
Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

Facultat d’Informàtica de Barcelona (FIB)

Image Recognition with Deep Learning
Techniques and TensorFlow

Maurici Yagües Gomà

Master in Innovation and Research in Informatics

Data Mining and Business Intelligence

Advisor: Jordi Torres Viñals
Universitat Politècnica de Catalunya (UPC)

Department of Computer Architecture (DAC)

Co-Advisor: Ruben Tous Liesa
Universitat Politècnica de Catalunya (UPC)

Department of Computer Architecture (DAC)

October 20, 2016

Abstract

Deep neural networks have gained popularity in recent years, obtaining outstanding results in
a wide range of application, but most notoriously in computer vision and natural language
processing tasks. Despite the newly found interest, research in neural networks span many
decades back, and some of today’s most used network architectures where invented many years
ago. Nevertheless, the progress made during this period cannot be understood without taking
into account the technological advancements seen in key contiguous domains such as massive
data storage and computing systems, more specifically in the Graphic Processing Unit (GPU)
domain. These two components are responsible for the enormous performance gains in neural
networks, that have made what we call Deep Learning a common word among the Artificial
Intelligence and Machine Learning community.

These kind of networks need massive amounts of data to effectively train the millions of
parameters they contain, and this training can take up to days or weeks depending on the
computer architecture we are using. The size of new published datasets keeps growing, and the
tendency of creating deeper networks that outperforms shallower architectures means that on
the medium and long term the computer hardware to undertake these kind of training processes
can only be found in high performance computing facilities, where they have enormous clusters
of computers. However, using these machines is not straightforward, as both the framework and
the code need to be appropriately tuned for effectively taking advantage of these distributed
environments.

For this reason, we test TensorFlow, an open-sourced framework for Deep Learning from
Google that has built-in distributed support, on top of the GPU cluster, called MinoTauro, at
Barcelona Supercomputing Center (BSC). We aim to implement a defined workload using the
distributed features the framework offers, to speed up the training process, acquire knowledge
of the inner workings of the framework and understand the similarities and differences with
respect to a classic single node training.

2

Acknowledgements

I would like to express my gratitude to my advisor, Jordi Torres, for introducing me to the
Deep Learning universe, his endless enthusiasm and guiding me through the making of this
thesis. Also, to my co-advisor, Ruben Tous, for the wise comments and encouragement. To
the Barcelona Supercomputing Center for the opportunity and to their Support Team for the
prompt answers whenever a problem occurred.

To my colleagues at the Autonomic Systems and e-Business Platforms group, for the inter-
esting talks at lunch and their constant support whenever there is a problem. Special thanks
to Francesc Sastre, without whom this thesis will not have been finished on time.

Also, to all people I have met during these years at the master, for introducing me to new
areas of informatics I did not know.

Thanks to my family and friends, for supporting me and being always there, in the good,
the not so good, and the funny times.

4

Contents

1 Problem statement 7
1.1 Goals of this thesis . 7
1.2 Introduction to distributed machine learning systems 7

1.2.1 Scaling up machine learning . 7
1.2.2 Types of parallelism . 8
1.2.3 Performance metrics . 9

1.3 Deep learning overview . 9
1.3.1 Early tendencies and evolution . 9
1.3.2 Recent years . 10
1.3.3 Current uses and tendencies . 11
1.3.4 Framework comparison . 13

1.4 Framework used: TensorFlow . 14
1.4.1 Types of data parallelism . 15

1.5 Platform . 17
1.5.1 MinoTauro overview . 17
1.5.2 Software stack and queue system . 18
1.5.3 Distributed TensorFlow with Greasy . 20

2 Testing methodology 23
2.1 Dataset . 23
2.2 Network architecture . 24

2.2.1 Residual Neural Networks . 24
2.2.2 ResNet-56 with bottlenecks . 25

2.3 Implemented architectures . 28
2.3.1 Asynchronous mode . 28
2.3.2 Mixed asynchronous mode . 30

2.4 Tools for assessing the model . 32

3 Results 35
3.1 Testing scalability . 35
3.2 Asynchronous training . 36
3.3 Mixed asynchronous training . 37
3.4 Model comparison . 39

4 Conclusions 43
4.1 Future work . 44

Bibliography 45

5

6

1. Problem statement

1.1 Goals of this thesis

The aim of this master thesis is to test the scalability of the TensorFlow framework in the
MinoTauro machine (GPU cluster) at Barcelona Supercomputing Center (BSC). This frame-
work is oriented, but not constrained, to develop Deep Learning applications, and has built-in
distributed computing for using multiple nodes of both CPUs and GPUs. A series of machine
configurations will be tested with a defined workload, in order to understand the behaviour of
both the framework and the machines.

Distributed training in deep learning is quite a recent tendency given the massive sizes of
datasets coupled with the always increasing depth of the neural networks. As of today, mainly
the big software companies use these systems internally for their own products, but out of
the box versions were difficult to implement or were non-existent. TensorFlow is in ongoing
development, and the amount of documentation for their distributed version is scarce, given
that it is not the most used functionality, as not many users have access to clusters of GPUs.

1.2 Introduction to distributed machine learning systems

During the last decade machine learning has seen an increased interest from many different
areas, becoming a key element in multiple industries. Although many of today’s algorithms
rely on decades, or even centuries, old mathematics, their increased performance is a conse-
quence of both more complex models and bigger volumes of data. The need for storing these
large amounts of data (both structured and unstructured) has encouraged the research in new
database formats, circumventing the constraints of old systems. The rise of distributed storage
systems led to the need of machine learning algorithms that could benefit from that type of
architecture, and that could cope with more complex models, even though that meant designing
new algorithms or adapting old ones.

Part of this section takes the main ideas of the great introduction in Bekkerman, Bilenko,
and Langford [5], presenting some general concepts of applying machine learning in distributed
environments. Furthermore, an overview of deep learning and the current state of distributed
machine learning is presented.

1.2.1 Scaling up machine learning

Distributed computing has emerged as an efficient solution for tackling growing machine
learning challenges. These platforms allow the scalability of machine learning tasks, enabling

7

some properties that could not be achieved with single-machine processing:

• Larger number of data instances: combining the distributed storage and bandwidth
of a cluster of machines the amount of data that can be processed is increased.

• Higher input dimensionality: some tasks involving natural language, video or biolog-
ical data are prone to a high number of features. Parallelizing the computation across
features can be used for scaling up the process.

• Model and algorithm complexity: running complex non-linear models that are com-
putationally expensive can be alleviated with distributed computing by means of parallel
multicore or multinode, and the use of coprocessors such as GPUs.

• Model selection and parameter tuning: for these kind of tasks parallelization is
straightforward as they consist of independent executions of the same dataset, with dif-
ferent combinations of hyper-parameters.

However, scaling up the computation to a distributed system is also a more difficult task
than working on a single machine. Depending on the efficiency of the algorithm, communication
between nodes can be a bottleneck, and the system has to be robust in order to overcome
possible failures.

1.2.2 Types of parallelism

The main idea behind this computing paradigm is to run tasks concurrently instead of
serially, as it would happen in a single machine. To achieve this, there are two principal
implementations, and it will depend on the needs of the application to know which one will
perform better, or even if a mix of both approaches can increase the performance.

Data parallelism

In this mode, the training data is divided into multiple subsets, and each one of them is run
on the same replicated model in a different node (worker nodes). These will need to synchronize
the model parameters (or its gradients) at the end of the batch computation to ensure they
are training a consistent model. This is straightforward for machine learning applications that
use input data as a batch, and the dataset can be partitioned both rowwise (instances) and
columnwise (features).

Some interesting properties of this setting is that it will scale with the amount of data
available and it speeds up the rate at which the entire dataset contributes to the optimization
[51]. Also, it requires less communication between nodes, as it benefits from high amount of
computations per weight [38]. On the other hand, the model has to entirely fit on each node
[15], and it is mainly used for speeding computation of convolutional neural networks with large
datasets.

Model parallelism

In this case, the model will be segmented into different parts that can run concurrently, and
each one will run on the same data in different nodes. The scalability of this method depends on
the degree of task parallelization of the algorithm, and it is more complex to implement than the
previous one. It may decrease the communication needs, as workers need only to synchronize

8

the shared parameters (usually once for each forward or backward-propagation step) and works
well for GPUs in a single server that share a high speed bus [14]. It can be used with larger
models as hardware constraints per node are no more a limitation, but is highly vulnerable to
worker failures.

1.2.3 Performance metrics

The term performance in these systems has a double interpretation. On one hand it refers
to the predictive accuracy of the model, and on the other to the computational speed of the
process. The first metric is independent of the platform and is the performance metric to
compare multiple models, whereas the second depends on the platform on which the model is
deployed and is mainly measured by metrics such as:

• Speedup: ratio of solution time for the sequential algorithms versus its parallel counter-
part

• Efficiency: ratio of speedup to the number of processors

• Scalability: efficiency as a function of an increasing number of processors

Some of this metrics will be highly dependent on the cluster configuration, the type of
network used and the efficiency of the framework using the libraries and managing resources.

1.3 Deep learning overview

Despite having gained a lot of notoriety in the last years, research in multilayer neural
networks span many decades [57]. Conventional machine learning techniques had difficulty in
processing natural data in their raw form, so to make classifiers more powerful it was common
to use generic non-linear features such as kernel methods and create multi-stage hand-tuned
pipelines of extracted features and discriminative classifiers [55]. However, those generic features
did not allow the learner to generalize well from the training examples, so one of the main
advantages of these new methods is the fact that good features can be learned automatically
using a general purpose learning procedure and without human engineering [41]. That is why
deep learning techniques are also referenced as representation learning methods that are fed
with raw data and have multiple levels of representation, obtained by composing simple but
nonlinear modules that each transform the representation at one level into a representation
at a higher, slightly more abstract level [41, 7]. These methods have dramatically improved
the state of the art in recent years in multiple areas such as speech recognition, visual object
recognition and detection, drug discovery and genomics.

1.3.1 Early tendencies and evolution

Early works of multilayer neural networks date back to Ivakhnenko [34] for Feedforward
Multilayer Perceptron type networks and to Fukushima [20] for today’s version of convolutional
neural networks, inspired by the structure of the nervous visual system, having lower order
hypercomplex cells in the early layers and higher order hypercomplex cells in the latest ones.
Although this works mainly established the structure for deep neural networks that was later
popularised, they still lacked a good learning algorithm for weight updates during the training
phase. It was not until the mid 80s that backpropagation was popularised for neural networks

9

by Rumelhart, Hinton, and Williams [54]. With backpropagation the error values at the output
are back propagated using the chain rule to compute the gradient of the error with respect to
each weight [26]. This way the weights get updated at each step with the objective to minimize
a loss function. LeCun et al. [42] were the first to apply backpropagation to the network
architecture presented by Fukushima [20] to recognize handwritten zip code digits (MNIST
dataset). Backpropagation is still today the dominant approach for training deep networks.

However, backpropagation for feedforward neural networks and recurrent neural networks
seemed to work only for shallow structures and suffered from the vanishing or exploding gra-
dient problem. That means cumulative backpropagated error signals either shrink rapidly, or
grow out of bounds, making deep structures impossible to train [57]. This led to the Long
Short-Term Memory (LSTM) cell [31] that outperformed the performance of recurrent neural
networks on tasks that require learning the rules of regular languages, and tasks involving con-
text free languages that could not be represented by Hidden Markov Models. In addition, this
new method did not suffer from the vanishing or exploding gradients. In recent years these
kind of structures have improved the state of the art in applications such as protein analy-
sis, handwriting recognition, voice activity detection, optical character recognition, language
identification, audio onset detection, text-to-speech synthesis, social signal classification and
machine translation [57].

All in all, ventures based on neural networks and other AI technologies began to make un-
realistically ambitious claims while seeking investments. When AI research did not fulfill these
unreasonable expectations, investors were disappointed, which led to a decline of popularity
of neural networks until the mid 2000s [24]. That gap was filled with other methods such as
Support Vector Machines, kernel methods and graphical models that dominated many practical
and commercial pattern recognition applications during that time [57].

The expression Deep Learning was coined around 2006 with the publication of structures
such as a stack of Restricted Boltzmann Machines called Deep Belief Network that arouse inter-
est for the good results obtained [30]. At the same time, early tests on GPU-based convolutional
neural networks made training times several times faster, and by 2010 a GPU implementation
of backpropagation was up to 50 times faster than its CPU version [57].

1.3.2 Recent years

Certainly advancements in computer hardware are of main importance in developing deeper
architectures that can build more complex models. Neural networks have doubled in size
roughly every 2.4 years with the availability of faster CPUs at first and the advent of general
purpose GPUs later, in addition to better software infrastructure for distributed computing
[24]. Also, the digitization of society has made possible the availability of gigantic datasets
that can be used to successfully train neural networks. ImageNet is an image database with
1.2 million images with 1000 different categories organized according to the WordNet hierar-
chy and has, at least, 732 images per class, making it one of the biggest datasets available.
Different tracks are available, image classification, single and multiple-object localization, or
object detection in videos, with classifications for models using the provided data and another
for those that use additional resources. Since 2012, deep convolutional networks have won the
ImageNet competition for object classification, and by 2014 all top contestants were relying on
convolutional neural networks [55].

Table 1.1 and Table 1.2 show the progress convolutional neural networks have achieved in
image classification and single-object localization, challenges started at 2010 and 2011, respec-

10

tively. For those years, the winners used methods related to support vector machines, but since
then increasingly deeper neural networks have been topping the results, with notable gains year
after year.

Table 1.1: Summary of winning teams in the ImageNet image classification challenge.
(Source: Russakovsky et al. [55] with some additions)

Year Top-5 Error # of layers Institution Name Ref

2010 28.2 - NEC Labs America, University of Illinois
at Urbana-Champaign, Rutger NEC [45]

2011 25.8 - Xerox Research Center Europe XRCE [56]
2012 16.4 8 University of Toronto SuperVision [38]
2013 11.7 8 Clarifai Clarifai [72]
2014 6.7 22 Google GoogLeNet [65]
2015 3.5 152 Microsoft Research Asia MSRA [28]

Table 1.2: Summary of winning teams in the ImageNet single-object localization.
(Source: Russakovsky et al. [55] with some additions)

Year Error Institution Name Ref

2011 42.5 University of Amsterdam, University of Trento UvA [70]
2012 34.2 University of Toronto SuperVision [38]
2013 30.0 New York University OverFeat [58]
2014 25.3 University of Oxford VGG [61]
2015 9.0 Microsoft Research Asia MSRA [28]

1.3.3 Current uses and tendencies

The domain of application and research of deep learning techniques has progressed a lot
in a small span of time. Image classification was the first application where deep neural net-
works began showing incredible results. The ImageNet challenge pushed the research of many
groups in this area, with incredible results, as seen in the previous section, in the domains of
image classification, single and multiple-object localization, and object detection in videos as
of recently.

However, convolutional neural networks have been used in some varied applications such as
in Gatys, Ecker, and Bethge [22], where these kind of networks are able to modify the content
of a photo to match the style of a picture. Using the pre-trained network in Simonyan and
Zisserman [61] the new image is approximated to both, the activations at some layer of the
original content, and the Gram matrix of the activations of the style image. The user can tune
the weight of the content and the style in the final picture adjusting some hyperparameters in
the loss function, and choose the layers to take into account in the optimization process. This
approach was later applied to video by Ruder, Dosovitskiy, and Brox [53] and Anderson et al.
[4], and some alternative implementations of the original neural art appeared during the last
year [11, 21, 35, 48, 69].

Other neural network architectures have also benefited from deeper models, more compu-
tational power and bigger datasets. Recurrent neural networks and LSTM have been used
for some years related to natural language processing fields, improving the state of the art in

11

(a) City of London skyline (Photo by DAVID ILIFF)1 (b) Style from Vincent van Gogh’s The Starry Night

Figure 1.1: Example of neural art with own implementation.

applications such as language translation [13, 64], speech-to-text recognition [25] and senti-
ment analysis [63]. Vinyals et al. [71] coupled the powerful architecture of convolutional neural
networks for image recognition to a recurrent neural networks, to create a generative model
that can output a description of an image given as input. Recently, a group of people from
the Google Brain has been developing algorithms for music generation with recurrent neural
networks [52].

Another successful application that had a lot of attention in the media was the win of the
Google DeepMind project AlphaGo2 to Go professional player Lee Sedol. Go had been till then
a much more difficult feat for artificial intelligence, due to its enormous search space and the
difficulty of evaluating board position and moves. Prior to this match, the program was paired
to another Go player, Fan Hui, and the details of the match can be found at Silver et al. [60].
The paper also explains the methods used for building AlphaGo, which uses: convolutional
networks for creating a representation of the position, supervised learning for training a policy
network from human expert moves, reinforcement learning for optimizing the policy network in
games of self-play, value networks for evaluating the board positions and predicting the winner
of the game, and paired with the Monte Carlo tree search that estimates the value of each state
in the tree of all possible sequence of moves.

Given the costs of computation of the networks, they used asynchronous multi-threaded
searches, executing simulations on CPUs, and computing policy and value networks in parallel
on GPUs. The final version of AlphaGo used 40 search threads, 48 CPUs, and 8 GPUs, but
a distributed version was tested with 40 search threads, 1,202 CPUs and 176 GPUs. Their
version was tested against other programs available, winning most of the matches even when
free moves where allowed for the opponents. During the match against Lee Sedol a custom
ASIC, called TPU was used [16, 36], which is more energy efficient than GPUs, and is specially
tailored for machine learning tasks, as it is optimized for low precision computations that have
proved to work well in inference.

1License: CC-BY-SA 3.0 (Wikipedia)
2AlphaGo webpage

12

https://en.wikipedia.org/wiki/File:City_of_London_skyline_from_London_City_Hall_-_Oct_2008.jpg
https://www.deepmind.com/alpha-go.html

1.3.4 Framework comparison

Given the amount of interest in these algorithms, many frameworks specialized in this area
have appeared in the last years3. However, most of them where designed for efficient single-node
computation with multiple devices (CPUs and GPUs), and their distributed applications were
dependent on other frameworks of distributed processing (Spark, Hadoop, etc.).

The appearance of new programming models, such as MapReduce [17], that built on old
approaches like Message Passing Interface, has shifted the computation of many companies to
distributed configurations. This new models make it easy to parallelize tasks on many servers,
taking advantage of the distributed storage system for efficient computation. However, state-of-
the-art deep learning systems rely on custom implementations to facilitate their asynchronous,
communication-intensive workloads [47]. As a consequence, some deep learning frameworks
with only single-node computing capabilities have been used on top of those parallelizing sys-
tems to obtain a satisfactory degree of performance.

With the growing expansion of deep learning, some frameworks with different properties
and options have been appearing during the last years. Table 1.3 resumes some properties of a
reduced selection of frameworks available for deep learning.

Table 1.3: Framework comparison. (Source: Tokui et al. [68] with some additions)

Caffe CNTK MXNet TensorFlow Theano Torch

Started
from* 2013 20144 2015 2015 2008 2012

Main
developers BVLC5 Microsoft DMLC6 Google Université

de Montréal
Facebook,

Twitter, etc.7

Core
languages C++ C++ C++ C++, Python C, Python C, Lua

Supported
languages

C++, Python
MATLAB CLI C++, Python

R, Julia, Go... C++, Python C, Python C, Lua

Parallel
computation Multi GPU Multi GPU

Multi-node
Multi GPU
Multi-node

Multi GPU
Multi-node8 Multi GPU Multi GPU

*Year of GitHub repository creation

Most of the broadly used frameworks enable multi-device computation and support both
CPUs and GPUs. Also, most of them enable by now parallel computing in single node envi-
ronments (multi GPUs), and some of the newest begin supporting multi-node architectures,
although this is a much more scarce feature, given the complexity of the implementation and
that not many users have access to clusters of GPUs.

Performance on single-node execution is similar across frameworks, as they rely on similar
implementations for running on GPUs [1]. Differences may arise in the way each framework
handles memory allocation or other specific design choices of the developers. As Adolf et al. [3]
summarize, there is a convergent evolution amongst the more popular libraries. For example,

3At least 40 according to the following list (Deep Learning Software links)
4Released on January 2016 (announcment)
5Berkeley Vision and Learning Center (BVLC)
6Distributed (Deep) Machine Learning Community (dmlc.ml)
7Ronan Collobert, Clement Farabet, Koray Kavukcuoglu, Soumith Chintala (list of contributors)
8Since version 0.8.0 RC0 in April 2016 (release notes)

13

http://deeplearning.net/software_links/
http://blogs.microsoft.com/next/2016/01/25/microsoft-releases-cntk-its-open-source-deep-learning-toolkit-on-github
http://bvlc.eecs.berkeley.edu/
http://dmlc.ml/
http://torch.ch/whoweare.html
https://github.com/tensorflow/tensorflow/releases/tag/v0.8.0rc0

they all use a simple front-end specification language, optimized for productivity, and highly-
tuned native backend libraries for the actual computation.

As said before, prior to the appearance of native distributed versions, some experiments
were done combining single-node frameworks with parallel engines. For instance, Caffe is a
framework that can be used on multiple GPUs in a single-node machine, and has been applied
to a distributed environment with SparkNet [47] and CaffeOnSpark [19], developed by the Yahoo
Big ML Team. Prior to open sourcing the native distributed implementation of TensorFlow,
its single-node version was scaled with Spark by Databricks [32], for hyperparameter tuning,
and Arimo [62], for scalability tests.

Other trends include the addition of extensions and libraries to those frameworks that
enable multi-node capabilities without the need of a middle layer as Spark. Theano-MPI is
a framework, built on Theano, that supports both synchronous and asynchronous training
of models in data parallelism setting on multiple nodes of GPUs [46]. In the case of Caffe,
FireCaffe offers similar properties for scaling the training of complex models [33], and for
Torch, the Twitter Cortex team developed a distributed version [66].

1.4 Framework used: TensorFlow

TensorFlow 9 was open-sourced on November 2015, as a software library for numerical com-
putation using data flow graphs [2]. Despite its extended library for deep learning functions,
the system is general enough to be used for many other domains. This system is the evolution
of the previous scalable framework DistBelief, supports large-scale training and inference in
multiple platforms and architectures, and aims to be a flexible framework for both experiment-
ing and running in production environments. This is achieved by using dataflow programming
models (Spark, MapReduce) which provide a number of useful abstractions that insulate from
low-level details of distributed processing. Then, communication between subcomputations is
explicit and makes it easy to partition and run independent sub-graphs on multiple distributed
devices.

The node placement algorithm uses a greedy heuristic for examining the completion time of
every node on each possible device, including communication costs across devices. The graph is
then partitioned into a set of subgraphs, one per device, and Receive and Send nodes are added
to the incoming and outgoing connections, as Figure 1.2a shows. These will coordinate the
transfer data across devices, making the scheduling of the nodes decentralized into the workers.

The native distributed version of TensorFlow builds up from DistBelief, which could utilize
computing clusters with thousands of machines [18]. The parameter server architecture pre-
sented in Li et al. [43] manages asynchronous data communication between nodes, and supports
flexible consistency models, elastic scalability, and continuous fault tolerance. This architecture
uses a set of servers to manage shared state variables that are updated by a set of data-parallel
workers. In essence, variables of the model are stored in the parameter servers, and are loaded
to each worker for the computation, with the batch of data. The workers return the gradients
obtained to the parameter servers, where the variables are updated and sent again for the next
computation (Figure 1.2b).

Initial implementations of the parameter server were (key, value) pairs, where for LDA the
pair is a combination of the word ID and the topic ID. The implementation in [43] treats these

9Homepage: https://www.tensorflow.org

14

https://www.tensorflow.org

(a) Placement of Send/Receive nodes.
(Source: Abadi et al. [2]) (b) Parameter server architecture.

(Source: Dean et al. [18])

Figure 1.2: Architecture details of TensorFlow.

objects as sparse linear algebra objects, by assuming that keys are ordered, and those missing
are treated as zeros, which enables optimized operations for vectors.

TensorFlow implements a user-level checkpointing for fault-tolerance, so that a trained
model can be restored in the event of a failure. Those checkpoints need not to be consistent,
unless strictly specified, and is a choice of the user to define the checkpoint retention scheme.
This enables easy reutilization of models for fine-tuning or unsupervised pre-training [1].

Another interesting feature is the visualization tool named TensorBoard, that enables com-
putation graph and summary data visualizations, for better understanding of the model defined
and the training process. Some internal features made it possible to build a tracing profile of
the model, so that the user can track the device placement of every node, node dependencies
and computation time.

For this project, the version used is the latest stable one available 0.10.0, and all the scripts
and models have been built with the Python API. Further details of the implementation will
be specified when necesseary in the following sections.

1.4.1 Types of data parallelism

TensorFlow enables multiple strategies for aggregating the results in multinode settings
when working with data parallelism. Chen et al. [12] compare different methods, with varying
results in model accuracy and training speeds for up to 200 different nodes. The workers will
have a similar task in both cases, but it is the way the model is updated at the parameter
servers that makes the key difference between these two approaches.

(a) Asynchronous replication (b) Synchronous replication (c) Synchronous with
backup workers

Figure 1.3: Strategies for data parallelism. (Source: Abadi et al. [1])

15

Asynchronous mode

In this mode, each worker replica will be computed independently of the computations in
other nodes, so no problems will arise if one of them crashes. They will follow these steps for
every batch iteration:

1. The worker fetches from the parameter servers the most up-to-date model needed to
process the current batch

2. Computes the gradients of the loss with respect to these parameters

3. Sends back the gradients to the parameter servers

The parameters servers will then update the model accordingly, and sent it to the worker
for the next computation. The idea is the model on the parameter servers will be updated each
time a worker sends the gradients (Figure 1.3a). This makes it easy to implement large scale
training processes in architectures that may have different types of hardware, as each one will
behave independently, and they maintain high throughput in the presence of stragglers.

The problem for this strategy is that individual steps use stale information, making each
step less effective [1], so when a model is trained with N workers, each update will be N − 1
steps old on average. It may happen that by increasing the number of workers, the training
results worsen with the noise introduced by the discrepancy between the model used to compute
gradients and the model that will be updated in the parameter server [12].

Synchronous mode

With this setting, the workers will behave as before, as they only need to make gradient
computation, but the parameter servers will wait for all the workers to send the gradients before
proceeding to the model update, using queues for accumulating and applying them atomically.
It means that at the start of the batch iteration, each worker will have the most up-to-date
model, and the gradients will be computed from the same parameter values (Figure 1.3b).

Given that, for this case, the model in each worker is the same, the batch contains different
items and the gradient computation is done all at once, it can be seen as a single step with
a batch size N times bigger. According to results in Chen et al. [12] synchronous training
can achieve better accuracy, needs fewer epochs to converge and has less accuracy loss when
increasing the number of workers. However, the update time of the model depends on the
slowest worker, as the parameter servers need to wait until the end of the execution in every
one of them, so time per batch may be slower than in the asynchronous case. In order to mitigate
this effect, a possible workaround is to implement backup workers, so that the parameter servers
update the model when they have collected the gradients from m of n workers (in Figure 1.3c
m = 2 and n = 3).

Despite the several publications from Google demonstrating the different results between
synchronous and asynchronous modes [1, 12], the public version of TensorFlow has not a working
implementation for the synchronous training 10 11 in multinode.

10GitHub issue #3458
11Synchronous example (link)

16

https://github.com/tensorflow/tensorflow/pull/3458#issuecomment-242258441
https://github.com/tensorflow/tensorflow/blob/r0.10/tensorflow/tools/dist_test/scripts/dist_mnist_test.sh#L71

1.5 Platform

BSC-CNS (Barcelona Supercomputing Center – Centro Nacional de Supercomputación) is
the National Supercomputing Facility in Spain and was officially constituted in April 2005.
BSC-CNS manages MareNostrum, one of the most powerful supercomputers in Europe. The
mission of BSC-CNS is to investigate, develop and manage information technology in order to
facilitate scientific progress. With this aim, special dedication has been taken to areas such as
Computer Sciences, Life Sciences, Earth Sciences and Computational Applications in Science
and Engineering.

All these activities are complementary to each other and very tightly related. In this way, a
multidisciplinary loop is set up: “our exposure to industrial and non-computer science academic
practices improves our understanding of the needs and helps us focusing our basic research
towards improving those practices. The result is very positive both for our research work as
well as for improving the way we service our society” [9].

BSC-CNS also has other High Performance Computing (HPC) facilities, as the NVIDIA
GPU Cluster MinoTauro that is the one used for this project.

1.5.1 MinoTauro overview

MinoTauro is a heterogeneous cluster with 2 configurations [10]:

• 61 Bull B505 blades, each blade with the following technical characteristics:

– 2 Intel E5649 (6-Core) processor at 2.53 GHz

– 2 M2090 NVIDIA GPU Cards

– 24 GB of main memory

– Peak Performance: 88.60 TFlops

– 250 GB SSD (Solid State Disk) as local storage

– 2 Infiniband QDR (40 Gbit each) to a non-blocking network

– 14 links of 10 GbitEth to connect to BSC GPFS Storage

• 39 bullx R421-E4 servers, each server with:

– 2 Intel Xeon E5-2630 v3 (Haswell) 8-core processors, (each core at 2.4 GHz,and with
20MB L3 cache)

– 2 K80 NVIDIA GPU Cards

– 128 GB of Main memory, distributed in 8 DIMMs of 16 GB - DDR4 @ 2133 MHz -
ECC SDRAM

– Peak Performance: 250.94 TFlops

– 120 GB SSD (Solid State Disk) as local storage

– 1 PCIe 3.0 x8 8GT/s, Mellanox ConnectXR - 3FDR 56 Gbit

– 4 Gigabit Ethernet ports

17

The operating system is RedHat Linux 6.7 for both configurations. The TensorFlow instal-
lation is working only on the servers with the NVIDIA K80 because the M2090 NVIDIA GPU
cards do not have the minimum required software specifications TensorFlow demands.

Each one of the NVIDIA K80s contain two K40 chips in a single PCB with 12 GB GDDR5,
so we physically have only two GPUs in each server, but are seen as 4 different cards by the
software.

K80 K80

/gpu:0 /gpu:2

/gpu:3/gpu:1

/cpu:1/cpu:0

Figure 1.4: Schema of the hardware in a MinoTauro node

1.5.2 Software stack and queue system

MinoTauro uses the GPFS file system, which is shared with MareNostrum. Thanks to
this, all nodes of MinoTauro have access to the same files. All the software is allocated in
the GPFS system and is also common in all nodes, there are two software folders, the general
folder and the K80 folder, the last folder contains all the software compiled for the NVIDIA
K80 GPUs [10].

MinoTauro comes with a software stack, this software is static and the users can’t modify
it. If a user needs a new software, a modification or an update of an existent software has to
request a petition to the BSC-CNS support center. This is the used part of the software stack
in this project:

• TensorFlow 0.812: The first version of TensorFlow used in this project. This version
implements the distributed features and it was used on the first half of the project.

• TensorFlow 0.1013: The second release of TensorFlow used in this project. This version
has a lot of bug fixes, improvements and new abstraction layer, TF-Slim, that allows to
do some operations more easily.

• Python 3.5.2: The Python version installed in the K80 nodes. It comes with all required
packages by TensorFlow.

12GitHub release 0.8
13GitHub release 0.10

18

https://github.com/tensorflow/tensorflow/releases/tag/v0.8.0rc0
https://github.com/tensorflow/tensorflow/releases/tag/v0.10.0rc0

• CUDA 7.5: CUDA is a parallel computing platform and programming model created
by NVIDIA. It enables dramatic increases in computing performance by harnessing the
power of the GPU [49]. This is required to use GPUs with TensorFlow.

• cuDNN 5.1.3: The NVIDIA CUDA Deep Neural Network library is a GPU-accelerated
library of primitives for deep neural networks. cuDNN provides highly tuned imple-
mentations for standard routines such as forward and backward convolution, pooling,
normalization, and activation layers [50].

MinoTauro has a queue system to manage all the jobs sent by all users in the platform. To
send a job to the system is necessary to do a job file with the job directives:

job_name The job’s name
initialdir Initial directory to run the scripts

output The output file’s name
error The error file’s name

gpus_per_node Number of needed GPUs for each assigned node
cpus_per_task Number of needed CPUs for each task
total_tasks Number of tasks to do

wall_clock limit Maximum job time
features To request other features like K80 nodes

In order to obtain the maximum number of GPU cards, it is mandatory to set the parameter
cpus_per_task to 16, all cores in a node, and set gpus_per_node to 4. With this configuration
the queue system will give a full node with 4 GPUs, two K80 cards, for each task. The fact
that we ask for the maximum number of CPUs is for the system to assign different nodes, so
we can effectively send the distributed jobs. Despite the fact that we are mainly interested in
the computational capabilities of GPUs, powerful CPUs are needed in order to feed the GPUs
as fast as possible, so as to not have any bottlenecks on the device.

This is an example of a job file:

#!/bin/bash
@ job_name= job_tf
@ initialdir= .
@ output= tf_%j.out
@ error= tf_%j.err
@ total_tasks= 3
@ gpus_per_node= 4
@ cpus_per_task= 16
@ wall_clock_limit = 00:15:00
@ features = k80
module load K80 cuda/7.5 mkl/2017.0.098 CUDNN/5.1.3 python/3.5.2
python script_tf.py

This file defines a job with 15 minutes of maximum duration on 3 nodes with 4 GPUs on
each. Once the job is submitted the queue system will give the job ID number to do tracking
on the task:

Submitted batch job 87869

At the time that the queue system assigns the nodes for the task, the user can see which
nodes have been assigned and connect to them to see their GPU an CPU usage among other

19

things. In the following job summary, we have been given all CPUs and GPUs in nodes 16, 19
and 25, during a maximum time of 15 minutes.

JOBID NAME USER STATE TIME TIME_LIMI CPUS NODES NODELIST(REASON)
87869 job_tf - RUNNING 0:02 15:00 48 3 nvb[16,19,25]

All the parameters and configurations for the MinoTauro queue system are available on the
MinoTauro User’s Guide [10].

1.5.3 Distributed TensorFlow with Greasy

To run distributed TensorFlow is needed to run the workers in different nodes and know
the IP address of the node which is running a TensorFlow process. With a simple MinoTauro
task is not possible to this, as the user cannot control what to execute in each node, so we will
use a tool called Greasy [67].

Greasy is a tool designed to make easier the deployment of embarrassingly parallel simula-
tions in any environment. It is able to run in parallel a list of different tasks, schedule them
and run them using the available resources.

We developed a script for obtaining the list of nodes the job had assigned and building the
corresponding Greasy task. The file will contain as many lines as nodes available, and each
one will execute in a different one. The following example uses the nodes assigned to define a
parameter server in node 16 (nvb16) and workers at node 19 and 25 (nvb19, nvb25). We use
the flag task_index to number the different workers, and the same process will be done with
parameter servers, in case we have more than one.

In node 16
python script_tf.py --ps_hosts=nvb16-ib0:2220

--worker_hosts=nvb19-ib0:2220,nvb25-ib0:2220
--job_name=ps --task_index=0

In node 19
python script_tf.py --ps_hosts=nvb16-ib0:2220

--worker_hosts=nvb19-ib0:2220,nvb25-ib0:2220
--job_name=worker --task_index=0

In node 25
python script_tf.py --ps_hosts=nvb16-ib0:2220

--worker_hosts=nvb19-ib0:2220,nvb25-ib0:2220
--job_name=worker --task_index=1

To configure the working modes of the GPUs in the servers we will use environment variables.
For example, we will use the variable CUDA_VISIBLE_DEVICES to enforce externally which GPUs
the program will use. When we launch a TensorFlow job, all 4 GPUs will be available by
default, with indexes ranging from 0 to 3. However, with CUDA_VISIBLE_DEVICES we can
enforce externally which GPU we want the job to see. For instance, with:

CUDA_VISIBLE_DEVICES="0" python script_tf.py

20

our program will only see a single GPU available, specifically the one with index 0. If we
want the program to be able to use two GPUs we can then use:

CUDA_VISIBLE_DEVICES="0,3" python script_tf.py

and then the only GPUs the program will have available will be the ones with index 0 and
3. We can even define a job that cannot use any GPU by giving an empty parameter, so it will
have to rely only on CPU:

CUDA_VISIBLE_DEVICES="" python script_tf.py

This little trick will be very useful for defining the models we intend to test and that are
described in the following chapter. These options enable us to have a more flexible infrastructure
to play with.

21

22

2. Testing methodology

The following chapter aims to describe the methodology used in the tests, and discuss
the different decisions that were taken to conduct them. We review the dataset and network
used, describing the peculiarities of the architecture with the different training implementations
that we aim to test. We also include some comments on the tools we used to assess each
implementation was working as intended.

2.1 Dataset

The CIFAR-10 dataset consists of 60,000 32x32 colour images in 10 classes, with 6000 images
per class. There are 50,000 training images and 10,000 test images [39]. The amount of images
of each class is equally distributed among the training and testing datasets, with 5000 and 1000
images per class respectively. Classes are mutually exclusive, meaning that each image cannot
have more than one class. The different classes with some examples are shown in Figure 2.1.

Figure 2.1: Example images in each class (Source: The CIFAR-10 dataset)

We used the binary version available on the webpage, and converted it to the standard
TensorFlow format called TFRecords. This way, it is easier to mix and match data sets and
network architectures. The binary format is converted to an Example protocol buffer, then it
is serialized to a string, and finally writes the string to a TFRecords file. This slightly reduces
the amount of memory used by the dataset, but this conversion greatly benefits larger datasets.

23

https://www.cs.toronto.edu/~kriz/cifar.html

By today’s standards, CIFAR-10 is a small dataset, compared to other ones available.
MSCOCO has 2,500,000 labeled instances in 328,000 images for 91 different categories [44],
ImageNet has 1.2 million training images with 1000 different classes [55] and Open Images has
nearly 9 million images with over 6000 categories [37]. However, CIFAR-10 is a good enough
dataset for proof of concept tasks, and is still commonly used as a benchmark. In this case,
we are not aiming at state of the art results for this dataset, nor are we testing a new model
architecture, but looking at the performance given different training methods. Thus, we con-
sider this dataset to be good enough for our needs, as its size and training times should be
generalizable to other cases.

2.2 Network architecture

For training our dataset, we use a relatively novel architecture presented by He et al. [28],
called Residual Neural Networks (ResNets). As shown in Table 1.1, this architecture won the
ImageNet classification and localization challenge in 2015, and enables to build much deeper
networks than the ones trained until then. The reason to choose this architecture was that, in
addition to be an interesting structure given the novelty, the original paper test the results on
multiple datasets, including CIFAR-10, so we will have a base point for reference.

2.2.1 Residual Neural Networks

ResNets were created as an answer to the degradation problem observed when training very
deep convolutional neural networks. As seen in section 1.3.2, deeper networks are crucial for
better accuracy models, but some problems arises when trying to build deeper plain networks.
Figure 2.2 shows how a plain deeper network performs worse than its shallower version.

Given that we just enlarge the network by adding layers that are identity mappings, there is
no reason the deeper model should not perform as good as the shallow one. However, multiple
tests demonstrate that there is an undesired behaviour, that generates a worse model. He
et al. [28] argue that the problem seems not to be related to the notorious vanishing/exploding
gradients, as this problem seems to have been largely addressed by normalized initialization of
the layers, and intermediate normalization layers. They name the problematic as degradation,
and found the main problem in the higher optimization difficulty of the more complex networks.

Figure 2.2: Comparison of plain networks and their residual counterparts in ImageNet.
Thin lines denote training error and bold lines validation error. (Source: He et al. [28])

24

To solve this problematic they propose the addition of “shortcut connections”, as shown in
Figure 2.3, that skip one or more layers, and do not add any extra parameter or computation
complexity.

Figure 2.3: Residual learning building block. (Source: He [27])

They want to learn an underlying mapping H(x) by a few stacked layers, with x denoting
the inputs to the first of these layers. With the hypothesis that multiple nonlinear layers can
asymptotically approximate complicated functions, they assume that it will also asymptoti-
cally approximate residual functions. Then instead of approximating H(x), they approximate
F(x) := H(x)− x, with the original function becoming F(x) + x.

The idea is that given the case the identity is optimal, the solver may drive the weights
of those layers to zero to approach the identity mappings. Although this may be a rare case,
another case may be the optimal function is closer to an identity mapping than to a zero
mapping, in which case it should be easier for the solver to find small fluctuations with reference
to an identity mapping, than to learn the function as a new one.

The building block in Figure 2.3 can be defined as:

y = F(x, {Wi}) + x (2.1)

where x and y are the inputs and output vectors of the layers considered. For the case where
a shortcut connection is done between two layers with different dimensions, a linear projection
Ws is done to match them:

y = F(x, {Wi}) +Wsx (2.2)

With this approach, He et al. [28] won the classification, localization and detection tracks
on the ImageNet challenge, setting new state of the art results. In the classification track,
they used a 152-layer network, with a block architecture that had lower complexity than VGG
network with 16 or 19 layers. The final result of 3.57% top-5 error on the test set was obtained
with the ensemble of six models of different depth (two of those six were 152-layer models).
Unfortunately, no word on training times is provided in the original publication.

2.2.2 ResNet-56 with bottlenecks

The network we will implement for our tests will be one of the networks presented in He
et al. [28], specifically built for testing CIFAR-10 dataset with ResNets. They test ResNets

25

with different depths, but follow the same pattern of blocks, just adding more repetitions of
convolutions at multiple levels of depth.

They work with inputs of 32×32, and feed them to a convolution with kernel height and
width of size 3. Then they use a stack of 6n convolutions of the same kernel width and height
as before, on feature maps of sizes {32, 16, 8}, with 2n layers in each feature map size and
{16, 32, 64} filters respectively. The reduction of the map sizes is performed using convolutions
with stride 2 at the end of each block, and the network ends with a global average pooling, a
10-way fully-connected layer, and a softmax, having a total of 6n + 2 stacked weighted layers.
The summary can be seen under the ResNet-56 column in Table 2.1, where the 56 layers are
obtained with n = 9.

Table 2.1: ResNets summary

Layer name Output size ResNet-56 ResNet-83 # layers

conv_1 32×32 3×3, 16 stride 1 1

block_1 32×32

 3× 3, 16

3× 3, 16

1× 1, 16

3× 3, 16

1× 1, 64

 n = 9

block_2 16×16

 3× 3, 32

3× 3, 32

1× 1, 32

3× 3, 32

1× 1, 128

 n = 9

block_3 8×8

 3× 3, 64

3× 3, 64

1× 1, 64

3× 3, 64

1× 1, 256

 n = 9

— 1×1 average pool, 10-d fc, softmax 1

In the original paper they present an alternative building block with the name of “bottleneck”
that they use in the ImageNet training networks, that can be seen at the right in Figure 2.4.
This alternative architecture uses the 1 × 1 layers for reducing and increasing dimensionality
of the network, while avoiding expensive computations of convolutions with higher kernel size
and large number of filters

The final structure we are going to test in our servers is the one shown in the ResNet-83
column of the Table 2.1. We will use n = 9 with the bottlenecks blocks for a total of 83 layers.

In order to built the model in TensorFlow we used a library, from the program itself, called
TF-Slim [59]. This high level library contains the most common network architectures of the
last years (AlexNet, VGG, Inception and ResNets), and also provides pretrained models for fine-
tuning. The purpose of the library is to alleviate some of the tiring nomenclature TensorFlow
uses when defining big models, and provide an easier programming model. However, it is a
double-edged sword, because even though code can be simpler and easier to write, the extra
layer can prevent full control of the model and customization the way it can be achieved with
base TensorFlow.

26

Figure 2.4: “Bottleneck” building block used in ImageNet architectures. (Source: He et al. [28])

Training parameters

In the paper they specify the training configuration, that we will mostly replicate in our
experiments. They use weight decay of λ = 0.0001, for regularizing the convolution layers, so
that the regularizing term Ω(θ) = 1

2
‖w‖22 is added to the objective function. TF-Slim is flexible

enough for defining a general configuration that will be applied to all layers in our network, so
we actually do not need to specify the parameters for each convolution, nor include the extra
loss in our formula as this will be done automatically.

The optimizer will be gradient descent with Nesterov momentum [6] of 0.9, which is a first-
order optimization method with better convergence rate guarantee than gradient descent in
certain situations.

We will use the same layer initialization as they do in the original paper and that is de-
scribed in He et al. [29]. It receives the name variance_scaling_initializer in TF-Slim,
and improves the more common Xavier initialization [23] by taking into account the effect
of rectifier nonlinearities. This enables them to train deeper models than using other more
common initialization methods.

They use a batch size of 128 images, and begin with a learning rate of 0.1, dividing it by 10
at 32k and 48k iterations. It is possible to replicate this learning rate behavior in TensorFlow
by using tf.train.piecewise_constant, and defining the interval steps for each learning rate
value. These values are not exactly the same as we used in our tests, as some of them were
not working for our distributed configuration. They will be specified in the corresponding tests
results in sections 3.2 and 3.3.

Our loss function will be the common cross entropy loss, which measures the probability
error in discrete classification tasks in which the classes are mutually exclusive (each entry is
in exactly one class). This is a common metric for classification problems in neural networks
that works better for training purposes than plain accuracy or other formulas. Equation 2.3
computes the cross entropy between a true distribution p and an estimated distribution q.

H(p, q) = −
∑
x

p(x) log q(x) (2.3)

The output of the softmax layer in our network would represent the q distribution, whereas
the true labels will be one hot encoded vectors representing p. The final loss will be the mean
value of the computed batch of images.

27

For data augmentation, we follow the same procedure for training: 4 pixel pad on each side
of the image, and a 32 × 32 random crop, in addition of random horizontal flip. The testing
dataset will not have any of those modifications.

2.3 Implemented architectures

We use the available implementation of ResNets in TF-Slim, and modify them to our par-
ticular network, as the models published are specifically targeted at ImageNet data. We now
explain the properties and the considerations of the two modes implemented in this project and
whose results will be shown in the next chapter.

2.3.1 Asynchronous mode

The first mode we implemented is the fully asynchronous mode. As explained in section
1.4.1, the neural network will be replicated to each one of the workers that, after computing the
gradients of the given batch, will update the model in the parameter servers asynchronously.
The neural network will be replicated to each one of the workers, using the built-in function
tf.train.replica_device_setter. This function is fed with the cluster definition, that is,
the IP directions for the workers and the parameter servers as seen in section 1.5.3.

The function will take care to allocate the proper graph nodes to the correct device, thus
model variables will be saved in parameter servers and sent to workers where they will be used
for computing the whole model. The cluster definition will set which nodes are parameter
servers and which are workers, so the framework efficiently lets the user focus on the model
definition, as the correct assignment of variables will be done under the hood.

This method is straightforward for servers that only have a single GPU, as we can define
a cluster inside the code with two parameter servers and three workers with the following
parameters:

cluster_spec = {
"ps": ["nvb19-ib0:2222", "nvb20-ib0:2222"],
"worker": ["nvb21-ib0:2222", "nvb22-ib0:2222", "nvb23-ib0:2222"]}

However, using this definition in our servers would make the program to use a single GPU in
each node, wasting big amounts of computational power. Therefore, we will use the environment
variable CUDA_VISIBLE_DEVICES as a workaround to allocate 4 workers in a single server. Also,
server direction can have different port numbers, so they are seen by the program as two different
locations in the network. For instance, nvb21-ib0:2222 and nvb21-ib0:2223 are considered
different directions on the same device, thus we can use it to our advantage to put multiple
workers in a single server. The following example shows how we could manage to launch 2
workers (with indexes 0 to 1) and a parameter server on the same node:

CUDA_VISIBLE_DEVICES="" python script.py --ps_hosts=nvb19-ib0:2220 \
--worker_hosts=nvb19-ib0:2221,nvb19-ib0:2222 --job_name=ps --task_index=0 & \

CUDA_VISIBLE_DEVICES="0" python script.py --ps_hosts=nvb19-ib0:2220 \
--worker_hosts=nvb19-ib0:2221,nvb19-ib0:2222 --job_name=worker --task_index=0 & \

CUDA_VISIBLE_DEVICES="1" python script.py --ps_hosts=nvb19-ib0:2220 \
--worker_hosts=nvb19-ib0:2221,nvb19-ib0:2222 --job_name=worker --task_index=1

28

The parameter server has no available GPUs and all operations will be done using the
CPUs. On the other hand, /job:worker/task:0 will only see the GPU with index 0 as the
available device, so it can only allocate operations in the CPU and that specific GPU. Finally,
/job:worker/task:1 will only see the GPU with index 1, as it is the index given to the
CUDA_VISIBLE_DEVICES. As for the network directions, all of them point to node nvb19-ib0
(the -ib0 suffix is mandatory for all nodes given the platform protocol), but have different
ports, thus will be seen as different nodes in the network. Table 2.2 summarizes the result of
the call made above.

Table 2.2: Properties summary

Node Port Job name Task Index Available GPUs GPU index

nvb19-ib0 2220 ps 0 None —
nvb19-ib0 2221 worker 0 1 0
nvb19-ib0 2222 worker 1 1 1

With this configuration we can put up to 4 workers in a single server, each with a different
GPU, ensuring that all GPUs in the server are being used. If we want to apply this procedure
in more than one node, we can use:

In node nvb19
CUDA_VISIBLE_DEVICES="" python script.py --ps_hosts=nvb19-ib0:2220 \

--worker_hosts=nvb19-ib0:2221,nvb19-ib0:2222,nvb20-ib0:2221,nvb20-ib0:2222 \
--job_name=ps --task_index=0 & \

CUDA_VISIBLE_DEVICES="0" python script.py --ps_hosts=nvb19-ib0:2220 \
--worker_hosts=nvb19-ib0:2221,nvb19-ib0:2222,nvb20-ib0:2221,nvb20-ib0:2222 \
--job_name=worker --task_index=0 & \

CUDA_VISIBLE_DEVICES="1" python script.py --ps_hosts=nvb19-ib0:2220 \
--worker_hosts=nvb19-ib0:2221,nvb19-ib0:2222,nvb20-ib0:2221,nvb20-ib0:2222 \
--job_name=worker --task_index=1

In node nvb20
CUDA_VISIBLE_DEVICES="0" python script.py --ps_hosts=nvb19-ib0:2220 \

--worker_hosts=nvb19-ib0:2221,nvb19-ib0:2222,nvb20-ib0:2221,nvb20-ib0:2222 \
--job_name=worker --task_index=2 & \

CUDA_VISIBLE_DEVICES="2" python script.py --ps_hosts=nvb19-ib0:2220 \
--worker_hosts=nvb19-ib0:2221,nvb19-ib0:2222nvb20-ib0:2221,nvb20-ib0:2222 \
--job_name=worker --task_index=3

The application Greasy will be the one in charge to run each line in the corresponding
node, to make it work properly. This configuration generates 2 workers in each node with only
one parameter server in the first one. Table 2.3 summarizes the properties for this case, and
Figure 2.5 shows the schema.

Table 2.3: Properties summary

Node Port Job name Task Index Available GPUs GPU index

nvb19-ib0 2220 ps 0 None —
nvb19-ib0 2221 worker 0 1 0
nvb19-ib0 2222 worker 1 1 1
nvb20-ib0 2221 worker 2 1 0
nvb20-ib0 2222 worker 3 1 2

This is a straightforward method for easily distributing workers and parameter servers
among multiple nodes, making the replication of the models in a way we can fully use all the

29

K80 K80

worker_0

worker_1

PS_0PS_0

nvb19

K80 K80

worker_2 worker_3

nvb20

Figure 2.5: Schema for 2 nodes and 2 workers in each

available GPUs in the server for computing. The extent to which a parameter server in the
same node can become a bottleneck is something that we will study more in depth in the next
chapter. However, given the architecture of the MinoTauro this is the best way optimize the use
of the servers, as allocating a full server only for this purpose will mean wasting a big amount
of GPU resources.

2.3.2 Mixed asynchronous mode

As seen in the previous case, having multiple GPUs on the same server implies some con-
straints when building our distributed models. The mixed asynchronous mode is more suited
for our architecture, as we can use synchronous mode between GPUs on the same node, and
asynchronously update the model between servers. In other words, we are using synchronous
replicas intra-node and asynchronous replicas inter-node. However, deploying the model and
gathering the statistics in each GPU is more complex than the previous mode, because device
placement needs to be done at the code level manually which adds complexity to the overall
process.

The cluster definition is similar as the one before, but in this case each worker will have 4
available GPUs, so we will only have a worker for each node, instead of the 4 we had in the
fully asynchronous. This is how the call will look like, for allocating a single parameter server
and a single worker in a unique node:

CUDA_VISIBLE_DEVICES="" python scipt.py \
--ps_hosts=nvb19-ib0:2220 --worker_hosts=nvb19-ib0:2221 \
--job_name=ps --task_index=0 & \

CUDA_VISIBLE_DEVICES="0,1,2,3" python scipt.py \
--ps_hosts=nvb19-ib0:2220 --worker_hosts=nvb19-ib0:2221 \
--job_name=worker --task_index=0

This worker will have all 4 GPUs available, and the model will be responsible for placing
the clones in the corresponding GPU. The function for enforcing device placement constraints
in TensorFlow is tf.device(), and we can specify a loop to place the model to all available
GPUs. This process will be again replicated to multiple nodes using the
tf.train.replica_device_setter, and the total number of GPUs used will be the same. The
key difference in this method is the way gradients are aggregated among all the clones in the
node, which will make the iteration with a bigger effective size batch, improving the model.

30

The pseudocode in algorithm 1 aims to provide a general understanding of the main part of
the mixed asynchronous procedure that places and computes the model in the 4 GPUs available
and the collects the losses and gradients in each one and reports it back to the parameter server.
The Figure 2.6 provides a general schema of a node with all the clones allocated.

1 for i in num_gpus do
2 with tf.device(’/job:worker/gpu:%d’ % i) do
3 clone_images, clone_labels ← get batch of data
4 predictions = model(clone_images)
5 clone_loss = cross_entropy(predictions, clone_labels)
6 clone_accuracy = accuracy(predictions, clone_labels)
7 end
8 end
9 grad_op ← create optimizer

10 grads_and_vars ← create empty list
11 clone_losses ← create empty list
12 for i in num_gpus do
13 with tf.device(’/job:worker/gpu:%d’ % i) do
14 clone_loss = get loss for clone i
15 scaled_clone_loss = clone_loss / num_gpus
16 clone_grad = compute gradients wrt trainable variables
17 append clone_grad to grads_and_vars
18 append scaled_clone_loss to clone_losses
19 end
20 end
21 total_loss = sum clone_losses
22 total_gradients = sum grads_and_vars
23 make the train_op apply the gradients in total_gradients

Algorithm 1: Clone allocation and gradient computation

K80 K80

clone_0 clone_2

clone_3clone_1

PS0PS0

worker_0

Figure 2.6: Node schema of the mixed asynchronous mode

31

2.4 Tools for assessing the model

As described in section 1.4, TensorFlow offers some tools to help during the training of the
models. TensorBoard enables real-time monitoring of the running model, with a dashboard
for following the evolution of the weights in the different layers during the training. Another
interesting feature is the visualization of the operations defined in our model, as a full graph
with interconnected nodes that represent each one of the operations declared in the code. It has
different coloring options, so that nodes are colored according to their structure, or according
to the device they are placed. For our case, this last option is the most interesting one, as we
can assess if the device placement constraints we enforced in the code are correctly mapped.

Figure 2.7 shows the model build for the multi-GPU implementation. Inside the get_data
node are all the operations related to loading and pre-processing the dataset. This node is then
connected to the multiple clones, each one in a different GPU, as the colors in Figure 2.8a show.
All the nodes that have not been given a specific device constraint will be placed in the fastest
device available of either /job:worker/task:0 or /job:ps/task:0, as the get_data node.
The top row of clones contains the operations for the backpropagation loop, with the gradient
computations and nodes related to the optimization process that are built by the program.

Figure 2.7: Multi-GPU version ResNet-56 ops with device placement coloring

According to the color representation, each clone is placed on a different GPU, but parts of
the model will be executed on /job:worker/task:0/gpu:0. If we navigate to the corresponding
nodes, the batch normalization layers are responsible for this misconfiguration. Despite having
enforced the correct GPU, the creation of those nodes in the code is beyond our working layer,
so it is difficult to know if it is the intended configuration or not. However, we are able to trace
another device misconfiguration related to the computation of accuracy and loss metrics, as
shown in Figure 2.9a.

Those nodes are effectively placed by us, but a coding error in the indentation kept them out
of the device placement constraint. The device they fall back by default is /job:worker/task:0,
and more precisely /gpu:0, as it is the default device where TensorFlow ops will be allocated.
Correcting the indentation and declaring the functions inside the corresponding device con-
straint solved the placement problem, as seen in Figure 2.9b.

Other more in-depth tools for supervising device placement and node computation times is
the Timeline tool. At a given step of the computation, we can output a JSON file that contains
all the information of the executed operations for that step. It can help detect bottlenecks in

32

(a) Graph and color device legends

(b) Example of batch normalization layer device placement

Figure 2.8: TensorBoard screenshots

(a) Clone ops with unconstrained placement (b) Clone ops with constrained placement

Figure 2.9: Deeper inspection of each clone ops

33

operations, or again check whether the device placement is correct. Returning to the previous
case, Figure 2.10 shows the Timeline for the case with the bad indentation and the misconfigured
device placement for the metrics. /gpu:0 is working during all period, but the other GPUs are
idle for some time between the 0.3s and 0.45s marks. The problem was the computation falling
back to /gpu:0 made the models in other GPUs wait until they received the results. Solving
the indentation problem solved the issue as seen in Figure 2.11, and idling times on GPUs is
solved. However, the whole computation time has not been reduced, and /gpu:0 is still the
bottleneck, mainly because it needs to compute extra operation for collecting all the gradients.

Figure 2.10: Tracing of the multi-GPU version ResNet-56 with unconstrained placement ops

Figure 2.11: Tracing of the multi-GPU version ResNet-56 with constrained placement ops

The Timelines showed above were obtained from a run in a single node, as the distributed
version was still in development while writing this thesis, so no results of Timelines for dis-
tributed versions could be generated. It was still possible to obtain the Timeline for a single
node, as if it were in a local machine, but no stats of the global process could be gathered.

34

3. Results

This chapter shows the different kind of tests conducted in the platform. In the first section,
short tests for depicting the scalability are shown, and in the second section the actual training
runs are evaluated. All multinode tests are done using the asynchronous methods, as it is the
only one fully working on the open source version of TensorFlow as the writing of this thesis.

3.1 Testing scalability

These tests were done using the workload explained in the previous section, with a ResNet-
56 with bottleneck blocks (Figure 2.4) which increases its depth to 83 layers, and CIFAR-10
dataset. We evaluated each implementation with the same batch size, as we were testing the
throughput of the system. The idea is that for distributed systems, larger batch sizes are more
beneficial, as this requires less iterations per epoch, and we try to avoid network overheads as
much as possible. According to Bengio [8], changing this hyperparameter will have a bigger
impact on training times than on testing performance, although having fewer model updates
per epoch will require visiting more examples in order to achieve the same error.

We also test different configurations of workers and parameter servers (PS), in order to be
sure that the latter does not overcome a bottleneck when we increase the number of models
that it receives and needs to update.

For reference, some scalability tests done in TensorFlow can be found at Abadi et al. [1],
albeit they probably use the internal version deployed at Google servers. They test the scalabil-
ity of training Inception-v3 using ImageNet dataset, with multiple replicas in both synchronous
and asynchronous settings. In their server configurations each worker has 5 CPUs and 1 GPU
(NVIDIA K40), whereas their parameter servers have 8 CPUs with no GPUs. Instead of show-
ing multiple working configurations of number of workers versus number of PS, they enable 17
PS for all tests, and modify the number of workers from 25 up to 200.

Our configuration is somewhat different, in the sense that all our servers have 4 NVIDIA
K40 GPUs, so if we use a full server as a PS, we will be wasting 4 GPUs. Given the constraints
of the architecture, we decided to allocate PS in the same nodes that contain the workers, but
limiting their hardware use to only CPUs. As we did not know if that would be a limiting
factor, we tried several configurations for both asynchronous and mixed-asynchronous workers,
with the results shown in Figure 3.1.

The results are somewhat expected, as the fully asynchronous implementation is faster and
scales better than the mixed-asynchronous. In the latter, the fact that losses and gradients
need to be aggregated and processed generates some overhead that becomes more notorious as
we increase the number of nodes. Take into account that in the asynchronous results we use
each GPU as an independent worker, so total number of replicas will be 4, 8, 12, 16, 20, 24,

35

1 2 3 4 5 6 7

Nodes

0

500

1000

1500

2000
Im

a
g
e
s/

se
c

4 GPU 1PS async

4 GPU 2PS async

4 GPU 3PS async

4 GPU 1PS mixed-async

4 GPU 2PS mixed-async

4 GPU 3PS mixed-async

Figure 3.1: Tests of the workload in multiple server configurations.

28. In the mixed asynchronous case, there will be as much workers as number of nodes, and
each will have 4 GPUs inside working in synchronous mode, but to the PS it would look as
having 1, 2, 3, 4, 5, 6, 7 model replicas. Figures 2.5 and 2.6 in the previous section depict the
hardware allocation of each mode.

If we look at the tests with different combinations of PS, there is no gain in using more
than 1 PS, at least for the scale tested. The are some inconsistencies in the results when using
more than 1 PS, and although we ran the tests at least two times, it is difficult to guess if
these anomalies could be generated by a congested network, as other groups running jobs at
MinoTauro use the same network. All in all, we did not observe any case in which the 1 PS
server configuration was much slower than any other, so we concluded that, at least for these
configuration levels, 1 PS server was enough.

We included error bars in Figure 3.1 for portraying best and worst case scenarios registered,
but a better study of step times is displayed in Figure 3.2. We plot the distribution of the 500
step times for both modes, with fully asynchronous workers having a faster speed time than
mixed asynchronous ones. Step times at different scalability sizes are very consistent for both
methods, but there is more variability for the mixed asynchronous for the reasons explained
before. Those figures show that for the fully asynchronous case 70% of the steps take less
than 2 seconds to complete, and overall most of them are below 2.5 seconds. For the mixed
asynchronous, 80% of the steps take less than 4 seconds, and the range of step times is higher,
from 3.5 to almost 4.5 seconds.

3.2 Asynchronous training

For the asynchronous training analysis we trained 3 different configurations: 1, 4 and 8
workers. As said before, each worker will have be independent GPU, thus we will be using
1 node for the first two cases and 2 nodes when using 8 workers. We tried to use the same
training parameters as the original publication for our network, but the model did not converge

36

0 1 2 3 4 5 6

Step time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 f

ra
ct

io
n
 o

f
st

e
p
s

1 Node

3 Nodes

5 Nodes

7 Nodes

(a) Step times in asynchronous mode
with 1 GPU as 1 worker

0 1 2 3 4 5 6

Step time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 f

ra
ct

io
n
 o

f
st

e
p
s

1 Node

3 Nodes

5 Nodes

7 Nodes

(b) Step times in asynchronous mode
with 4 GPUs as 1 worker

Figure 3.2: Step times for both modes of parallelism and 1 PS

and was impossible to successfully train the network. Keeping the batch size of 128 images,
we reduced the learning rate to have an initial value of 0.01 instead of 0.1. We used the same
parameters for all the configurations, whose results can be seen in Figure 3.3.

The plotted curves have some noise, which may indicate that the batch size used is too
small, and the results in successive iterations is not too consistent. We observe some expected
results, as loss and train error as a function of images seen by the model decrease faster for
the single worker than for the multiple worker versions (Figure 3.3b). The fact that multiple
models are being updated, with gradients updating slightly old versions of the model, make the
single worker version more effective. However, when looking at the time scale, training time
and convergence are much quicker in the multiworker versions (Figure 3.3a). The small periods
of unavailable data in the single worker version where due to model crashes, that needed to be
restarted from the last checkpoint. For the single worker version we need 22 hours of training
time until convergence, for a testing error of 10.37%. The 4 worker version converges after 7.5
hours, but with a test error of 15.59% and, finally, the 8 worker version converges in just 3.4
hours with a similar test error of 15.54%.

Despite the quicker convergence, there is a big regression in testing error, making the mul-
tiworker models much worse than the single worker. Even this configuration is far away of the
results showed in the original publication, with a test error of 6.97% for the ResNet-56. All in
all, it is interesting that the two multiworker versions perform almost equally, in terms of train
and test accuracy, but the one with 8 workers converges two times faster than the other.

3.3 Mixed asynchronous training

Similarly to the results in the asynchronous case, we tested the mixed asynchronous with 1
and 2 nodes. In this case, the number of GPUs in each training will be 4 and 8, as before, but
they will work synchronously in groups of 4. Plots in Figure 3.4 show the results obtained with
this configuration. We will use a batch of 64 images in each GPU, meaning that the effective
batch at every iteration will be of 256 images. We used a learning rate of 0.1, and divided it
by 10 after 100 epochs.

We can quickly see that lines for these plots are smoother and less noisy than the ones

37

0 5 10 15 20

Time (h)

0.0

0.5

1.0

1.5

2.0

C
ro

ss
 e

n
tr

o
p
y
 l
o
ss

1 worker

4 workers

8 workers

(a) Loss as a function of time

0 20 40 60 80 100 120

Number of epochs

0.0

0.5

1.0

1.5

2.0

C
ro

ss
 e

n
tr

o
p
y
 l
o
ss

1 worker

4 workers

8 workers

(b) Loss as a function of iterations

0 5 10 15 20

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

in
 e

rr
o
r

1 worker

4 workers

8 workers

(c) Train error as a function of time

0 20 40 60 80 100 120

Number of epochs

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

in
 e

rr
o
r

1 worker

4 workers

8 workers

(d) Train error as a function of iterations

0 5 10 15 20

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

T
e
st

 e
rr

o
r

1 worker

4 workers

8 workers

(e) Test error as a function of time

0 20 40 60 80 100 120

Number of epochs

0.0

0.2

0.4

0.6

0.8

1.0

T
e
st

 e
rr

o
r

1 worker

4 workers

8 workers

(f) Test error as a function of iterations

Figure 3.3: Asynchronous results

38

obtained in Figure 3.3, even though the plotting frequency is the same. The explanation is the
bigger effective batch size used in this test makes the results at every step less variable. From
Figure 3.4b we can conclude that there is a regression in both the loss and error as a function
of images processed, indicating that the 2 workers need to see more images to obtain the same
error than the 1 worker version. This is probably caused by the inconsistencies when updating
the gradients on models slightly different that occurs in the asynchronous case. However, this
regression is not enough to make the model perform worse when looking at the metrics as a
function of time.

Figures 3.4a and 3.4c show that despite the regression caused by the asynchronous updates,
the throughput of the 2 workers is good enough to make the model converge in less time than
the 1 worker version. While the 2 workers need between 3 and 4 hours till convergence, the
1 worker version takes little more than 6 hours. This behaviour is consistent with the results
seen in the scalability test, as the scalability is almost linear.

The behaviour for the test errors is similar as the one seen in the previous cases, where 2
workers outperform 1 worker in terms of iterations but not in clock time. The final error for
the 2 workers is 11.15% whereas the error for the 1 worker run is 11.48%, still far from the
6.97% error reported in He et al. [28] with the ResNet-56 using basic bottlenecks.

3.4 Model comparison

We present the aggregated results of all the test summarized in Table 3.1. We compute
the speedup with respect to a single worker, for the fully asynchronous methods, and with
respect to a single node for the mixed asynchronous version. The fact that we used differ-
ent hyperparameters, and the training modes are different makes it easier to evaluate them
separately.

The speedups obtained are similar to the ones seen in the proof of concept test done in section
3.1. The model that best performed is the single worker version of the fully asynchronous,
followed by the mixed asynchronous implementations. The network we implemented, performs
worse in all the configurations tested than the simpler version presented in He et al. [28] with
basic bottlenecks.

Table 3.1: Model comparison summary

Mode Number
workers

Number
GPUs

Steps per
second

Batch
size

Initial
learning rate

Test
error

Train
time (h) Speedup

Async
1 1 0.47 128 0.01 10.37% 22 1x
4 4 1.73 128 0.01 15.59% 7.5 3x
8 8 3.73 128 0.01 15.54% 3.4 6.5x

Mixed 1 4 0.99 256 0.1 11.48% 6.8 1x
async 2 8 1.85 256 0.1 11.15% 3.5 2x

We present the confusion matrix for the best performing model, asynchronous single worker,
in Table 3.2. Columns represent true classes, whereas rows show the predicted values. The
class dictionary is the following: {0: airplane, 1: automobile, 2: bird, 3: cat, 4: deer, 5: dog,
6: frog, 7: horse, 8: ship, 9: truck }. The best predicted class is ‘automobile’, while the worst
is ‘cat’, that gets often classified as ‘dog’, the second worst performing class.

39

0 1 2 3 4 5 6 7

Time (h)

0.0

0.5

1.0

1.5

2.0

C
ro

ss
 e

n
tr

o
p
y
 l
o
ss

1 worker

2 workers

(a) Loss as a function of time

0 20 40 60 80 100 120

Number of epochs

0.0

0.5

1.0

1.5

2.0

C
ro

ss
 e

n
tr

o
p
y
 l
o
ss

1 worker

2 workers

(b) Loss as a function of iterations

0 1 2 3 4 5 6 7

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

in
 e

rr
o
r

1 worker

2 workers

(c) Train error as a function of time

0 20 40 60 80 100 120

Number of epochs

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

in
 e

rr
o
r

1 worker

2 workers

(d) Train error as a function of iterations

0 1 2 3 4 5 6 7

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

T
e
st

 e
rr

o
r

1 worker

2 workers

(e) Test error as a function of time

0 20 40 60 80 100 120

Number of epochs

0.0

0.2

0.4

0.6

0.8

1.0

T
e
st

 e
rr

o
r

1 worker

2 workers

(f) Test error as a function of iterations

Figure 3.4: Asynchronous results

40

Table 3.2: Confusion matrix of the best performing model

0 1 2 3 4 5 6 7 8 9 Error

0 903 5 13 7 6 5 7 10 22 9 9.7%
1 4 957 1 3 1 2 1 3 16 35 4.3%
2 25 0 853 19 17 25 23 5 2 0 14.7%
3 13 2 27 808 23 89 21 18 6 6 19.2%
4 12 3 45 31 890 17 10 16 1 1 11.0%
5 0 1 21 88 17 828 11 19 1 1 17.2%
6 2 0 28 17 21 8 920 2 1 3 8.0%
7 5 0 8 19 22 20 4 925 1 1 7.5%
8 26 8 3 6 3 4 2 2 945 11 5.5%
9 10 24 1 2 0 2 1 0 5 933 6.7%

41

42

4. Conclusions

Distributed training strategies for deep learning architectures will become more important
as the size of datasets increases. Then, it is important to understand which are the most
efficient ways to perform distributed training, in order to maximize the throughput of the
system, while minimizing the accuracy and model regression. For this purpose, we tested two
possible implementations that work with asynchronous replicas, and evaluated the results.

We named this two modes of parallelism as (fully) asynchronous and mixed asynchronous.
The first one is somewhat simple to implement, as it relies on placing replicas of a model in
each GPU available, that we have specified using the environment tools MinoTauro provides.
The other method uses a combined strategy of intra-node synchronisation and inter-node asyn-
chronous replicas. These are the only strategies that we have been able to implement in
MinoTauro, as the fully synchronous version is still not available in the open-source version of
TensorFlow.

We were interested in observing the performance of both the facility and the framework,
under these two implementations with multiple server configurations, testing the scalability of
the platform. We observed that under the fully asynchronous mode, the cluster of servers had
a higher throughput than the mixed mode, and we concluded that it could be caused by the
more complex implementation of the latter mode. We also tried to parametrize the amount
of parameter servers needed to perform our following experiments, given that we used a very
specific configuration that we had to enforce given the cluster constraints. The main reason to
put the parameter servers inside the same worker nodes was to optimize the total number of
different nodes used, trying to reduce the footprint of the long training jobs in the cluster. We
concluded that when using up to 7 nodes, the use of a single parameter server was enough for
a correct working process.

We then tested some training workload to compare the final accuracies of the model with
respect to the time of training, as our main objective is to reduce training times without losing
final model accuracy. To that end, we implemented a variant of the ResNet-56 with bottleneck
blocks specially built for the CIFAR-10 dataset, and trained it with the different parallel modes.
We found the best performing model was the single GPU worker implementation, with an error
of 10.37%, worse than the one presented in the original paper implementation, although we were
testing a different configuration. This model was by far the slowest to train, but the multiple
worker trainings with 4 and 8 workers in the fully asynchronous mode could not achieve similar
results in terms of model accuracy, even though trainings time were up to 6 times faster.

When we tested the alternative mode (mixed asynchronous), model accuracy was up to
11.15% for 2 workers, which was not as good as the single worker, but was good enough com-
pared to previous tests. This mode, despite its added complexity, seems to perform particularly
good, as it gets a good trade-off between training time and model accuracy.

All in all, our model configuration did not obtain good accuracy results, and probably a

43

deeper study of hyperparameter optimization should be done to improve that part of the project.
However, we successfully implemented our distributed modes despite the scarce documentation
available and obtained meaningful results.

From a personal point of view, this project began as an implementation of the Deep Art
algorithm [22] in recently open-sourced TensorFlow, an alternative and curious application of
deep neural networks. This meant learning many new concepts on this field, and understand
how those concepts could be translated to the new framework. This was a very useful introduc-
tion for both the theory behind these algorithms and to settle the basics of TensorFlow inner
workings. With the publication of the distributed version, a whole new area of exploration and
research was available, and using the knowledge on the framework from previous months, we
decided it would be interesting to have a working distribution at MinoTauro for future projects
to use. Therefore, we began investigating and experimenting with distributed workloads and
their implementations, and ended up being the content of this thesis.

4.1 Future work

There are still many areas for research in this domain, as this project has just been an
introductory implementation to build upon, now that a basic implementation is fully working.
First, when the synchronous mode is fully implemented in the public version of TensorFlow
it should be straightforward to implement, as basic tests were already done, but the inner
functions of TensorFlow were not working as expected. Synchronous replicas open a new window
of test, with the addition of backup workers, that should alleviate some of the drawbacks of
synchronisation.

Second, it would be interesting to test some application that exploits model parallelization
instead of data parallelization. Although it is said that it does not scale as well as the latter
and the configuration is pretty hard because operations and layers need to be placed manually,
it could be an interesting experiment.

Finally, it could be interesting to evaluate the effect of network congestion to training times.
As the network of the cluster is shared among all the jobs, it is unclear if slowdowns during
training could be caused by a congested network, and to which extend it affects the process.

44

Bibliography

[1] M. Abadi et al. “TensorFlow: A system for large-scale machine learning”. In: ArXiv e-
prints (2016). arXiv: 1605.08695 [cs.DC].

[2] M. Abadi et al. “TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems”. In: ArXiv e-prints (2016). arXiv: 1603.04467 [cs.DC].

[3] R. Adolf et al. “Fathom: Reference Workloads for Modern Deep Learning Methods”. In:
ArXiv e-prints (2016). arXiv: 1608.06581 [cs.LG].

[4] A. G. Anderson et al. “DeepMovie: Using Optical Flow and Deep Neural Networks to
Stylize Movies”. In: ArXiv e-prints (2016). arXiv: 1605.08153 [cs.CV].

[5] Ron Bekkerman, Mikhail Bilenko, and John Langford. Scaling Up Machine Learning:
Parallel and Distributed Approaches. New York, NY, USA: Cambridge University Press,
2011.

[6] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu. “Advances in Optimizing Recur-
rent Networks”. In: ArXiv e-prints (Dec. 2012). arXiv: 1212.0901 [cs.LG].

[7] Yoshua Bengio. “Learning deep architectures for AI”. In: Foundations and Trends in
Machine Learning 2.1 (2009), pp. 1–127. doi: 10.1561/2200000006.

[8] Yoshua Bengio. “Practical Recommendations for Gradient-Based Training of Deep Archi-
tectures”. In: Neural Networks: Tricks of the Trade: Second Edition. Ed. by Grégoie Mon-
tavon, Geneviève B. Orr, and Klaus-Robert Müller. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 437–478. doi: 10.1007/978-3-642-35289-8_26. arXiv: 1206.5533
[cs.LG].

[9] Barcelona Supercomputing Center BSC. About BSC. 2016. url: http://www.bsc.es/
about-bsc.

[10] Barcelona Supercomputing Center BSC. MinoTauro User’s Guide. 2016. url: http:
//www.bsc.es/support/MinoTauro-ug.pdf.

[11] A. J. Champandard. “Semantic Style Transfer and Turning Two-Bit Doodles into Fine
Artworks”. In: ArXiv e-prints (2016). arXiv: 1603.01768 [cs.CV].

[12] Jianmin Chen et al. “Revisiting Distributed Synchronous SGD”. In: International Con-
ference on Learning Representations Workshop Track. 2016. arXiv: 1604.00981 [cs.LG].

[13] K. Cho et al. “Learning Phrase Representations using RNN Encoder-Decoder for Statis-
tical Machine Translation”. In: ArXiv e-prints (2014). arXiv: 1406.1078 [cs.CL].

[14] Adam Coates et al. “Deep learning with COTS HPC systems”. In: Proceedings of the
30th International Conference on Machine learning (ICML-13). Ed. by Sanjoy Dasgupta
and David Mcallester. Vol. 28. 3. JMLR Workshop and Conference Proceedings, 2013,
pp. 1337–1345. url: http://jmlr.org/proceedings/papers/v28/coates13.pdf.

45

http://arxiv.org/abs/1605.08695
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1608.06581
http://arxiv.org/abs/1605.08153
http://arxiv.org/abs/1212.0901
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1007/978-3-642-35289-8_26
http://arxiv.org/abs/1206.5533
http://arxiv.org/abs/1206.5533
http://www.bsc.es/about-bsc
http://www.bsc.es/about-bsc
http://www.bsc.es/support/MinoTauro-ug.pdf
http://www.bsc.es/support/MinoTauro-ug.pdf
http://arxiv.org/abs/1603.01768
http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1406.1078
http://jmlr.org/proceedings/papers/v28/coates13.pdf

[15] Henggang Cui et al. “GeePS: Scalable Deep Learning on Distributed GPUs with a GPU-
specialized Parameter Server”. In: Proceedings of the Eleventh European Conference on
Computer Systems. EuroSys ’16. London, United Kingdom: ACM, 2016, 4:1–4:16. doi:
10.1145/2901318.2901323.

[16] Jeff Dean. Large-Scale Deep Learning with TensorFlow. Association for Computing Ma-
chinery (ACM). 2016. url: https://youtu.be/vzoe2G5g-w4?t=51m26s.

[17] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing on Large
Clusters”. In: 6th Symposium on Operating System Design and Implementation (OSDI
2004), San Francisco, California, USA, December 6-8, 2004. 2004, pp. 137–150. url:
http://www.usenix.org/events/osdi04/tech/dean.html.

[18] Jeffrey Dean et al. “Large Scale Distributed Deep Networks”. In: Advances in Neural
Information Processing Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc.,
2012, pp. 1223–1231. url: http://papers.nips.cc/paper/4687- large- scale-
distributed-deep-networks.pdf.

[19] Andy Feng, Jun Shi, and Mridul Jain. CaffeOnSpark Open Sourced for Distributed Deep
Learning on Big Data Clusters. Yahoo. 2016. url: http://yahoohadoop.tumblr.com/
post/139916563586/caffeonspark-open-sourced-for-distributed-deep.

[20] Kunihiko Fukushima. “Neocognitron: A self-organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position”. In: Biological Cybernetics
36.4 (1980), pp. 193–202. doi: 10.1007/BF00344251.

[21] L. A. Gatys et al. “Preserving Color in Neural Artistic Style Transfer”. In: ArXiv e-prints
(2016). arXiv: 1606.05897 [cs.CV].

[22] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. “A Neural Algorithm of Artistic
Style”. In: ArXiv e-prints (2015). arXiv: 1508.06576 [cs.CV].

[23] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep feed-
forward neural networks”. In: vol. 9. 2010, pp. 249–256. url: http://www.jmlr.org/
proceedings/papers/v9/glorot10a/glorot10a.pdf.

[24] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. “Deep Learning”. Book in prepa-
ration for MIT Press. 2016. url: http://www.deeplearningbook.org.

[25] A. Graves, A.-r. Mohamed, and G. Hinton. “Speech Recognition with Deep Recurrent
Neural Networks”. In: ArXiv e-prints (2013). arXiv: 1303.5778 [cs.NE].

[26] A. Gunes Baydin et al. “Automatic differentiation in machine learning: a survey”. In:
ArXiv e-prints (Feb. 2015). arXiv: 1502.05767 [cs.SC].

[27] Kaiming He. “Deep Residual Networks. Deep Learning Gets Way Deeper”. In: ICML
2016 tutorial. 2016. url: http://icml.cc/2016/tutorials/icml2016_tutorial_
deep_residual_networks_kaiminghe.pdf.

[28] K. He et al. “Deep Residual Learning for Image Recognition”. In: ArXiv e-prints (2015).
arXiv: 1512.03385 [cs.CV].

[29] K. He et al. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification”. In: ArXiv e-prints (Feb. 2015). arXiv: 1502.01852 [cs.CV].

[30] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. “A Fast Learning Algorithm for
Deep Belief Nets”. In: Neural Comput. 18.7 (July 2006), pp. 1527–1554. doi: 10.1162/
neco.2006.18.7.1527.

[31] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural Com-
put. 9.8 (Nov. 1997), pp. 1735–1780. doi: 10.1162/neco.1997.9.8.1735.

46

http://dx.doi.org/10.1145/2901318.2901323
https://youtu.be/vzoe2G5g-w4?t=51m26s
http://www.usenix.org/events/osdi04/tech/dean.html
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf
http://yahoohadoop.tumblr.com/post/139916563586/caffeonspark-open-sourced-for-distributed-deep
http://yahoohadoop.tumblr.com/post/139916563586/caffeonspark-open-sourced-for-distributed-deep
http://dx.doi.org/10.1007/BF00344251
http://arxiv.org/abs/1606.05897
http://arxiv.org/abs/1508.06576
http://www.jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
http://www.jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
http://www.deeplearningbook.org
http://arxiv.org/abs/1303.5778
http://arxiv.org/abs/1502.05767
http://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf
http://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1502.01852
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[32] Tim Hunter. Deep Learning with Apache Spark and TensorFlow. Databricks. 2016. url:
https://databricks.com/blog/2016/01/25/deep-learning-with-apache-spark-
and-tensorflow.html.

[33] F. N. Iandola et al. “FireCaffe: near-linear acceleration of deep neural network training
on compute clusters”. In: ArXiv e-prints (2015). arXiv: 1511.00175 [cs.CV].

[34] A. G. Ivakhnenko. “Polynomial Theory of Complex Systems”. In: IEEE Transactions on
Systems, Man, and Cybernetics SMC-1.4 (Oct. 1971), pp. 364–378. doi: 10.1109/TSMC.
1971.4308320.

[35] J. Johnson, A. Alahi, and L. Fei-Fei. “Perceptual Losses for Real-Time Style Transfer and
Super-Resolution”. In: ArXiv e-prints (2016). arXiv: 1603.08155 [cs.CV].

[36] Norm Jouppi. Google supercharges machine learning tasks with TPU custom chip. Google
Cloud Platform Blog. 2016. url: https://cloudplatform.googleblog.com/2016/05/
Google-supercharges-machine-learning-tasks-with-custom-chip.html.

[37] Ivan Krasin and Tom Duerig. Introducing the Open Images Dataset. 2016. url: https:
//research.googleblog.com/2016/09/introducing-open-images-dataset.html.

[38] A. Krizhevsky. “One weird trick for parallelizing convolutional neural networks”. In: ArXiv
e-prints (2014). arXiv: 1404.5997 [cs.DC].

[39] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. 2009. url:
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

[40] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classification with
Deep Convolutional Neural Networks”. In: Advances in Neural Information Processing
Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc., 2012, pp. 1097–1105. url:
http://papers.nips.cc/paper/4824- imagenet- classification- with- deep-
convolutional-neural-networks.pdf.

[41] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature 521.7553
(May 2015), pp. 436–444. doi: 10.1038/nature14539.

[42] Y. LeCun et al. “Backpropagation Applied to Handwritten Zip Code Recognition”. In:
Neural Comput. 1.4 (Dec. 1989), pp. 541–551. doi: 10.1162/neco.1989.1.4.541.

[43] Mu Li et al. “Scaling Distributed Machine Learning with the Parameter Server”. In:
11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14).
Broomfield, CO: USENIX Association, Oct. 2014, pp. 583–598. url: https://www.
usenix.org/conference/osdi14/technical-sessions/presentation/li_mu.

[44] T.-Y. Lin et al. “Microsoft COCO: Common Objects in Context”. In: ArXiv e-prints (May
2014). arXiv: 1405.0312 [cs.CV].

[45] Y. Lin et al. “Large-scale image classification: Fast feature extraction and SVM training”.
In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. 2011,
pp. 1689–1696. doi: 10.1109/CVPR.2011.5995477.

[46] H. Ma, F. Mao, and G. W. Taylor. “Theano-MPI: a Theano-based Distributed Training
Framework”. In: ArXiv e-prints (2016). arXiv: 1605.08325 [cs.LG].

[47] P. Moritz et al. “SparkNet: Training Deep Networks in Spark”. In: ArXiv e-prints (2015).
arXiv: 1511.06051 [stat.ML].

[48] Y. Nikulin and R. Novak. “Exploring the Neural Algorithm of Artistic Style”. In: ArXiv
e-prints (2016). arXiv: 1602.07188 [cs.CV].

[49] NVIDIA. CUDA Parallel Computing Platform. 2016. url: http://www.nvidia.com/
object/cuda_home_new.html.

47

https://databricks.com/blog/2016/01/25/deep-learning-with-apache-spark-and-tensorflow.html
https://databricks.com/blog/2016/01/25/deep-learning-with-apache-spark-and-tensorflow.html
http://arxiv.org/abs/1511.00175
http://dx.doi.org/10.1109/TSMC.1971.4308320
http://dx.doi.org/10.1109/TSMC.1971.4308320
http://arxiv.org/abs/1603.08155
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://research.googleblog.com/2016/09/introducing-open-images-dataset.html
https://research.googleblog.com/2016/09/introducing-open-images-dataset.html
http://arxiv.org/abs/1404.5997
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1162/neco.1989.1.4.541
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
http://arxiv.org/abs/1405.0312
http://dx.doi.org/10.1109/CVPR.2011.5995477
http://arxiv.org/abs/1605.08325
http://arxiv.org/abs/1511.06051
http://arxiv.org/abs/1602.07188
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html

[50] NVIDIA. NVIDIA CUDNN, GPU Accelerated Deep Learning. 2016. url: https : / /
developer.nvidia.com/cudnn.

[51] T. Paine et al. “GPU Asynchronous Stochastic Gradient Descent to Speed Up Neural
Network Training”. In: ArXiv e-prints (2013). arXiv: 1312.6186 [cs.CV].

[52] Adam Roberts et al. Magenta. 2016. url: https://magenta.tensorflow.org/about/.

[53] M. Ruder, A. Dosovitskiy, and T. Brox. “Artistic style transfer for videos”. In: ArXiv
e-prints (2016). arXiv: 1604.08610 [cs.CV].

[54] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Vol. 1”. In: Cambridge, MA, USA: MIT
Press, 1986. Chap. Learning Internal Representations by Error Propagation, pp. 318–362.
url: http://dl.acm.org/citation.cfm?id=104279.104293.

[55] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In: Inter-
national Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252. doi: 10.1007/
s11263-015-0816-y. arXiv: 1409.0575 [cs.CV].

[56] J. Sanchez and F. Perronnin. “High-dimensional signature compression for large-scale
image classification”. In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on. June 2011, pp. 1665–1672. doi: 10.1109/CVPR.2011.5995504.

[57] Jürgen Schmidhuber. “Deep Learning in Neural Networks: An Overview”. In: Neural Net-
works 61 (2015), pp. 85–117. doi: 10.1016/j.neunet.2014.09.003. arXiv: 1404.7828
[cs.NE].

[58] P. Sermanet et al. “OverFeat: Integrated Recognition, Localization and Detection using
Convolutional Networks”. In: ArXiv e-prints (2013). arXiv: 1312.6229 [cs.CV].

[59] Nathan Silberman and Sergio Guadarrama. TF-Slim: A high level library to define com-
plex models in TensorFlow. 2016. url: https://research.googleblog.com/2016/08/
tf-slim-high-level-library-to-define.html.

[60] David Silver et al. “Mastering the game of Go with deep neural networks and tree search”.
In: Nature 529.7587 (Jan. 2016). Article, pp. 484–489. url: http://dx.doi.org/10.
1038/nature16961.

[61] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-Scale
Image Recognition”. In: ArXiv e-prints (2014). arXiv: 1409.1556 [cs.CV].

[62] Christopher Smith, Christopher Nguyen, and Ushnish De. Distributed TensorFlow: Scal-
ing Google’s Deep Learning Library on Spark. Arimo. 2016. url: https://arimo.com/
machine- learning/deep- learning/2016/arimo- distributed- tensorflow- on-
spark.

[63] Richard Socher et al. “Recursive deep models for semantic compositionality over a sen-
timent treebank”. In: Proceedings of the conference on empirical methods in natural lan-
guage processing (EMNLP). Vol. 1631. 2013, p. 1642. eprint: http://nlp.stanford.
edu/~socherr/EMNLP2013_RNTN.pdf.

[64] I. Sutskever, O. Vinyals, and Q. V. Le. “Sequence to Sequence Learning with Neural
Networks”. In: ArXiv e-prints (2014). arXiv: 1409.3215 [cs.CL].

[65] Christian Szegedy et al. “Going Deeper with Convolutions”. In: Computer Vision and
Pattern Recognition (CVPR). 2015. url: http://arxiv.org/abs/1409.4842.

[66] Zak Taylor. Distributed learning in Torch. Twitter. 2016. url: https://blog.twitter.
com/2016/distributed-learning-in-torch.

48

https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
http://arxiv.org/abs/1312.6186
https://magenta.tensorflow.org/about/
http://arxiv.org/abs/1604.08610
http://dl.acm.org/citation.cfm?id=104279.104293
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1409.0575
http://dx.doi.org/10.1109/CVPR.2011.5995504
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://arxiv.org/abs/1404.7828
http://arxiv.org/abs/1404.7828
http://arxiv.org/abs/1312.6229
https://research.googleblog.com/2016/08/tf-slim-high-level-library-to-define.html
https://research.googleblog.com/2016/08/tf-slim-high-level-library-to-define.html
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature16961
http://arxiv.org/abs/1409.1556
https://arimo.com/machine-learning/deep-learning/2016/arimo-distributed-tensorflow-on-spark
https://arimo.com/machine-learning/deep-learning/2016/arimo-distributed-tensorflow-on-spark
https://arimo.com/machine-learning/deep-learning/2016/arimo-distributed-tensorflow-on-spark
http://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf
http://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.4842
https://blog.twitter.com/2016/distributed-learning-in-torch
https://blog.twitter.com/2016/distributed-learning-in-torch

[67] BSC Support Team. Greasy User Guide. 2012. url: https://github.com/jonarbo/
GREASY/blob/master/doc/greasy_userguide.pdf.

[68] Seiya Tokui et al. “Tutorial: Deep Learning Implementations and Frameworks”. In: 2016.
url: http : / / www . slideshare . net / beam2d / differences - of - deep - learning -
frameworks.

[69] D. Ulyanov et al. “Texture Networks: Feed-forward Synthesis of Textures and Stylized
Images”. In: ArXiv e-prints (2016). arXiv: 1603.03417 [cs.CV].

[70] Koen EA Van de Sande et al. “Segmentation as selective search for object recognition”.
In: 2011 International Conference on Computer Vision. IEEE. 2011, pp. 1879–1886.

[71] O. Vinyals et al. “Show and Tell: A Neural Image Caption Generator”. In: ArXiv e-prints
(2014). arXiv: 1411.4555 [cs.CV].

[72] M. D Zeiler and R. Fergus. “Visualizing and Understanding Convolutional Networks”. In:
ArXiv e-prints (2013). arXiv: 1311.2901 [cs.CV].

49

https://github.com/jonarbo/GREASY/blob/master/doc/greasy_userguide.pdf
https://github.com/jonarbo/GREASY/blob/master/doc/greasy_userguide.pdf
http://www.slideshare.net/beam2d/differences-of-deep-learning-frameworks
http://www.slideshare.net/beam2d/differences-of-deep-learning-frameworks
http://arxiv.org/abs/1603.03417
http://arxiv.org/abs/1411.4555
http://arxiv.org/abs/1311.2901

	Problem statement
	Goals of this thesis
	Introduction to distributed machine learning systems
	Scaling up machine learning
	Types of parallelism
	Performance metrics

	Deep learning overview
	Early tendencies and evolution
	Recent years
	Current uses and tendencies
	Framework comparison

	Framework used: TensorFlow
	Types of data parallelism

	Platform
	MinoTauro overview
	Software stack and queue system
	Distributed TensorFlow with Greasy

	Testing methodology
	Dataset
	Network architecture
	Residual Neural Networks
	ResNet-56 with bottlenecks

	Implemented architectures
	Asynchronous mode
	Mixed asynchronous mode

	Tools for assessing the model

	Results
	Testing scalability
	Asynchronous training
	Mixed asynchronous training
	Model comparison

	Conclusions
	Future work

	Bibliography

