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Uncontrolled growth is a signature of carcinogenesis, in part mediated by overexpression

or overstimulation of growth factor receptors. The epidermal growth factor receptor

(EGFR) mediates activation of multiple oncogenic signaling pathways and escape

from recognition by the host immune system. We discuss how EGFR signaling

downregulates tumor antigen presentation, upregulates suppressive checkpoint receptor

ligand programmed death ligand (PD-L1), induces secretion of inhibitory molecules such

as transforming growth factor beta (TGFβ) and reprograms the metabolic pathways in

cancer cells to upregulate aerobic glycolysis and lactate secretion that ultimately lead to

impaired cellular immunity mediated by natural killer (NK) cell and cytotoxic T lymphocytes

(CTL). Ultimately, our understanding of EGFR-mediated escape mechanisms has led us

to design EGFR-specific monoclonal antibody therapies that not only inhibit tumor cell

metabolic changes and intrinsic oncogenic signaling but also activates immune cells that

mediate tumor clearance. Importantly, targeted immunotherapy may also benefit from

combination with antibodies that target other immunosuppressive pathways such PD-L1

or TGFβ and ultimately enhance clinical efficacy.
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INTRODUCTION

Cancer is characterized by uncontrolled cellular proliferation. The malignant oncogenic
transformation of cells is caused by deleterious mutations of genes that control cell growth
or activating mutations of those that favor cell division. However, unrestrained oncogenic
proliferation is also caused by overexpression of molecules that are normally present in cells under
homeostatic conditions, such as growth factor receptors. In this setting, one of the most studied
oncogenic signaling pathways that has been characterized in many types of cancer is the ErbB/Her
family of growth factor receptors that belong to the super family of receptor tyrosine kinases (RTK),
given their capacity of phosphorylating tyrosine resides in their cytoplasmic tail and transduce
extracellular signals through the activation of intracellular messengers (Linggi and Carpenter,
2006). The ErbB/Her family comprises fourmembers: EGFR (ErbB1, HER1), ErbB2 (HER2), ErbB3
(HER3), and ErbB4 (HER4) (Linggi and Carpenter, 2006). The EGFR is considered a prototypical
oncogenic growth factor receptor, since it activates multiple intracellular signaling transduction
cascades including the mitogen activated protein kinase (MAPK), phosphatidylinositol-3 kinase
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(PI3K/AKT), Janus kinase/signal transduced, and activator of
transcription (JAK/STAT) and protein kinase C (PKC) pathways
(Marmor et al., 2004; Warren and Landgraf, 2006). Furthermore,
several studies associate EGFR signaling with tumor progression
of cancer, including breast, lung, head, and neck squamous cell
carcinoma (HNSCC) and glioblastoma (Wada et al., 1990; Harari
and Yarden, 2000; Blume-Jensen and Hunter, 2001). In addition
to overexpression of wild type EGFR, some tumors also exhibit
activating mutant forms such as glioblastoma, where a variant
called EGFRvIII has been reported (Gan et al., 2013) or non-
small cell lung cancer (NSCLC) where mutations in the gene
encoding the EGFR kinase domain (T790M) have been associated
with tumor resistance (Ohashi et al., 2013). Interestingly, other
mutations such as the L858R mutation in exon 21 of the kinase
domain of EGFR in NSCLC increased sensitivity to tyrosine
kinase inhibition, however they did not improve clinical outcome
(Peng et al., 2015).

The overactivation of EGFR downstream signaling pathways
induces malignant transformation of tumor cells through
increased cell proliferation and survival, resistance to growth
inhibition or apoptosis and increased invasion and metastasis,
capabilities that are a common denominator to the majority
of tumors (Hanahan and Weinberg, 2000). Importantly,
recent work has shown evidence for adding to this list
of tumor transforming competences the downregulation of
tumor cell immunogenicity which is key mediator for immune
evasion. Indeed, the immune system plays a major role in
tumor progression, immune mediated inflammation and the
recruitment of immune infiltrating cells and their interaction
with tumor cells and surrounding stromal cells forms an
intricate cellular and molecular network called the tumor
microenvironment (TME). Therefore, cancer progression not
only depends on intrinsic growth factor signals that provide
uncontrolled proliferation but also evasion of the host’s
antitumor immunity. In this context, the concept of cancer
immunoediting originates, where tumor infiltrating immune
cells specifically recognize highly immunogenic tumor cells at
early stages of cancerous transformation and eliminate them,
however a subset of these transformed cells survives elimination
and enters the editing phase termed equilibrium. Subsequently,
evolutionary pressure selects tumor cells that can progressively
evade immune detection, leading to the escape and tumor growth
(Schreiber et al., 2011). Recognizing that the immune system
acknowledges the presence of cancer and sculpts its progress,
underlines the importance of investigating and understanding
the mechanisms by which these complex interactions occur
and justifies the development of strategies to manipulate the
host immune system in order to promote tumor control and
elimination.

In this review we will discuss how tumor cell intrinsic
oncogenic signals downstream the EGFR can lead to
immunoescape by downregulating tumor cell immunogenicity
such as diminishing HLA class I mediated antigen presentation
or providing inhibitory signals, such as checkpoint inhibition
mediated by programmed death ligand 1 (PD-L1), suppressive
cytokines that induce an exhausted phenotype or modifying the
extracellular milieu by upregulating concentrations of lactate.

Additionally, we will also discuss how monoclonal antibody
mediated EGFR inhibition can reverse immunoescape and
induce activation of effector immune cell subsets such as CD8+
T cells and NK cells.

EGFR MEDIATED IMMUNOESCAPE,
ABNORMAL SIGNALS 1, 2, AND 3

EGFR overexpression and overactivation of downstream
pathways induces oncogenic transformation. In addition
to its intrinsic oncogenic potential the EGFR also plays an
important role in evasion of tumor immunosurveillance.
Herein we present evidence to support the view that tumor
immune evasion occurs by deregulating the three fundamental
signals for an efficient immune activation: Signal 1, mediated
by HLA class I dependent antigen presentation; signal 2,
mediated by co-stimulatory receptor-ligand interaction and
signal 3, mediated by secretion of immunostimulatory soluble
cytokines.

Aberrant Signal 1
Proper antigen presentation is a major pre-requisite for
appropriate T cell responses, especially because of the key
role of this process in the generation of tumor antigen (TA)-
specific adaptive immune responses (Meissner et al., 2005;
Lopez-Albaitero et al., 2006). In the cancer setting, it has
been recently reported that EGFR downregulates the expression
of APM components and HLA class I via activation of
protein phosphatase type 11 (PTNP11) best known as SHP2
which dephosphorylates signal transducer and activator of
transcription 1 (STAT1). Less activated STAT1 translates into
reduced expression of antigen presenting machinery (APM)
and HLA class I dependent antigen presentation (Concha-
Benavente et al., 2013; Leibowitz et al., 2013). Interestingly,
inhibition or depletion of SHP2 in tumor cell lines or
treatment with IFNγ induced upregulation of phosphorylated
STAT1 (pSTAT1) and restored expression of HLA class I
and APM components. Importantly, expansion of EGFR-
specific CTL was noted upon an enhanced HLA class I
restricted antigen presentation in vitro (Leibowitz et al., 2013).
Likewise, SHP2-mediated pSTAT1 downregulation diminished
the production of Th1 cytokines by tumor cells, since its
inhibition induced increased secretion of interleukin-12 (IL-
12) p35/p40 and IFNγ-dependent CXCR3 and CCR5 binding
chemokines (Leibowitz et al., 2013). Furthermore, a second
mechanism dependent on the MAPK pathway has been reported
for downregulation of HLA class I and APM components
downstream the EGFR, where activated SHP2 dephosphorylates
GDP, inducing GTP-mediated RAS activation (Agazie and
Hayman, 2003).

Aberrant Signal 2
An aberrant co-inhibitory signal 2 is represented by PD-L1/PD-
1 pathway activation since recent studies have shown that
this axis constitutes a major suppressive mechanism to evade
immune activation and tumor clearance by downregulating
T cell activation, proliferation, survival, cytotoxicity and
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cytokine release (Tseng et al., 2001; Dong et al., 2002).
Moreover, inhibition of this pathway has proved to be clinically
relevant since blocking antibodies against PD-1 or PD-L1 have
demonstrated encouraging clinical activity in patients with
metastatic melanoma, renal cell carcinoma (RCC), non-small
cell lung cancer (NSCLC), and head and neck cancer (HNSCC),
where PD-L1 tumor expression enriched for clinical responders
(Brahmer et al., 2012; Topalian et al., 2012; Ferris et al.,
2016). Importantly, a recent study demonstrated that PD-L1
expression in NSCLC cell lines is mediated by constitutively
active mutant EGFR/KRAS-MAPK pathway (Akbay et al., 2013),
whereas in the setting of HNSCC, overexpressed wild-type EGFR
induced the expression of PD-L1 in a JAK2/STAT1 dependent
manner. Curiously, although both cancers upregulate PD-L1 in
an EGFR-dependent fashion, two different signaling pathways
were involved JAK/STAT and MAPK pathways. This interesting
finding could be explained by the unique biology of each cancer
type, where mutant EGFR/KRAS would strongly activate MAPK
pathway in NSLSC (Akbay et al., 2013). In contrast, HNSCC
with a much lower EGFR/KRASmutation burden (2%) (Stransky
et al., 2011; McBride et al., 2014; Cancer Genome Atlas Netwrork,
2015) relies more on an overstimulated wild type EGFR/JAK2
pathway for oncogenic signaling (Concha-Benavente et al., 2016).
Supporting these results is the recent finding by Zaretsky et al.
where JAK2 inactivating mutations correlated with resistance to
anti-PD-1 therapy in melanoma patients, in this setting we could
speculate that tumor cells are sculpted by the immune system
developing new strategies to evade anti-PD-L1/PD-1 pathway
blocking therapy by downregulating JAK2-mediated expression
of PD-L1 (Zaretsky et al., 2016). Interestingly, IFNγ, which
restored of HLA class I expression and antigen presentation in
tumor cells as discussed above is also a major inducer of PD-L1
expression as shown in multiple cancer types including HNSCC
(Concha-Benavente et al., 2015), fibrosarcoma (Lee et al., 2005),
glioblastoma (Han et al., 2009), and multiple myeloma cells (Liu
et al., 2007). Notably, there appears to be a crosstalk between
EGFR and IFNγ pathways regarding PD-L1 regulation at least in
HNSCC, since EGFR blockade downregulated IFNγ-dependent
PD-L1 expression (Concha-Benavente et al., 2016). Therefore,
EGFR blockade may not only diminish the tumor cell intrinsic
EGFR-induced PD-L1 upregulation but also the cell extrinsic
IFNγ-mediated signals that have been associated with CD8+ T
cell infiltration in the TME (Lyford-Pike et al., 2013; Topalian
et al., 2015). Interestingly, EGFR signaling not only induces
de novo expression of PD-L1 as shown in lung and head and
neck cancer but also promotes stabilization of PD-L1 surface
expression through glycosylation of its extracellular domain
mediated by glycogen synthase kinase 3β (GSK3β) activation
(Li et al., 2016). In this report authors show that EGFR may
induce PD-L1 surface stabilization by inhibiting GSK3β in basal-
like breast cancer cells. Moreover, gefitinib-mediated inhibition
of EGFR destabilized PD-L1 surface expression in a GSK3β
dependent fashion and enhanced tumor specific T cell immunity
measured by CD8+ T cell IFNγ and granzyme B production.
Importantly, in this setting EGFR inhibition increased efficacy
of anti-PD-1 therapy in a syngeneic mouse model (Li et al.,
2016).

Aberrant Signal 3
Signal 3 is required for an optimal effector T cell activation
mediated by soluble cytokines and chemokines secreted in the
milieu (Mescher et al., 2006). In the tumor microenvironment,
the presence of suppressive cytokines promotes unresponsiveness
of CD8+ T effector immune cell infiltrates and proliferation
of suppressive cell subsets such as regulatory T cells (Treg),
myeloid derived suppressive cells (MDSC) or tumor-associated
macrophages (TAM) (Rabinovich et al., 2007; Burkholder et al.,
2014). EGFR activation induces the constitutive activation of
signal transducer and activator of transcription 3 (STAT3), a
known oncogenic transcription factor (Grandis et al., 1998;
Schrump and Nguyen, 2001; Kijima et al., 2002). STAT3 plays
a major role in promoting tumor immune evasion since it
not only has opposite effects to immunostimulatory STAT1
but also induces the secretion of immunosuppressive soluble
cytokines that induce a tolerant TME (Wang et al., 2004;
Kortylewski et al., 2005). Previous studies showed that STAT3
mediates the expression of vascular endothelial growth factor
(VEGF), IL-6, and IL-10 in many cancer types, which induce
T cell tolerance through inhibition of DC differentiation and
maturation (Gabrilovich et al., 1996; Yang and Lattime, 2003).
In addition, IL-6, IL-10, and VEGF activate STAT3 in tumor
infiltrating immune cells, providing a feed forward mechanism
for STAT3 activation in the tumor microenvironment. An
important immunosuppressive cytokine, transforming growth
factor beta (TGFβ), is secreted by many cancers including
melanoma, breast and colon cancer and is known to prevent
cytotoxic T cell (CTL) expansion and activation (Mooradian
et al., 1990), TGFβ and IL-10 are involved in the generation
of regulatory T cells (Treg) which in turn inhibit CD8+ T
cell activation and IFNγ secretion (Nishikawa et al., 2005).
Additionally, Tregs are an important source of TGFβ and
IL-10, which once secreted to the TME further propagate
the immunosuppressive signals (Figure 1; Zorn et al., 2006;
Larmonier et al., 2007).

EGFR-MEDIATED REGULATION OF
TUMOR CELL METABOLISM AND
IMMUNOESCAPE

Tumor cells in contrast to most normal cells require large
amounts of energy to support an increased rate of uncontrolled
division. In this setting, one distinctive characteristic of cancer
cells is to accelerate glucose degradation a metabolic process
called glycolysis. Unlike normal tissues where glycolysis is
limited by oxygen levels, tumor cells can reprogram their
metabolic machinery to increase glycolysis and generate large
amounts of lactate as a byproduct, a process that has been
termed “aerobic glycolysis” and recognized as one of the
new hallmarks of cancer (Hanahan and Weinberg, 2011;
Ward and Thompson, 2012). Importantly, the lactate rich
immunosuppressive TME impairs cytolytic functions of CD8+
T cells in vitro as well as their proliferation and cytokine
production (Fischer et al., 2007). Interestingly, previous reports
from more than a decade ago linked EGFR stimulation with
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FIGURE 1 | EGFR mediated immunoescape. EGFR stimulation induces activation of phosphatase SHP2 which decreases phosphorylation of STAT1 and

subsequently expression of HLA class I and APM components. Additionally, EGFR mediated activation of JAK2-STAT1 induces expression of PD-L1. EGFR

stimulation induces activation of STAT3 and production of immunosuppressive cytokines such as IL-10, VEGF and TGFβ which in turn induce Treg expansion and

inhibition of CTL activation. Overall, EGFR signaling mediates downregulation of signal 1 and upregulation of suppressive signals 2 and 3, favoring escape from

effector T cell recognition.

enhanced aerobic glycolysis and lactate production in cancer
cells including breast cancer (Kaplan et al., 1990; Baulida et al.,
1992), however the mechanism by which the EGFR enhances
glycolysis and lactate secretion was just recently reported. Lim
et al. showed that EGFR stimulation in triple negative breast
cancer (TNBC) cells induces activation of hexokinase 2 (HK2)
and pyruvate kinase M2 (PKM2) an enzymatic isoform that is
only expressed in embryonic cells and cancer cells. These two
enzymes regulate the first and last steps of glycolysis respectively,
and promote the accumulation of glycolytic intermediaries
that ultimately enhance tumor cell proliferation. Interestingly,
accumulation of the glycolytic intermediary fructose 1, 6
bisphosphate (F16BP) in TNBC cells via the activation of

HK2 and PKM2 was found to directly engage the EGFR and
enhance its phosphorylation and activation, thereby providing
a positive feedback loop which ultimately increased lactate
production and inhibition of CTL activity. Importantly, dual
EGFR and glycolysis inhibition effectively suppressed TNBC cell
proliferation and tumor growth (Lim et al., 2016). Similarly,
work done by Makinoshima et al. showed that EGFR signaling
maintained aerobic glycolysis in lung adenocarcinoma (LAD)
cells and enhanced the extracellular acidification rate (ECAR) via
lactate secretion. Moreover, specific EGFR inhibition with small
molecule inhibitors gefitinib and erlotinib downregulated glucose
transporter 3 (GLUT3) expression and that of genes involved
in the pentose phosphate pathway (PPP) and pyrimidine
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synthesis. Overall, this study suggests that EGFR signaling
regulates global metabolic pathways in EGFR-mutated LAD
cells and may be an important target to reverse tumor cell–
derived metabolic immunosuppression (Makinoshima et al.,
2014).

Finally, EGFR activation has also been shown to upregulate
hypoxia inducible factor 1 alpha (HIF-1α), a crucial molecule that
reprograms cellular metabolism from oxidative phosphorylation
to aerobic glycolysis. Interestingly, EGFR inhibition with
monoclonal antibody cetuximab downregulated expression of
HIF-1α and lactate dehydrogenase A (LDH-A), a crucial enzyme
regulating the conversion of pyruvate to lactate. Interestingly,
this inhibition only occurred in cetuximab-sensitive but not
in cetuximab-resistant HNSCC cell lines, data that argues
in favor of a metabolic immunoescape mechanism to EGFR
inhibition of HNSCC cells mediated by lactate acidification of
the tumor milieu (Lu et al., 2013). Overall these findings support
the view that EGFR contributes to immune escape not only
by downregulating tumor cell immunogenicity (signal 1) or
providing aberrant signals 2 and 3 but also inducing an acidic,
lactate rich milieu that impairs an effective adaptive antitumor
immunity.

ACTIVATION OF ANTI-TUMOR IMMUNITY
BY ANTI-EGFR TARGETED THERAPY

EGFR activation occurs upon ligand binding, therefore
disruption of such interaction by targeted receptor-blocking
specific agents is a logical strategy to shutdown not only its
oncogenic metabolic shift and proliferative signaling but also
the pathways involved in providing aberrant signals 1, 2, and 3.
In this setting, small molecule inhibitors have been developed
for inhibiting EGFR-induced phosphorylation of tyrosine
residues of its cytoplasmic tail, two of such tyrosine kinase
inhibitors (TKI) have been approved for clinical use, gefitinib
and erlotinib (Stamos et al., 2002; Yun et al., 2007). In addition
to small molecule inhibitors, two monoclonal antibodies
(mAbs) targeting the EGFR have been approved for clinical
use, cetuximab, an IgG1 chimeric mAb and panitumumab, a
humanized IgG2 mAb, both inhibiting EGFR signaling to the
same extent (Trivedi et al., 2016). Importantly, one added benefit
of using EGFR blocking antibodies is that their interaction
with EGFR extracellular domain may also induce endocytosis
and degradation of the receptor (Wieduwilt and Moasser,
2008).

However, arguably the most important benefit of EGFR
blocking mAbs is the activation of immune system effector
cells via interaction of the antibody’s Fc portion with the Fcγ
receptors (FcγR) expressed on the surface of effector cells. In
the case of cetuximab, this is supported by the observations that
even though it interfered with growth signals, it did not induce
cell death, probably because of activation of alternative survival
pathways in cancer cells independent of the EGFR. Interestingly,
cetuximab induced tumor cell death only when NK cells were
added to in vitro co-cultures (Lopez-Albaitero and Ferris, 2007;

Lopez-Albaitero et al., 2009; Taylor et al., 2009), therefore the
major cetuximab antitumor effect seems to be immune mediated.
Studies later revealed that cetuximab IgG1 framework allows
its interaction with FcγRIIIA (CD16) on NK cells. Binding of
cetuximab to CD16 on NK cells triggers a lytic process called
antibody-dependent cellular cytotoxicity (ADCC) and IFNγ

secretion. Moreover, NK cell-derived IFNγ mediates cross talk
with DCs inducing their maturation and HLA class I antigen
presentation which subsequently induce clonal expansion of
EGFR-specific CD8+ T cells (Rafiq et al., 2002; Harbers et al.,
2007; Banerjee et al., 2008; Marechal et al., 2010; Lee et al., 2011).
Interestingly, the clinical activity of cetuximab is effective by
increasing patient survival either as monotherapy or when added
to radiation or platinum-based chemotherapy (Bonner et al.,
2006; Vermorken et al., 2007, 2008). In addition to enhancing
NK mediated cytotoxicity which is likely its most conspicuous
effect, it has been recently shown that it could also activate
neutrophils and mediate ADCC against EGFR expressing tumor
cells via interaction with FcγRIIa, interestingly, this cytotoxic
effect was FcγRIIIa genotype-dependent (Trivedi et al., 2016).
On the other hand, panitumumab has shown less clinical efficacy
than cetuximab (Mesia et al., 2015), this result may be explained
by a less potent NK cell activation induced by panitumumab
given its IgG2 framework, furthermore, its monocyte activation
capability may be innocuous to EGFR expressing tumor targets
given that monocytes are not capable of mediating ADCC.
These preclinical findings are further supported by clinical
data where patients treated with cetuximab had higher EGFR-
specific cytotoxic CD8+ T cells when compared with those
treated with panitumumab (Trivedi et al., 2016). Interestingly,
it has also been reported that cetuximab-mediated EGFR
blockade induced Treg expansion in head and neck cancer
patients which correlated with resistance to cetuximab therapy
(Jie et al., 2015), such Treg expansion was induced partially
by DC maturation and T cell receptor stimulation in the
presence of TGFβ. Interestingly, these in vitro expanded Tregs
suppressed NK cell cytotoxicity against tumor cells providing
evidence for Treg mediated immunosuppression in the tumor
microenvironment.

CONCLUSIONS

Several studies support the view that tumors evolve intrinsic
mechanisms to evade immune recognition. In this review we
presented evidence for the ErbB/Her receptor family member
the EGFR as an important driver of immunoescape by
downregulating crucial immune activating signals 1, 2, and 3 and
by inducing a metabolic shift of tumor cells to aerobic glycolysis
and lactate secretion into the tumor microenvironment.
Increasing our understanding of the mechanisms that tumor cells
use to escape immunosurveillance will allow strategies to reverse
EGFR mediated immune escape. Importantly, targeted mAb
immunotherapy has the advantage of not only suppressing tumor
intrinsic suppressive signals but also activating tumor infiltrating
immune system cells which has shown clinical efficacy in many
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types of cancer. However, the majority of EGFR-overexpressing
tumors have a complex genetic background with a significant
level of compensatory oncogenic pathways regulating cell
metabolism, proliferation, trafficking, and survival. Therefore,
combination therapy not only targeting the EGFR but also other
important molecules that regulate cellular immune responses
in the TME such as the PD-L1/PD-1 axis or TGFβ and
other metabolic immunosuppressive byproducts such as lactate
should enhance immune responses and improve their clinical
efficacy.
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