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The performance of EEG source reconstruction has benefited from the increasing use

of advanced head modeling techniques that take advantage of MRI together with the

precise positions of the recording electrodes. The prevailing technique for registering

EEG electrode coordinates involves electromagnetic digitization. However, the procedure

adds several minutes to experiment preparation and typical digitizers may not be

accurate enough for optimal source reconstruction performance (Dalal et al., 2014).

Here, we present a rapid, accurate, and cost-effective alternative method to register

EEG electrode positions, using a single digital SLR camera, photogrammetry software,

and computer vision techniques implemented in our open-source toolbox, janus3D. Our

approach uses photogrammetry to construct 3D models from multiple photographs

of the participant’s head wearing the EEG electrode cap. Electrodes are detected

automatically or semi-automatically using a template. The rigid facial features from these

photo-based models are then surface-matched to MRI-based head reconstructions to

facilitate coregistration to MRI space. This method yields a final electrode coregistration

error of 0.8 mm, while a standard technique using an electromagnetic digitizer yielded

an error of 6.1 mm. The technique furthermore reduces preparation time, and could

be extended to a multi-camera array, which would make the procedure virtually

instantaneous. In addition to EEG, the technique could likewise capture the position of

the fiducial markers used in magnetoencephalography systems to register head position.

Keywords: photogrammetry, 3D models, EEG, MEG, coregistration, electrode position, janus3D

INTRODUCTION

Brain source reconstruction of EEG scalp potentials has benefited from the increasing use of
advanced head modeling techniques. In addition, combining the use of MRIs together with
precise positioning and coregistration of recorded electrodes has increased source reconstruction
performance. The localization of deep brain sources may especially benefit from accurate electrode
determination because it affects the solution of the inverse problem, eminently when the signal to
noise ratio (SNR) is low (Wang and Gotman, 2001; Koessler et al., 2008). Several methods exist for
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registering sensor positions, including manual measurement
approaches, based on electromagnetic digitization, infrared,MRI,
ultrasound, and photogrammetry (Le et al., 1998; Koessler et al.,
2007; Zhang et al., 2014). However, final electrode determination
accuracy varies widely across those methods. As Adjamian et al.
(2004) demonstrated, fiducial-based coregistration, relying solely
on anatomical landmarks produces remarkable displacements on
final alignments of electrodes. Beltrachini et al. (2011) contended
that deviations of electrode positions of less than approximately
5 mm result in negligible dipole source localization error.
Another aspect to consider in quantifying source reconstruction
performance is the resulting source SNR under realistic
conditions of low sensor SNR. With increasing agreement of the
true source configuration with the head model (which is heavily
influenced by sensor coregistration accuracy), source SNR greatly
improves, effectively lowering the detection threshold for weak
sources (Dalal et al., 2014). Laboratory protocols must also
take practical considerations into account. Factors important
in designing EEG lab protocols often include preparation time,
spatial and practical demands, as well as equipment cost and
operational complexity (Russell et al., 2005; Koessler et al., 2011;
Qian and Sheng, 2011; Reis and Lochmann, 2015). Routinely
scanning volunteers with MRI with an EEG cap in place,
despite its high accuracy, is not practical for many research
labs depending on laboratory proximity, scanner availability, and
potential scanning costs. Common electromagnetic digitizers, in
turn, may not have sufficient accuracy for optimal performance
(Dalal et al., 2014; Vema Krishna Murthy et al., 2014).

Photogrammetry using ordinary consumer-grade digital
cameras can provide a cost-effective and accurate solution, and
has already been used for a variety of applications in fields such as
geomorphology or archaeology. For example, it has been used to
create height maps of landscapes (Javernick et al., 2014), digitize
cultural artifacts and monuments (McCarthy, 2014), and create
cinematic effects like “bullet-time,” originally featured in The
Matrix (1999). Existing applications related to neurophysiology
include the localization of intracranial EEG electrode arrays
in neurosurgery patients (Dalal et al., 2008). However, to
the best of our knowledge, there are no low-cost, easy-to-use
solutions employing photogrammetry-based scalp EEG electrode
localization in practice. Qian and Sheng (2011) reported a proof-
of-concept using a single SLR camera to determine EEG electrode
positions by installing two planar mirrors forming an angle
of 51.4◦. A limitation of this approach is its high dependence
on the precise mirror configuration and relative displacement
of the measured head, and its use with human participants
has not yet been reported. By using a similar procedure but
employing a swivel camera over a head model, Baysal and
Şengül (2010) demonstrated a rapid and accurate localization
of sensor positions. However, electrode positions were again
simulated using colored circles on an even scalp surface. The
actual detection of electrodes on a real subject wearing an EEG
cap has not been previously demonstrated. In 2005, Russell et
al. proposed a new photogrammetry-based technique featuring
11 cameras mounted on a dome-shaped structure that is able to
simultaneously capture images from different view angles around
the participant’s head. Although this system provides highly

accurate EEG sensor positions, the proprietary software limits its
use to a specific kind of EEG cap, and requires significant time
to complete since the experimenter must manually select each
electrode on the respective images.

Here, we present a rapid, accurate, and low-cost alternative
method to register EEG electrode positions, using a single
digital SLR camera and computer vision techniques implemented
in our open-source toolbox, janus3D. Our method is based
on photogrammetry, which has been demonstrated to provide
highly accurate results with low-cost digital cameras (Baysal
and Şengül, 2010; Qian and Sheng, 2011). Based on 2D
DSLR camera images, 3D head models of subjects wearing
an EEG cap are generated employing structure-from-motion
(SfM) photogrammetry software. Electrode positions of a replica
head model are determined using the photogrammetry-based
approach and a common electromagnetic digitizer. Finally,
electrode position accuracy and coregistration accuracy are
analyzed and compared. Additionally, we introduce janus3D,
a new MATLAB-based open source toolbox. This software
was implemented as a GUI to allow the determination of
highly accurate EEG sensor positions from the individual
3D-photogrammetry head models. Furthermore, it includes
coregistration algorithms to align the models with their
corresponding individual MRIs, as well as automatic template-
based electrode labeling.

METHODS AND MATERIALS

To evaluate the accuracy of our novel approach, we applied
the method to a 3D printed full-scale replica head model of an
adult subject wearing a 68-electrode EEG cap (Sands Research
Inc., El Paso, TX, USA), as described in Dalal et al. (2014).
The 3D-printed replica head was created after digitizing the
subject’s head with a high-resolution 3D laser scanner employing
fringe projection (FaceSCAN3D, 3D-Shape GmbH, Erlangen,
Germany). This device has a measurement uncertainty of 0.1
mm. The obtained mesh was 3D-printed and the replica head
was scanned a second time to generate a mesh without the
imperfections caused by the printing process (e.g., offset due to
the thickness of the 3D printing filament used). On thismesh, two
researchers independently determined the electrode positions in
3D software. The two sets of electrode positions were averaged
and used as “ground truth” in the following analyses. A more
detailed description on how the ground truth electrodes were
obtained can be found in Dalal et al. (2014).

Our approach uses a single DSLR camera to capture 2D
images that are necessary for the photogrammetry-based 3D
reconstruction. Given that the replica head was printed in a
uniform off-white color, but the reconstruction relies on color
difference information, it was necessary to color the replica “cap.”
The fabric of the replica EEG cap was subsequently colored
similar to a real cap, also serving to provide sufficient contrast
crucial for later texture-based automatic electrode detection.

Fifty-six high-quality photographs of the replica head were
captured using a 24-megapixel DSLR camera (Sony Alpha 65,
Sony Corporation, Minato, Tokyo, Japan) equipped with a Sony
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DT 3.5–5.6/18–55 mm SAM II lens (35 mm focal length)
mounted on a tripod. The exposure index was kept below ISO
800 to manage image noise. Aperture size was fixed at f/18 to
avoid focal blur and maintain consistent optical properties across
the photos. Motion blurring was reduced by firing the camera
using a wired remote release. The replica head was placed in
front of a 6’×9’ chroma key green screen backdrop fixed on the
laboratory wall. Photos were taken by positioning the camera
at 4 different height levels, in which the camera approximately
described angles between 0◦ and 45◦ relative to the horizontal
plane, in steps of about 15◦. At each height level, the replica was
rotated around its vertical axis in steps of about 20◦–30◦ before
taking a new photo. If necessary, the position of the tripod was
slightly adjusted to fit the model into the camera’s field of view. A
schematic depiction of this procedure can be found in Figure 1A.

The reconstruction of the 3D mesh was performed using
the commercial 3D photogrammetry software “PhotoScan” by
Agisoft Agisoft LLC, St. Petersburg, Russia (2016). In general,
any photogrammetry-based 3D reconstruction software can be
used. However, PhotoScan was chosen because of its comfortable
usability and fast reconstruction performance. It is able to
compute 3Dmodels based on the initial information provided by
photographs and basic intrinsic features like focal length values,
which are stored in the Exif metadata. Although prior camera
calibration is recommended by the developer, it had little impact
on the final results when the amount of pictures was sufficient
(that is around 35 or more) and was therefore omitted from
our final protocol. The implemented algorithm searches salient
structures across all photographs and identifies matching points
that are used to determine the camera position for each shot
relative to the remaining.

FIGURE 1 | (A) Schematic illustration of the image capturing process. The

subject moves in front of a chroma key greenscreen while sitting on a swivel

chair. Capturing images from different height levels ensures coverage from the

top of the head. (B) A picture—mask pairing as used by Agisoft PhotoScan.

Setting areas to a value of 0 masks the background, whereas the object is

defined by setting respective areas to a value of 1.

To prevent faulty reconstructions and to reduce processing
time and the amount of extraneous feature information, we
masked irrelevant features in all photos (i.e., all information
outside the object of interest) beforehand. For this purpose, we
automatically created a binary imagemask for each single picture,
using an appropriate chroma key threshold. The respective
threshold was selected automatically, but can be adjusted to
increase contrast, which in the present case was not necessary.
After importing all images into PhotoScan, they were coupled
with their corresponding masks. Figure 1B depicts an example
of a picture-mask pair for a human subject.

First, the algorithm creates a matching point cloud (MPC) and
computes the corresponding set of camera positions based on
that information. Afterwards, the MPC is densified by extracting
additional points from corresponding high-resolution images in
relation to each camera position. On the basis of this dense
point cloud (DPC), PhotoScan generates a 3D polygonal mesh
representing the object’s surface. By following this procedure,
we obtained a dense mesh of the replica’s surface consisting of
1,717,422 faces and 859,513 vertices. Texture information was
obtained by generic mapping after the geometry was computed.
The final textured model was exported as Wavefront Object
format (.obj) associated with a texture image file. Figure 2A
depicts the model of the replica head resulting from the described
procedure. For comparison, Figures 2C,D display examples of
models obtained after applying the same procedure to human
subjects wearing an ANTWaveguard 128 electrode cap or a facial
MEG localization coil respectively.

To evaluate the quality of the obtained replica mesh, we
applied an iterative closest point (ICP) algorithm (Besl and
McKay, 1992) to the reconstructed 3D model generated by
PhotoScan and the ground-truth 3D model obtained from the
second scan of FaceSCAN3D. Before applying the ICP algorithm,
the reconstructed 3D model is scaled using the same procedure
as will be explained below when discussing MRI coregistration.
After initial registration, the ICP algorithm attempts to minimize
the sum of the squared distances for each point of the source
point cloud to the closest point of the reference point cloud by
a combination of translation and rotation, yielding a minimal
distance solution. We evaluated the accuracy for each vertex of
the reconstructed model, by localizing the closest vertex point in
the ground-truth model and separately computed the offset in
each orthogonal direction (L1-norm). A schematic depiction of
this evaluation can be found in Figure 3A.

Further we studied the influence of the number and
resolution of the pictures on the accuracy of the model
reconstructed with PhotoScan (Figure 3B). For this purpose, we
repeated the reconstruction procedure using downsampled sets
of pictures where each factor was independently manipulated.
To downsample image count (Dimg), we removed pictures
in steps of 4, trying to keep a homogeneous coverage of the
replica head. This resulted in 12 downsampled sets ranging
from 56 images (full coverage) to 12 images, all with 24
megapixels. Image resolution (Dres) was downsampled using the
same amount of 56 photographs. The resolution was reduced
in software in steps of 4 megapixels, ranging from 24 to 8
megapixels. Additionally, we included in our analysis common
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FIGURE 2 | (A) Half textured 3D mesh of the replica head generated from 56 photographs. The white surface shows the untextured mesh and the dark red surface

represents the texture we added. (B) Coregistration of the photogrammetry-based 3D reconstruction to structural MRI. The checkerboard surface was generated

from the scalp surface of the segmented MRI and the glassy surface from the photogrammetry-based 3D reconstruction. Both models were coregistered using

janus3D. (C) Example of a mesh obtained from a human subject wearing an ANT Waveguard 128 EEG cap. (D) Example of a mesh obtained from a human subject

with an electrode attached to the nasion as commonly used for MEG head position measurement. The meshes were generated from 43 (C) or 55 (D) photographs,

applying the same reconstruction procedure.

image resolutions such as 4K, 1080p, and 720p, corresponding
to 7.2, 1.75, and 0.78 megapixels respectively. This procedure
resulted in 8 different sets of downsampled images. For later
comparison, the downsampling rate was normalized by dividing
the amount of pixels (image resolution × image count) by the
highest value (24 megapixels × 56 pictures) and subtracting
this value to 1. Hence, both 56 pictures at 12 megapixels
resolution and 28 pictures at 24 megapixels correspond to
50% downsampling rate. Downsampling rates are indicated as
values ranging from 0 (full information) to 1 (no information).
Table 1 lists all downsampling steps including their respective
downsampling rate. For each set of pictures, we registered the
model resolution and the processing duration. All downsampled
models, except those generated with image count of 12 and 16
pictures, were compared with the original one and the average
mesh deviation was obtained.

Given that the reconstructed models showed slightly different

mesh extensions, mismatching parts acrossmeshes were removed

to facilitate the computation of the average distance between
the respective meshes after ICP based fine registration. Those
extensions can occur at the outer boundary of the mesh because
the respective 3D models generated with photogrammetry
cannot be obtained in isolation. For example each set of images
may contain different information from objects surrounding
the object of interest. Given that the surrounding objects are
not sampled completely (e.g., the surface on which the object
of interest is placed) the reconstructed raw models may be
slightly different at the borders that are in contact with other

surfaces. Removed parts assured that all final meshes covered the
same area from the original object (i.e., full head/face including
electrodes). Thus, the removal did not influence the process itself,
but made the meshes comparable. Note that our purpose was
to measure errors regarding the reconstruction of the scanned
object and not the overall scene. Figure 4C depicts the original
full resolution model, surrounded by the respective part that was
removed depending on Dimg.

Electrode position accuracy was obtained from the highest-
resolution model by coregistering the 3D model to the individual
MRI first and acquiring the respective electrode positions
afterwards. Note that accurate coregistration is critical for
acquiring accurate EEG electrode positions.

First, the 3D model was reoriented and rescaled from
PhotoScan’s arbitrary coordinate system into MRI space.
Therefore, it was crucial to correctly select features that are shared
by the reconstructed mesh and the rendered MRI. It has been
proposed that face-to-face matching works best when selections
include parts from below the nose to upper facial regions—
excluding cheeks—as illustrated in previous studies (e.g., Kober
et al., 2003; Koessler et al., 2011). Thus, parts around the nose
bone (i.e., forehead, cheekbones and eyebrows) turned out to be
optimal, due to their high rigidity. We used the point clouds of
the selected facial segments to compute a scaling factor between
the 3D-model and the MRI. For this purpose, we divided the
mean L2-norm (i.e., the Euclidean distance) between each vertex
point vMRI

i from the MRI segment and its centroid CMRI by the

mean Euclidean distance between each point vmodel
i from the
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FIGURE 3 | Workflows followed for application and evaluation of the respective methods. (A) Comparison between the ground truth and the

photogrammetry-based 3D model to obtain the reconstruction error. (B) Evaluation of the downsampled models regarding image count (Dimg) or image resolution

(Dres) by comparison with the ground truth model to obtain respective reconstruction errors. (C) Application workflow to obtain electrode positions from

photogrammetry-based 3D models. (D) Determination of electrode positions with a digitizer and the photogrammetric method, and comparison with the ground truth

positions to obtain the localization errors. (E) Procedure for evaluating the coregistration accuracy. ICP, Iterative closest point algorithm; L1, L1-norm to compute the

offset of each vertex in each orthogonal direction; L2, L2-norm to compute Euclidean distance between vertex points.
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TABLE 1 | Overview downsampling.

Image count Megapixel Dimg/Dres Error in mm

56 24 0.00 /

52 24 0.07 0.07

48 24 0.14 0.09

44 24 0.21 0.11

40 24 0.29 0.13

36 24 0.36 0.14

32 24 0.43 0.16

28 24 0.50 0.19

24 24 0.57 0.20

20 24 0.64 0.22

[16] 24 0.71 /

[12] 24 0.79 /

56 20 0.17 0.12

56 16 0.33 0.14

56 12 0.50 0.17

56 8 0.67 0.21

56 7.20 0.70 0.23

56 1.75 0.93 0.46

56 0.78 0.97 0.62

Numbers in brackets indicate that a full model was not reconstructed. All other datapoints
correspond to those in Figure 4B. Downsampling rates are given as values from 0 (full
information) to 1 (no information) relative to the full-resolution model.

3D-model segment and its centroid Cmodel, as indicated by the
following equation:

sxyz =

∑NMRI
i= 1 ||(vMRI

i − CMRI)||/NMRI

∑Nmodel
i= 1 ||(vmodel

i − Cmodel)||/Nmodel

Each centroid was defined as the mean coordinate of all
points within each segment, calculated across each dimension
separately. Then, all points of the 3D model were multiplied by
this scaling factor. Afterwards both segments were coregistered
by applying an ICP algorithm. A rigid body transformation
matrix transforming the facial selection of the model to the MRI
was obtained. This transformation matrix was applied to the
whole 3D model. An example of this step is shown in Figure 2B.

Identifying electrode shapes on the textured 3D model took
place hereafter, by recognizing circular structures on the mesh
surface from various view angles. This was achieved by adding
a binarized version of the model’s texture to the mesh. The
binary texture was created by thresholding the model’s texture
to maximize the contrast difference between electrodes and
cap. From 10 different perspectives, a 2D Hough transform
(Yuen et al., 1990; Atherton and Kerbyson, 1999) for circular
shape detection was performed, as implemented in the function
“imfindcircles” from MATLAB’s Image Processing toolbox.
Hereby, multiple view angles can compensate for ellipsoid
electrodes at occluding boundaries of the head. Those points
were back-projected into 3D space yielding the final electrode
positions. Five slightly displaced electrodes were manually
corrected on a 3D representation of the textured mesh.

In our experience, the amount of electrodes that need
manual adjustment is around 5% of all electrodes (depending
on the contrast between electrodes and the surrounding texture).
However, since electrode positions can be manually selected on
a textured representation of the mesh, electrode selection can be
done precisely due to instant visual feedback.

In addition, electrodes were labeled automatically, based on
a majority vote. For this purpose, seven independent sets of
template electrodes were used. Those were coregistered using
two automatically detected landmark electrodes (Fpz and Oz)
followed by an ICP affine registration. The respective label was
selected according to the label of the closest distance of the
electrode to be labeled to each of the sets of template electrodes.
This yields seven proposed labels of which the one was chosen
that would receive the most “votes,” leading to an inaccuracy
of around 5%. However, for the automatic labeling algorithm to
work properly, it is crucial that electrodes that need to be labeled
and the respective sets of template electrodes are in accordance
with respect to number and relative position of electrodes. This
automatic labeling procedure was implemented and performed
in janus3D.

Figure 3C depicts the full workflow used to coregister and
obtain EEG electrode positions out of individual MRIs and 3D
models.

We estimated the error committed during the determination
of EEG electrode positions and compared it to the performance
of an electromagnetic digitizer, ANTNeuro Xensor (ANTNeuro,
Enschede, Netherlands). Using the stylus pen, two experienced
experimenters registered electrode positions 3 times directly
on the replica. One electrode (TP10) was poorly reproduced
on the replica head and was therefore removed from further
analyses. The remaining 67 electrode positions were coregistered
to the individual MRI using NUTMEG (Dalal et al., 2011),
based on common fiducial points (i.e., nasion and pre-auricular
points). For each method, Euclidean distances between electrode
positions and the ground truth positions were determined
(L2-norm). Both methods were compared applying Wilcoxon’s
signed-rank tests to the respective deviations. Figure 3D gives
an overview of the steps used to compare the accuracy of both
methods.

The coregistration error was distinguished from the
method-specific localization error. Note that to determine
the electrode positions using the electromagnetic digitizer and
the photogrammetry-based method, it is necessary to apply
different coregistration approaches, which are based either on
the fiducial points or matching of the facial surface, respectively.
To compare the accuracy of both coregistration approaches, we
repeated the coregistration on spatially shifted versions of the
3D model and the electrode positions determined previously,
together with the fiducial points. The spatial shifts were achieved
by applying random linear transformations, including rotations
between 1◦ and 360◦ and translations between 1 and 100
mm for each orthogonal direction. Additionally, a random
scaling factor between 1 and 5 was applied to the 3D model to
transpose it into an arbitrary coordinate system, simulating the
PhotoScan reconstruction. Next, we calculated the Euclidean
distances between the original electrode positions and the
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FIGURE 4 | (A) 3D meshes indicating the distance to the closest vertex point from the reconstructed model to the ground truth model obtained from FaceSCAN3D.

Difference values are plotted on the ground truth model. Vertex point distances are color coded, ranging from 0 mm to 2.95 mm (the 95th percentile). (B) Descriptive

curves for downsampling image count (Dimg) and image resolution (Dres). The blue and green lines indicate the quadratic fitting curves for the respective data. Dotted

and dash-dotted lines indicate the respective 95% confidence interval of the fitting curves. X-axis values represent the relative downsampling rates corresponding to

Table 1. Top left plots the MPC density relative to the full-resolution model, top right likewise for DPC density, bottom left for overall time consumption relative to the

full-resolution model and bottom right for the average deviation to the full-resolution model in mm. (C) An example showing the area that needed to be removed in

order to make the meshes covering a comparable area for each downsampling step for image count. (D) Additionally loss of vertex points in order to make the

meshes covering a comparable area for each downsampling step (Dimg). The dashed area indicates the not interpretable result of having a negative loss of

information as a function of downsampling. At 50% downsampling, 7.8% of spatial information was lost.

electrode positions after coregistering the modified versions.
Finally, we compared both sets of Euclidean distances using
Wilcoxon’s signed-rank tests to obtain an estimation of the
coregistration error committed in both methods (see also
Figure 3E).

Pure electrode position accuracy was evaluated by ICP
aligning each set of electrodes to the ground truth electrode set
and tabulating the residual error (i.e., Euclidean distance) for
each electrode position. Subsequently, the performance of the
coregistration methods were evaluated with respect to each other
by applying Wilcoxon’s signed rank test to these residual errors.

Electrode determination andMRI coregistration as described,
were implemented and performed in janus3D. Furthermore,
this toolbox includes image-processing functions to facilitate
the creation of binary masks from the photos captured by
the DLSR camera. janus3D allows importing 3D models in
Wavefront OBJ format (Wavefront Technologies, Toronto,

Canada) and MRIs in NifTI file format. The software
automatically generates a 3D mesh derived from the MRI’s
scalp surface calling the Fieldtrip functions “ft_read_mri,”
“ft_volumesegment,” and “ft_prepare_mesh” setting the method
to “projectmesh” (Oostenveld et al., 2011).

A graphical user interface (GUI) is provided to allow
the visualization and manipulation of the rendered MRI and
reconstructed 3D model. After a manual pre-orientation into
MRI space, it is possible to select similar facial sections in both
meshes that will be coregistered employing an ICP algorithm.
If necessary, manual corrections can take place hereafter, as
the software provides functions for translation, rotation and
scaling. Electrode determination and labeling are facilitated by
comfortable GUI functions. The resulting electrode positions
are provided as raw model positions and projected orthogonally
onto the MRI’s surface. For automatic labeling of arbitrary EEG
cap layouts, janus3D includes an easy-to-use template builder.
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Figure 5 illustrates the workflow of the whole process, depicting
example screenshots for each step. janus3D requires MATLAB
2015a including the Image Processing and Computer Vision
System Toolboxes and Fieldtrip (Oostenveld et al., 2011). It is

compatible with all platforms running MATLAB and is available
as standalone application for Mac OSX and Linux. janus3D
is available at https://janus3d.github.io/janus3D_toolbox/ under
the MIT license.

FIGURE 5 | Flowchart depicting the general janus3D work flow.
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RESULTS

We evaluated the accuracy of the 3D reconstruction by
computing the minimal distance between each vertex point of the
reconstructed model obtained from PhotoScan and the ground
truth model obtained from FaceSCAN3D. The average distance
across all vertex points was 0.90 mm (median: 0.52 mm; SD: 1.00
mm). 95% of all vertex points showed a deviation smaller than
or equal to 2.95 mm. Figure 4A depicts this difference for each
vertex point represented on the surface of the second scan using
FaceSCAN3D.

The influence of image count and image resolution are
depicted in Figure 4B (top left) for MPC density, (top right)
the respective face count of the mesh, (bottom left) the over-
all processing time consumption and (bottom right) the average
deviation relative to the model with highest image count and
resolution. MPC density reduction was more pronounced for
Dimg than for Dres, whereas DPC density reduction was more
pronounced for Dres. Although a 50% downsampling in both
cases meant the same total amount of pixels contributing to
the reconstruction, the MPC was 2.6 times denser in the Dres
condition than in Dimg (Figure 4, top left panel) whereas
the final mesh resolution, expressed by the face count, was
1.6 times higher for Dimg compared to Dres (Figure 4A, top
right panel). The overall reduction in processing time was
similar for Dimg and Dres. The mesh accuracy diminished
with increasing Dimg downsampling, although at a low rate,
reaching a maximal deviation of 0.22 mm. Dres showed
remarkably low accuracy in the last two downsampling steps:
at 1080p and 720p resolution, the deviation was of 0.46 and
0.62 mm, respectively. When the resolution was kept above
4K (equivalent to 7.2 MP), mesh accuracy was only influenced
slightly, culminating at 0.23 mm. A detailed overview of error
values related to the actual downsampling rates can be found in
Table 1.

The mean (SD) difference between electrode positions
determined using the photogrammetry-based approach and
the ground truth was 1.3 mm (0.6 mm). Electrode positions
obtained using the ANT XensorTM electromagnetic digitizer
unveiled a mean difference of 7.8 mm across the 3 measurements
(mean [SD]: 7.6 mm [2.2 mm], 8.0 mm [2.5 mm], 7.8 mm
[2.1 mm]). Indeed, Wilcoxon’s signed rank test revealed that
electrode positions determined with the photogrammetry-based
approach had significantly smaller errors than those measured
with the electromagnetic digitizer (p < 10−4, for all 3
measurements). Figure 6A depicts the deviation for each single
electrode of the respective method relative to the ground truth
electrodes (top) for the photogrammetry-based approach and
(bottom) for the first measurement using the electromagnetic
digitizer.

We also evaluated the accuracy of the coregistration methods
used for each approach on spatially shifted versions of the
electrode positions. The mean (SD) deviation of the new
electrode positions compared with the original ones was 0.78mm
(0.24 mm) and 6.14 mm (0.65 mm) after coregistration based, on
facial surface matching and the fiducials, respectively. Wilcoxon’s
signed rank test revealed that errors of electrode positions due

FIGURE 6 | (A) Topographies for deviations of all electrode coordinates in

mm. Those determined with the photogrammetry-based approach (top) had a

mean deviation of 1.3 mm whereas the deviation obtained from the

electromagnetic digitizer (bottom) was 7.6 mm. (B) The average deviation (SD)

for both methods was 1.3 mm (0.6 mm) for the photogrammetry (A—top) and

7.6 mm (2.2 mm) (A—bottom), 8.0 mm (2.5 mm) and 7.8 mm (2.1 mm) for the

electromagnetic digitizer. Error bars indicate the respective standard deviation.

to coregistration were significantly smaller for surface matching
compared to the fiducial-based method (p < 10−4).

ICP aligned pure electrode positions differed over all 3
measurements (mean [SD]: 1.48 mm [0.76 mm], 1.58 mm
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[0.91mm], 1.37 mm [0.68 mm]). Wilcoxon’s signed rank test
revealed a significant (p < 0.01) difference to the model’s
deviation that was 1.00 mm (0.54 mm) for all 3 comparisons.

DISCUSSION

Compared to the ground truth model, the photogrammetry-
based 3D reconstruction deviates 0.52 mm (median) over all
vertex points. This error is partially setup-dependent because
both the amount and the resolution of the pictures that are
used for generating the model can influence the reconstruction
performance. Although a resolution of 7.2 megapixels yields
negligibly small deviations of 0.23 mm compared to the full-
resolution model, the deviation at 1080p (0.78 megapixels) and
720p (1.75 megapixels) increases up to 0.62 mm. Despite the
increased error rate at the lowest resolution is relatively small, the
final 3D meshes appear slightly smeared, due to the significantly
lower resolution of the models. Downsampling image count
caused negligible effects on the model’s error. Nevertheless,
the matching point algorithm was affected by image count. In
fact, a reduction in the detected matching points observed at
the highest downsampling rates (16 and 12 pictures) strongly
impaired the reconstruction, making it impossible to obtain
complete models. These results suggest that obtaining a complete
model reconstruction will require at least 20 different camera
perspectives. Furthermore, Figure 4D depicts the relative loss of
information. The amount of vertices that additionally needed
to be removed from the highest resolution model to make all
models covering the same area increased noticeable when less
than 40 images were used for the reconstruction. This means
that the loss of information was higher than the expected
loss due to downsampling itself. It is therefore advisable to
acquire more than 32 images to keep additional information loss
below 5%.

Independent from that, the final mesh resolution increases
with increasing resolution of the camera used. Differences in
electrode localization performance can be assumed as of the same
range that the whole model would expose after downsampling.
Since the vertex points of each electrode are drawn from the same
set of vertex points used for comparing model reconstruction
performance, only a systematic bias specifically toward electrode
vertices, could have had potential influence to the final electrode
position. Therefore electrode position accuracy in dependency of
downsampling was not tested separately as it was assumed being
directly linked to the overall mesh reconstruction error.

In the present study only DSLR cameras were tested.
Conclusions on how other types of cameras would perform
(e.g., compact cameras) cannot be drawn. Lens aberrations and
inconsistencies could affect reconstruction quality, but prior
camera calibration may compensate for these effects and allow
the use of lower-end cameras. In our study, we did not use prior
camera calibration because, in our experience, this step mainly
improves the 3D reconstruction only under weak light conditions
or when too few images were captured. Agisoft also recommends
the use of prior camera calibration if images of different cameras
are merged in a single set.

Electrode localization accuracy benefits from the
relatively small 3D reconstruction error associated with the
photogrammetry-based approach. It outperforms common
electromagnetic digitizers (see also Figure 6). As ANT
states on their webpage, the technical inaccuracy of this
electromagnetic digitizer is less than 2 mm ?. This is still a
relatively high inaccuracy compared to the median deviation
of the photogrammetry-based approach found here (0.52 mm),
which may even be an overestimation. Remondino et al. (2014)
compared different 3D reconstruction approaches for different
kinds of objects. For static head models reconstructed using
Agisoft PhotoScan they observed a measurement inaccuracy of
0.1 mm, which is even smaller than what we found.

The high technical accuracy of the photogrammetry-based
approach is reflected on the accuracy of the electrode positions.
Whereas a standard electromagnetic digitizer had a mean error
of 7.8 mm, the photogrammetry-based approach only deviated
by 1.3 mm. These findings are in line with previous work (e.g.,
Baysal and Şengül, 2010; Dalal et al., 2014). The small errors
observed across electrodes (p < 10−4) suggest that our novel
approach may significantly enhance the accuracy of EEG source
reconstruction (e.g., Khosla et al., 1999; Michel et al., 2004; Dalal
et al., 2014).

Our analyses also show that an important part of the
accuracy gain is due to smaller MRI coregistration errors.
Whereas electromagnetic digitizers commonly use a fiducial-
based coregistration (mean error 6.1 mm), our photogrammetric
approach is based on a coregistration involving facial surface
matching (mean error 0.8 mm), which is significantly more
accurate (p < 10−4). Fiducial-based coregistration only relies
on a few points that are manually defined on the subject and
on the MRI volume. On the other hand, coregistration based
on facial surface matching can use several thousand points that
are matched iteratively by an ICP algorithm. Nevertheless, facial
sections selected from the rendered MRI and the 3D model
should include the same facial region; otherwise the iterative
alignment can fail.

Taking this point into account, janus3D was designed to
make this step as easy and reliable as possible. It features
a facial selection that is based on the boundary of the first
face selection, which can be performed either on the MRI or
the reconstructed 3D model. The boundary shape is used as
an overlay template for the corresponding second selection.
Additionally, electrode detection also benefits from automatized
algorithms implemented in janus3D. The software is able to
automatically determine electrode positions using texture-based
shape detection, only occasionally requiring manual correction.
Even then, this procedure is faster and more reliable than
the single electrode selection with an electromagnetic digitizer
because the user is able to determine electrode positions on a
static mesh. Direct visual feedback allows the user to detect and
instantly correct inaccurate selections.

Nevertheless, there are some limitations that need to
be considered. As the photogrammetry-based approach relies
on proper image quality, a well-illuminated environment is
necessary when acquiring the photos. To avoid image noise,
ISO values of the camera should be kept below ISO 800 and
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the aperture size should be f/8 or lower. Depending on the
camera, in our experience, standard ceiling lights in a typical
laboratory do not provide sufficient light. However, the models
depicted in Figures 2C,D were acquired using standard ceiling
lights. This explains the somewhat rough appearance of the
facial features in our reconstruction. Setting up additional
lighting is not only beneficial, but also necessary in most indoor
environments. Multiple lights or diffusers should be installed
to avoid creating shadows that may “travel” across the head
with rotation. Due to the nature of human skin, reflections
should also be avoided as they similarly impact the reconstruction
results. The replica model we used was less reflective than human
skin. For that reason more than 20 pictures are likely to be
required when scanning a human subject. In our experience,
sufficient reconstruction results are obtained at a number above
35 pictures. Further testing also revealed that using 3 cameras
close to each other overcomes most of the imperfections.
Shadows and reflections are recognized at the same time from
different view angles and therefore compensate for each other.
Another benefit of this setup is that only 20 rotational steps
are necessary, if the cameras are aligned such that two cameras
face the front from two opposing perspectives and one camera
faces the top of the head. An array of cameras would be an
alternative implementation that would acquire all viewpoints
simultaneously, avoiding the need for rotation, and would
likely further improve the measurement accuracy. Any facial
movements or movements due to the subject’s rotation would
be eliminated and shadow information and reflections would
serve as a feature instead of a possible source for inaccuracies.
Furthermore, it would speed up image acquisition to just a
few seconds. Our results imply that more than 20 cameras
would be needed, with a corresponding increase in equipment
costs.

Finally, 3D-model based MRI coregistration could similarly
improve MEG coil coregistration as Vema Krishna Murthy et al.
(2014) showed by employing a Microsoft Kinect camera. Source
reconstruction performance tested on a phantom head increased
by 137% using Kinect 3D coregistration compared to a Polhemus
electromagnetic digitizer. Since the Kinect camera yielded an
average coregistration error of 2.2 mm, we would expect

improvements of MEG source reconstruction performance using
our novel approach on a similar scale. To achieve this, MEG

reference coils would need to be referred to facial landmarks as
those used for registering the head of the subject to the MEG’s
coordinate system. A possible solution could be the use of visible
markers on the face of the subject that later could be found on the
textured mesh.

CONCLUSION

Single DSLR camera photogrammetry serves as a rapid method
for accurate EEG electrode detection. Additionally it is a cost-
effective alternative to common methods like electromagnetic
digitizers and outperforms them in measurement and MRI
coregistration accuracy. Finally, reconstructed 3D models of
subjects wearing an EEG cap, created with a common DSLR
camera and photogrammetry software may improve the results
of ultimate beamformer solutions, when conducting source
analysis (Dalal et al., 2014).
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