
Swing Modulo Scheduling: A Lifetime-Sensitive Approach

Josep Llosa, Anto o GonzBlez, Eduard Ayguad6, and Mateo Valero

Universitat Politkcnica de Catalunya
Departament d’ Arquitectura de Computadors, Barcelona (Spain)

Email: { josepll,antonio,eduard,mateo} @ ac.upc.es

Abstract
This paper presents a novel software pipelining approach,
which is called Swing Modulo Scheduling (SMS). It
generates schedules that are near optimal in terms of
initiation interval, register requirements and stage count.
Swing Modulo Scheduling is an heuristic approach that has
a low computational cost. The paper describes the
technique and evaluates it for the Perfect Club benchmark
suite. SMS is compared with other heuristic methods
showing that it outperforms them in terms of the quality of
the obtained schedules and compilation time. SMS is also
compared with an integer linear programming approach
that generates optimum schedules but with a huge
computational cost, which makes it feasible only for very
small loops. For a set of small loops, SMS obtained the
optimum initiation interval in all the cases and its schedules
required only 5% more registers and a 1% higher stage
count than the optimum.
Keywords: Fine Grain Parallelism, Instruction
Scheduling, Loop Scheduling, Software Pipelining,
Register Requirements, VLIW and Superscalar
Architectures.

1. Introduction

Software pipelining [5] is an instruction scheduling
technique that exploits instruction level parallelism out of
loops by overlapping successive iterations of the loop and
executing them in parallel. The key idea is to find a pattern
of operations (named the kernel code) so that when
repeatedly iterating over this pattern, it produces the effect
that an iteration is initiated before the previous ones have
completed.

The drawback of aggressive scheduling techniques, such
as software pipelining, is their high register pressure. The
register requirements increase as the concurrency increases
[18,16], due to either machines with deeper pipelines, or
wider issue, or a combination of both. Registers, like
functional units, are a limited resource. Therefore, if a
schedule requires more registers than available, some

1089-795X/96 $5.00 0 1996 IEEE
Proceedings of PACT’96

80

actions, such as adding spill code, have to be performed.
The addition of spill code can degrade performance [16]
due to additional cycles in the schedule, or due to memory
interferences.

Some research groups have targeted their work towards
exact methods based on integer linear programming, For
instance, the proposal in [111 search the entire scheduling
space to find the optimal resource-constrained schedule
with minimum buffer requirements, while the proposals in
[10,6] find schedules with the actual minimum register
requirements. The task of generating an optimal (in terms
of throughput and register requirements) resource-
constrained schedule for loops is known to be NP-hard. All
these exact approaches require a prohibitive time to
construct the schedules and therefore their applicability is
restricted to very small loops. Therefore, any practical
algorithm must use some heuristics to guide the scheduling
process. Some of the proposals in the literature only care
about achieving high throughput [21,14,13,24,8,20] while
other proposals have also been targeted towards
minimizing the register requirements [9,12,17], which
result in more effective schedules.

Stage Scheduling [9] is not a whole modulo scheduler by
itself but a set of heuristics targeted to reduce the register
requirements of any given modulo schedule. This objective
is achieved by moving operations in the schedule. The
resulting schedule has the same throughput but lower
register requirements. Unfortunately there are constraints
in the movement of operations that might yield to
suboptimal reductions of the register requirements.

Slack Scheduling [I21 is a heuristic technique that
simultaneously schedules some operations late and other
operations early with the aim of reducing the register
requirements and achieving maximum execution rate. The
algorithm integrates recurrence constraints and critical-
path considerations in order to decide when each operation
is scheduled. The algorithm is based on Iterative Modulo
Scheduling [8,20] in the sense that it may result in ejecting
operations already scheduled to give place to a new one
(sort of controlled backtracking).

Hypemode Reduction Modulo Scheduling (HRMS) [171
is a heuristic strategy that tries to shorten loop variant
lifetimes, without sacrificing performance. The main part
of HRMS is the ordering strategy. The ordering phase
orders the nodes before scheduling them, so that only
predecessors or successors of a node can be scheduled
before it is scheduled (except for recurrences). During the
scheduling step the nodes are scheduled as soonhate as
possible, if predecessors/successors have been previously
scheduled. The effectiveness of their proposal is compared
in terms of achieved throughput and compilation time
against other heuristic methods [12,241 showing a better
performance. The main drawback of the HRMS heuristic
proposed to order the nodes is that it does not take into
account that nodes are more critical in the scheduling
process if they belong to a more critical path of the graph. n12

In this paper we present a novel ordering strategy, Swing
Modulo Scheduling (SMS), that considers latencies to
decide how critical the nodes are. It is an heuristic
technique that has a low computational cost (e.g.,
compiling all the innermost loops without conditional exits
and procedure calls of the Perfect Club takes less than half
a minute) while it produces schedules very close to those
generated by optimal approaches based on exhaustive
search which have a prohibitive computational cost for real
programs.

The rest of the paper is organized as follows. Section 2
overviews the main concepts related with software
pipelining. Section 3 discusses an example to motivate our
proposal, which is formalized in Section 4. Section 5 shows
the main results of our experimental evaluation of the
schedules generated by SMS. It is also compared with the
schedules generated by other heuristic approaches and the
optimal ones. The main concluding remarks are given in
Section 6.

2. Overview of Software Pipelining

In a software pipelined loop, the schedule for an iteration is
divided into stages so that the execution of consecutive
iterations which are in distinct stages is overlapped. The
number of stages in one iteration is termed stage count
(Sc). The number of cycles between the initiation of
successive iterations (i.e. the number of cycles per stage) in
a software pipelined loop is termed the Initiation Interval
(W 12 11.

The Initiation Interval ZZ between two successive
iterations is bounded by both recurrence circuits in the
graph (RecMZI) and resource constraints of the architecture
(ResMZI). This lower bound on the ZZ is termed the
Minimum Initiation Interval (MZZ=max(RecMZZ, ResMZZ)).
The reader is referred to [8,20] for an extensive dissertation
on how to calculate ResMZZ and RecMZZ.

Hardware configuration:
1 add unit
1 mu1 unit
2 loadstore. units

add 2 cycles
mul. 2 cycles
load 2 cycles
store: 1 cycle

Latencies:

Figure 1: Dependence graph for the motivating example.

Values used in a loop correspond either to loop-invariant
variables or to loop-variant variables. Loop-invariants are
repeatedly used but never defined during loop execution.
Loop-invariants have only one value for all iterations of the
loop, therefore each one requires one register for all the
execution of the loop regardless of the schedule and the
machine configuration.

For loop-variants, a value is generated in each iteration
of the loop and, therefore, there is a different lifetime
corresponding to each iteration. Because of the nature of
software pipelining, lifetimes of values defined in an
iteration can overlap with lifetimes of values defined in
subsequent iterations. This is the main reason why the
register requirements are increased. In addition, for values
with a lifetime larger than the ZZ new values are generated
before the previous ones are used. To fix this problem,
either software solutions (modulo variable expansion [151)
and hardware solutions (rotating register files [7]) have
been proposed.

Some of the software pipelining approaches can be
regarded as the sequencing of two independent steps: node
ordering and node scheduling. These two steps are
performed assuming MZZ as the initial value for ZZ. If it is
not possible to obtain a schedule with this ZZ, the scheduling
step is performed again with an increased ZZ. Next section
shows how the ordering step influences on the register
requirements of the loop.

3. Motivating example

Consider the dependence graph in Figure 1, and an
architecture configuration with the pipelined functional
units and latencies specified in the same figure. Since the
graph in Figure 1 has no recurrence circuits, its initiation
interval is constrained only by the available resources; in

81

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1 2 3 4 5 6 8 91011 I/s I/s add mu1
0 nl I
1

8
9

10
11
12
13
14
15

1 2 3 4 5 6 8 91011

0 10 0 8
1 9 1 6
2 11 2 8
3 10 3 9

c) d)

Figure 2: Top-Down scheduling: a) Schedule of one
iteration, b) Lifetimes of variables, c) Kernel of the

scheduling, and d) Register requirements.
this case, the resource that limits the MZZ is the multiplier
and the value is MII = 4/1 = 4.

A possible approach to order the operations to be scheduled
would be to use a top-down strategy that gives priority to
operations in the critical path; with this ordering, nodes
would be scheduled in the following order: <nl, n2, n5, n8,
n9, n3, n10, n6, n4, n l l , n12, n7>. Figure 2.a shows the
top-down schedule for one iteration and Figure 2.c the
kernel code (numbers in brackets represent the stage to
which the operation belongs). Figure 2.b shows the
lifetimes of loop variants. The lifetime of a loop variant
starts when the producer is issued and ends when the last
consumer is issued. Figure 2.d shows the register
requirements for this schedule; for each cycle it shows the
number of live values required by the schedule. The
number of registers required can be approximated by the
maximum number of simultaneously live values at any
cycle, which is called MaxLive (in [22] it is shown that
register allocation never requires more than MaxLive+l
registers). In Figure 2.d, MaxLive=lI. Notice that with this
approach, variables generated by nodes n2 and n9 have an
unnecessary large lifetime due to the early placement of the
corresponding operations in the schedule; as a
consequence, the register requirements for the loop
increase.

In the strategy presented in [171 the ordering is done with
the aim that all operations (except for the first one) have a
previously scheduled reference operation. For instance, for
the previous example, they would suggest the following
order to schedule operations <nl, n3, n5, n6, n4, n7, n8,
n10, nll, n9, n2, n12>. Notice that with this scheduling

c) d)
Figure 3: HRMS scheduling: a) Schedule of one

iteration, b) Lifetimes of variables, c) Kemel of the
scheduling, and d) Register requirements.

order, both n2 and n9 (the two conflicting operations in the
top-down strategy) have a reference operation (n8 and n10,
respectively) already scheduled when they are going to be
placed in the partial schedule.

Figure 3.a shows the final schedule for one iteration. For
instance, when we schedule operation n9, operation n10
has already been placed in the schedule (at cycle 8) so it
will be scheduled as close as possible to it (at cycle 6), thus
reducing the lifetime of the value generated by n9.
Something similar happens with operation n2, which is
placed in the schedule once its successor is scheduled.
Figure 3.b shows the lifetimes of loop variants and Figure
3.d shows the register requirements for this schedule. In
this case, MaxLive=9.

The ordering suggested by HRMS does not give
preference to operations in the critical path. For instance,
operation n5 should be scheduled 2 cycles after the
initiation of operation nl ; however this is not possible since
during this cycle the adder is busy executing operation n3,
which has been scheduled before. Due to that, an operation
in a more critical path (n5) is delayed in front of another
operation that belongs to a less critical path (n3).
Something similar happens with operation nl l that
conflicts with the placement of operation n6, which again
belongs to a less critical path but the ordering has selected
it before. Figures 4.a and 4.c show the schedule obtained by
our proposal and Figures 4.b and 4.d the lifetime of
variables and register requirements for this schedule.
MaxLive for this schedule is 8. The schedule is obtained
using the following ordering <n12, n l l , n10, n8, n5, n6,
nl, n2, n9, n3, n4, n7>. Notice that nodes in the critical

82

0
1
2
3
4
5
6
7
8
9

10
11

c) d)
Figure 4: SMS scheduling: a) Schedule of one iteration,

b) Lifetimes of variables, c) Kemel of the scheduling, and
d) Register requirements.

path are scheduled with a certain preference with respect to
the others. The following section details the algorithm that
orders the nodes having in mind these ideas, and the
scheduling step.

4. Swing Modulo Scheduling (SMS)

Most modulo scheduling approaches consists of two steps.
First, they compute an schedule trying to minimize the ZZ
but without caring about register and then variables are
allocated to registers. The execution time of a software
pipelined loop depends on the ZZ, the maximum number of
live values of the schedule (MaxLive) and the stage count.
The ZZ determines the issue rate of loop iterations.
Regarding the second factor, if MaxLive is not higher than
the number of available registers then the computed
schedule is feasible and then it does not influence the
execution time. Otherwise, some action should be taken in
order to reduce the register pressure. Some possible
solutions outlined in [20] and evaluated in [161 are:

Swing Modulo Scheduling (SMS) is a modulo scheduling
technique that tries to achieve a minimum ZZ, reduce
MaxLive and minimize the stage count. It is an heuristic
technique that has a low computational cost while it
produces schedules very close to those generated by
optimal approaches based on exhaustive search, which
have a computational cost prohibitive for real programs.

In order to achieve a minimum ZZ and to reduce the stage
count, SMS schedules the nodes in an order that takes into
account the RecMZZ of the recurrence to which each node
belongs (if any) and as a secondary factor it considers how
critical is the path to which the node belongs.

To reduce MaxLive, SMS tries to minimize the lifetime
of all the values of the loop. To achieve that, it tries to keep
every operation as close as possible to both its predecessors
and successors. When an operation is to be scheduled, if the
partial schedule has only predecessors, it is scheduled as
soon as possible. If the partial schedule contains only
successors, it is scheduled as late as possible. The situation
in which the partial schedule contains both predecessors
and successors of the operation to be scheduled is
undesirable since in this case, if the lifetime from the
predecessors to the operation is minimized, the lifetime
from the operation to its successors is increased. Some
techniques like [9] deal with this situation by rescheduling
the predecessors and the successors. SMS does not perform
this type of backtracking but schedules the operations in
such an order that this situation happens very rarely. In fact
it happens only once for each recurrence and it is avoided
completely if the loop does not contain any recurrence.

The algorithm followed by SMS consists of the
following three steps that are described in detail below:

Computation and analysis of the dependence graph.
Ordering of the nodes.
Scheduling.

SMS can be applied to generate code for innermost loops
without subroutine calls. Loops containing IF statements
can be handled after applying if-conversion [l] and
provided that the processor supports predicated execution
~71.

Reschedule the loop
increasing the ZZ will
the issue rate.

with an increased In general7 4.1. Computation and analysis of the dependence
reduce MaxLive but it decreases

graph

Add spill code. This again has a negative effect since
it increases the required memory bandwidth and it will
result in more memory penalizations (e.g. cache
misses). In addition, memory may become the most
saturated resource and therefore adding spill code may
require to increase the ZZ.

The dependence graph of an innermost loop consists of a
set of four elements (DG={V, E, 61)):

Vis the set of nodes (vertices) of the graph, where each
node v E V corresponds to an operation of the loop.
E is the set of edges, where each edge (u,v) E E
represents a dependence from operation U to operation

Finally, the stage count determines the number of
iterations of the epilogue part of the loop (it is exactly equal
to the stage count minus one).

v. Only data dependences (flow, anti and output-
dependences) are included since the type of loops that
SMS can handle only include one branch instruction at

83

the end that is associated to the iteration count. Other
branches have been previously eliminated by the if-
conversion phase.
6,," is called the distance function. It assigns a
nonnegative integer to each edge (u,v) E E. This value
indicates that operation v of iteration I depends on
operation U of iteration I-ti,,,.
h, is called the latency function. For each node of the
graph, it indicates the number of cycles that the
corresponding operation takes.

Given a node v E V of the graph, Pred(v) is the set of all
the predecessors of v. That is, Pred(v) = {U I U E Vand (u,v)
E E}. In a similar way, Suc(v) is the set of all the successors
of v. That is, Suc(v) = {U I U E Vand (v,u) E E}.

Once the dependence graph has been computed, some
additional functions that will be used by the scheduler are
calculated. In order to avoid cycles, one backward edge of
each recurrence is ignored for performing these
computations. These functions are the following:

ASAP, is a function that assigns an integer to each
node of the graph. It indicates the earliest time at
which the corresponding operation could be
scheduled. It is computed as follows:

IfPred(u) = 0 then ASAP, = 0
else ASAP, = max (ASAP, i & - 6,, x MII)V v E Pred(u)

ALAP, is a function that assigns an integer to each
node of the graph. It indicates the latest time at which
the corresponding operation could be scheduled. It is
computed as follows:

IfSuc(u) = 0 then ALAP, = max ASAP, V v E V
else ALAP, = min (ALAP, - h, i 6 , , x MU) V v E Suc(u)

MOV, is called the mobility function. For each node of
the graph, it denotes the number of time slots at which
the corresponding operation could be scheduled.
Nodes in the most critical path have a mobility equal
to zero and the mobility will increase as the path in
which the operation is located is less critical. It is
computed as follows:

MOV, = ALAP, -ASAP,
* D, is called the depth of each node. For each node of

the graph, it is defined as the maximum number of
predecessors weighted by their latency. It is computed
as follows.

IfPred(u) = 0 then D, = 0
else D, = max (D, i L) V v E Pred(u)

* H , is called the height of each node. For each node of
the graph, it is defined as the maximum number of
successors weighted by their latency. It is computed as
follows:

IfSuc(u) = 0 then H , = 0
else H,, = max (H, + A,) kf v E Suc(u)

ha = hb = hc=hd= he= 1

8a,b = 6 , c = 6a,d = 6b,e = & , e = sd,e =
ASAP, = 0; ASAPb =ASAPc = ASAPd = 1; ASAP, = 2
ALAP, = 0; ALAPb = A M P c = AUPd = 1; ALAP, = 2
MOV, = MOVb = MOV, = MOVd = MOV, = O
Da= 0; Db= Dc= Dd= 1; De = 2
Ha = 2; Hb = U, = Hd= 1; He = 0

Figure 5: A sample dependence graph.

4.2. Ordering the nodes

The ordering phase takes as input the dependence graph
previously calculated and produces an ordered list
containing all the nodes of the graph. This list indicates the
order in which the nodes of the graph will be analyzed by
the scheduling phase. That is, the scheduling phase (see
next section) first allocates a time slot for the first node of
the list; then, it looks for a suitable time slot for the second
node of the list and so on. Notice that, as the number of
nodes already placed in the partial schedule increases, there
are more constraints to be met by the remaining nodes and
therefore it is more difficult to find a suitable location for
them.

As previously outlined, the target of the ordering phase
is twofold:

Give priority to the operations that are located in the
most critical paths. In this way, the fact that the last
operations to be scheduled should meet more
constraints is offset by their higher mobility (MOV,).
This approach tends to reduce the II and the stage
count.
Try to reduce MaxLive. In order to achieve this, the
scheduler will place each node as close as possible to
both its predecessors and successors. However, the
order in which the nodes are scheduled has a severe
impact on the final result. For instance, assume the
sample dependence graph of Figure 5 and a dual-issue
processor.
If node a is scheduled at cycle 0 and then node e is
scheduled at cycle 2 (that is, they are scheduled based
on their ASAP or ALAP values), it is not possible to
find a suitable placement for nodes b, c and d since
there are not enough slots between a and e. On the
other hand, if nodes a and e are scheduled too far
away, there are many possible locations for the
remaining nodes. However, MaxLive will be too high
no matter which possible schedule is chosen. For

84

instance, if we try to reduce the lifetime from a to b,
we are increasing by the same amount the lifetime
from b to e . In general, having scheduled both
predecessors and successors of a node before
scheduling it may result in a poor schedule. Because of
this, the ordering of the nodes will try to avoid this
situation whenever possible (notice that in the case of
a recurrence, it can be avoided for all the nodes
excepting one).

If the graph has no recurrences, the intuitive idea to
achieve these two objectives is to compute an ordering
based on a traversing of the dependence graph. The
traversing starts by the node at the bottom of the most
critical path and moves upwards, visiting all the ancestors.
The order in which the ancestors are visited depends on
their depth. In case of equal depth, nodes are ordered from
less to more mobility. Once all the ancestors have been
visited all the descendants of the already ordered nodes are
visited but now moving downwards and in the order given
by their height. Successive upwards and downwards
sweeps of the graph are performed alternatively until all the
graph has been traversed.

If the graph has recurrences, the graph traversing starts at
the recurrence with the highest RecMII and applies the
previous algorithm considering only the nodes of the
recurrence. Once this subgraph has been traversed, the
nodes of the recurrence with the second highest RecMII are
traversed. At this step, the nodes located at any path
between the previous and the current recurrence are also
considered in order to avoid having scheduled both
predecessors and successors of a node before scheduling it.
When all the nodes belonging to recurrences or any path
among them have been traversed, then the remaining nodes
are traversed in a similar way.

Concretely, the ordering phase is a two-level algorithm.
First a partial order is computed. This partial order consists
of an ordered list of sets. The sets are ordered from the most
to the least priority set but there is not any order inside each
set. Each node of the graph belongs to just one set.

The most priority set consists of all the nodes of the
recurrence with the highest RecMII. In general, the ith set
consists of the nodes of the recurrence with the ith highest
RecMII, eliminating those nodes that belong to any
previous set (if any) and adding all the nodes located in any
path that joins the nodes in any previous set and the
recurrence of this set. Finally, the remaining nodes are
grouped into sets of the same priority but this priority is
lower than that of the sets containing recurrences. Each one
of these sets consists of the nodes of a connected
component of the graph that do not belong to any previous
set.

Once this partial order has been computed, then the
nodes of each set are ordered to produce the final and

? := Empty-list
:or each set of nodes S in decreasing priority do

if Pred-L(0) # 0 and Pred-L(0) S then
R := Pred-L(0) n S
order := bottom-up

R := Suc-L(0) n S
order := top-down

R := (node with the highest ASAP value in S} ;

order := bottom-up

else ifSuc-L(O) # 0 and Suc-L(O) C S then

else

ifmore than one, choose anyone

end if
Repeat

iforder = top-down
while R # 0 do

v := Element of R with the highest H, :

o:= 0 I <v>
R := R - (v} v (SUC (v) n S)

ifmore than one, choose node with lowest MO?

endwhile
order := bottom-up
R := Pred-L(0) n S

while R # 0 do
else

v : = Element of R with the highest D, ;

0 := 0 I <v>
R := R - (v} v (Pred(v) n S)

ifmore than one, choose node with lowest M o b

endwhile
order : = top-down
R := Suc-L(O) n S

endif
until R = 0

ndfor

Figure 6: Ordering algorithm.

complete order. This step takes as input the previous list of
sets and the whole dependence graph. The sets are handled
in the order previously computed. For each recurrence of
the graph, a backward edge is ignored in order to obtain a
graph without cycles. The final result of the ordering phase
is a list of ordered nodes 0 containing all the nodes of the
graph.

The ordering algorithm is shown in Figure 6, where I
denotes the list append operation and SucJ(0) and
Pred-L(0) are the sets of predecessors and successors of a
list of nodes respectively, which are defined as follows:

Pred-UO) = (v I 3 U E 0 such that v E Pred(u) and v P 0}
Suc-L(O) = (v I 3 U E 0 such that v E Suc(u) and v E 0}

4.3. Scheduling

The scheduling step analyses the operations in the order
given by the ordering step. The scheduling tries to schedule
the operations as close as possible to the neighbors that
have already been scheduled. When an operation is to be

85

scheduled, it is scheduled in different ways depending on
the neighbors of these operations that are in the partial
schedule.

If an operation U has only predecessors in the partial
schedule, then U is scheduled as soon as possible. In
this case the scheduler computes the Early-Start of U

as :
Early-Start = max

Where tv is the cycle where v has been scheduled, AV
is the latency of v, 6 is the dependence distance
from v to U , and PSP(u3 is the set of predecessors of U

that have been previously scheduled. Then the
scheduler scans the partial schedule for a free slot for
the node U starting at cycle EurlySturtu until the cycle
EarlyStart + ZI - 1. Notice that, due to the modulo
constraint, it makes no sense to scan more than 11
cycles.
If an operation U has only successors in the partial
schedule, then U is scheduled as late as possible. In this
case the scheduler computes the Latestart of U as:

(t + AV - 6v x I l)
U V E PSP(U) v

V l t

CI

Late-Start = minv E pss (t - A u + 6 u v X I I) =
Where PSSG) is the set o k successors o f u that have
been previously scheduled. Then the scheduler scans
the partial schedule for a free slot for the node U
starting at cycle Late-Sturtu until the cycle
LateStartU - II + 1.
If an operation U has both predecessors and successors,
then the scheduler computes Early-Startu and
Late-Startu as described above and scans the partial
schedule starting at cycle Early-Startu until the cycle
min(late-Startu, Early-Startu + ZZ - 1). This situation
will only happen for exactly one node of each
recurrence circuit.
Finally, if an operation U has neither predecessors nor
successors, the scheduler computes the Early-Start of
U as:

and scans the partial schedule for a free slot for the
node U from cycle Early-Startu to cycle Early-Startu
+U- 1.
If no free slots are found for a node, then the ZZ is

Early-Startu = ASAPu

increased by 1. The scheduling step is repeated with the
increased IZ, which will provide more opportunities for
finding free slots. One of the advantages of our proposal is
that the nodes are ordered only once, even if the scheduling
step has to do several trials.

4.4. Examples

This section illustrates the performance of the SMS by
means of two examples. The first example is a small loop
without recurrences and the second example uses a
dependence graph with recurrences.

Assume that the dependence graph of the body of the
innermost loop to be scheduled is that of Figure 1 (page 2),
where all the edges represent dependences of distance zero.
Assume also a four-issue processor with four functional
units (1 adder, 1 multiplier and 2 loadlstore units) fully
pipelined with the latencies listed in Figure 1.

The first step of the scheduling is to compute the MZI and
the ASAP, ALAP, mobility, depth and height of each node
of the graph. MZZ is equal to 4. Table 1 shows the remaining
values for each node.

I Node I ASAP I ALAP I M I D I H 1
I I t I I

nl I 0 1 0 1 0 1 0 1 10
n2 I 0 1 2 1 2 1 0 1 8

I I I I I

n3 I 2 1 6 1 4 1 2 1 4
n4 I 4 1 8 1 4 1 4 1 2
n5 I 2 1 2 1 0 1 2 1 8

n8 4 4 0 4 6
n9 0 4 4 0

I I I I I

1112 I 10 I 10 I 0 1 10 I 0

Table I : ASAC ALAC mobility (M), depth (0) and height
(H) of nodes of Figure 1.

Then, the nodes are ordered. The first level of the
ordering algorithm groups all the nodes into the same set
since there are not recurrences. Then, the elements of this
set are ordered as follows:

Initially R={n12) and order = bottom-up.
Then, all the ancestors of n12 are ordered depending
on their depth and their mobility as a secondary factor.
This gives the partial order 0 = a 1 2 , n l l , n10, n8,
n5, n6, nl , n2, n9>.

* Then, the order shifts to top-down and all the
descendants are ordered based on their height and
mobility. This gives the final ordering 0 = a 1 2 , nl l ,
n10, n8, n5, n6, nl, n2, n9, n3, n4, n7>.

The next step is to schedule the operations following the
previous order. ZZ is initialized to MZZ and the operations are
scheduled as shown in Figure 4 (page 4):

0 The first node of the list, n12, is scheduled at cycle 10
(given by its ASAP) since there are neither
predecessors nor successors in the partial schedule'.
Once the schedule is folded this will become cycle 3 of
stage 2.

1. In fact the resulting schedule stretches from cycles -
1 to 10 but in all the figures we have normalized the rep-
resentation starting always at cycle 0, so n12 is in cycle
11 of Figure 4.

86

