
August 2017 | Volume 5 | Article 1591

Methods
published: 14 August 2017

doi: 10.3389/fped.2017.00159

Frontiers in Pediatrics | www.frontiersin.org

Edited by: 
Brigitte Vollmer,  

University of Southampton,  
United Kingdom

Reviewed by: 
Peter Fransson,  

Karolinska Institutet, Sweden  
Finn Lennartsson,  

Lund University, Sweden

*Correspondence:
Dusica Bajic 

dusica.bajic@childrens.harvard.edu

Specialty section: 
This article was submitted to 

Neuropediatrics,  
a section of the journal  
Frontiers in Pediatrics

Received: 15 April 2017
Accepted: 04 July 2017

Published: 14 August 2017

Citation: 
Mongerson CRL, Jennings RW, 

Borsook D, Becerra L and Bajic D 
(2017) Resting-State Functional 
Connectivity in the Infant Brain: 

Methods, Pitfalls, and Potentiality. 
Front. Pediatr. 5:159. 

doi: 10.3389/fped.2017.00159

Resting-state Functional 
Connectivity in the Infant Brain: 
Methods, Pitfalls, and Potentiality
Chandler R. L. Mongerson1,2, Russell W. Jennings3,4, David Borsook1,2,5, Lino Becerra1,2,5 
and Dusica Bajic1,2,5*

1 Center for Pain and the Brain, Boston Children’s Hospital, Boston, MA, United States, 2 Department of Anesthesiology, 
Perioperative and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States, 3 Department of Surgery, Boston 
Children’s Hospital, Boston, MA, United States, 4 Department of Surgery, Harvard Medical School, Boston, MA,  
United States, 5 Department of Anaesthesia, Harvard Medical School, Boston, MA, United States

Early brain development is characterized by rapid growth and perpetual reconfiguration, 
driven by a dynamic milieu of heterogeneous processes. Postnatal brain plasticity is 
associated with increased vulnerability to environmental stimuli. However, little is known 
regarding the ontogeny and temporal manifestations of inter- and intra-regional functional 
connectivity that comprise functional brain networks. Resting-state functional magnetic 
resonance imaging (rs-fMRI) has emerged as a promising non-invasive neuroinvestigative 
tool, measuring spontaneous fluctuations in blood oxygen level dependent (BOLD) signal 
at rest that reflect baseline neuronal activity. Over the past decade, its application has 
expanded to infant populations providing unprecedented insight into functional organi-
zation of the developing brain, as well as early biomarkers of abnormal states. However, 
many methodological issues of rs-fMRI analysis need to be resolved prior to standard-
ization of the technique to infant populations. As a primary goal, this methodological 
manuscript will (1) present a robust methodological protocol to extract and assess rest-
ing-state networks in early infancy using independent component analysis (ICA), such 
that investigators without previous knowledge in the field can implement the analysis 
and reliably obtain viable results consistent with previous literature; (2) review the current 
methodological challenges and ethical considerations associated with emerging field of 
infant rs-fMRI analysis; and (3) discuss the significance of rs-fMRI application in infants 
for future investigations of neurodevelopment in the context of early life stressors and 
pathological processes. The overarching goal is to catalyze efforts toward development 
of robust, infant-specific acquisition, and preprocessing pipelines, as well as promote 
greater transparency by researchers regarding methods used.

Keywords: blood oxygen level dependent, functional magnetic resonance imaging, independent component 
analysis, magnetic resonance imaging, resting-state functional magnetic resonance imaging, neurodevelopment, 
pediatric, resting-state networks

INtRodUCtIoN

definition of Method
Functional magnetic resonance imaging (fMRI) has evolved into an important non-invasive neu-
roinvestigative tool, used to probe underlying systems-level mechanisms in the brain. Specifically, 
fMRI provides an indirect measure of brain activity by detecting fluctuations in blood flow and 
oxygenation, referred to as blood oxygen level dependent (BOLD) effect (1). Interpretation of 
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fluctuations in BOLD signal derives from the physiological  
concept of neurovascular coupling, whereby neuronal activ-
ity and regional cerebral blood flow are tightly linked (2–4). 
Resting-state functional magnetic resonance imaging (rs-fMRI) 
examines spontaneous low frequency fluctuations in brain 
activity (5) present during physiological (sleep), pharmacologi-
cal (anesthesia, sedation), and clinically induced (e.g., coma) 
unconscious states (6). Specifically, it describes intrinsic brain 
activity in its “resting state”—a key departure from classical 
task-based fMRI. Mapping temporal covariance in brain activ-
ity between distinct brain regions (i.e., functional connectivity) 
reveals correlated patterns of large-scale neural networks, termed 
resting-state networks (RSNs) (7, 8). These RSNs encompass 
brain regions that are anatomically linked and known to mirror 
functional networks activated during task-oriented behaviors 
(9–12). Furthermore, this intrinsic brain activity predicts task 
performance and likely contributes to behavioral variability 
(13). With more than a decade’s head start, rs-fMRI in adults 
has begun to mobilize efforts toward standardized methods for 
optimal data acquisition and processing. However, its applica-
tion in neonates and infants is only just emerging, with little or 
no reported infant-specific preprocessing measures. Therefore, 
we describe a robust method to perform RSN analysis in 
neonates and infants, and discuss challenges associated with 
rs-fMRI application in this population.

RsNs in developing Brain
Resting-state functional magnetic resonance imaging derives its 
growing popularity from its unique method of acquisition (i.e., 
limited need for subject participation), enabling application in 
expanded patient populations previously unsuitable for task-
based fMRI. Until recently, patient motion during scanning pre-
cluded robust functional interrogations of the infant brain using 
fMRI, with few exceptions (14–20). Rs-fMRI holds considerable 
appeal for studies of infants and early brain development, com-
pared to task-based fMRI. Scans acquired during natural sleep 
in the absence of experimental stimuli eliminate many of the 
confounding variables associated with appropriate paradigm 

selection, including network-specific reactivity to distinct stim-
uli, as well as age- and/or cognitive-level-dependent responses 
(21). Such variables often impede extrapolation of findings to 
other age groups, critical for investigations of longitudinal neu-
rodevelopment. Over the past decade, the emergence of infant 
rs-fMRI offered insight into patterns of functional connectivity, 
yielding more complete representations of neural networks and 
their development. First described in Fransson’s seminal paper 
(22), the presence of RSNs in infants have been established 
as early as the fetal (23, 24), preterm (22, 25, 26), and infant 
periods (27–29), undergoing substantial maturation and refine-
ment over the first two decades of life (30–34). Despite limited 
published literature since its inception in 2007, significant 
groundwork has been laid in the field of infant rs-fMRI, offering 
transient glimpses into the complex interplay of structural and 
functional brain development.

Review of early Brain development
Brain development is a continuous process initiated during 
early gestation that extends into postnatal life and beyond into 
adolescence (35, 36). Evolving cerebral architecture matures at 
different rates, establishing critical periods for development of 
specific functions. The brain’s capacity for dynamic adaptation 
and reorganization through neural plasticity is a function of 
heterogeneous mechanisms, which work to optimize integra-
tion of various functions (e.g., sensory, motor, cognitive). For 
example, ongoing synaptic plasticity involves a developmental 
balance between synaptogenesis (formation) and pruning 
(elimination) of synapses in the brain (37). These processes 
influence the survival of specific neural circuits contributing 
to the formation, reconfiguration, and maturation of diverse, 
complex functional brain networks. In contrast, longitudinal 
studies probing the exact timing and evolution of RSNs matura-
tion to adult patterns are scarce, contributing to an incomplete 
understanding of postnatal neurodevelopment. Moreover, 
investigations to date have primarily centered around rela-
tively healthy preterm and term infants to establish normative 
patterns of resting-state activity during early development. 
Targeted studies to understand the potential effects of certain 
clinical treatments (e.g., surgery, drug exposure, pain manage-
ment), as well as to model neurodevelopmental progression of 
diseases/disorders in infant and pediatric populations remain 
largely unexplored due to current methodological limitations 
of rs-fMRI analysis at this early age. These challenges are dis-
cussed at length throughout the method, as well as later in the 
Discussion section.

Resting-state Network Analysis 
techniques
Standard methods used to analyze rs-fMRI data include inde-
pendent component analysis (ICA) (38, 39) and seed-based 
correlation analysis (SCA) (7, 40). Despite distinct analytical 
approaches, both techniques result in identification of compara-
ble RSNs (41). SCA is a model-based, hypothesis-driven approach 
used to measure BOLD response in an anatomically defined 
seed region-of-interest (ROI), ultimately generating whole-brain 

Abbreviations: AFNI, Analysis of Functional NeuroImages; BET, Brain Extraction 
Tool; BIRN, Biomedical Informatics Research Network; BOLD, bold oxygen level 
dependent; CSF, cerebrospinal fluid; DVARS, derivative of root mean squared 
variance over voxels; EPI, echo-planar imaging; FAST, FMRIB’s Automated 
Segmentation Tool; FEAT, FMRI Expert Analysis Tool; FIX, FMRIB’s ICA-based 
X-noisifier; FLIRT, FMRIB’s Linear Image Registration Tool; fMRI, functional 
magnetic resonance imaging; FNIRT, FMRIB’s Non-linear Image Registration 
Tool; FSL, FMRIB Software Library; FWHM, full width at half maximum; GICA, 
group independent component analysis; GIFT, Group ICA of fMRI Toolbox; 
HDR, high dynamic range; IC, independent component; ICA, independent 
component analysis; ICA-AROMA, ICA-based Strategy for Automatic Removal 
of Motion Artifacts; MCFLIRT, Motion Correction by FMRIB’s Linear Image 
Registration Tool; MELODIC, Multivariate Exploratory Linear Decomposition 
into Independent Components; MNI, Montreal Neurological Institute; MPRAGE, 
magnetization prepared rapid acquisition gradient echo; MRI, magnetic resonance 
imaging; PCA, principal component analysis; PICA, probabilistic independent 
component analysis; RMS, root mean squared; ROI, region-of-interest; rs-
fMRI, resting-state functional magnetic resonance imaging; RSN, resting-state 
network(s); SCA, seed-based correlation analysis; SNR, signal-to-noise ratio; TE, 
echo time; TR, repetition time.
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correlation maps. This technique is optimal when testing a very 
specific hypothesis, using an explicit temporal model derived 
from predetermined seed region (39). Though simple for prob-
ing brain activity between various conditions (e.g., patient versus 
control), placing ROI with anatomical specificity and accuracy is 
more challenging and, at this time, still requires manual outlin-
ing of the anatomical structure in the infant brain. An additional 
limitation of ROI-based analyses stems from the inherent bias 
introduced by selection of seed regions, which precludes charac-
terization of whole-brain functional connectivity. Alternatively, 
ICA is a model-free, data-driven approach, ideal for exploratory 
analysis and/or in cases where no suitable hypothesis is available 
(42). Based on the widely used multivariate statistical technique, 
principal component analysis (PCA), ICA decomposes data 
into components with maximal statistical independence in the 
spatial domain (39). Probabilistic ICA (PICA) has since evolved, 
specifically tailored for use in fMRI inquiries (43). ICA model 
is also uniquely advantageous in that inherent data transforma-
tions therein necessarily produce several artifactual components 
in every ICA output (11). Accordingly, ICA, in addition to its 
role during final analyses, can also be employed as part of data 
preprocessing to isolate sources of non-neuronal noise (44).

In summary, rs-fMRI and ICA combined provide a non-
invasive, neuro-investigatory technique for reliable extraction 
of brain networks, ideal for use in infants due to the inherent 
method of acquisition (i.e., non-task-based, performed during 
sleep). Although this methodology is not novel, there are cur-
rently no available protocols for performing RSN analysis in the 
infant brain. Moreover, this burgeoning field has yet to establish 
standardized methodological pipelines for infant populations. We 
aim to provide a detailed, albeit basic method for RSN analysis in 
infants, with interwoven discussions of theoretical background 
and parameter selections for each technique. If nothing more, this 
method may serve as a proof-of-concept, underscoring the need 
for systematic, infant-specific methodologies necessary to drive 
rs-fMRI possibly into routine clinical practice.

MethodoLoGICAL oUtLINe

Infant data used to illustrate steps in this protocol was acquired 
as part of a larger investigational study that was reviewed and 
approved by the Boston Children’s Hospital Institutional Review 
Board and classified as a no more than minimal risk study. The 
study also conformed to the standards set by the Declaration of 
Helsinki and Good Clinical Practice guidelines. Eligibility criteria 
included absence of magnetic resonance imaging (MRI) incom-
patible implants. Informed written consents were obtained from 
parents before MRI scans were collected. Detailed approaches as 
to how to safely handle non-sedated infants for MRI acquisitions 
are available (45–47), however, are beyond the scope of current 
manuscript.

equipment
MRI Scanner
We used 3T MRI scanner (Trio Tim, Siemens Medical Solutions 
USA, Inc., Malven, PA, USA) equipped with a 32-channel receive-
only head coil.

Computing Hardware for Analysis
Unix-based computer is recommended for computation, as 
FMRIB Software Library (FSL) programming is precompiled for 
Mac users (Mac OS X 10.4 or higher), as well as PC users running 
Linux virtual machines (i.e., RedHat 9, Centos, Debian/Ubuntu) 
(48). The computer itself should have at minimum a “1 GHz CPU 
clock, 1 GB RAM, 5 GB sway, and 20 GB of free hard drive space” 
if it is to be used for the analysis. Computer clusters (multiple 
computers networked together that act as a single, more power-
ful unit) are useful in reducing time penalties associated with 
analysis.

Computing Software Needed for the Analysis
 a. Terminal window, also referred to as a terminal emulator, is 

a text-only window in a graphical user interface (GUI) that 
emulates a console.

 b. MATLAB (The MathWorks Inc.1).
 c. Software packages like dcm2nii and MRIcron for preprocess-

ing and network visualization, respectively.2

 d. FMRIB Software Library is freely available software from the 
Analysis Group at the University of Oxford.3 Within FSL, ICA 
can be performed using the Multivariate Exploratory Linear 
Decomposition into Independent Components (MELODIC) 
interface.4 Melodic uses ICA to break down 4D (3D-space and 
time) datasets into distinct spatial and temporal components. 
Specifically, ICA is a computational method that separates a 
multivariate signal into components, which are assumed to be 
statistically independent of one another. Brain extraction tool 
(BET) (49) within FSL is also required.
•	 Alternative software exists that will allow for functional 

connectivity analysis comparable to that described in 
method [e.g., the Group ICA of fMRI Toolbox (GIFT) ICA 
package in MATLAB5].

MRI Acquisition
Optimized rs-fMRI data acquisition parameters are vital for 
obtaining quality images that allow for more reliable and robust 
analyses. Reports on optimal scan parameters in infants are 
beginning to emerge (50). For current recommended guidelines 
to obtain high-quality MRI images in adults, refer to report by 
Smith et  al. (44). Two types of scans are necessary to perform 
rs-fMRI analysis in the present protocol:

 a. High-resolution structural MR images. Parameters used 
to acquire T1-weighted sagittal sequence [also referred to 
as magnetization prepared rapid acquisition gradient echo 
(MPRAGE) image] of representative infants in our study were 
as follows: repetition time (TR) 2,520  ms; echo time (TE) 
1.75 ms; field of view 180 mm × 180 mm; 144 slices; voxel size 
1.0 mm × 1.0 mm × 1.0 mm.

1 http://www.mathworks.com/products/matlab.html.
2 http://people.cas.sc.edu/rorden/mricron/index.html.
3 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation.
4 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC.
5 http://mialab.mrn.org/software/gift/.
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 b. Resting-state functional MR images. Parameters used to acquire 
multiband gradient echo echo-planar imaging (EPI) rs-fMRI 
sequence of representative infants in our study were as follows: 
TR 1,830 ms; TE 36 ms; field of view 160 mm × 160 mm; 63 
slices; voxel size 2.0 mm × 2.0 mm × 2.0 mm;  flip angle 65o.

Procedural outline
Resting-state functional magnetic resonance imaging is a 
very complicated imaging technique with respect to physics, 
physiological mechanisms, data analysis, and interpretation. 
We provide a comprehensive step-by-step methodological 
outline such that investigators without previous knowledge 
in the field can implement the analysis and reliably obtain 
viable results consistent with previous literature. Specifically, 
we provide detailed, albeit basic methodological framework 
for RSN analysis, with interwoven discussion of basic theory 
behind each step, as well as the rational behind selecting 
parameters. Resting-state network analysis can be divided into 
three major parts: (I) data quality evaluation (see Method Part 
I. Data Quality Assessment), (II) preprocessing (see Method 
Part II. Preprocessing), and (III) analysis (see Method Part 
III. Final Analysis). Following initial fMRI data quality assess-
ment, subsequent preprocessing stage entails a series of steps 
aimed at preparing structural and functional images for final 
analysis using single-subject single-session PICA. The latter is 
also employed during preprocessing to perform the relatively 
new automated method of ICA-based artifact removal using 
FMRIB’s ICA-based X-noiseifier (FIX) (44). Finally, we outline 
steps and differences between single-session versus group 
analysis, as well as interpretation and presentation of the rs-
fMRI data.

Method PARt I. dAtA QUALItY 
AssessMeNt

Initial step: Convert All Raw Files  
to Usable Format
Raw imaging data collected straight from the scanner are in 
dicom format (.dcm). This format is incompatible with many of 
the analytical tools used during preprocessing and final analyses 
described below, necessitating conversion of raw dicom files to 
nifti format (.nii.gz; high dynamic range image file <hdrfile>). 
This can be accomplished using the software dcm2nii. To convert 
files intended for analysis (both structural and functional), one 
should click and drag the folder containing the dicom images into 
the dcm2nii GUI.

time-series Length Criterion
As a first step, one should ascertain the length of the fMRI BOLD 
time-series (e.g., 280 volumes). Total number of volumes can be 
obtained by opening the functional image in FSLView and scroll-
ing down to “Cursor Tools” panel (see also https://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/FslView/UserGuide). Determining total number of 
volumes provides information on whether the infant’s scan ran to 
completion and ensures each file included in subsequent analysis 
contains sufficient data to accurately reflect subject’s BOLD signal 

activity (e.g., >200 volumes was arbitrarily selected in current  
protocol). Ultimately, optimal volume criterion will vary depend-
ing on the quantity (number of volumes acquired) and quality  
(e.g., image resolution or presence of artifact) of fMRI data col-
lected, as well as the type of analysis you wish to perform [e.g., 
single-session or group ICA (GICA); see Final Statistical Analysis 
Using ICA in Section “Final Analysis”]. For adult subjects, gen-
eral consensus in the resting-state field typically requires at least 
5  min of useable data post preprocessing in adult populations 
to achieve brain network stability (41, 51). However, minimum 
scan length necessary to properly characterize RSNs in the infant 
brain has not been established.

Additional measures for quality assessment of infant fMRI 
data should be carried out prior to subsequent processing steps. 
This study used the Biomedical Informatics Research Network 
(BIRN) human quality assessment tool (52), implemented in 
MATLAB. Numerous measures of signal quality are analyzed, 
including: average signal intensity, radius of decorrelation (53, 
54), and signal-to-fluctuation-noise ratio, as well as percent 
fluctuation, drift, and peak-to-peak amplitude size of the BOLD 
signal in fMRI data. Though an understanding of measures used 
to assess data quality is important, this lies beyond the scope of 
current protocol.

Method PARt II. PRePRoCessING

Preprocessing stage of analysis involves processing of both struc-
tural and functional images. Rather than performing individual 
preprocessing steps separately in terminal, GUIs are implemented 
wherever possible to compartmentalize preprocessing pipeline. 
Structural MR images are prepared first to create a reference 
image necessary for subsequent functional data preprocessing 
(prerequisite for ICA). Preprocessed versions of structural and 
functional data are used for final analysis.

Preprocessing structural MRI data
During ICA, each functional image included in analysis is regis-
tered (spatially aligned) to its corresponding structural image (i.e., 
its native space), often referred to as the Reference image. When 
selecting a Reference image, one should choose the anatomical 
image exhibiting the best resolution and tissue contrast for opti-
mal registration results. Poor tissue contrasts is very common 
during the first year of life, catalyzing recent efforts to develop 
robust neonatal tissue segmentation techniques (55). This pro-
tocol uses structural T1-weighted images (although T2-weighted 
scans may also be used, and oftentimes exhibit better tissue con-
trasts compared to T1 images). To generate a structural Reference 
image for registration, the following three steps are required:  
(1) re-orientation and verification of header information, (2) 
brain extraction, and (3) bias field correction (i.e., intensity 
normalization). See Figure 1 for illustrative pipeline.

Orientation of Images
Structural T1-weighted images (viz. MPRAGE) must have cor-
rect header information (anterior-posterior, left-right, superior-
inferior) to be correctly processed in subsequent analysis using 
FSL. To verify accurate header information, one should visualize 
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FIGURe 1 | Structural magnetic resonance imaging (MRI) data preprocessing pipeline. Figure illustrates structural MRI data preprocessing pipeline, using a 
representative ex-33 week premature infant scanned at 4-weeks corrected age (2.75 months postnatal age). Panel (A) shows conversion of original T1-weighted 
image (T1file, in sagittal view) to a standardized brain orientation (T1file_std). Note, anterior (A) and posterior (P) are flipped in reoriented file. Panel (B) illustrates 
process of brain extraction. Manually edited binary mask (T1file_bet_mask; red) is shown superimposed on T1 image (grayscale), as well as finalized extracted brain 
(T1file_brain). Panel (C) illustrates the process of bias field correction. FMRIB’s Automated Segmentation Tool tissue-type segmentation (_seg) and estimated bias 
field (_bias) output files are shown. The latter image reflects gradient of tissue-specific signal inhomogeneity, showing hypo- (black) and hyper-intense (white) regions 
across entire T1 image.  Hyperintense subcortical regions present in original T1 image are attenuated following intensity normalization, creating finalized structural 
Reference image (T1file_ref).
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each structural file in FSLView with the fslview command: fslview 
<T1file>.

Images should be uniformly oriented according to radiological 
convention (left side of image corresponds to right side of brain) 
in accordance with FSL’s common coordinate system [e.g., adult 
atlas Montreal Neurological Institute (MNI) 152 standard-space 
(57)]. This is in contrast to brain images oriented in neurological 
convention (left side of image corresponds to left side of brain). 
To re-orient image, one should use the fslreorient2std command 
as follows: fslreorient2std <T1file><T1file_std>.

This command does not “register” the T1 image to MNI152 
standard-space. It simply rotates or flips images on the three 
axes so that orientation labels correspond to the standard tem-
plate (Figure 1A). Finally, one should verify that T1 image was 
properly oriented by visualizing file in FSLView using the fslview 
command.

Brain Extraction
Brain Extraction Tool (BET) is an algorithm originally developed 
for the adult brain that allows for removal of non-brain voxels 
from MR images (e.g., T1 image) (49). However, application in 
infants is less reliable and often results in a rough outline of the 
infant brain, necessitating further manual editing to establish an 
accurate brain outline. For a detailed review of challenges associ-
ated with neonatal brain segmentation, and alternative methods 
currently available, refer to recent review (58). The overarching 
goal of manually editing automated BET binary mask file is to 
ensure inclusion of all brain tissue, while minimizing inclusion 
of all non-brain tissue (Figure  1B). This can be challenging 
when addressing infant MRI scans, which often display tissue 
inhomogeneity, as well as gray-matter–white-matter reversal. 
Moreover, infant brains are known to exhibit a high degree of 
morphological variation, particularly in the setting of rapid 

postnatal development. As such, individuals responsible for 
brain extraction should understand MR signal characteristics 
of different tissue densities, and be familiar with neuroanatomy 
and surrounding structures (e.g., subarachnoid cisterns, dural 
venous sinuses, cranial architecture). Deficits in either capac-
ity will likely result in non-brain tissue inclusion, leading to 
suboptimal structural-to-functional image alignment during 
registration.

To perform brain extraction on T1 image and generate a 
binary mask file (for the purposes of manual editing), use the 
bet command as follows: bet <T1file_std> <T1file_bet>  -c <x 
y z> -m.

Option –c designates the center of the brain coordinates (i.e., 
x, y, z; in voxels), which helps guide brain extraction. Option –m  
instructs program to generate a binary mask file containing 
extracted brain (T1file_bet_mask). Automated binary mask file 
can be edited within FSLView, using pencil and eraser tools to 
draw in missing brain tissue and remove non-brain tissue, respec-
tively. The original T1 image (T1file_std) should also be opened 
to provide anatomical context and guide manual tracing of brain 
outline. To simultaneously view the binary mask file overlaid 
on original T1 image, one should use the following command: 
fslview <T1file_std> <T1file_bet_mask> -l Red.

Option –l Red will change color of binary mask file to 
red, allowing the viewer to distinguish the mask file from 
underlying original T1 image in grayscale (Figure 1B). Once 
editing is complete, apply manually edited binary mask file 
(includes brain only) to the original T1 image (includes brain 
and surrounding tissue) by using the following command: 
fslmaths  <T1file_std>  –mas  <T1file_bet_mask>  <T1file_
brain>.

This creates the finalized brain extracted image (T1file_brain), 
required for bias field correction by FAST (next step).
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Bias Field Correction
Bias fields refer to intensity inhomogeneity across magnetic 
resonance images (Figure 1C). Strong bias fields can cause seri-
ous mislabeling of voxel tissue-types, compromising accuracy of 
techniques that rely heavily on tissue densities (e.g., registration), 
and in particular gray and white matter contrast (21). FMRIB’s 
Automated Segmentation Tool (FAST) is a fully automated, robust, 
and reliable method for simultaneous tissue-type segmentation 
and bias field estimation, available within FSL (59). Specifically, 
FAST assigns each voxel a specific tissue-type (based on estimated 
class mean intensities and labeling of neighboring voxels), after 
which tissue-specific intensity inhomogeneity is evaluated (59). 
Bias field correction requires initial generation of estimated bias 
field using FAST, followed by normalization of signal intensity 
(Figure 1C). To open FAST GUI, type “Fast” into Linux terminal. 
Once interface opens, instructions to generate the estimated bias 
field are as follows:

 a. Input options. Select the number of structural T1 images to 
be assessed under “number of input channels”, and then input 
desired images (e.g., T1file_brain). Input files must already be 
brain extracted. Select T1-weighted for “Image type.” Select 
T2-weighted for “Image type”, or select T2-weighted if desired 
input file is either a T2-weighted or fMRI image.

 b. Output options. Leave “number of classes” (i.e., tissue-types) 
to be segmented at the default setting. This instructs FAST 
to segment T1 image into three tissue classes [gray matter, 
white matter, and cerebrospinal fluid (CSF)]. However, cases 
will arise when it may be appropriate to alter class number. 
For instance, neonatal MR images will occasionally exhibit 
extremely poor gray-matter–white-matter contrast due to 
incomplete myelination during postnatal period. Depending 
on severity, such an image may require selection of only two 
tissue classes, such that FAST segments image into brain 
tissue (i.e., combined gray/white matter) and CSF. Blending 
of tissues should be avoided, however, as this will have 
implications for subsequent processing steps that rely on 
such tissue contrasts [e.g., registration using boundary-based 
registration (BBR) algorithm; see Use Melodic for fMRI Data 
Preprocessing in Section “Preprocessing”].

Once FAST interface setup is finished, press “Go” to run the analy-
sis. FAST output includes two files, ending with “_seg” (T1file_brain_
seg) and “_bias” (T1file_brain_bias). The latter shows the estimated 
bias field, evaluating regions of intensity inhomogeneity across the 
entire T1 image. To normalize intensity values (i.e., perform bias 
field correction), use the following command in FSL terminal: 
fslmaths <T1file_brain> –div <T1file_brain_bias> <T1file_ref>.

Option –div instructs program to divide brain extracted T1 
image by its bias field, thereby normalizing intensity distribution 
for each tissue class. Output file (T1file_ref) will serve as the 
Reference image during registration.

Preprocessing Functional MRI data
To minimize artifact and noise-related signal, many spatial and 
temporal preprocessing steps are typically performed to prepare 
raw functional data for statistical analysis. Unique benefits 

derived from each of these techniques come at the cost of time, 
on the scale of hours in some cases. Each preprocessing step can 
be implemented independently, allowing for customization of 
the preprocessing approach according to individual study design. 
Currently, there are no established infant-specific para meters for 
preprocessing infant fMRI data. Parameters used for example 
infants are provided. However, regardless of subject population, 
appropriate parameters for any study will ultimately depend on 
the individual dataset (e.g., length of TR), and cannot simply 
be adopted from previous literature (51). Offered below is a 
basic pipeline, with interwoven discussion of the basic theory 
behind each technique, as well as the rationale behind selecting 
parameters. All preprocessing steps are implemented simultane-
ously within Melodic GUI (Figure 2), with the exception of data 
scrubbing and FIX cleanup (see below, Data Scrubbing and FIX 
Cleanup, respectively in Section “Preprocessing”). The latter is 
implemented as part of ICA-based artifact removal—the current 
recommended 2-step preprocessing approach (44), consisting of 
PICA followed by FIX (FMRIB’s ICA-based X-noisifier) (60, 61). 
This approach capitalizes on the ICA model’s strengths, segregat-
ing artifactual processes embedded in fMRI data into distinct 
components, which can then be identified and removed (e.g. by 
FIX classifier). Within Melodic, pre-statistical preprocessing and 
registration are carried out using FMRI Expert Analysis Tool 
(FEAT).

Use Melodic for fMRI Data Preprocessing
To open Melodic GUI, type “Melodic” into Linux terminal. Once 
interface opens, instructions to setup Melodic tabs for rs-fMRI 
data preprocessing are as follows:

 ➢ Data tab (Figure 2A):
•	 Number of inputs: select the total number of functional im-

ages you wish to analyze at this time, and then input the 
actual functional files (e.g., rsnfile) by pressing “select 4D 
data.” Indicate where the results of Melodic should be stored 
by altering “Output directory” name, if applicable.

•	 High pass filter cutoff (s): define the desired maximum tem-
poral period for the scan. For the purposes of this protocol, 
we will set the filter cutoff at 100 s (0.01 Hz). This parameter 
will eliminate slow temporal drifts (i.e., lower frequencies) 
whose temporal periods exceed the specified cutoff.

 ➢ Pre-Stats tab (Figure 2B): default settings in this tab will auto-
matically perform grand-mean intensity normalization of the 
entire 4D dataset by a single multiplicative factor. Additional 
preprocessing options that require selection include:
•	 Motion correction using MCFLIRT6: select “MCFLIRT” 

option from drop down menu during preprocessing run 
of Melodic. MCFLIRT corrects for head motion during the 
scan, using the middle volume in time-series as the referen-
ce image (62).

•	 Slice timing correction: Melodic requires the order in which 
slices were obtained during scanning to correct for diffe-
rences in slice timing. As a result, this option will depend 

6 MCFLIRT stands for Motion Correction by FMRIB’s Linear Image Registration 
Tool.
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FIGURe 2 | Melodic graphical user interface. Melodic interface is organized into tabs, within which available options for data processing are presented. Selections 
will be altered in the Data (A), Pre-Stats (B), Registration (C), and Stats tabs (d) according to the stage of analysis (i.e., preprocessing or final brain network 
analysis). Melodic interface provides helpful descriptions of each option, viewed by holding ones cursor over a given icon.
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on how your fMRI datasets were acquired at the scanner.  
For example, the current fMRI datasets were acquired in in-
terleaved order, therefore, we change default option “None” 
to “Interleaved (0, 2, 4…1, 3, 5).” Slice timing correction 
using Fourier-space time-series phase-shifting improves 
estimation of functional correlation between voxels in dif-
ferent slices (44). For low-TR data (e.g., subsecond), slice-
timing correction may be unnecessary (44).

•	 BET brain extraction: select this option during all Melodic 
runs. This will strip functional images of non-brain tissue, 
analogous to previous brain extraction of structural image 
performed in terminal window (see Brain Extraction in 
Section “Preprocessing”).

•	 Spatial smoothing full width at half maximum (FWHM) 
(mm): turn spatial smoothing off by setting kernel size to 
0 mm. Spatial smoothing helps to enhance signal-to-noise  
ratio (SNR), which describes the degree of distinction 
between true neuronal signal and artifactual noise. However, 

it comes at a cost of reduced spatial resolution (63). As a 
result, spatial smoothing is only used to improve detection 
of brain activity during final analyses.

•	 Temporal filtering: select “Highpass” to remove frequencies 
from fMRI data whose temporal periods exceed the filter 
cutoff (specified in Data tab). High-pass filtering eliminates 
linear trends in the data (44), including lower frequencies 
associated with MRI scanner artifacts (64). Simultaneous 
low-pass filtering (i.e., bandpass filtering) can be used to 
eliminate higher frequencies, with oscillatory speeds above 
a designated threshold. Signal restriction via low-pass filte-
ring is not used in this protocol, in accordance with current 
preprocessing recommendations (44). Though traditional-
ly considered “low-frequency” in resting-state literature, 
emerging evidence suggests valuable neuronal resting-state 
signal in infants is present up to and possibly beyond 0.3 Hz 
(50). Ability to reliably interrogate these higher frequencies 
is dependent on chosen TR, with longer TRs (e.g., >2  s)  
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resulting in less reliable sampling of BOLD signal fluctua-
tions above 0.17–0.25 Hz (50).

 ➢ Registration tab (Figure 2C): robust linear (affine) registration 
is carried out using FMRIB’s Linear Image Registration Tool 
(FLIRT) (62, 65). Each brain-extracted fMRI image (set in 
Pre-stats tab) will be registered to its corresponding structural 
Reference image (T1file_ref). To do this, deselect standardized 
template option “Standard space” and select “Main structural 
image.” You will be prompted to select structural images to 
use for registration. Importantly, structural Reference images 
must be input in exactly the same order as their corresponding 
functional files in order to be registered together (specified 
in Data tab; Figure 2A). Verify boundary-based registration 
(BBR) is selected; this option will enhance the accuracy of 
gray-matter–white-matter boundary delineations. When 
projecting functional images into a standard space during 
GICA, it may be beneficial to implement linear registration for 
global alignment, with a subsequent non-linear registration 
to enhance local alignment using FMRIB’s Non-linear Image 
Registration Tool (FNIRT; refer to FSL’s website7). Non-linear 
registration typically achieves better alignment for subcortical 
structures than cortical data (66).

 ➢ Stats tab (Figure 2D): leave all options at the default setting 
during preprocessing. The following will automatically be 
selected by Melodic:
•	 Variance-normalize timecourses: time-series are rescaled, 

such that analysis is primarily influenced by voxel-wise tem-
poral dynamics rather than a given voxel’s signal amplitude. 
More broadly, temporal changes in an area’s signal are used 
for analysis instead of a given area’s average signal.

•	 Automatic dimensionality estimation: this parameter allows 
for control of the decomposition process of fMRI data into 
independent components. During preprocessing, the pur-
pose of ICA is to decompose fMRI data into “good” and 
“bad” components, facilitating subsequent removal of bad 
components. Selecting “Automatic dimensionality estima-
tion” will instruct probabilistic PCA to automatically esti-
mate the dimensionality (i.e., number of components) of a 
given functional image, resulting in objective decomposi-
tions based on the quality and quantity of data therein (43). 
Automatic dimensionality estimates should be used during 
preprocessing, to avoid over- or under-decomposition of 
the data. This issue will be discussed in more detail during 
final analysis, at which time a specific dimensionality is 
typically enforced.

•	 Single-session ICA: this option instructs Melodic to analyze 
individual fMRI data files separately, maintaining session/
subject-specific variation. If possible, single-session ICA 
should always be used for preprocessing stage of analysis, as 
it improves detection of artifacts that can be highly variable 
across different scans and/or between subjects.

 ➢ Post-stats tab: leave all options at the default setting during all 
runs of ICA. The “Threshold IC maps” option is automatically 
set to 0.5, indicating ICA spatial maps will be thresholded 

7 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT.

with the alternative hypothesis tested at P > 0.5 for activation 
(signal) versus null (noise).

Once Melodic setup is finished, press “Go” to run the analysis. 
Computation time for the analysis will scale up with increasing 
numbers of files included in a given run.

Melodic Report
Melodic generates a folder of results for each file run through 
analysis, in which a Melodic report (report.html) can be found 
that summarizes results. Once ICA is finished for a given func-
tional file, open its Melodic report and review the results as listed 
below. This is considered a critical step, as it evaluates motion 
and registration.

 ➢ Pre-stats section: MCFLIRT realignment parameters. Confirm 
the presence or absence of excessive motion in time-series by 
reviewing the results of MCFLIRT (Figures  3A–C). As pre-
viously stated, an appropriate definition of excessive motion 
will depend entirely upon the individual dataset (e.g., length 
of TR), and cannot simply be adopted from previous literature 
(51). Threshold criteria defined in this protocol include root 
mean squared (RMS) relative displacement >0.25  mm or 
RMS absolute displacement >2.5 mm, as well as translational 
motion exceeding voxel size (e.g., >2  mm). An additional 
measure of motion gaining in popularity called derivative 
of RMS variance over voxels (DVARS) describes changes in 
signal intensity from volume-to-volume that strongly correlate 
with relative RMS displacement (51). If definition of excessive 
motion is met, assess whether data scrubbing (i.e., targeted 
volume removal) can be used to salvage the time-series (see 
Data Scrubbing in Section “Preprocessing”).

 ➢ Registration section. Ensure proper alignment of functional 
and structural images (Figure 4). If registration is subopti-
mal, several avenues exist to fix mis-registration. One option 
would be to perform BET on the functional image output 
by Melodic called example_func, followed by bias field cor-
rection using FAST to normalize signal intensities (see Bias 
Field Correction in Section “Preprocessing”). Alternatively, 
one can rerun FLIRT using the example_func file as the initial 
functional image during registration. Poor registration may 
also result from magnetic field inhomogeneity, presenting 
as EPI distortions (e.g., stretching or warping) in the fMRI 
image (Figure  4B). Multiple correction methods exist to 
undo susceptibility-induced distortion, including use of 
“top–down” distortion correction (67), “top-up” distortion 
correction (44, 66, 68), a self-field map (69, 70), or a mean 
field map (71). The latter three options necessitate pre-plan-
ning, requiring an additional scan during initial data acqui-
sition phase.

 ➢ ICA section. As previously mentioned, PCA is allowed to 
objectively estimate the dimensionality of each subject’s fMRI 
data during this initial run of ICA. As a result, the number of 
components extracted will vary between subjects/scans. This 
section does not require immediate actions at this time, how-
ever, these preliminary ICA maps will be referenced later in 
the text during supervision of FIX denoising (see FIX Cleanup 
in Section “Preprocessing”).
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FIGURe 3 | MCFLIRT realignment parameters. Figure illustrates realignment (motion) parameters reported by MCFLIRT for a representative ex-33-week premature 
infant scanned at 4-weeks corrected age (2.75 months postnatal age). Results are summarized in three graphs, providing an index of head position throughout the 
scan for each volume in the time-series (x-axis; 280 total volumes). Estimated rotation (in radians; A) and translation (in millimeters; B) parameters are described with 
respect to each axis (x, y, z). In panel (C), aforementioned parameters are condensed by MCFLIRT into a single vector referred to as root mean squared (RMS) 
displacement (in millimeters), which summarizes cumulative motion in terms of absolute and relative measures. Absolute RMS displacement (blue) describes motion 
in a given volume with respect to a reference time point (i.e., middle volume in time-series), providing useful information on gradual shifts in head position over time. 
Relative RMS displacement (green) at a given volume describes motion with respect to the subsequent time point, useful for identifying abrupt changes in head 
position. Gray regions highlight initial 28 volumes in time-series that contain excessive motion (e.g., spikes >2.5 mm absolute or >0.25 mm relative displacements), 
surpassing established parameter criteria for inclusion. Importantly, gray region extends beyond obvious jump in relative displacement to include steep declining 
slope in absolute displacement. This is to address residual effects of motion that often extend beyond apparent spikes in relative displacement (51). These volumes 
are removed via data scrubbing (see Data Scrubbing in Section “Preprocessing”). Panel (d) shows RMS displacement (cumulative motion) realignment parameters 
after data scrubbing. Reduction in total number of volumes from 280 to 252 (red arrows) reflects removal of initial 28 volumes (gray regions removed). Note 
attenuated motion parameters (y-axis; green) throughout scan. Importantly, relative displacement, remains below threshold criteria for duration of scan (red dashed 
line). Mean RMS displacements of original time-series (absolute, 1.05 mm; relative, 0.13 mm) are greatly reduced by data scrubbing (absolute, 0.58 mm; relative, 
0.03 mm).
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Important Point of Functional Preprocessing
Both excessive motion and poor registration will negatively 
impact the accuracy of subsequent analyses, negating significance 
of any findings thereafter. If either issue cannot be rectified, the 
general consensus is that offending data should be altogether 
eliminated from further analyses.

Data Scrubbing
As illustrated in Figure  3, if definition of excessive motion 
was met during review of Melodic report (see Melodic Report 
in Section “Preprocessing”), data scrubbing (i.e., volume 

censoring) is an effective strategy to reduce the influence of 
motion-afflicted volumes in later analyses. Specifically, motion-
corrupted time-points can be excised from rs-fMRI time-series, 
with two caveats: the time-series must retain temporal contigu-
ity (i.e., disparate lengths of volumes cannot be re-combined), 
while still complying with chosen time-series length criterion 
(see Time-Series Length Criterion in Section “Data Quality 
Assessment”). This means that time-series containing centrally 
located motion-corrupted volumes are typically unsalvageable. 
However, motion-corrupted volumes located near the beginning 
or end of time-series can typically be removed by isolating the 

http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org
http://www.frontiersin.org/Pediatrics/archive


FIGURe 4 | Registration of functional magnetic resonance imaging (fMRI) image to native space. Figure illustrates examples of poor (A and A′) and reasonable  
(B and B′) registration of fMRI data to native space as they appear in the Melodic report, using representative ex-33-week premature infant scanned at 4-weeks 
corrected age (2.75 months postnatal age) and full-term infant scanned at 5 months of age, respectively. Each row shows structural-to-functional image alignment in 
parasagittal, coronal, and axial views (from left to right). In panels (A) and (B), fMRI image is shown in gray-scale, while overlying red contours delineate 
corresponding structural Reference image (also referred to as infant’s native space). In panels (A′) and (B′), this relationship is reversed (i.e., red contour represents 
functional image). Panel (A) illustrates poor functional-to-structural image alignment, likely precipitated in part by magnetic field inhomogeneity (i.e., susceptibility 
effects). The latter causes apparent EPI-related distortions (double arrows), negatively influencing registration. Misalignment presents as improper/absent contours 
delineating gray and white matter boundaries, ventricles, and outline of the brain (best viewed in coronal sections). Note the common echo-planar imaging (EPI) 
sequence artifact referred to as “ghosting” (white asterisk). In panel (B), registration results demonstrate reasonable alignment, with minor distortion artifact noted in 
the orbitofrontal region (single arrows) that are commonly observed in regions adjacent to air-tissue interfaces like the nasal cavity and sinuses (72). For coronal and 
transverse sections, left hemisphere of the brain corresponds to the right side of the image. Panel (C) illustrates an alternative method for visualizing registration 
results post-independent component analysis using representative ex-25-week premature infant scanned at term-equivalent age (4.25 months postnatal age; see 
also Figure 8). White matter contours of functional data are shown in red overlaid on high-resolution structural T1 image, with arrowheads highlighting good 
structural-to-functional overlap of tissue boundaries (a, corpus callosum; b, body of lateral ventricles; c, third ventricle; d, insular cortex; e, occipital horns of lateral 
ventricles). Abbreviations: A, anterior; L, left; P, posterior; R, right.
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region of interest (i.e., volumes without motion; Figures 3A–C). 
To isolate this length of time-series, use command: fslroi <rsn-
file>  <rsnfile_rdcd>  <#1>  <#2> (“roi,” region of interest; 
“_rdcd,” output file with reduced time-series). First value <#1> 
indicates the new starting volume at which the newly reduced 
time-series will begin. Second value listed <#2> indicates the 
number volumes to be included following new designated start-
ing volume (i.e., the length of the new time-series). Output file 
(rsnfile_rdcd) will automatically save in the same directory as 
the input file containing original fMRI time-series (rsnfile). An 
illustration of data scrubbing to reduce motion contamination 
is shown in Figure 3D. Several notes should be addressed and 
include:

 a. Note on volume numbering. In the Melodic report, the first 
volume in a given time-series corresponds to “volume 1” (e.g., 
MCFLIRT graphs), however, FSL defines the first volume as 
“volume zero.” When using the fslroi command to remove 
volumes, verify the two values designated in command are in 
line with FSL’s definition.

 b. Note on data scrubbing. For some processing streams  
(e.g., multivariate pattern analysis), it may be necessary to 
reduce all time-series to equal lengths in order to retain equal 
degrees of freedom across subjects (51). If data scrubbing is 
performed, the new file containing reduced time-series must 
undergo all fMRI data preprocessing steps from the beginning 
(i.e., Use Melodic for fMRI Data Preprocessing and Melodic 
Report in Section “Preprocessing”). Preprocessing steps will 
be identical for newly scrubbed file, with one exception. In the 
Data tab, input functional file containing the newly reduced 
BOLD time-series (e.g., rsnfile_rdcd), rather than selecting the 
original fMRI data (e.g., rsnfile). Once preprocessing rerun of 
Melodic is finished, one should review the Melodic report to 
verify motion-corrupted volumes were successfully removed, 
and motion criterion is met.

FIX Cleanup
Denoising of fMRI data can be achieved using FMRIB’s ICA-based 
X-noiseifier (FIX) hierarchical classifier, implemented within 
FSL (60, 61). FIX is an ensemble learner8 (i.e., fusion classifier) 
designed to address the complexity of component (i.e., network) 
classification created by signal heterogeneity, often referred to 
as component “impurity” (i.e., components realistically contain 
a mixture of both signal and noise) (61). Accordingly, removal 
of any one component engenders risk of eliminating valuable 
neuronal signal. Collectively, FIX analyses each ICA component 
for over 180 spatial and temporal features (61), ultimately culmi-
nating in a final weighted prediction. Specifically, components 
are classified as “good” (i.e., predominately brain activity), “bad” 
(i.e., predominantly artifact), or “unknown” signal origins. Only 
the unique variance associated with “bad” components, reflect-
ing predominance of non-neuronal physiological signals and/or 

8 Ensemble learning (i.e. “stacking”) refers to the strategic use of multiple classifiers 
to enhance accuracy of the overarching predictive model, compensating for weak-
ness in any one algorithm through the strengths of others (61).

motion-related timecourses, is eliminated to create “cleaned” 4D 
fMRI datasets (44, 73). To run FIX cleanup, use the following 
command: fix <mel.ica> <train>.RData <thr>.

Here, <mel.ica> represents the output folder from preproc-
essing Melodic run, containing all files necessary for FIX analysis 
(e.g., preprocessed fMRI data, motion parameters, structural 
Reference image). Option <train> is the full file directory leading 
to location of training weights, which guide FIX classifications 
(discussed below). The threshold parameter <thr> ranges from 0 
to 100, but should realistically be limited to 5–20. Given that FIX 
output is a probability, threshold parameter controls the balance 
between FIX’s two accuracies: (1) correct identification of good 
components (i.e., true-positive-rate), and (2) correct identifica-
tion of bad components (i.e., true-negative-rate). Low thresholds 
(e.g., 5) favor true-positive-rate, resulting in a conservative 
cleanup. As the threshold parameter is increased, FIX emphasis 
on true-positive-rate shifts increasingly in favor of true-negative-
rate (at the expense of true-positive-rate). Optimal threshold will 
vary depending on which of these accuracies is prioritized in ones 
analysis. Typically, the strategy for ICA-based cleaning methods 
holds to the principle “innocent until proven guilty,” where 
only components clearly from artifactual origins are eliminated 
during preprocessing (true-positive-rate >true-negative-rate) 
(74). Past investigations in adults using threshold parameters 
5–10 found good (>95%) to excellent (>99%) mean accuracy of 
FIX component classifications compared to manual operators, 
as well as a good balance between ratio of true-positive-rate/
true-negative-rate (61). Once finished, FIX generates two output 
files of interest: (1) a text file listing all component classifications, 
including the “bad” components removed, and (2) a file contain-
ing new “cleaned” version of fMRI data, which is used to perform 
final statistical analysis.

Notes on Employing FIX Cleanup
Preexisting training weight files are supplied with FIX and can 
be used provided scan acquisition parameters are similar. Infant 
data presented herein used FIX guided by preexisting Human 
Connectome Project training files, intended for use on minimally 
processed adult datasets (e.g., no spatial smoothing) acquired 
with similar parameters as Human Connectome Project fMRI 
data (44, 61). In these instances, a more conservative threshold 
should be used to mitigate loss of valuable signal, given age-
specific physiological parameters (see Frequency Characteristics 
in Section “Discussion”). Our work employs a threshold of 10. 
Study-specific training datasets are highly recommended to 
improve FIX classification accuracies, provided there are a suf-
ficient number of training datasets (>10 subjects) to do so (61). 
Recently, Ball et al. (75) were the first ever to apply FIX classifier 
(trained on 40 preterm infant datasets) on infant rs-fMRI data, 
and reported highest FIX accuracies using a threshold of 20. 
Additional factors such as subject number and extent of motion 
were also shown to correlate with relative accuracies of FIX 
(75). Datasets used to train FIX should be distinct from infant 
data intended for analysis, or one risks biasing the classifier. For 
smaller sample sizes or unique patient populations, it is advis-
able to manually classify (by hand) all components extracted 
by ICA. In these cases, non-automated denoising of fMRI data 
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can be achieved using the command fsl_regfilt within terminal 
window. This command allows one to list components to be 
removed from the data (analogous to FIX). Refer to the FSL 
website for information regarding available training weights, as 
well as detailed instructions on how to re-train FIX9 and how 
to manually denoise fMRI data.10 It is important to monitor the 
performance of FIX for consistency and accuracy. Recording 
the % of total ICA components removed by FIX from each 
subject’s fMRI data is one avenue to monitor FIX’s consistency 
at a given threshold. One should expect a high proportion of 
noise components identified in the preprocessing run of ICA. 
Past investigations, using data acquired with both standard and 
multiband sequences on 3T scanners, consistently reported a 
predominance of noise components on the order of 70–90% 
(44, 60, 76, 77). These reports highlight the incentive of using 
ICA-based artifact removal. It will also be crucial to monitor 
the accuracy of FIX classifications, particularly if the classifier 
is not trained on study-specific fMRI datasets (61). This can be 
achieved by cross-examining component classifications made by 
FIX with component features recorded in the Melodic report 
(e.g., spatial map, timecourse, powerspectra). This is especially 
important for components that were removed by FIX from fMRI 
data in order to preserve as much neural signal as possible. 
Melodic components are listed in order of explained variance 
(i.e., contributors of noise), such that components containing 
the highest % of explained variance appear first and typically 
contain little to no valuable signal (74). Accordingly, one should 
expect to see a greater number of components listed toward the 
beginning of Melodic report to appear among the components 
identified as artifact and removed by FIX. A general guide to 
assess ICA component spatiotemporal signal characteristics is 
described in the next section (see ICA Results: Evaluation and 
Data Presentation in Section “Final Analysis”).

Method PARt III. FINAL ANALYsIs

Final statistical analysis resulting in extraction of RSNs will entail 
(1) a second run of single-session ICA or GICA using cleaned 
fMRI data, followed by (2) evaluation of resultant independent 
components to identify large-scale neural networks.

Final statistical Analysis Using ICA
Final analysis is performed using ICA, implemented again within 
the Melodic interface. This final run is used to measure tempo-
ral coherence of brain activity between different brain regions 
(i.e., functional connectivity), resulting in extraction of resting-
state brain networks, as well as some artifactual components. 
Setup for Registration and Post-Stats tabs are identical to the 
procedure outlined for previous Melodic run (see Use Melodic 
for fMRI Data Preprocessing in Section “Preprocessing”). Tab 
selections unique to final analysis are noted below, as well as 
distinguishing options to perform GICA:

9 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX/UserGuide#Training_datasets.
10 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC#Using_melodic_for_just_doing_
mixture-modeling.

 ➢ Data tab (Figure  2A): follow instructions described in pre-
vious Melodic run, except for “Select 4D data,” where one 
should input cleaned version fMRI data. Numerous files can 
be input at one time and the type of analysis (see Stats Tab 
below) will determine how each file is analyzed: individually 
(viz. single-session ICA) or as a group (viz. GICA).

 ➢ Pre-stats tab (Figure  2B): deselect “Highpass” temporal 
filtering, and select “None” for motion correction and slice 
timing correction. These steps were already performed during 
preprocessing stage. Pre-statistical processing steps needed 
during final analysis are as follows:
•	 BET brain extraction: select this option.
•	 Spatial smoothing FWHM11 (mm): select a Gaussian kernel 

size (mm) to apply spatial smoothing. Spatial smoothing 
is used during final network analysis to improve SNR and 
reduce minor registration imperfections, greatly improving 
accurate detection of true neuronal signal (63). Spatial smo-
othing itself is achieved by applying a Gaussian kernel size 
(mm). Optimal kernel size will depend on brain size (e.g., 
neonate versus toddler), the quality of data (e.g., SNR), as 
well as the size of the brain activity ROI. Larger sizes are 
useful in instances of poor SNR and when patterns of brain 
activity are expected to cover large regions. For the purpo-
se of infant brain analysis, we have chosen a kernel size of 
5 mm.

 ➢ Registration tab (Figure  2C): if using single-session ICA 
for final analysis, each infant’s fMRI image is registered to 
its native space (e.g., T1 Reference image), and tab setup is 
identical to previous Melodic run (see Use Melodic for fMRI 
Data Preprocessing in Section “Preprocessing”). If using 
multi-subject GICA, each subject’s fMRI data must be trans-
formed into a standardized coordinate space. Accordingly, 
one should select option “Standard space” and designate a 
standardized anatomical template or atlas. Infant-specific 
challenges associated with GICA registration, including lack 
of standardized age-specific atlases, will be discussed at length 
in the Discussion section (see Age-Specific Atlases in Section 
“Methodological Challenges”).

 ➢ Stats tab (Figure 2D):
•	 Variance-normalize timecourses: leave in default settings 

to rescale time-series, same as prior Melodic run (see Use 
Melodic for fMRI Data Preprocessing in Section “Prepro-
cessing”).

•	 Automatic dimensionality estimation: during final analysis, 
one may choose to enforce a uniform dimensionality  
for all subjects. Deselect “automatic dimensionality estima-
tion” and designate the desired dimensionality. Currently, 
there is no consensus on how best to estimate optimal di-
mensionality of a given dataset. Recent evidence suggests a 
range of dimensionalities may be used to extract interpreta-
ble networks (22). Speculatively, “splitting” of lower-dimen-
sional networks into sub-networks (or network nodes) at 

11 Full width at half maximum (FWHM) refers to the difference between the two 
extreme values; it is the width of a spectrum curve measured between extreme 
points on the y-axis, which are half the maximum amplitude.
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higher dimensionalities is thought to reflect functional hie-
rarchy (11, 22, 44). At higher dimensionalities, components 
tend to be more functionally homogeneous (desirable), but 
exhibit noisier associated timecourses (undesirable), as 
fewer time-series are averaged together (44). Further, while  
higher dimensionalities arguably provide more biological 
detail, too high a decomposition may compromise attempts 
at comparative analysis due to subject spatial variability 
(e.g., the probability that Subject A and Subject B share the 
same functional connectivity at a given brain ROI will de-
crease as the ROI dwindles in size) (44). Ultimately, optimal 
dimensionality will depend on the intent of analysis, as well 
as the quality and quantity of fMRI data (44). For datasets 
of representative infants in the current protocol, we enfor-
ced a dimensionality of 40. This produced reasonable de-
composition of fMRI data into interpretable networks and 
sub-components, achieving a balance between component 
convergence and splitting.

•	 Single-session ICA: during final analysis, one can use ei-
ther single-session ICA to retain session/subject-specific 
variation, or select “multi-session temporal concatena-
tion” from the drop-down menu to perform GICA and 
retain variation representative of the whole sample. GICA 
uses multi-subject datasets concatenated into a single 
lengthy time-series, which is then analyzed by ICA to 
produce group-average spatial maps. Group analysis has 
been suggested to provide robust, detailed functional de-
compositions more reliably than single-subject analyses 
(44). However, it is not without its downsides. For instan-
ce, group-wise comparison necessitates arbitrary selection 
of appropriate age ranges, for which there is currently no 
consensus. During the postnatal period, significant chan-
ges in structural and functional architecture are known 
to occur on the order of weeks (78–80). As such, rapidi-
ty of brain development may confound efforts to perform 
group-level analyses if age parameters are inappropriate 
(e.g., too broad; see Age-Specific Atlases in Section “Di-
scussion”).

Once Melodic setup is finished, press “Go” to run the final 
analysis. The Melodic output file containing extracted compo-
nents will be named melodic_IC.

dual Regression (only for GICA)
Group-level analysis can identify large-scale patterns of functional 
connectivity in a given sample, effectively defining functional 
networks of interest particularly useful for group comparisons. 
As noted, GICA generates group-level spatial maps that reflect 
the average functional connectivity across all subjects in that 
group. An additional step (e.g., dual regression) is needed to 
estimate individual subject spatial maps from the group-average. 
Dual regression is a two-stage process (i.e., multiple linear regres-
sion) used to identify spatial maps and associated timecourses 
for individual fMRI images that correspond to those networks 
derived from group-level analysis (81). This approach probes 
between-subject group-consistency in network connectivity, 
allowing for identification of between-subject group-differences 

with high accuracy compared to back-projection methods, which 
can produce false statistical significance (i.e., false-positives or 
false-negatives) (81). For instructions on creating meaningful 
multi-subject experimental designs, refer to the FSL website.12 
Dual regression results in subject-specific timecourses and spatial 
maps corresponding to group-level components, as well as tstat 
images that correspond to group contrasts (e.g., main effects and 
interactions) in the chosen design matrix. To fully appreciate the 
value of dual regression outputs and their implications in the 
context of a study, one should refer to the published literature 
[e.g., Ref. (82–84)].

ICA Results: evaluation and data 
Presentation
Probabilistic ICA extracts a given number of statistically inde-
pendent components, segregated during data decomposition 
based on temporal covariance of BOLD signal. Accordingly, 
signal arising from artifactual sources (e.g., cardiac pulsation) 
helpfully groups together, predominantly isolated from true 
neuronal signal reflecting functional brain networks. However, 
the ICA algorithm does not specify component classifications, 
necessitating manual identification. Accordingly, each individual 
component must be inspected one-by-one during preprocessing, 
for accurate denoising by FIX, as well as following final statistical 
analysis to identify finalized brain networks. At both stages, it is 
normal to see a large number of noise components in the ICA 
results. Described below are common spatiotemporal component 
characteristics used to inform classifications, as well as visualiza-
tion strategies for efficient evaluation of component features.

How to Visualize Components
Effective viewers are available that allow for simultaneous visuali-
zation of spatial, temporal, and spectral features. Freely available 
programs include:

 a. Melview,13 embedded within FSLeyes (replacement for 
FSLView in latest version of FSL14)

 b. Connectome Workbench used to evaluate data from the Human 
Connectome Project15

 c. Analysis of Functional Neuroimages (AFNI)16

 d. GICA of fMRI Toolbox (GIFT; see text footnote 5).

Each program offers unique benefits for efficient evaluation of 
components. Components are usually displayed overlaid on asso-
ciated mean EPI image (e.g., in the Melodic report, Figures 5–7). 
Current methodological challenges are associated with acquisition 
(e.g., limited gradient capabilities) that limits voxel size of fMRI 
images to 2 mm × 2 mm × 2 mm or larger (21). While this may 
be sufficient in adults, constrained voxel size results in poor spatial 
resolution in infant functional MR images due to smaller brain size 
(21). To combat this during component evaluations, it is generally 

12 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM.
13 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Melview.
14 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes.
15 http://www.humanconnectome.org/software/get-connectome-workbench.
16 https://afni.nimh.nih.gov/afni.
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FIGURe 6 | Noise component. Figure illustrates representative noise component in Melodic report obtained from final analysis of an ex-33-week premature infant 
scanned at 9-weeks corrected age (4 months postnatal age). In panel (A), component’s spatial map is presented as z-scores, superimposed on mean functional 
image in radiological convention (right side of image corresponds to left side of brain). Component characteristics are indicative of artifact, demonstrating diffuse and 
anatomically inconsistent spatial activations (A), sudden jumps (highlighted in gray) in associated timecourse (B), as well as pan frequency distribution of spectral 
power [i.e., persistent spectral power across entire frequency range (C)].

FIGURe 5 | Continued  
Signal component. Figure illustrates representative signal component obtained from final analysis of an ex-33-week premature infant scanned at 4-weeks corrected 
age (2.75 months postnatal age). Panel (A) shows component’s spatial map, presented in the Melodic report as z-scores superimposed on serial axial sections of 
mean functional image in radiological convention (right side of image corresponds to left side of brain). Its spatial distribution demonstrates gradual change through 
progressive sections, encompassing biologically relevant structures consistent with the cerebellar-subcortical network (also shown in Figure 8). In panel (B), the 
component’s associated timecourse follows a regular, oscillatory pattern, with no sudden spikes. The power spectrum in panel (C) shows a predominance of high 
power at low frequencies, characteristic of resting-state neural networks.
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FIGURe 7 | Noise component related to subependymal and transmedullary veins. Figure illustrates representative noise component in Melodic report obtained from 
final analysis of an ex-33-week premature infant scanned at 9-weeks corrected age (4 months postnatal age). X-shaped spatial distribution generated by pulsation 
in subependymal and to a lesser degree transmedullary veins (85, 86). These components are often mistaken for white matter components (arrowheads) due to the 
effect of spatial smoothing on signal distribution (74). Note the presence of rim-like activity in lower slices near the cerebellum (single arrow), which is a common 
finding in noise components. Melodic report spatial map is presented as z-scores superimposed on mean functional image in radiological convention (right side of 
image corresponds to left side of brain).
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advisable to overlay components (e.g., melodic_IC) on corresponding 
high-resolution structural images (Figure 8), which can be achieved 
within FSLview or MRIcron,17 and scroll through sections in each 
orthogonal plane. MRIcron provides a user-friendly way to gener-
ate serial axial sections of each component, helpful for identifying 
networks and facilitating intra- and intersubject comparisons. This 

17 http://www.mccauslandcenter.sc.edu/mricro/mricron/.

is clearly illustrated in Figure 8, where a representative infant’s fMRI 
image was aligned to its native space (i.e., T1 Reference image), rather 
than projected into a shared standard space. Ultimately, the utility of 
overlaying components on structural images is entirely dependent 
on proper structural-functional image alignment (see Figure 4).

Component Characteristics
Qualitative evaluation of an individual component to determine 
whether it reflects neuronal or artifactual signal can be obvious 
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or more obscure. Spatial map distribution (spatial features), 
associated timecourses (temporal features), and powerspectra 
(spectral features) of each component should all factor in to final 
classification (Figures  5–7). Additionally, comparison of time-
courses with MCFLIRT realignment parameters obtained during 
preprocessing (see Figure 3) can reveal any corresponding spikes 
between the two time-series, indicative of motion artifact. Refer 
to recently published work by Griffanti et al. (74) for an in depth 
“how-to” guide on component classification, including extensive 
illustrations of component characteristics, as well as a hierarchi-
cal flow-chart of the decision-making process. A brief review of 
typical features associated with signal and noise components are 
described below in hierarchical order of importance.

Spatial Features
Spatial maps of neuronal components have patchy, “area-like”  
distributions localized within gray matter tissue, typically involv-
ing both gyri and sulci (44).18 Primordial RSNs in infants before or 
around term-equivalent age are often described as “local blooms” 
(i.e., network spatial diffusivity), whereas older infants tend to 
exhibit more localized signal (33). Signal in subcortical brain 
regions should also be localized to gray matter (e.g., Figures 5A 
and 8). Noise components may exhibit banding patterns, as well 
as signal distributions inconsistent with anatomical boundaries 
(e.g., Figure  6A) or localized within areas of susceptibility-
induced signal loss (e.g., orbitofrontal regions) are likely artifact. 
Furthermore, component maps showing spatial overlap predomi-
nantly in areas of white matter, CSF (e.g., cisterns or ventricles), 
venous sinuses, or cerebral vasculature (e.g., subependymal veins; 
Figure 7) are likely artifact. Signal concentrated on gyral crowns 
(without sulci involvement) that presents as “arc-like” spatial 
distributions are artifact and may be motion-related (not shown) 
(44). Importantly, lateralized components may be a reflection 
of: normal [e.g., lateralization of language (92)] or abnormal, 
[e.g., prematurity (93) or stress (94)] network development; 
inappropriate dimensionality parameter (i.e., overfitting); or the 
manifestation of residual motion in the data. Complementary 
lateralized components for a given network may be the result of 
“splitting” due to inappropriately high dimensionality (see Final 
Statistical Analysis Using ICA in Section “Final Analysis”). Due 
to the potentially multifactorial etiology of lateralization, such 
components should be interpreted with the upmost caution.

Temporal Features
Timecourses of neuronal components follow a relatively regular 
oscillatory path (distinct from physiological oscillation patterns), 
with no sudden jumps (e.g., Figure 5B). Temporal features includ-
ing spikes in time-series (motion; Figure 6B), or oscillatory pat-
terns (physiologic noise) indicate presence of artifact.

18 Spatial maps derived from final analysis (spatially smoothed) will look different 
from those observed after the first run of ICA during preprocessing (spatially 
unsmoothed), which typically exhibit noisier patterns of activation clusters.

Spectral Features
Spectral features of RSNs typically show power distribution  
concentrated at lower frequencies (0.01–0.1 Hz), with at least one 
strong peak therein (e.g., Figure  5C) (44). Power spectra con-
taminated by non-neuronal noise will often show an abundance 
of high or very low frequencies inconsistent with characteristic 
range of low frequency RSNs as well as pan frequency distribu-
tions (74). The latter is illustrated in Figure 6C.

Correlation Thresholds
For each component, z-score maps should be inspected in both 
the raw format, and after application of a default threshold (typi-
cally around 2–3). Higher thresholds applied to spatial maps are 
helpful for localizing signal to identify regions of strongest cor-
relation (e.g., bright yellow), as well as generating unsmoothed 
component maps. Lowering threshold can also be used to discern 
the source of signal in smaller, weaker correlated regions. For 
example, small patches of signal from neuronal sources tend 
to gradually expand, spatially aligned with gyral convolutions.  
In contrast, signal stemming from artifactual sources may remain 
small, stagnant entities or expand, but with disregard for contours 
of brain tissue (74). Threshold parameters specific to each compo-
nent can be found by looking at the color bar next to its spatial map 
within the Melodic report (shown in Figures 5–7). The color bar 
provides an index of correlational strength, with warm red–yellow 
colors reflecting positive correlations and blue–green cool colors 
denoting negative correlations. Raw z-score maps may show 
negative and/or positive clusters. A predominance of negative cor-
relations does not necessarily condemn a component as artifactual 
noise. Anticorrelated RSNs in adults are thought to reflect intrinsi-
cally anticorrelated functional systems (95). An example of this is 
a “task-positive” system comprised of brain regions that routinely 
exhibit increased activity during attention demanding tasks, and 
corresponding “task-negative” system that shows the opposite (95).

Presentation of Results
After carefully reviewing all ICA components (both signal and 
noise), extracted from final analysis, components with spatial 
characteristics comprising individual functional networks should 
be grouped together (Figure  8). Final RSN maps are typically 
presented orthogonally (i.e., in representative sagittal, coronal, and 
axial views), although components can also be shown displayed 
in serial axial sections for completeness (Figure 8), as described 
above (see How to Visualize Components). Detailed descriptions 
of brain regions comprising each brain network are beyond the 
scope of this manuscript. Ultimately, meaningful evaluation and 
interpretation of individual and group-level networks requires a 
thorough understanding of previously reported RSNs, and the 
brain regions they encompass. For spatial maps and descriptions of 
anatomical structures comprising individual networks, please refer 
to the published literature referenced in Section “Review of Current 
Literature on Resting-State Networks in Infants” of the  Discussion.

dIsCUssIoN

Despite its complexities and shortcomings, rs-fMRI is undoubt-
edly a valuable tool for gaining insights into brain function. As 
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such, rs-fMRI represents a relatively new neuroinvestigative 
tool for probing functional architecture in the infant brain. 
While investigations to-date yield promising results, this rapidly 

emerging field is faced with several methodological consid-
erations (discussed below) that will need to be refined prior to 
standardization of the method across research and clinical fields.
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FIGURe 8 | Resting-state network data presentation. Figure illustrates representative neural components (18 out of 40) comprising eight total resting-state networks 
obtained from final analysis of an ex-25-week premature infant scanned at term-equivalent age (4.25 months postnatal age). Identified networks were as follows:  
(1) sensorimotor, (2) auditory, (3) visual, (4) executive control, (5) proto-default-mode, (6) dorsal attention, (7) frontoparietal, (8) cerebellar-subcortical, and (9) salience 
networks. Identified networks were spatially consistent with those previously described in infants (22, 25–29, 32, 33, 87–89) and adults (11, 90, 91). Spatial maps are 
presented as z-scores (arbitrarily thresholded at z = 2.8) superimposed on corresponding structural Reference image, and presented in serial axial view using MRIcron. 
Slices progress from ventral to more dorsal sections (left to right). In accordance with traditional radiological convention, right side of image corresponds to left side of brain.
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Methodological Challenges
Despite significant advances since its inception, expanded applica-
tions of rs-fMRI to infant populations raises many methodological 
concerns that have yet to be resolved, including systematic, age-
specific preprocessing techniques and parameters for analyzing 
rs-fMRI data.

Age-Specific Atlases
The infant brain undergoes rapid postnatal brain development, 
involving subject- and region-specific alterations in cortical den-
sity, thickness, and folding, such that visible changes can be seen 
from week to week (78–80). Misclassifications and biases can 
result from the use of inappropriate templates during registra-
tion (96), compromising specificity of alignment. Registration 
of each functional image to its native space (i.e., corresponding 
structural T1 image) accounts for individual morphological 
variability and age-dependent differences, allowing for more 
accurate spatial normalization and heightened sensitivity of sig-
nal detection in activated brain regions. However, it is one of the 
most time consuming steps due to the lack of reliable neonatal 
segmentation techniques, necessitating manual editing. Novel 
neonatal brain extraction methods continue to emerge (97, 98), 
including some algorithms insensitive to brain pathology (99). 
In studies that handle larger cohorts of infants, it may be more 
practical to register subjects’ fMRI images to a common ste-
reotactic space. As previously mentioned, the latter is absolutely 
required for intersubject statistical comparison using GICA. 
Methods to create study-specific pediatric MRI average brain 
templates are available (100, 101). Alternatively, standardized 
age-specific templates and atlases are becoming more readily 
available (15, 80, 102–104). However, it is imperative that users 
understand the origins and assumptions made in creating such 
templates. Relevant concerns regarding preexisting templates 
and atlases include: (1) averages arising from a limited number 
of subjects [e.g., seven infants in one study (80, 105)], (2) using 
non-generalizable clinical populations [e.g., sedated infants 
scanned for clinical indications (103)], and/or (3) using broad 
age ranges unable to appreciate regional postnatal neurodevel-
opmental changes [e.g., 1-year-old template derived from 9- to 
15-month-old infants (103)]. Furthermore, a predominance of 
templates to date, are compiled for specific and/or widely spaced 
time points across early development (typically term-equivalent 
age, 1- and 2-year-old infants) (80, 100, 104, 106). Recent 
movements toward establishing comprehensive, freely available 
MRI databases show promise. Notably, the publicly available 
Neurodevelopmental MRI Database offers age-specific tem-
plates at narrow age-windows (1–3 month intervals) throughout 
early infancy, as well as reference templates from early child-
hood through to early adulthood (6-month increments)19 (101). 
However, at this early stage, infant templates are derived from 
limited number of subjects and represent an average of healthy 
infant patient populations, specifically recruited as normally 
developing or control subjects. Currently, no robust age-specific 
infant atlases (in months) akin, for example, to the MNI152 in 

19 http://jerlab.psych.sc.edu/NeurodevelopmentalMRIDatabase.

adults are freely available for systematic use in infants. Future 
efforts should be directed toward creation of freely available 
standardized age- and population-specific atlases for infants 
that would allow for more accurate registration and comparative 
data analyses necessary for longitudinal studies of infant brain 
development.

Motion
Motion is a prominent concern in the field of rs-fMRI, particu-
larly in investigations of infant and clinical populations. Emerging 
evidence suggests even subtle head motion can introduce 
systematic biasing effects on measures of network connectivity, 
including distance-dependent modulation of correlation (51, 
107–110). General consensus in resting-state literature holds that 
proper analysis of intrinsic brain activity requires at least ~5 min 
of temporally contiguous data to remain post motion scrubbing 
(41, 51). This presents a major problem for infants, where data 
quality hinges upon an infant remaining perfectly still for the 
duration of scan. Infant motion is observed during wakefulness, 
as well as during sleep. MRI machines are loud and transitions 
between sequences often startle the infant, contributing to sleep 
difficulties. Moreover, individual differences (i.e., age, disposi-
tion, health) may impact successful scan completion. Numerous 
strategies have been adopted to attenuate scanner noise and 
promote minimal subject motion, including the use of consistent 
background noise (to acclimate infant) combined with neonatal 
earmuffs or foam earplugs, catering to infant’s circadian rhythm 
(i.e., scanning at night), and swaddling infant prior to scan  
(18, 111). Recently developed protocols show promise in mitigat-
ing the incidence of infant motion, reporting higher rates of scan 
completion and structural scan acquisition sans motion artifact, 
as well as amelioration of SNR (112, 113). Further refinement 
of scan acquisition is critical moving beyond establishment 
of normative resting-state patterns, to understand complex 
phenomenon such as brain development across decades and 
abnormal processes in clinical populations. Improved techniques 
for reliable post-acquisition detection and elimination of motion 
artifact also remain an active field of investigation.

Level of Arousal
Studies of infant populations demonstrated the ability to detect 
RSNs during sleep and sedation. However, targeted investigations 
probing the effect of level of arousal (e.g., sleep stages) on func-
tional connectivity in infants have yet to be published. Limited 
studies addressing this topic report minimal effects of sleep on 
baseline BOLD signal (114, 115). Currently, methodological 
limitations prevent simultaneous use of electroencephalogram 
during rs-fMRI, which could ideally be used to track and control 
for various sleep stages (116). An alternative strategy to control 
for sleep stage entails fixing order of scan sequences, such that 
rs-fMRI data are acquired first, immediately after infants fall 
asleep (116). RSNs have been identified during scans using light 
sedation (22, 25, 32, 117–119), with several studies reporting 
no significant discrepancies in qualitative or quantitative results 
between infants scanned with and without sedation (25, 27, 87). 
However, past studies in adults cited state-dependent modulation 
of correlation strength in a network-specific pattern (120–122). 
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While sedation is particularly attractive for investigations in 
infant populations (to reduce motion), the effect of sedation 
on RSNs remains controversial and incompletely understood. 
Furthermore, in light of potential detrimental effects of sedation 
and anesthetic drugs on infant brain development (123–125), 
it may be unethical to consider such measures for research 
purposes.

Frequency Characteristics
Since the first observation of low-frequency RSNs (7), model-
based strategies for identification and removal of artifacts have 
been developed based on adult physiology. Results of these 
investigations have been generalized to infant resting-state 
dynamics, guiding parameter choice despite notable differences 
in physiology (105). Infants typically exhibit higher baseline 
cardiac and respiratory rates, as well as increased variability in 
tidal volume and measures of heart rate. Systematic integration 
of subject monitoring for such physiological data has not been 
routinely collected during past rs-fMRI investigations (105). 
Simultaneous physiological monitoring during fMRI scan 
acquisition is associated with many technical challenges, chiefly 
related to ensuring the safety of subject, operator, and equipment 
(126). This information may help to define age-specific models 
of physiologic noise, allowing for targeted removal of artifact 
(physiologic and motion-related) embedded in infant data, as 
well as characterization of RSN spectral features and selection of 
appropriate preprocessing parameters.

Ethical Considerations
In addition to the challenges posed by infant RSN analysis, 
many ethical issues arise when conducting research in human 
infants. These include obtaining informed consent from car-
egivers from diverse educational and cultural backgrounds, as 
well as comprehensive pre-screening of caregivers and physi-
cians with pertinent knowledge of patient’s medical history to 
provide for any fMRI contraindications (127, 128). Apart from 
general safety measures, additional infant-specific consid-
erations involve curtailing infant distress that may result from 
the fMRI protocol. Most neuroimaging of healthy infants is 
performed during natural sleep without sedation for a number 
of reasons, including safety, practicality, and parental comfort. 
As a result, infants often awaken during scan acquisition and 
may experience stress due to novel scanner environment (e.g., 
loud noise). Protocols tailored to safeguard against infant 
distress involve careful monitoring of infant wakefulness, with 
contingency plans in place to quickly respond to symptoms of 
distress (21).

Shortcomings of ICA Approach
Independent component analysis provides blind statistical 
processing of rs-fMRI data, facilitating data-driven exploratory 
analysis important in instances where no suitable hypothesis 
is available. Further, it helpfully segregates noise from valuable 
neural signal during decomposition process, providing several 
opportunities to remove artifact during preprocessing and final 
analysis. However, ICA-based artifact removal does not ensure 
elimination of all noise from the data, and ICA is potentially 

more sensitive to influences of non-neuronal signal than other 
methods (44). Moreover, ICA data decomposition ultimately 
compels manual selection of important components reflect-
ing true brain networks from artifactual derivatives. While 
considered the gold standard (129–131), manual classification 
is time consuming and requires expertise, including a robust 
understanding of infant physiology and MR physics critical for 
informed evaluation of components (74). Fundamental advance-
ments in fully automated approaches to component classification  
(e.g., FIX classifier) have been developed and demonstrate high 
accuracies in adult analyses. However, such methods require 
further refinement for robust and reliable application in infant 
populations, including integration of age-specific modeling of 
physiologic noise.

Review of Current Literature  
on RsNs in Infants
Application of rs-fMRI in infants is a relatively recent phenom-
enon, and the literature is correspondingly sparse. The first ever 
report of infant RSNs described a total of five networks in former 
premature infants scanned at term-equivalent age (estimated 
40 weeks gestational age) (22). Since then, the majority of stud-
ies sought to define normative neural network development at 
specific developmental time points in healthy preterm and term 
infants. Fragmented precursors of RSNs have been detected as 
early as 26  weeks postmenstrual age (33), with all major adult 
RSNs present to some degree at term (25). Primordial RSNs in 
the youngest subjects are often described as “local blooms” (i.e., 
network spatial diffusivity), whereas older infants exhibit more 
focal brain activity (33). This transitional trend towards spatial 
localization is thought to reflect maturation of structural and 
functional organization of the brain with advancing age. Younger 
infants around term-equivalent age tend to exhibit stronger local 
connections and interhemispheric connectivity between homo-
geneous counterparts (22), as well as weaker long-range and 
intrahemispheric connectivity between disparate regions (22, 
33). The common consensus is that gradual network maturation 
occurs with advancing age. Increasing postmenstrual age has 
been associated with increased connectivity strength, including 
connections between physically distant brain regions (132). 
Indeed this rapid increase in connection density peaks by the 
first year of life, after which it begins to stabilize (132). Cortical 
hubs (unusually interconnected brain regions, thought to play an 
integral role in information flow) identified in the infant brain 
typically encompass primary sensory systems (e.g., auditory, 
visual, sensorimotor), as opposed to higher association cortices 
associated with default-mode and frontoparietal attentional 
networks in adults (22, 133, 134). This finding is supported by 
longitudinal investigations, which report network-specific rates 
of maturation with functional connections necessary for higher 
order cognitive functions appearing later in development (25). 
While resting-state literature to date focuses on healthy infant 
populations (i.e., without apparent clinical problems), prema-
turity itself engenders increased risk of various poor sequela, 
including cognitive and learning deficits (135). In one study, 
preterm infants exhibited weaker functional connectivity than 
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term infants in a network-specific pattern that became more 
distinct over time (87). While some studies report disparities in 
RSN development between preterm and term infants (33, 87), 
study by Doria et al. (25) did not find such evidence. Insufficient 
literature addressing the differences between preterm and term 
infant populations precludes any assertions one way or another at 
this time. Further, the vast majority of these studies included only 
healthy preterm infants, with no signs of overt brain lesions or 
neurodevelopmental impairment. Such methods may introduce 
some degree of bias in that comparisons to date have not been 
conducted using a truly representative cross-section of healthy 
preterm infants. Published reviews on infant rs-fMRI continue 
to synthesize findings to date, important for propelling the field 
forward (21, 72, 105, 116).

Future Applications of Resting-state 
Analysis in Infants
Understanding Neurodevelopment and Neuroplastic 
Vulnerability
Resting-state functional magnetic resonance imaging provides 
insight into intrinsic functional organization of the brain, 
implicated in development of normative stimulus response and 
longitudinal neurobehavioral outcomes (136). Both deprivation 
and overabundance of sensory stimuli introduced during critical 
periods of development are known to induce physiological and 
structural changes that alter brain circuitry (137, 138). While 
such neuroplasticity endows a certain degree of productive adapt-
ability, it also renders the developing brain highly vulnerable to 
any number of environmental stressors. Past research using func-
tional near-infrared spectroscopy and electroencephalogram in 
preterm infants observed pain processing involving cortical 
structures as early as 25  weeks postmenstrual age (139, 140), 
as well as hypersensitivity to painful stimuli when compared to 
term infants (141). Furthermore, studies of preterm infants in 
the NICU found total number of medical procedures predicted 
regional structural and functional alterations at term-equivalent 
age (94). However, the underlying neural mechanisms and 
encompassing brain regions responsible for such changes remain 
unknown. Rs-fMRI has the potential to elucidate immediate and 
long-term neural sequelae of events including premature birth, 
perinatal pain exposure (e.g., procedural), and drug treatment. 
Future investigations in critically ill infant populations may 
provide insight into critical factors that determine neurode-
velopmental outcome, guiding targeted preventative strategies 
to mitigate risk factors and development of early intervention 
therapeutics. Given the rapidity of postnatal neurodevelopment 
and importance in timing of exposure to environmental stressors, 
follow-up studies tracking infant developmental progression, 
together with long-term imaging and behavioral outcomes, are 
integral to establishing biomarkers with true predictive value.

Clinical Applications
Resting-state functional magnetic resonance imaging holds 
unique advantages over task-based fMRI, allowing for investiga-
tions of wider range of patient populations and elimination of 
numerous experimental confounds (142–144). In adults, early 
clinical investigations of RSNs centered on patient populations 

with neuropsychiatric disorders (12, 144, 145), laying the ground-
work for expanded inquiries aimed at diagnosis, treatment effi-
cacy, and longitudinal tracking of disease course. Thus far, these 
studies demonstrate patterns of decreased connectivity strength 
across numerous RSNs in patients that correlate with disease 
progression in certain clinical populations, including Alzheimer’s 
disease, Parkinson’s disease, multiple sclerosis, Tourette’s syn-
drome, and autism disorder (12, 145, 146). Diagnostic value of 
rs-fMRI has also proven attractive for application in disorders of 
consciousness (e.g., coma, brain death), which currently present 
a major clinical challenge associated with a high rate of misdiag-
nosis (40%) (6, 147). The utility of rs-fMRI in infant populations 
represents a largely untapped opportunity to advance clinical 
research in a number of areas. Notably, recent investigations into 
the etiology of autism successfully implemented infant rs-fMRI to 
uncover early biological markers of the disorder, as well as mod-
eled its neurodevelopmental trajectory (148, 149). Converging 
evidence from diverse modalities, including structural MRI and 
diffusion tensor imaging, is critical for empowering more robust 
interrogations of pathological/atypical processes. The potential 
for discovery using rs-fMRI in infant populations is consider-
able and will hinge on future technological advances to drive its 
application into routine clinical practice.
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