1 calculated by 355 

parametric equation  (7) for different errors in v2 or w1 and load locations. It should be 356 

highlighted that deviations beyond the range of [0,2] do not have physical meaning and 357 

thus they are rejected. 358 

Figure 4 shows that the load case is influential in the accuracy of estimated parameters. 359 

In Figure 4.A, the closer the load to the measurements, the smaller the effect of errors. 360 

For example, for an error of -5% in v2, the deviation of Î1 increases from -16.6% to -361 

25.9% when V is moved from x=L to x=2L. For the same error level in w1, moving V 362 

from x=L to x=2L increases the deviation of Î1  from 33.3% to 66.7%. Similar 363 

conclusion can be drawn when the effect of bending moment M is analyzed. In this 364 

case, for an error of -5% in v2, the deviation in Î1 increases from -5.8% to -28.6% when 365 

M is moved from x=0 to x=3L. For the same error in w1, the increment is from 12.7% to 366 

81.2%. 367 

In addition, the parametric equations are affected by the location of the measurements. 368 

In the observability method, the accuracy of the estimations is highly related to the 369 

curvature of the elements where the measurements are performed. Estimates obtained 370 

from deflections measured at the low curvatures zone might be more sensitive to errors. 371 

For example, in a simply supported beam, the null curvature zones are those adjacent to 372 

the support. The influence of the curvature will be discussed in a more extensive way in 373 

the simulation error part.  374 

To clarify the effects of curvatures in the accuracy of the estimates, six FEMs, FEM2, 375 

FEM3, FEM4, FEM6, FEM8 and FEM12, with the same length, 3L, but different element 376 

numbers were analyzed. The number of elements in these FEMs is indicated by their 377 

subscript. In all these models, only the flexural stiffness of the first element, EI1, is 378 

estimated. 379 

In these models, two measurements are considered, the rotation w1 at the left support 380 

and the deflection v2 of node 2. Note that the location of the measurement v2 is {𝑥𝑥 =381 
3𝐿𝐿
2

, 𝐿𝐿, 3𝐿𝐿
4

, 3𝐿𝐿
8

 and 𝐿𝐿
4
 }  for FEM2 FEM3, FEM4, FEM6, FEM8 and FEM12. That is, the 382 



measurement 𝑣𝑣2 will be located nearer to the null curvature zone in models of more 383 

elements. 384 

To analyze the effect of the location of the measurements, the parametric equation of  385 

𝐸𝐸𝐼𝐼�1, (7), for FEM3 is analyzed. Similar equations can be obtained for different FEMs by 386 

substituting the length of the different elements in each model. The effect of the errors 387 

ranging from -15% to 15% in w1 and v2 is obtained by these equations for each FEM is 388 

presented in Figure 5. It should be clarified that all these equations are presented as a 389 

fraction, in which the numerator indicates information of the load case while the 390 

Denominator, D, indicates information of the measurements. 391 

As expected, Figure 5 shows that the denominator of the parametric equation of EI1, D, 392 

depends linearly of the error in measurements w1 and v2.  In the graph, the closer to the 393 

null curvature zone the measurement v2, the higher the inclination of the denominator 394 

line. High inclinations of the lines might lead to estimations with no physical meaning 395 

as the errors in measurements lead to denominators close to zero or even negative. It is 396 

straightforward that the inertia obtained by this value of the denominator would tend to 397 

be infinite or negative. In FEM2, the threshold error level for w1 and v2 to render the 398 

denominator null is quite high. Nevertheless, the threshold becomes lower with the 399 

decrease of the distance between the support and node 2. Considering the error of w1, a 400 

null denominator is obtained at the following error level: -16.1% (FEM3), -8.7% 401 

(FEM4), -5.2% (FEM6), -2.3% (FEM8) and -1.7% (FEM12). It is suggested to take 402 

measurements in the non-null curvature zones to avoid the detrimental effect of the 403 

measurement errors on the accuracy of estimations. 404 

- Error by partial derivatives 405 

In previous discussion, estimation of 𝐸𝐸𝐼𝐼�1 in FEM3 depends on errors in v2 and w1. With 406 

𝜀𝜀 being the percentage error in the measurements, the error in 𝐸𝐸𝐼𝐼�1, e1, due to these two 407 

parameters can be calculated by the following partial derivatives: 408 

𝑒𝑒1 = ��𝜕𝜕𝐼𝐼1
𝜕𝜕𝑣𝑣2

· 𝜀𝜀𝑣𝑣2�
2

+ � 𝜕𝜕𝐼𝐼1
𝜕𝜕𝑤𝑤1

𝜀𝜀𝑤𝑤1�
2
                                                                                                                    (16) 409 

, which can be used to get the deviation in 𝐸𝐸𝐼𝐼�1. Using equation (16), the deviation in 𝐸𝐸𝐼𝐼�1 410 

against error from -5% to 5% is summarized in Figure 6. It can be seen the estimation of  411 

𝐸𝐸𝐼𝐼�1 is quite sensitive to errors in v2 and w1. Deviation will be magnified if the signs of 412 



the error in v2 and w1 are opposite. And the maximum deviation, 54.3%, is obtained for 413 

an error of +5% in v2 and -5% in w1. 414 

- Analysis of random errors in all measurements 415 

In practice, measurement errors are inevitable. Furthermore, the actual magnitude of 416 

each error is unknown since it depends on a number of parameters including the 417 

accuracy of the measurement device. The errors of each measurement are usually 418 

assumed to follow a normal distribution. To illustrate the effects of the actual errors, an 419 

additional analysis is performed on FEM3 in Figure 1, in which the inertias of the three 420 

elements are assumed as different and unknown. Three different measurement sets were 421 

analyzed here. The first of these sets (Set 1) is exclusively composed of nodal rotations, 422 

w1, w2 and w3. The second set (Set 2) corresponds with that used in preceding sections, 423 

one rotation (w1) and two deflections (v2 and v3). Finally, the third set (Set 3) only 424 

includes three deflections v2, v3 and v5. As illustrated in Figure 7, the measurement of 425 

(v5) corresponds with the vertical deflection at one intermediate node located at the first 426 

beam element.  427 

Each measurement sets includes three error levels, e={5%,10% and 20%}, which 428 

represent a percentage maximum deviation of the actual value of the measured variable. 429 

Equation (17) was used to introduce the errors in deflections. The noisy deflection at the 430 

𝑖𝑖𝑡𝑡ℎ node, 𝑣𝑣𝑒𝑒𝑖𝑖, is calculated from the error-free deflections, 𝑣𝑣𝑖𝑖, and the percentage error, 431 

e0, which is the product of the assumed maximum magnitude of the error, e, and a 432 

random number, r. The random number r varies between -1.0 and 1.0 according to a 433 

truncated normal distribution of null mean and 0.5 standard deviation. A similar 434 

equation is used to introduce the errors into the measured rotations wei. 435 

vei= vi+vi·e0=vi+vi·r·e  (17) 

Random errors in measurements might lead to estimations with no physical meaning 436 

since these noisy measurements should satisfy some geometrical constraints. In FEM3 437 

from Figure 1, random errors in measurements might result in deformed shapes where 438 

the deflection of the node where the load is applied is not the maximum. In each of 439 

these analyses, the physical meaning of the deformed shape is analyzed by checking 440 

some geometrical restrictions. For this structure, the restrictions assumed are ve2>ve3 441 

and we1<we2<we3<we4. The vertical deflection and rotation at the intermediate node ve5 442 

and we5 are limited by those of the adjacent nodes. If any of these restrictions is not 443 



satisfied a new set of random measurements is obtained until the 200 admissible 444 

deformed shapes are obtained. 445 

The ratios between the estimated inertia, 𝐼𝐼i, of the ith beam and the actual one, I, for 446 

different random errors in measurements are presented in Figure 7.  As presented in the 447 

preceding section, the errors in measurements might lead to estimations with no 448 

physical meaning. This lack of meaning comes from those cases where the denominator 449 

of the parametric equation is close to zero. This problem can be avoided by adding some 450 

physical restrictions to the solutions of the system of equations. For example, in a 451 

damaged structure, the estimated inertias cannot be significantly higher than those of the 452 

undamaged elements (that is, estimated inertia cannot be twice as big as the original 453 

one). In addition, no negative inertias should be considered. In order to fulfill these 454 

restrictions, the results in Figure 7 include the average of those analyses where the 455 

estimations were bounded by: the 0 and 2 times the original inertia, 0.25 and 1.75 times 456 

the original inertia, 0.5 and 1.5 times the original inertia and 0.75 and 1.25 times the 457 

original inertia. In this figure, the results are named by the ranges as follows: 0.0-2.0, 458 

0.25-1.75, 0.5-1.5 and 0.75-1.75, respectively. The percentages of analyzed structures 459 

satisfying these restrictions are presented in Figure 7.A (Set 1), 6.B (Set 2) and 6.C (Set 460 

3).  461 

From Figure 7, it is deduced that: 1) As expected, the higher the error in measurements, 462 

the higher the deviations in estimated inertias. In Set 2, the maximum errors for an error 463 

of 5% and a physical restriction of 0.0-2.0 are increased from 4.1% to 26.1% when the 464 

maximum random error in measurements is increased to 20%. 2) It is plausible that the 465 

smaller the range of allowable estimated inertias, the more accurate the estimations are. 466 

For example, in Set 2 with a random error of 20%, changing the allowed range of 467 

estimations from 0.0-2.0 to 0.75-1.25 reduces the deviations from 26.1% to 2.2%. 3) 468 

The structure is less sensitive to errors in rotations than in deflections. This is 469 

appreciable when the results of the different measurement sets are compared. For 470 

example, considering a maximum random error of 5% and the physical restriction 0.0-471 

2.0, the maximum errors when only rotations are considered (Set 1 with a deviation of -472 

0.2% in I3) is significantly lower than the one when w2 and w3 are substituted by v2 and 473 

v3 (Set 2 with a deviation of 3.1% in I3). These deviations are increased more when only 474 

deflections are considered (Set 3 with a deviation of 16.5% in I2). 4) Deviations in 475 

estimations are not increased throughout the recursive process as they fluctuate with the 476 



observability flow. In all analyzed sets described in Figure 7, the recursive process is 477 

initiated at the first beam element, 𝐼𝐼1. This value is used to estimate 𝐼𝐼2 and then, this 478 

new inertia is used to estimate 𝐼𝐼3. As illustrated in the Set 3 for an error of 5%, when 𝐼𝐼1 479 

is underestimated, 𝐼𝐼2 is overestimated to compensate the effect of 𝐼𝐼1� into the system of 480 

equations. Conversely, the value of 𝐼𝐼3 is slightly underestimated. This fluctuation in the 481 

estimation of inertias is a peculiarity of the observability technique which will be 482 

analyzed in detail in the following section.  483 

5. Errors in Parameter Estimation 484 

To clarify the effects of different simulation errors, two examples of increasing 485 

complexity are analyzed in this section. On the one hand, the first example corresponds 486 

with a cantilever beam. In this example, the errors produced throughout the recursive 487 

process are analyzed. To avoid the effect of the curvature, a load case with a uniform 488 

curvature distribution is proposed. In addition, to show the effect of the measurement 489 

errors, two different measurement precisions are adopted. On the other hand, the second 490 

example corresponds with a statically redundant beam. In this structure, the errors 491 

produced by the recursive process for a load case that produces a uniform distribution of 492 

curvatures are studied first. Finally, to illustrate the effect of the curvature, an additional 493 

load case with a non-uniform curvature distribution is simulated. 494 

- Analysis of the recursive process 495 

Assume a cantilever beam with a concentrated bending moment, M=100kN∙m at the 496 

free end. This load case induces uniform bending moments and curvatures as depicted 497 

in Figure 8.A. This curvature enables to focus the analysis on the errors produced by the 498 

recursive process. For this load case the maximum deflections (5.11mm) occurs at the 499 

beam edge. 500 

 501 

The mechanical properties of the structure correspond with those of the structure 502 

presented in [33]. The analyzed beam has a length of 30 m. The area and the inertia of 503 

the girder are 0.07 m2 and 0.04 m4, respectively and Young’s of modulus is E = 210 504 

GN/m2. The simplified FEM of this beam is composed of 31 nodes as presented in 505 

Figure 8.A. This assumption leads to a number of 30 elements 1m long. As mentioned 506 

in section 2, the flexural stiffnesses can be absorbed in inertias by assuming the 507 

Young’s modulus as known. Here, these inertias are assumed both different and 508 



unknown. As the beam is horizontal, the axial and the flexural mechanisms are 509 

uncoupled and can be studied separately. However, only the analysis of the flexural 510 

behavior is presented here.  511 

The values of the unknown inertias are estimated by the observability method from two 512 

alternative measurement sets derived by the observability trees [32]. The first set is 513 

composed of 30 deflections, from v2 to v31, while the second one includes 29 514 

deflections, from v3 to v31, and one rotation w31. Each of these measurement sets solves 515 

the equations of the stiffness matrix system in a different sequence (or in other words, 516 

by a different observability flow). In the first set the solution of the system of equations 517 

starts at the clamped node and flows towards the beam edge in 30 steps. The opposite 518 

observability flow is obtained by the second measurement set. The observability flows 519 

are illustrated in Figures 8.B and 8.C by continuous and dotted arrows, respectively.  520 

Figures 8.B and 8.C, respectively, include the percentage differences between the 521 

estimated inertia, 𝐼𝐼𝑖𝑖 , and the actual one, I, based on different error levels in 522 

measurement. Figure 8.B presents the results for error free measurements (with a 523 

precision of 1e-9m in v and 1e-9rad), while Figure 8.C presents the results with the 524 

measurement errors found in (precision of 1e-5m in v [38]  and 1e-5rad in w [39]). 525 

To solve the system of equations, the recursive process uses information from preceding 526 

steps. In this way, the value estimated of a certain rotation or inertia is used in the 527 

subsequent steps. It must be emphasized that it is intuitive to think, in the recursive 528 

process, that errors will accumulate and propagate, and thus the parameters identified in 529 

the final steps will contains significant error. Conversely, this is not the case in the 530 

observability techniques. As depicted in Figure 8.B, it is shown that for the first set 531 

(continuous blue line) the initial error of -0.01% is increased to 0.04% at the end of the 532 

beam. A similar phenomenon can be observed for the second set (dotted red line), where 533 

the initial deviation of -0.01% is increased to -0.02% at the proximities of the clamped 534 

node. In fact, when an estimated inertia is slightly higher than the actual one (i.e. 535 

overestimation), the next estimated inertia tends to be slightly underestimated in order 536 

to compensate the overestimation in preceding step. This effect leads to the fluctuation 537 

of error. However, this fluctuation might produce even higher errors in some middle 538 

steps of the recursive process than the one obtained at the final step. For example, in the 539 

first flow, the maximum deviation (0.09% in element 26) is 2.14 times higher than the 540 

error obtained at the end of the recursive process. The same effect appears in Figure 541 

8.C. Nevertheless, in this case, because of the error in measurements, higher 542 



fluctuations are obtained. For error free measurements, the maximum deviations are 543 

observed at I7 for the first set (v3 to v31 and w31). The obtained estimation at this point 544 

represents the 0.55% of I. This value is 46.1% higher than the value obtained at the end 545 

of the recursive process (0.38%).  546 

 547 

- Analysis of the effects of the curvature  548 

 549 

The second structure corresponds with the two-span continuous beam presented in 550 

Figure 9.A. This beam has a 60 m length and is evenly divided into 60 elements. The 551 

material and mechanical properties are the same as those used in the preceding section. 552 

Again, the Young’s modulus and the areas are assumed as known whereas the inertias 553 

are assumed as different and unknown for each element. This structural system 554 

identification problem was presented in [33]. Later, Nogal et al. [2] used this example to 555 

illustrate the different simulation errors that might appear in observability techniques. 556 

The aim of this example is to extend that study, and to provide a better understanding of 557 

the nature and magnitude of the different simulation errors when observability 558 

techniques are applied.  559 

To estimate the 60 unknown inertias, two different load cases are studied. The first case 560 

includes two concentrated bending moments, M=1000kN∙m, at the beam edges and a 561 

settlement of 5.4mm at the inner support. This load case induces, as presented in Figure 562 

9.B, a constant bending moments in the structure. The second load case corresponds 563 

with a concentrated vertical load V=-100kN applied at node 16 as presented in Figure 564 

9.C, which produces a linear diagram of bending moments with a maximum (500kN∙m) 565 

at node 16 and a minimum (-250kN∙m) at node 31 and null values at the vicinity of 566 

node 23.  567 

The measurement set in both load cases is identical and includes 58 deflections (v1 to 568 

v30 and v32 to v60) and 2 rotations (w29 and w30). This measurement set initiates an 569 

observability flow at the left hand side of the inner support that is propagated towards 570 

both beam edges. The direction of this flow is indicated by the arrows in Figures 8.B 571 

and 8.C, respectively. In the first recursive step, three inertias (𝐼𝐼28, 𝐼𝐼29 and 𝐼𝐼30) are 572 

observed. The rest of the inertias are successively estimated after 30 steps. The 573 

parameters estimated in the first recursive steps are highlighted in these figures by a 574 

circle. 575 



The deviations between the actual inertia, I, and the estimated one, 𝐼𝐼i, in each beam 576 

element i are summarized in Figures 8.B and 8.C. In these figures, the results obtained 577 

by the error free measurements (precision 1e-9m in v and 1-9rad in w) and the state of 578 

the art errors (1e-5m in v and 1e-5rad in w) are presented in different colors. 579 

Figure 9.B shows that when a uniform curvature is applied, the errors of the estimations 580 

are not increased monotonically throughout the recursive steps. In effect, the deviations 581 

from the actual stiffnesses present similar fluctuations to those observed in the 582 

cantilever beam. For the error free measurements, the maximum deviation error in the 583 

first recursive step (-0.01% in I28) is increased to 0.1% in I37 throughout the analysis. In 584 

the structures with measurement errors, the fluctuations are slightly more significant 585 

since the initial errors (-0.13% in I30) are increased to 1.1% in I40.  586 

Figure 9.C illustrates the importance of the curvature in the identification by the 587 

observability. In fact, the maximum errors are obtained in those areas with null 588 

curvatures (concretely at x=0, x=27 and x=60m). This effect can be explained by the 589 

fact that the bending stiffness is calculated based on the curvature of the beam elements 590 

imposed by the load case. As a result, higher errors appear at those locations with low 591 

curvatures. As expected, the maximum deviation (1.52%) is found at x=27, which is 592 

adjacent to the inflection point of the moment diagram. In this structure, the effects of 593 

the magnitude of the curvature are slightly higher than those of the recursive process. 594 

To avoid the detrimental effects of the low curvature, adequate load cases are advised 595 

for structural system identification by observability techniques.  596 

 597 

6. Conclusions 598 

This paper analyzes the effects of two unavoidable sources of errors upon the structural 599 

system identification by observability techniques. The first of these sources refers to the 600 

measurement errors. To simulate this error, the parametric equations of the estimated 601 

inertias were analyzed in detail in a simply supported beam. The analysis of this 602 

structure shows that: (1) Estimations in subsequent recursive steps depend on the values 603 

estimated in preceding steps. As an academic example it is showed that considering an 604 

error in single measurement increases the errors in the estimations throughout the 605 

recursive process. This effect is significantly mitigated when errors in all measurements 606 

are considered. (2) Parametric equations of the estimated parameters can be obtained. 607 

These equations are very useful to study the sensitivity of the estimated parameter. In 608 

order to make the estimations less sensitive to the errors, it is recommended to use 609 



measurements closer to the load location. The numeric analysis shows that the rotations 610 

are less sensitive to errors than the vertical deflections. This parametric approach 611 

enables the use of partial derivatives in the error analysis. (3) The loading case is of 612 

primary importance. Usually the closer the load location of the concentrated load to the 613 

inertia to be estimated the lower the sensitivity of the estimation to measurement errors. 614 

This also corresponds to the fact that, for the same loading case, the closer the location 615 

of the measurement to the boundary condition, the lower the curvature. (4) The 616 

denominator of the parametric equations of the estimated inertia depends, to a large 617 

extent, on the measurement errors. Denominators with a value close to zero lead to 618 

solutions with no physical meaning. (5) Those estimations based on the measured 619 

deflections are asymmetric. Furthermore, the asymmetry in estimates is increased 620 

throughout the recursive process. On the other hand, the second analyzed source of error 621 

refers to those simulation errors inherent in the observability analysis. To illustrate these 622 

effects two structures of growing complexity were analyzed. The simulation of these 623 

structures shows that: (1) Fluctuations in the inertias estimated are obtained because of 624 

the recursive process. This can be explained by the fact that every time that a certain 625 

inertia is underestimated, the next inertia that uses this information will tend to be 626 

overestimated to compensate the effect of the preceding one in the system. (2) The 627 

curvature of the beam plays an important role in the accuracy of the estimations. In fact, 628 

wrong estimations are obtained near points with null curvatures. The effect of the 629 

curvature requires an adequate selection of the loading cases for structural system 630 

identification by observability techniques.  631 
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Table 1: Numerical estimations of the parameters during the recursive steps and the deviations with the actual 

values obtained from the parametric equations.  

Step 1 Step 2 Step 3 

Parameter Estimation Deviation Parameter Estimation Deviation Parameter Estimation Deviation 

𝐸𝐸𝐼𝐼1�  

(kN/m2) 

15753.5 0.017% 𝐸𝐸𝐼𝐼2�  

(kN/m2) 

15750.0 -0.014% 𝐸𝐸𝐼𝐼3�  

(kN/m2) 

15753.6 0.020% 

𝑤𝑤2�  (rad) -1.1e-3 -0.002% 𝑤𝑤3�   (rad) 1.3 (rad) 0.002% 𝑤𝑤4�  (rad) 2.1 (rad) -0.001% 

𝑉𝑉1�  (kN) 36.7  0.000%       

𝑉𝑉4�  (kN) 18.3  0.000%       

 780 


