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Extended Abstract

Relevant information from networked systems can be obtained by analyzing the spectra of
matrices associated to their graph representations. In particular, the eigenvalues and eigen-
vectors of the Markov matrix and related Laplacian and normalized Laplacian matrices allow
the study of structural and dynamical aspects of a network, like its synchronizability and
random walks properties.

In this study we obtain, in a recursive way, the spectra of Markov matrices of a family of
rotationally invariant weighted Sierpiński graphs. From them we find analytic expressions for
the weighted count of spanning trees and the random target access time for random walks on
this family of weighted graphs.

Construction of Wt. The rotationally invariant weighted Sierpiński graph Wt, t ≥ 0, is
constructed as follows [1]:

For t = 0, W0 is K3 (a 3-cycle) and its three edges have weights a, b, c.
For t ≥ 1, Wt is obtained by recurrence by joining three copies of Wt−1 and identifying

two vertices of each copy with one of the vertices of each of the other two copies.
The construction process, as well as the distribution of edge weights (a, b, c), for the

rotationally invariant case is shown in the next figure.
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The order of Wt is Nt = (3t+1 + 3)/2 and the total number of edges is Lt = 3t+1. At each
iteration 3t new vertices are added to the graph.

Spectrum of the probability transition matrix for random walks on Wt. At denotes the
adjacency matrix of the weighted graph Wt and has elements At(i, j) = w(i, j), where w(i, j)
is the weight of edge (i, j). The degree matrix of Wt, denoted by Dt, is a diagonal matrix
such that Dt(i, i) =

∑
j w(i, j). The probability transition matrix for random walks on Wt,

or Markov matrix, is defined as Mt = D−1
t At.

When a = b = c,Wt degenerates into the unweighted Sierpiński graph St. The spectrum of
the transition matrix of St, denoted M t, has been determined elsewhere [2], and the resulting
recursive equation for the eigenvalues is λ(t) = λ(t+1)

(
4λ(t+1) − 3

)
where λ(t+1) 6= − 1

4 ,±
1
2 .

This equation gives a relationship between the spectra of the transition matrices at steps t
and t+ 1, i.e., each eigenvalue of M t+1, except for the exceptional eigenvalues {− 1

4 ,
1
2 ,−

1
2},

corresponds to an eigenvalue of M t. The multiplicities of the exceptional eigenvalues are:
mMt
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)
= 0, t > 0. Thus, in [2] the spectrum of

M t is given as σ(M t) = {1,− 1
2}
⋃(⋃t−1

i=0 Q−i{
1
4}
)⋃(⋃t−2

i=0 Q−i{−
1
4}
)
where Q−iA denotes

the preimage of a set A under the i-th composition power of the function Q(x) = x(4x− 3).
With a similar technique, we partition the matrix Mt into blocks corresponding to the

transition probabilities among old and new vertices, with respect to the last iteration, and
study the Schur complement ofMt. In the next theorem, we relate the eigenvalues ofMt with
those of Mt to find the complete spectrum of Mt. We have also obtained the multiplicities
for all the eigenvalues of Mt.



Theorem 1 Any eigenvalue λ(t−1) of M t−1, is related to several eigenvalues of Mt, denoted
{λ(t)

i }, and they are the preimage of λ(t−1) under the function R given by

R(z) =
(a+ b)z(sz − 2c)(sz + c)− (a2 + b2)sz + c(a− b)2

2(a2 + b2)c+ 2absz

where s = a+ b+ 2c and z /∈ {− cs ,
2c
s ,−

(a2+b2)c2

abs }, the exceptional eigenvalues of Mt.

Weighted count of the spanning trees of Wt. A spanning tree ofWt is a subgraph that includes
all the vertices of Wt and is a tree. Let Υ(Wt) denote the set of spanning trees of Wt. For
T ∈ Υ(Wt), we define its weight w(T ) as

∏
e∈T we, where we denotes the weight of edge

e. Let τ(Wt) =
∑
T ∈Υ(Wt)

w(T ) denote the weighted count of the spanning trees of Wt.

From [3], τ(Wt) = (
∏Nt−1

k=1 γ
(t)
k

∏Nt

i=1 d
(t)
i )/

∑Nt

i=1 d
(t)
i , where 0 = γ

(t)
0 < γ

(t)
1 ≤ · · · ≤ γ(t)

Nt−1
are

the eigenvalues of Lt, the normalized Laplacian matrix of Wt, and d
(t)
i = Dt(i, i). Obviously,

the eigenvalue spectrum of the matrix D
1
2
t MtD

− 1
2

t = (I −Lt) is the same as the spectrum of
Mt. Thus, for each k, (1− γ(t)

k ) is an eigenvalue of Mt. We find the following result:

Theorem 2 The number of spanning trees of Wt, t > 0, is

2
3t−1−1

2 3
3t+2t−1

4 5
3t−1−2t+1

4 (a+ b)3t−1

(ab+ ac+ bc)
3t+1

2 (a+ b+ 3c)
3t−1−1

2 .

This result coincides with the the values obtained from generating functions by D’Angeli and
Donno [1], and verifies the correctness of our computation of the spectrum of Mt.

Random target access time for random walks on Wt. Let π = (π1, π2, · · · , πNt
) denote the

stationary distribution for random walks onWt, which is an eigenvector ofMt associated to the
eigenvalue 1. Let Hij(t) represent the mean first passage time from vertex i to vertex j. The
random target access time for random walks onWt, denoted by Ht, is defined as the expected
time for a walker starting from vertex i to reach for the first time a target vertex j, selected
stochastically according to the stationary distribution. Thus, Ht =

∑Nt

j=1 πjHij(t). The
random target access time, which reflects the structure of the the entire graph, is independent
of the choice of the starting vertex. It has been proved [5] that Ht can be expressed in terms
of the nonzero eigenvalues of Lt, given as Ht =

∑Nt−1
i=1

1

γ
(t)
i

. We find the following result:

Theorem 3 The random target access time Ht for random walks on Wt is

s2 − c2

ab+ ac+ bc

(
14 · 5t−2

3
− 3t−1

5
+

3

5

)
+
s(3t−1 − 1)

2(s+ c)
−s(3 + 3t−1)

2(a+ b)
+

abs(3t + 1)

2(ab+ ac+ bc)(a+ b)
+

2

3
,

where s = a+ b+ 2c and t > 1.
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