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Abstract

ETSECCPB

Escola de Camins

Master’s Minor Thesis

by Casanovas López-Amor, Carlos

Different techniques have been used to measure the groundwater flow velocity but they

are either too invasive or too inaccurate. In the present study two analytical solutions

have been developed and tested to determine the unit discharge using heat as a tracer

with an optical fiber. First, an analytical solution for the thermal response of the fluc-

tuations of sea temperature has been developed and verified. The model considers a

porous medium through which water flows and a boundary with prescribed temperature

representing the fluctuations of the sea. The measuring point depth and the unit dis-

charge define the solution. A methodology is proposed to compute the unit discharge

and the depth of the measuring point. Second, an analytical approach is developed for

the thermal dissipation with advection from a line source. The asymptotic behavior and

the final temperature for the steady state are described. Using a FEM based in Kratos,

a sensitivity analysis has been carried out to understand the dependence on the unit dis-

charge, the thermal properties of the cable and the soil. Three stages have been defined:

the initial heating governed by the cable properties, the logarithmic heating defined by

the thermal conductivity of the soil and the steady state defined by the unit discharge

and the previous parameters. A methodology has been also proposed to estimate the

unit discharge and the thermal conductivity of the soil from thermal dissipation data.

Para medir el flujo de agua subterránea se han utilizado múltiples técnicas pero resultan

ser o muy invasivas o poco precisas. En el presente estudio, se han desarrollado y

verificado dos soluciones anaĺıticas para determinar el flujo subterráneo usando el calor

como trazador con la ayuda de la fibra óptica. En primer lugar, se ha desarrollado

y verificado una solución anaĺıtica para la respuesta térmica de las fluctuaciones de

la temperatura del mar. La profundidad del punto de medida y el flujo subterráneo

determinan la solución. Se propone una metodoloǵıa para calcular el flujo subterráneo y

la profundidad del punto de medida. En segundo lugar, se ha desarrollado una solución
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Abstract ii

anaĺıtica para la disipación térmica con advección de una fuente lineal. Se han descrito

el comportamiento asintótico y la temperatura final para el estado estacionario. Con la

ayuda de un programa de elementos finitos basado en Kratos, se ha llevado a cabo un

análisis de sensibilidad mostrando la dependencia con el flujo, las propiedades térmicas

del cable y del suelo. Se han definido tres fases: el calentamiento inicial gobernado por

las propiedades del cable, el calentamiento logaŕıtmico definido por la conductividad

térmica del suelo y el estado estacionario determinado por el flujo y las propiedades

precedentes. Se ha propuesto una segunda metodoloǵıa para estimar el flujo subterráneo

y la conductividad térmica del suelo a partir de datos de disipación térmica.

Per mesurar el flux d’aigua subterrània s’han utilitzat diverses tècniques però són molt

invasives o poc precises. En el present estudi, s’han desenvolupat i verificat dues

sol·lucions anaĺıtiques per a determinar el flux subterrani utilitzant la calor com a

traçador amb l’ajuda de la fibra òptica. En primer lloc, s’ha desenvolupat i verificat

una sol·lució anaĺıtica per a la resposta tèrmica de les fluctuacions de la temperatura

del mar. La profunditat del punt de mesura i el flux subterrani determinen la sol·lució.

Es proposa una metodologia per a calcular el flux subterrani i la profunditat del punt

de mesura. En segon lloc, s’ha desenvolupat una sol·lució anaĺıtica per a la dissipació

tèrmica amb advecció d’una font lineal. S’han descrit el comportament asimptòtic i la

temperatura final per a l’estat estacionari. Amb l’ajuda d’un programa d’elements finits

basat en Kratos, s’ha dut a terme una anàlisi de sensibilitat mostrant la dependència

amb el flux: l’escalfament inicial governat per les propietats del cable, l’escalfament

logaŕıtmic definit per la conductivitat tèrmica del sòl i l’estat estacionari determinat pel

flux i les propietats precedents. S’ha proposat una segona metodologia per a estimar el

flux subterrani i la conductivitat tèrmica del sòl a partir de dades de dissipació tèrmica.

ii
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Chapter 1

Introduction

Management of coastal resources is an important issue because the human being has

preferred to settle in coastal zones. Some resources are now in a stress situation due to

the growth of the World’s population, the densification of these areas and the influence

of the sea level rise. Groundwater is a clear example. It is crucial to understand coastal

groundwater processes and behavior because it is the safest and easiest drinking water

resource in many countries.

Groundwater is part of the water cycle. Precipitation is its principal source of recharge

and sea its main receiving medium in coastal regions. We encounter a mixture of salt-

water and fresh water at the boundary between land and sea. Mixing may occur either

in the sea or inland due to seawater intrusion. Indeed, as freshwater flows towards

the sea, it floats over the sea water, which is denser. A two layer system is created:

saltwater enters into the porous medium in the lower part and freshwater floats on top

towards the sea. At the same time, fresh water pushes the mixture towards the sea as

a result of a higher pressure, ensuring the equilibrium of the intrusion. Nevertheless,

as the amount of freshwater varies over time (floods, climate cycles, pumping wells...)

the system reaches a dynamic balance where the intrusion changes its nature and moves

across the porous medium over time.

The description of the process is highly dependent on the nature of the system; multiple

processes take place and not only the properties of the field need to be considered

but also other properties of the environment. Many studies have been made with the

aim of understanding seawater intrusion [1]: from creating mathematical models with a

particular geomorphology ([2], [3]) to understanding the chemical behavior in the mixing

zone ([4], [5]). However, it is a complex problem with multiple coupled elements. Indeed,

the hydraulic conductivity of the porous medium is not the only factor that one must

consider; movements caused by differences of density linked to energy transport may

modify the flow pattern by creating convection cells with flow return.

Different techniques have been used to measure the flow velocity but they are either too

1



Introduction 2

invasive or too inaccurate as they need internal measures of the properties of the bulk

material. Over the last decades, the use of heat as a groundwater tracer has become

popular. Already in the 1980s, heat was considered a potential indicator of flow velocity

[6], and since then, a growing literature on this topic has been created [7]. Focusing on

the latest studies, the use of distributed temperature sensing systems (DTS) to measure

temperatures by means of optical fibers is one of the main innovations in this field of

study [8], [9], [10]. However, as the hydraulic conductivity is very variable and heat

transfer implies conduction and advection, global results were needed so that it could

be applied in any global context. To this end, analytical solutions were purposed to

determine the flow velocity in different contexts [11], [12], [13]. It is still needed a

particular study of the analytical solutions to obtain the maximum information from

them.

Being part of a global project (Mixing and dispersion in the transport of energy and

solutes, ME DISTRAES), we aim to develop methods to measure the advection and other

properties related with the heat transfer problem. Indeed, while studying the transport

of solutes, one encounters the same Advection-Diffusion Equation (ADE) where thermal

conduction is substituted by molecular solute diffusion. By sharing the same formulation

one might expect that the role of heterogeneity on heat transport could be extrapolated

to solute transport. However, thermal diffusion is 5 orders of magnitude faster than

molecular diffusion, which makes energy transport a much more predictable phenomenon

from solute transport.

2



Chapter 2

Field site and setting

The purpose of this chapter is to explain the procedures and techniques that have been

made in the field to obtain the required data.

Section 2.1 introduces the place of study and analyses its main features. While section

2.2 presents the performed tests and its results.

2.1 Field site

The site is located in the Riera of Argentona, some 40 km North of Barcelona (Figure

2.1). It is considered a field experimental laboratory with devices to measure hydraulic,

electrical, thermal and transport parameters.

Figure 2.1: Site location. Riera d’Argentona

Climatic conditions are western Mediterranean climate conditions with moderately high

temperatures in summer (average temperature of 23oC) and mild temperatures in winter

3
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(average temperature of 10.3oC). Spring and autumn are the rainy seasons with annual

precipitation ranging from 500 mm to 800 mm.

Figure 2.2 displays the regional geology of the site and its surroundings.

Figure 2.2: Geology description of the site

Modified by the author. Source: IGC and ICC, [14].

Two vertical cross sections complement the regional geology description of the zone

(figures 2.4 and 2.3). They do not give accurate information of the site but they offer

an approximation of what we may find.

1000 m

Figure 2.3: Vertical cross section V

(See Figure 2.2)

4
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1000 m

Figure 2.4: Vertical cross section II

(See Figure 2.2)

In a nutshell, we will find gravel, sand and silt from tonalites, granodiorites and monzo-

granite. All of them are considered plutonic rocks. We will find depositions of undistin-

guished quaternary rocks close to the surface. The studied aquifer will be considered a

sandy aquifer with some silt layers.

Figure 2.5 show the dispostion of the boreholes and figure 2.6 presents the local geology

of the site.

Playa_20

Playa_15

N3

N1

N2 N4

Solitario

Figure 2.5: Site: Borehole disposition and optical fiber inland installation

5
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Figure 2.6: Local geology

(See figure 2.5)

2.2 Optical fiber

The distributed temperature sensing (DTS) system is the main measurement instru-

ment to obtain temperature profiles. It employs light pulses in the infrared spectrum

propagating in a fiber optic cable [15]. Fibre Optics Distributed Temperature Sensing

(FO-DTS) employs the Raman portion of the return scattering light resulting from the

reflection of a laser shot through the cable. This feature allows to obtain distributed

temperature measurements at high spatial and temporal resolution. Optical fiber can

measure actively and passively. The active measurement consists in injecting a heating

power and studying the temperature rise during heating and its decay. Heat is applied

by electrical resistance to the stainless steel tube that armors the optical fiber in our case

of study (figure 2.7). On the other hand, the passive measurement consist of observing

temperature without the heat source.

Nylon 

Thixotropic 
gel 

Stainless steel 
(wires) 

Optical Fiber 

Stainless steel 
(tube) 

Øext 3.8 mm 

Figure 2.7: Optical fiber section and materials

6
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Sixteen shallow piezometers are installed 30 m away from the seashore constituting the

site. The piezometers depths range between 15 and 25 meters (figure 2.5). Twelve

piezometers are put into groups of three creating four groups called nidos (nests). Each

nest provides accurate data by combining the information of three depths.

All piezometers are equipped with optical fiber cable (Brugg Kabel AG, Switzerland) in

order to perform down-hole distributed temperature measurements. Figure 2.5 shows

the connection between wells and figure 2.8 describes the position of the optical fiber in

a well. The optical fiber encircles the casing and covers the depth of the well. Figure

2.9 presents some data obtained from the DTS system.

Well 
excavation 

Optical 
Fiber 

Filter 
PVC tube 

Pit 

Figure 2.8: Optical fiber position in a well

The optical fiber is also placed offshore in the hope of characterizing groundwater dis-

charge into the sea. It is buried some centimetres in the seafloor and it was settled in

front of the site laboratory. Figure 2.10 represents the configuration of the submerged

optical fiber.

7
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Figure 2.9: Fiber Optic DTS data

Data obtained from developing a optical fiber cable installed along the outer casing of each borehole

(figure 2.8) in June 2015. Profiles also indicate water Electrical Conductivity measured during the

same day or, if available, data from the colsest periodic manual monitoring on time. Groundwater

levels are also indicated when known. The centered map indicate the distribution of the piezometers

over the site.

Figure 2.10: Optical fiber offshore installation

Figures 2.11(a), 2.11(b), 2.11(c) and 2.11(d) show the inland equipment setting. The

8
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picture of figure 2.11(e) was taken while the optical fiber was being settled under the

seafloor.

(a) DTS central (b) Pit with piezometer and optical fiber (in red)

(c) PVC tube with optical fiber (in red)

(d) Well, PVC tube and OF (e) Placement of the submerged optical fiber

Figure 2.11: Pictures of the experimental site

9
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2.3 Material properties

Most of inputs for the model are material properties. Table 2.1 sum up the main thermal

properties:

Specific

heat

Density Heat capacity

(c · ρ)

Thermal

conductivity

c (J/kg K) ρ
(
kg/m3

)
C
(
J/m3 K

)
λ (W/m K)

Water 4180 1000 4.18 · 106 0.58

Solid matrix 800 – 900 2500 – 2900 (2 – 2.61) · 106 3

Stainless steel 490 7850 3.85 · 106 16

Nylon 1670 1140 1.9 · 106 0.28

Optical fiber 754 2196 1.66 · 106 1.3

Thixotropic gel 2000 – 3000 900 – 1200 (1.8 – 3.6) · 106 0.2 – 0.4

Table 2.1: Thermal properties

The properties of the bulk are presented in table 2.2:

Porosity Intrinsic

permeability

Specific

storage

Dispersivity

coefficients

φ (−) k
(
m2
)

Ss
(
m−1

)
αL, αT (m)

Maximum 0.3 10−11 10−8 0.01, 0.001

Minimum 0.1 10−12 10−9 -

Table 2.2: Bulk properties

10



Chapter 3

Governing equations: numerical

and analytical methods

This chapter is devoted to the mathematical framework of heat transport (section 3.1)

and the statement and solutions of two particular problems (section 3.2 and 3.3).

3.1 Governing equations

We consider a porous medium, defined as a continuous representation of a system com-

posed of a solid matrix and interstitial pores typically filled with a fluid (liquid or gas).

We characterise it by its porosity φ and the properties of its constituents (solid matrix

and fluid). To study the behaviour of the porous medium, we focus on two phenomena:

the movement of the fluid (3.1.1) and the energy transport (3.1.2).

3.1.1 Flow equation

To obtain the equation describing the movement of the fluid in a porous medium, we

start by a mass balance of the fluid. The variation of the mass in a given volume V

is due to the inflows and outflows across de boundary (∂V ) and to sources and sink of

fluid within the volume:

∂

∂t

∫
V
ρl θ dV =

∫
∂V
−ρl q · n dS +

∫
V
f dV (3.1)

where ρl [ML−3] is the density of the fluid; θ is the water content, i.e. a ratio between the

volume of water and the volume of the porous medium, it is a dimensionless number that

can range from 0 (completely dry) to the value of the materials’ porosity at saturation;

q [MT−1] is the water flux, n is the unit vector which is normal to the surface ∂V , and

f [ML−3T−1] is the sink-source term.

11
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Using the divergence theorem1 to get rid of boundary integrals and generalizing for any

volume V ,
∂(ρl θ)

∂t
= −∇·(ρl q) + f (3.2)

where ∇· [L−1] is the divergence operator. In non-saturated flow problems, the water

content θ can be expressed as θ = φSw, where φ is the porosity and Sw the saturation

of the porous medium.

Water flux is given by Darcy’s law,

q = −k

µ
· (∇p + ρl g) (3.3)

where q [LT−1] is water flux (Darcy’s velocity), k [L2] is the intrinsic permeability of the

material, µ [ML−1T−1] is the dynamic viscosity of the fluid and g = −gez [LT−2] is the

acceleration due to gravity. Darcy’s law allow us to obtain the unit discharge q (that

we call Darcy’s velocity) by considering the porous medium as a continuous medium

with properties of the solid matrix (k and φ) and the fluid (ρl and µ). Darcy’s law is

only valid for slow, viscous flow: Fortunately, most groundwater flow cases fall in this

category. Typically any flow with a Reynolds number less than one is clearly laminar,

and it would be valid to apply this law.

Substituting (3.3) into equation (3.2) yields,

∂(ρl θ)

∂t
= ∇·

(
ρl k

µ
· (∇p + ρl g)

)
+ f (3.4)

that is the flow equation for a fluid in a porous medium considering the latter as a

continuous medium after Darcy’s law. In order to complete this equation, we introduce

the constitutive equation, also called state function, that link the density of the fluid

with the pressure, the temperature and the concentration ρl(T, p, ω):

ρl = ρl0 · exp [α(T − T0) + β(p− p0) + γ(ω − ω0)] (3.5)

where α, β and γ are three parameters that depend on the nature of the fluid.

3.1.2 Heat transfer

The equation for the energy transport results from the energy balance. In our case, only

thermal energy is considered. We will use the temperature as state variable. In order

to link the thermal energy with the temperature, we will first introduce two physical

quantities –that are related between them– :

1To see a more detailed process, refer to [16]

12
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• Specific heat, c: It is defined as the change in energy stored per unit mass and per

unit change in temperature. It is commonly used for pure substances.

c =
∆E

m∆T

If we consider a saturated porous medium, we can compute its specific heat by

taking into account both the specific heat of the mineral and water.

mb = [φρw + (1− φ)ρs]Vb

∆E = φρwcwVb ∆T︸ ︷︷ ︸
∆Es

+ (1− φ)ρscsVb ∆T︸ ︷︷ ︸
∆El

 cb =
∆E

mb∆T
=
φρwcw + (1− φ)ρscs
φρw + (1− φ)ρs

(3.6)

where “s” stands for solid, “b” stands for bulk and “w” stands for water.

• Volumetric heat capacity, C: It is defined as the change in energy stored per

unit volume and per unit change in temperature. Typically used for mixtures, for

example soil and water in a porous medium.

C =
∆E

V ∆T

The specific heat c and the volumetric heat capacity C are linked via the density

ρ:

C = ρc (3.7)

Thermal energy can be computed on any finite volume as follows:

E =

∫
V
Cb T dV (3.8)

Focusing again on the terms of the thermal energy balance, four processes can vary

the thermal energy of the considered finite volume: two related with the surroundings

(incoming and outgoing energy) and two related with internal processes (source and sink

of energy):

∆E = EIn − EOut + ESource − ESink (3.9)

Both incoming and outgoing thermal energy can be computed as the flux of energy

crossing the boundary ∂V of the volume considered. The variation of energy over time

can be expressed as follows:

dE

dt
= ΦIn − ΦOut︸ ︷︷ ︸

∂V

+PSource − PSink︸ ︷︷ ︸
V

= Φ + P (3.10)

where, Φ represents the heat transfer across the boundary while P represents the

creation-disappearance of thermal energy within the volume.

13
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Heat transfer can occur through three main mechanisms: advection, conduction and

radiation. On the other hand, we have to consider the dispersion by the fact that we

are dealing with an heterogeneous medium even if we are treating it as homogeneous.

All mechanisms cause energy transfer across the boundary. Hence, to compute the flow

of energy through the boundary we have;

Φ = −
∫
∂V

J · n dS (3.11)

where J is the local heat flux vector that represents the flow of energy per unit of area

and per unit of time in [MT−3] and n is the normal to ∂V .

Advection is the transport mechanism of any attribute that can be dragged by the

fluid. In our case, we consider the dragging of energy, so the advection heat flux2 is:

JA = qCw∆T (3.12)

where q [LT−1] is the discharge per unit of surface that in our case is the Darcy’s

velocity, and Cw∆T is the energy per unit volume of flowing water.

Conduction is the flow of internal energy from a region of higher temperature to one of

lower temperature by the interaction of the adjacent particles (atoms, molecules, ions,

electrons, etc.) in the intervening space. The conduction flux described by Fourier’s law

reads:

JC = −λ · ∇T (3.13)

where λ [MLT−3θ−1] represents the thermal conductivity which is a second order tensor,

normally isotropic, so that it is a scalar, and ∇T is the temperature gradient. Note that

the flux has the same direction but opposite sense of the temperature gradient, that

means that heat flows from higher to lower temperatures, as one can expect.

Radiation is the transfer of internal energy by means of electromagnetic waves. For

most bodies on the Earth, this radiation lies in the infrared region of the electromagnetic

spectrum. The radiation flux reads:

JR = εσT 4er (3.14)

where ε represents the emissivity, a dimensionless measure of a material’s effective ability

to emit or absorb thermal radiation from its surface; ranges from 0 (none) to 1 (maximal)

and σ is the Stefan’s constant3 in [MT−3θ−4]. However, within a porous medium the

transfer of energy by radiation is usually neglected as we are working in low temperature

differences, so that the net radiation flux can be considered as part of the conduction

flux.

2Also called the local heat flux as it is energy per unit of area and per unit of time. (I.S.: W/m2)
3Stefan’s constant 5.6570 · 10−8 W/m2K4.
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Dispersion is the mechanism of transport caused by the fluctuations of the velocity

relative to the average velocity of the fluid, which is the one included in the advection

flux. Dispersion results from fluid turbulences, from the heterogeneity of the medium

or from both. In any case, it is proportional to the dispersion tensor Dp [L2T−1].

Dispersion is highly anisotropic, i.e. the longitudinal dispersion is typically much greater

than the transversal dispersion4. The dissipative heat flux is given by:

JD = −CwDp · ∇T (3.15)

1 mm

Figure 3.1: Dispersion caused by heterogeneity

The dispersion due to heterogeneity depends on the velocity of the flow and on a dis-

persion coefficient. We note αL for the longitudinal dispersion coefficient and αT for the

transversal.

DpL = αL · |q| , DpT = αT · |q| (3.16)

Furthermore, the sink-source term P , in equation 3.10, represents the source (or sink)

of thermal energy coming from chemical reactions, mechanical frictions or any other

internal process contributing in the variation of thermal energy. Defining the volumetric

power η as follows:

P =

∫
V
η dV (3.17)

Finally, replacing the different terms of the equation (3.10) with the equations (3.8),

(3.11) and (3.17):

d

dt

∫
V
Cb T dV = −

∫
∂V

J · n dS +

∫
V
η dV ∀V (t) (3.18)

Using the divergence theorem,

d

dt

∫
V
Cb T dV = −

∫
V
∇·J dV +

∫
V
η dV ∀V (t) (3.19)

4As the dispersion depends on the direction of the flow, the eigenvalues of the dispersivity tensor are
different between them. The highest eigenvalue corresponds to the eigenvector that is parallel to the
flow direction.
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If the volume V does not depend on time, using the Reynolds transport theorem (cf.

[17]) we have: ∫
V
Cb

∂T

∂t
dV = −

∫
V
∇·J dV +

∫
V
η dV ∀V (3.20)

This equation is valid for any volume, so we have the differential equation:

Cb
∂T

∂t
= −∇·J + η (3.21)

As it has been seen, J = JA + JC + JD, so we have:

Cb
∂T

∂t
= −∇· (JA + JC + JD) + η (3.22)

Replacing each heat flux term with (3.12), (3.13) and (3.15), respectively, the equation

reads:

Cb
∂T

∂t
= −∇· (qCwT − λ · ∇T− CwDp · ∇T) + η (3.23)

Rearranging the equation we have:

Cb
∂T

∂t
= ∇· ((λ+ CwDp) · ∇T)−∇· (qCwT ) + η (3.24)

that is a partial differential equation of second order. If all the parameters are constant,

the equation is a parabolic linear equation.

If we want to estimate the speed of the heat front, we consider the material derivate of

the temperature T :
DT

Dt
=
∂T

∂t
+ v · ∇T (3.25)

this derivative describes the time rate of change of temperature for a material element

subjected to a space-and-time-dependent macroscopic velocity field, that is the case of

the fluid of the porous medium. Considering q and Cw constant, we rewrite the equation

(3.24) so that we can find a material derivative term:

Cb

DT

Dt︷ ︸︸ ︷(
∂T

∂t
+
Cw
Cb

q · ∇T

)
= ∇· ((λ+ CwDp) · ∇T) + η (3.26)

DT

Dt
=
∂T

∂t
+
Cw
Cb

q · ∇T =
∂T

∂t
+ v · ∇T (3.27)

where v is the velocity of the heat front. As we want to compare this velocity with the

velocity of the fluid itself, we will use the relation

q = φ vw
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that links the unit discharge with the real velocity of the fluid vw. Working with norms

instead of vectors and using the relation Cb = φCw + (1− φ)Cs we have:

Cw
Cb

q =
vw
R

=
q

φR
⇒ R =

Cb
Cw φ

=
φCw + (1− φ)Cs

Cw φ
= 1 +

1− φ
φ

Cs
Cw

(3.28)

where R is called the thermal delay as it shows the difference between the velocity of

the fluid and the velocity of the advected heat front; being the latter slower5.

Once the system of equations has been properly defined, appropriate boundary condi-

tions need to be prescribed. Various types of boundary conditions can be assigned to

a given problem but we will here restrict ourselves to two different problems with two

different boundary conditions. For every problem, the choice of the boundary conditions

will be justified as well as other assumptions.

3.2 Thermal response to fluctuations of sea temperature

3.2.1 Problem statement

Our first problem is to find an analytical expression for the temperature fluctuations

inside a porous medium through which water flows towards (or from) a boundary with

prescribed fluctuating temperature. This statement is relevant for a large number of

problems in groundwater including (1) estimation of inflow/outflow at the sea from

temperature measurements at some depth given the seawater daily temperature fluctu-

ations; (2) same for river inflow/outflow, (3) estimation of recharge at soil from yearly

temperature fluctuations. Figure 3.2 represents the physical situation.
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t

t

Figure 3.2: Sketch of the problem statement 1

To solve this problem, we make some simplifying assumptions to the heat equation 3.24:

• We decouple the heat equation from the flow equation. In fact, we assume q to be

known and constant. We consider a uniform flow with a unit discharge q = q ez.

If q > 0, the flow enters the porous medium. On the contrary, if q < 0, the flow

leaves the porous medium discharging into the sea. Finally, if q = 0, we are in

a simple conduction problem as there is no movement of the fluid. This uniform

5Note that this velocity does not consider heat conduction.
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assumption is also justified as the variation of the underground flow velocity is

small compared to its mean value.

• We consider a one dimensional problem and we call z our spatial variable. This

means that advection and diffusion will only work in the z direction and thus,

T (x, t) = T (z, t). This assumption can be justified as it is close to the natural

situation.

• Our domain of study does not have sinks or sources of energy, so we consider η = 0.

• The boundary condition on z = 0 is defined by the temperature of the sea. In

order to simplify this boundary condition, we consider the following description:

T (0, t) = Tc + ∆T sin (ω0t) (3.29)

where Tc is the centred temperature of the sea, ∆T the maximum variation of the

temperature over time and ω0 is the pulsatance or angular frequency of the sea

temperature. This angular frequency may represent one of three different cycles:

a year, a day or a wave cycle.for the equation

• The other boundary condition it is an infinite boundary condition (z → +∞). We

admit that the porous medium has an infinite length and the temperature remains

constant as we move far away from the sea. Mathematically, it can be expressed

as follows:

lim
z→+∞

T (z, t) = T∞ (3.30)

where T∞ is the temperature at infinite.

• We do not have an initial time, i.e. t ∈ [−∞,+∞].

With all this assumptions the problem can be stated:

Cb
∂T

∂t
= (λ+ CwDp)

∂2T

∂z2
− qCw

∂T

∂z
[PDE]


T (0, t) = Tc + ∆T sin (ωst)

lim
z→+∞

T (z, t) = T∞

[BC]

(3.31)

3.2.2 Solution

The equation 3.31 was solved using the Fourier transform and finding the eigenvalues

and eigenfunctions of the transformed equation. Appendix A offers a detailed resolution

for the stated problem. To compute the analytical solution, first we have to compute

the following values:

• Dimensionless depth zD:

zD =
z

L
(3.32)
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where L is the characteristic length, it is chosen arbitrarily and it does not modify

the final global solution.

• Global diffusion D:

D =
λ

Cb
+
Dp

φR
with


Cb = φCw + (1− φ)Cs

Dp = αL q

R = 1 +
(1− φ)

φ

Cs
Cw

(3.33)

• Péclet number in a porous medium Pes:

Pes =
Lq

DφR
(3.34)

• Characteristic time tc and reduced frequency ωs:

tc =
LφR

q
, ωs = tc ωo (3.35)

• Damping function γ+ and phase function γ−:

γ±(ωs) =

√√√√1

2

(√
1 +

16ω2
s

Pe2
s

± 1

)
(3.36)

The analytical solution depends on the direction of the flow.

• Case A: For an outgoing flow (q < 0 and thus Pes < 0 and ωs < 0) the analytical

solution reads:
T (z, t) = (Tm − T∞) e−|Pes|zD + T∞

+∆T exp

(
−|Pes|

2
(1 + γ+(ωs)) zD

)
sin

(
−|Pes|

2
γ−(ωs)zD + ωot

) (3.37)

• Caso B: For an incoming flow (q > 0 and thus Pes > 0 and ωs > 0) the analytical

solution reads:

T (z, t) = Tm + ∆T exp

(
−|Pes|

2
(γ+(ωs)− 1) zD

)
sin

(
− |q|

2DφR
γ−(ωs)zD + ωot

)
(3.38)

Two approximations are presented: for small and large unit discharges.

3.2.2.1 Small unit discharge approximation

Considering a small unit discharge |q| � 1, we get the following asymptotic expressions:

• Case A: Outgoing Flow (Pes < 0 , ωs < 0, i.e. q < 0) with |q| � 1:

T (z, t) ' (Tm − T∞) exp

(
− |q|
DφR

z

)
+ T∞

+∆T exp

(
−
√
ωo
2D

z

)
sin

(
−
√
ωo
2D

z + ωot

) (3.39)
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• Caso B: Incoming Flow (Pes > 0 , ωs > 0, i.e. q > 0) with |q| � 1:

T (z, t) ' Tm + ∆T exp

(
−
√
ωo
2D

z

)
sin

(
−
√
ωo
2D

z + ωot

)
(3.40)

3.2.2.2 Large unit discharge approximation

Considering a large unit discharge |q| � 1, we get the following asymptotic expressions:

• Case A: Outgoing Flow (Pes < 0 , ωs < 0, i.e. q < 0) with |q| � 1:

T (z, t) = (Tm − T∞) exp

(
− |q|
DφR

z

)
+ T∞

+∆T exp

(
− |q|
DφR

z

)
sin

(
−φR
|q|

ωoz + ωot

) (3.41)

• Caso B: Incoming Flow (Pes > 0 , ωs > 0, i.e. q > 0) with |q| � 1:

T (z, t) = Tm + ∆T exp

(
−D

(
φR
|q|

)3
z

)
sin

(
−φR
|q|

ωoz + ωot

)
(3.42)

3.3 Thermal dissipation from a line source

3.3.1 Problem statement

Our second problem is to find an analytical expression for the temperature created by

a line source inside a porous medium through which water flows. This statement is

relevant for the quantification of the groundwater flow in terms of unit discharge and

material properties. Figure 3.3(a) represents the physical situation.
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Figure 3.3: Sketch of the problem statement 2

To solve this problem, we make some simplifying assumptions to the heat equation 3.24:

• We decouple the heat equation from the flow equation. In fact, we assume q

to be known and constant. We consider a uniform flow with a unit discharge

q = q ex (figure 3.3). This uniform assumption is also justified as the variation of

the underground flow velocity is small compared to its mean value.
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• We consider a two dimensional problem and we call x and y our spatial variables.

This means that all heat transfer processes will happen simultaneously at any

depth z and thus they will not depend on the z component, T (x, t) = T (x, y, t).

This assumption can be justified as it is close to the natural situation.

• Our domain of study has a source of energy in (x, y) = (0, 0). As it is a point

source, η = Ψ δ(x, y), δ(x, y) being the Dirac delta function.

• The domain is infinite, (x, y) ∈ R2, and the boundary conditions are imposed at

infinity.

• We start applying the heat point source at t = 0. Our problem is valid for t > 0

and we have a constant initial condition at t = 0: T (x, y, 0) = T0.

With all this assumptions the problem can be stated:

Cb
∂T

∂t
= (λ+ CwDpL)

∂2T

∂x2
+ (λ+ CwDpT )

∂2T

∂y2
− qCw

∂T

∂x
+ Ψ δ(x, y) [PDE]

T (x, y, 0) = T0 [IC]

(3.43)

For our problem, we will use the following notation:

• Final temperature ∀(x, y) ∈ R2:

lim
t→+∞

T (x, y, t)
not.
= Tf (x, y) (3.44)

• Final temperature for (x, y) = (0, 0):

lim
t→+∞

T (0, 0, t) = Tf (0, 0)
not.
= Tf (3.45)

• Temperature evolution for (x, y) = (0, 0):

T (0, 0, t)
not.
= T (t) (3.46)

3.3.2 Solution

The equation 3.43 was solved using the Fourier transform and finding the eigenvalues

and eigenfunctions of the transformed equation. Appendix B offers a detailed resolution

for the stated problem. To compute the integral analytical solution, first we have to

compute the following values:

• Dimensionless spatial variables xD and yD:

xD =
x

L
, yD =

y

L
(3.47)

where L is the characteristic length.
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• Longitudinal and transversal diffusion DL and DT :

DL =
λ

Cb
+
DpL

φR

DT =
λ

Cb
+
DpT

φR

with



Cb = φCw + (1− φ)Cs

DpL = αL q

DpT = αT q

R = 1 +
(1− φ)

φ

Cs
Cw

(3.48)

• Characteristic time tc:

tc =
LφR

q
(3.49)

• Two Péclet numbers (for the longitudinal and transversal dispersion) PeL and PeT :

PeL =
Lq

DLφR

not.
=

1

A
, PeT =

Lq

DTφR

not.
=

1

B
(3.50)

• Characteristic temperature Tc:

Tc =
ΨLφR

Cbq
(3.51)

The global solution reads,

T (xD, yD, tD) =
Tc

4π
√
AB

exD/2AWH

(
Bx2

D +Ay2
D

16ABtD
,

√
Bx2

D +Ay2
D

4A2B

)
(3.52)

where,

WH(u, β) =

∫ +∞

u

1

ξ
exp

(
−ξ − β2

4ξ

)
dξ (3.53)

Custodio and Llamas [16] discuss some interesting properties of this function. In par-

ticular, the asymptotic behavior when tD → +∞ that is:

WH(0, β) = K0(β) ≈
√

π

2β

(
1− 1

8β

)
e−β when β > 5 (3.54)

where K0 is the modified Bessel function of second kind and order zero.

Another possible description is:

T (xD, yD, tD) = T0 +
Tc

(2π)2

∫
R2

1

ξ(kx, ky)
eikyyD+ikxxD

(
1− e−ξ(kx,ky)tD

)
dkydkx (3.55)

where ξ(kx, ky)
not.
=

k2
x

PeL
+

k2
y

PeT
+ ikx = Ak2

x +Bk2
y + ikx.

An important solution is the rate of growth of the temperature for the point (x, y) =

(0, 0). Indeed, when we measure the evolution of temperature of the source point we
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obtain6,

dT

dt
=

Tc

4π
√
AB

e−
t

4Atc

t
(3.56)

dT

d(ln t)
=

Tc

4π
√
AB

e−t/4Atc (3.57)

and using series expansion we can distinguish dT/d(ln t) for different cases depending

on t:

dT

d(ln t)
≈


Tc

4π
√
AB

for t� 4Atc

Tc

4π
√
AB

(
1− t

4Atc

)
for t� 16A2t2c

(3.58)

We observe that for small values of t/4Atc, the derivative is approximately constant and

with a slope of Tc/4π
√
AB. In addition, as t increases, the slope begins to decrease (as

the the first order term is negative) which leads to a stabilisation of the temperature.

Considering the case where t tends to infinity:

lim
t→+∞

dT

dt
= lim

t→+∞

Tc

4π
√
AB

e−
t

4Atc

t
= 0 (3.59)

This result shows that the growth rate cancels out for t→ +∞.

This final temperature is given by (3.54) and it is what will allow us to obtain the flux

after obteining
√
AB from (3.58).

3.4 Numerical methods

3.4.1 Computing framework and workflow

This section presents the numerical approach to the problems presented in sections 3.2

and 3.3. It consist in a Finite Element Method (FEM) based in Kratos framework

[18], [19]. The application called Flow transport application was developed by Sheila

Fernández López. It was used to model the coupling between the flow of water in a

porous medium with the heat transfer within it. The geometry and discretization of the

domain was made with GiD [20].

Figure 3.4 presents the process of information followed to solve both numerical problems.

First, we created the geometry and generated the mesh in GiD. The results were exported

and treated to create two different files (.mdpa and .py). Once the parameters had been

defined and the conditions had been settled, we ran the .py file with Python. The solving

process was done by the Flow transport application that uses Kratos framework. A .res

file was created during the computing process. It collected the computed temperature

6The equation (3.57) is a useful equation to analyse the slope of the temperature evolution for a
log-lin plot, i.e. with semi-logarithm scale (lin – Temperature; log – Time).
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and pressure for the nodes of our grid at different times. Finally, the results were

displayed with GiD where we could extract the information needed.

Figure 3.4: Process of the information for the numerical method

3.4.2 Numerical model of temperature fluctuations of the sea

We consider the domain meshed in figure 3.5: 5 m× 0.1 m

x

y

z

GiD
x

y

z

GiD

5 m

4 cm 20 cm

10 cm

0.2 m 1 m

x

N = 1604 nodes

E = 1200 elements

(Ei = 300 elements)

i = 1 i = 2

i = 3 i = 4

z

zf

z

x0

xf

z0

Figure 3.5: Mesh for the thermal response to sea thermal fluctuations

We note Ω
not.
= [x0, xf ] × [z0, zf ] = [0, 0.1] × [0, 5] m2 the discretised domain and ∂Ω

the boundary of the domain. We expose the boundary and initial conditions for the

numerical model:
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• Boundary condition for the pressure p(x, z, t), ∀t > 0:

(x0, z) = (0, z) : q = −k

µ

∂p

∂x

∣∣∣∣
(x0,z)

= 0 m/s (3.60)

(xf , z) = (0.1, z) : q = −k

µ

∂p

∂x

∣∣∣∣
(xf ,z)

= 0 m/s (3.61)

(x, z0) = (x, 0) : q = −k

µ

∂p

∂z

∣∣∣∣
(x,z0)

= q∗ (3.62)

(x, zf ) = (x, 5) : p(x, zf ) = 49 kPa (3.63)

The natural condition is imposed in both boundaries (x0, z) and (xf , z) to avoid the

flow crossing these boundaries. At (x, z0) we impose a flow with an unit discharge

q∗, i.e. a Neumann boundary condition. And at (x, zf ) we fix the pressure to 49

kPa (Dirichlet boundary condition).

• Boundary condition for the temperature T (x, z, t), ∀t > 0:

(x0, z) = (0, z) : − λ ∂T
∂x

∣∣∣∣
(x0,z)

= 0 W/m2 (3.64)

(xf , z) = (0.1, z) : − λ ∂T
∂x

∣∣∣∣
(xf ,z)

= 0 W/m2 (3.65)

(x, z0) = (x, 0) : T (x, 0, t) = ∆T sinωt t ∈ R+ (3.66)

(x, zf ) = (x, 5) : T (x, 5) = 0 oC (3.67)

The natural condition is imposed in both boundaries (x0, z) and (xf , z) to avoid

heat transfer across the boundaries. At (x, z0) we impose a sinusoidal temperature

where ∆T is the maximum temperature reached by the boundary and ω is the

angular frequency of the condition. To compute ω we use the following expression:

ω =
2π

τ

where τ is the period7 of the boundary condition, for example τ = 1 day if we

consider the daily fluctuations of the sea. The desired condition would be at

zf → ∞, but we are not able to model an infinite domain with FEM. To solve

this problem, (x, zf ) we fix the temperature far from the thermal fluctuations.

We consider zf large enough to get away this boundary (x, zf ) from the thermal

fluctuations.

7Normally, we use T for the period but in our case T represents the temperature.
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• Initial condition for the pressure p(x, z, t), ∀(x, z) ∈ Ω (at t = 0):

p(x, z, 0) = 49 kPa (3.68)

• Initial condition for the temperature T (x, z, t), ∀(x, z) ∈ Ω (at t = 0):

T (x, z, 0) = 0 oC (3.69)

3.4.3 Numerical model of the thermal dissipation of a line source

We consider the domain meshed in figure 3.6: 0.4 m× 0.4 m

0.4 m

0.4
m

3.8 mm

Control pointHeat source

Figure 3.6: Mesh for the thermal dissipation of a line source

We note Ω
not.
= [xl, xr] × [yd, yu] = [−20, 20] × [−20, 20] cm2 the discretised domain and

∂Ω the boundary of the domain. We expose the boundary and initial conditions for the

numerical model:

• Boundary condition for the pressure p(x, y, t), ∀t > 0:

(xl, y) = (−0.2, y) : q = −k

µ

∂p

∂x

∣∣∣∣
(xl,y)

= q∗ (3.70)

(xr, y) = (0.2, y) : p(xr, y) = 9.81 kPa (3.71)

(x, yd) = (x,−0.2) : q = −k

µ

∂p

∂z

∣∣∣∣
(x,yd)

= 0 m/s (3.72)

(x, yu) = (x, 0.2) : q = −k

µ

∂p

∂z

∣∣∣∣
(x,yd)

= 0 m/s (3.73)

• The natural condition is imposed in all boundaries for the temperature.
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• Initial condition for the pressure p(x, y, t), ∀(x, z) ∈ Ω (at t = 0):

p(x, y, 0) = 9.81 kPa (3.74)

• Initial condition for the temperature T (x, z, t), ∀(x, z) ∈ Ω (at t = 0):

T (x, y, 0) = 18 oC (3.75)

Figure 3.7: Source of heat

Two other elements had been considered. As the heat extends over all the domain, the

boundary condition imposed at the boundaries does not fix the temperature. We have

imposed a condition called Energy Flow to fix the temperature of the incoming flow.

On the other hand, a source of heat has been fixed at the optical fiber. The tube made

in metal placed in the optical fiber cable (figure 3.7) has an associated power η = P ∗.

As we are considering a 2D model, the units will be W/m (per unit of depth).
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Results

Sections 4.1 and 4.2 present the results of the two problem introduced in sections 3.2

and 3.3.

4.1 Sensitivity analysis of solutions to sea thermal fluctu-

ations

4.1.1 Verification of the numerical code

In order to verify both the analytical and the numerical solutions for the thermal response

of the medium to sea thermal fluctuations, a comparison between is needed. In the

present work, the application Flow transport application based on Kratos framework

(see section 3.4) was used to model the response of a thermal fluctuation.

The transient part of the solution is verified by imposing Tm = T∞ = 0 oC to the

analytical solutions (equations (3.37) y (3.38)). The thermal and intrinsic properties of

the bulk can be found in Table 2.1 and 2.2.

Figures 4.1 and 4.2 compare the numerical and analytical solutions for outgoing and

incoming flow, respectively.

Notice that the initial condition of the two models is different. The analytical model

does not consider an initial condition as it was integrated ∀t ∈ R. The numerical

model has a constant inital condition that modifies the result during the begining of the

simulation. However, it converges to the dynamic equilibrum of the analytical solution

after a relatively short relaxation time. In practice, this implies that when a numerical

solution is used for calibrating the model against field data (i.e., for complex cases), then

a few cycles should be considered prior to actual fitting.

4.1.2 Influence of depth and unit discharge

To highlight the fact that temperature depends on depth z, Figures 4.3 and 4.4 display

the evolution of temperature for different depths for an outgoing and an incoming flow,
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Figure 4.1: Comparison of the analytical and numerical model (outgoing flow)

Evolution of temperature at z = 0.3 m, with q∗ = −10 cm/day, ∆T = 5 oC and ω = 7.272 · 10−5 s−1

(τ = 1 day). Convergence after stabilization (difference due to the initial conditions).
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Figure 4.2: Comparison of the analytical and numerical model (incoming flow)

Evolution of temperature at z = 0.3 m, with q∗ = 20 cm/day, ∆T = 5 oC and ω = 7.272 · 10−5 s−1

(τ = 1 day). Convergence after stabilization (difference due to the initial conditions).

respectively.

Figures 4.3 and 4.4 show that the phase and amplitude of the fuctuation at depth z

depends on the depth. The deeper we measure the temperature, the milder the fluctu-

ation is (i.e. the depth reduces the amplitude fluctuation). Besides, the delay between

the peak of the sea temperature and the peak of the temperature of the measured point

increases as we go deeper. In other words, depth increases the phase difference of the

fluctuations.

We compute the thermal response at z = 0.1 m for different unit discharges in Figure 4.5

for an outgoing flow and in Figure 4.6 for an incoming flow. Taking 0 m/s as reference

(pure conduction), we observe that the direction of the flow plays a major role. Indeed,

for an outgoing flow, we observe an attenuation of the amplitude with an increase of the

unit discharge, while the amplitude increases with the unit discharge for an incoming
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Figure 4.3: Evolution of temperature at different depths (outgoing flow)

Evolution of the temperature at z = 0 cm (grey), z = 5 cm (red), z = 10 cm (green), z = 20 cm

(orange) and z = 30 cm (blue); with q∗ = −10 cm/day, ∆T = 5 oC and ω = 7.272 · 10−5 s−1

(τ = 1 day). Amplitude and phase depend on depth.

-6 

0 

6 

0 10 20 30 40 50 60 70 

Te
m

pe
ra

tu
re

 (º
C

) 

Time (h) 

   0 cm (sea) 
   5 cm 
 10 cm 
 20 cm 
 30 cm 

Figure 4.4: Evolution of temperature at different depths (incoming flow)

Evolution of the temperature at z = 0 cm (grey), z = 5 cm (red), z = 10 cm (green), z = 20 cm

(orange) and z = 30 cm (blue); with q∗ = 20 cm/day, ∆T = 5 oC and ω = 7.272 · 10−5 s−1 (τ = 1 day).

Amplitude and phase depend on depth.

flow. Both cases present a similar phase difference as they come earlier than the reference

state.

To understand the effect of the unit discharge on the termal response, figure 4.7 shows

the dependency of the reduced amplitud A/Asea
not.
= A/∆T on the unit discharge q. Figure

4.8 displays the peak delay between the fluctuation of the sea and the fluctuations at

a particular depth z. This delay can be measured as the elapsed time between the

maximum temperature of the sea and the maximum temperature at depth z.
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Figure 4.5: Temperature evolution with different unit discharges (outgoing flow)

Evolution of the temperature at z = 10 cm for q∗ = 0 cm/s (grey), q∗ = −2 cm/s (red), q∗ = −10 cm/s

(green), q∗ = −50 cm/s (orange) and q∗ = −100 cm/s (blue); with ∆T = 5 oC and ω = 7.272 · 10−5 s−1

(τ = 1 day). Amplitude and phase depend on unit discharge.
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Figure 4.6: Temperature evolution with different unit discharges (incoming flow)

Evolution of the temperature at z = 10 cm for q∗ = 0 cm/s (grey), q∗ = 2 cm/s (red), q∗ = 10 cm/s

(green), q∗ = 50 cm/s (orange) and q∗ = 100 cm/s (blue); with ∆T = 5 oC and ω = 7.272 · 10−5 s−1

(τ = 1 day). Amplitude and phase depend on unit discharge.

4.1.3 Methodology to obtain the unit discharge and the depth

The aim of this subsection is to explain a methodology to compute the unit discharge

and the depth of the measuring point. Appendix C contains the detailed development

of this methodology.
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Figure 4.7: Amplitude dependency on unit discharge

Amplitude attenuation for an outgoing flow and amplitude intensification for an incoming flow at

different depths. z = 5 cm (red), z = 10 cm (green), z = 20 cm (orange) and z = 40 cm (blue); with

ω = 7.272 · 10−5 s−1 (τ = 1 day).
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Figure 4.8: Peak delay dependency on unit discharge

Maximum peak delay for a pure conduction state (q = 0 m/s). Syncronization of the temperature

fluctuations as the unit discharge increases. Amplitude attenuation for an outgoing flow and amplitude

intensification for an incoming flow at different depths. z = 5 cm (red), z = 10 cm (green), z = 20 cm

(orange) and z = 40 cm (blue); with ω = 7.272 · 10−5 s−1 (τ = 1 day).

Once we have got the data of the evolution of the sea temperature and of the measuring

point, one can find the unit discharge q and the depth z of our measuring point following

the next steps:

1. We measure the period τ of our problem, i.e. the elapsed time between two peaks

of the temperature. In our case, we consider the daily thermal fluctuation of the

sea, so τ = 1 day. We compute ω = 2π/τ = 7.272 · 10−5 s−1.

2. We measure the amplitude of the sea thermal fluctuation Asea = ∆T and the

amplitude of the thermal response of our measuring point Ap. Then, we compute
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the difference.

3. We measure the peak delay ∆t: we measure the peak time for the sea temperature

tref and the first peak time tp after the reference time of our measuring point. We

compute the difference: ∆t = tp−tref . We could also measure the elapsed time ∆t

between the peak of the sea temperature and the peak of the temperature of the

measuring point, or the elapsed time between crossings of the mean temperature.

4. We compute Md:

Md = − 1

ωo∆t
ln

(
Ap
∆T

)
(4.1)

where ω is the angular frequency and ln is the natural logarithm.

5. Using the figures C.3 and C.4, we find the corresponding dimensionless unit dis-

charge r for the Md value found in step 4.

6. We compute β:

β = 2φR
√
Dω (4.2)

where D = λ/Cb (m2/s) is the dispersion coefficient1, φ the porosity of the bulk

and R the thermal delay computed as follows: R = 1 + 1−φ
φ

Cs
Cw

where Cs (J/m3K)

and Cw (J/m3K) are the heat capacities of the solid matrix and water.

7. We compute the unit discharge q:

q = βr (4.3)

8. The first time that we computed β, we did not consider the dispersion coefficient.

We repeat steps 6 and 7 to obtain a more accurate measure. One iteration is

enough to have an accurate result.

9. Once we have the unit discharge q, we compute the depth z:

z =
ω∆t 2DφR

|q|

√√√√1

2

(√
1 +

β2

q4
− 1

) (4.4)

4.2 Thermal dissipation to a line source

This section presents the sensitivity of the final temperature of the optical fiber to

different properties and parameters.

1We will iterate in order to consider the dispersion coefficient.
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Figure 4.9: Md function (high values)

Lon-lin plot. The axis of abscissa represents the dimensionless variable r computed as r = βq, where

β = 2φR
√
Dω and q is the demansional unit discharge.
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Figure 4.10: Md function (medium values)

Lon-lin plot. The axis of abscissa represents the dimensionless variable r computed as r = βq, where

β = 2φR
√
Dω and q is the demansional unit discharge.

4.2.1 Sensitivity to the unit discharge q

The numerical results for the thermal response of a line source show the role of unit dis-

charge during the heating process. Figure 4.12 presents the evolution of the temperature

for a constant heating (supplied power) and several values of unit discharge.
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Figure 4.11: Md function (low values)

Lin-lin plot. The axis of abscissa represents the dimensionless variable r computed as r = βq, where

β = 2φR
√
Dω and q is the demansional unit discharge.
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Figure 4.12: Evolution of the temperature for a constant heating

Temperature detected by the optical fiber for different discharges: 5 cm/d (dark green), 10 cm/d (light

green), 50 cm/d (purple), 100 cm/d (orange), 200 cm/d (red), 500 cm/d (light blue), 1000 cm/d (blue).

Semi-log plot.

The unit discharge has no effect on the initial heating. However, it plays an important

role on the final temperature: the faster the water flows, the lower the final temperature.

As expected, the flow helps energy dissipation. The final temperature is reached when

the energy produced by the heating source is balanced out with the advection dissipation.
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Figure 4.13 shows the dependence of the final temperature on the unit discharge.
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Figure 4.13: Dependency of the final temperature on the unit discharge.

Semi-log scale.

Figure 4.14 shows the spatial distribution of the steady state temperature for four differ-

ent unit discharges. The thermal plume is clearly observed in figures 4.14(c) and 4.14(d)

while small boundary condition effects hinder its complete definition in figure 4.14(a).

Slower flows create wider plumes. The spatial distribution of temperature solely depends

on Pe.
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(a) q = 5 cm/d (b) q = 10 cm/d

(c) q = 50 cm/d (d) q = 100 cm/d

Figure 4.14: Final temperature: Snapshots for different unit discharges

4.2.2 Sensitivity to the thermal conductivity of nylon

In order to observe the effect of the properties of the optical fiber, we compare the

evolution of the temperature for two different cases: An optical fiber cable covered

with a high insulator material (nylon) with a low thermal conductivity, and a cable

covered with a weak insulator material (decayed nylon) with a moderately high thermal

conductivity for an insulator.

Figure 4.15 compares the evolution of the temperature for three different unit discharges.

Nylon’s conductivity drives the evolution during the first part (initial heating). Low

thermal conductivities act as a thermal barrier and hinder the heat flux to the sur-

roundings. In terms of Fourier’s law, if we have two materials (A and B) being λA and
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Figure 4.15: Evolution of the temperature for different nylon’s conductivity

Temperature detected by the optical fiber for different discharges: 10 cm/d (blue), 50 cm/d (red) and

100 cm/d (green). Squares: λNy = 0.28 W/mK. Crosses: λNy = 1 W/mK. P ∗ = 20 W/m.

Semilogarithmic plot.

λB their thermal conductivities, we can express the heat flux crossing both materials as,

ΦA = −λA∇TA, ΦB = −λB∇TB.

For the steady state, we consider the same rate of energy transfer for both materials; so

we have ΦA = ΦB. If λA < λB then the temperature gradient must be: ∇TA > ∇TB.

For our particular problem, the thermal conductivity of the nylon layer will only change

the final state by a constant shift within the fiber, but not in the soilbecause the soil

will receive the same amount of thermal energy per unit of time (P ∗). So if the final

temperature of the soil for both situations is the same and ∇TA > ∇TB, then the inner

final temperature must be higher for the material A, T fA > T fA. Figure 4.16 plots the

difference of temperature over time for two different materials.

Nylon’s conductivity only affects during the initial heating (t < 5 min). As we could

expect, the difference does not depend on the unit discharge. Therefore, a preliminary

calibration for the cable is needed.

4.2.3 Sensitivity to the thermal conductivity of the soil

To understand the evolution of the temperature for a constant heating, we consider dif-

ferent mineral conductivities. Figure 4.17 compares the evolution of the temperature for

three different unit discharges in two porous media with different thermal conductivities.
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Figure 4.16: Temperature difference for two nylon thermal conductivities λNy

T (λNy = 0.28 W/mK)− T (λNy = 1 W/mK). The final temperature and the initial behavior during the

heating process (t < 5 min) depend on nylon’s conductivity.P ∗ = 20 W/m. Semilogaithm plot.
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Figure 4.17: Evolution of the temperature for different solid matrix conductivities

Temperature detected by the optical fiber for different discharges: 10 cm/d (blue), 50 cm/d (red) and

100 cm/d (green). Squares: λs = 3 W/mK. Empty diamonds: λNy = 1 W/mK. P ∗ = 20 W/m.

Semi-log plot.

In this case, the soil itself hinders heat dissipation, which forces the inner part to increase

its temperature. This situation is similar to that of the previous analysis (nylon’s con-

ductivity) but now the soil is limitless. Figure 4.18 displays the difference of temperature

of two porous media with different conductivities.

From 4.18, we observe that the conductivity of the mineral plays a crucial role after the

initial heating (t > 20 s). The main difference is the change of the logarithmic slope.
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Figure 4.18: Temperature difference for two mineral thermal conductivities λs
T (λs = 1 W/mK)− T (λs = 3 W/mK). A steeper slope for λs = 1 W/mK than for λs = 3 W/mK.

Dependency of the growth rate of the temperature on the thermal conductivity of the solid matrix. No

effect detected during the initial heating (t < 1s). P ∗ = 20 W/m. Semilogaithm plot.

4.2.4 Sensitivity to the specific heat of the soil

Equation (3.43) shows that the specific heat of the mineral also plays a role in the

evolution of the temperature. It can be considered as a time scale parameter as it only

appears next to the time derivative term of the temperature. Figure 4.19 shows the

difference of temperature between two porous media with different temperature.
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Figure 4.19: Temperature difference under two specific heat values of the soil cs
T (cs = 800 J/kgK)− T (cs = 1200 J/kgK). P ∗ = 20 W/m. Semi-log plot.

The effect of the specific heat only takes place after the initial heating (t > 10 s) and

before reaching the final steady temperature. In terms of physical processes, the heat
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takes longer to spread but not because the soil blocks the heat but because the soil

demands more energy to increase its temperature.

4.2.5 Methodological synthesis

Summarizing the previous sensitivity analysis, the heating process consist in three dif-

ferent stages. Figure 4.20 illustrates the three stages.
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Figure 4.20: Three regimes of the thermal dissipation (synthesis)
q∗ = 50 cm/d. P ∗ = 20 W/m. λNy = 0.28 W/mK. λs = 1 W/mK. cs = 800 J/kgK.

Cable properties govern the initial heating. Soil properties define the slope of the logarithmic heating.

The steady temperature depends on the flow, and the previous properties. The supplied power escales

the temperature.

Initially, during the initial heating, the evolution of the temperature depends on the

cable properties. The second stage is the logarithmic heating that depends on the soil

conductivity (including the dispersion term). Finally, the steady temperature is reached

when the advection balances the source of heat. The final temperature of the optical

fiber depends on the flow, the cable properties and the thermal conductivity of the soil.

The complete heating process depends linearly on the supplied power as it scales the

temperature.
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Conclusions

Two analytical solutions have been developed and tested against numerical models to

determine groundwater unit discharge by means of temperature measurements.

First, an analytical solution for the thermal response of the fluctuations of the sea

temperature has been developed and verified. The expression considers a porous medium

through which water flows and a boundary with prescribed temperature representing the

fluctuations of the sea. The magnitude of the impact depends mainly on the flow rate

and the periodicity of the fluctuation. Two dimensionless numbers are considered to

propose a non-dimensional solution: the Péclet number Pe and the reduced frequency

ωs. The response can be quantified in terms of the amplitude damping and the phase

shift.

The solution can be applied to a large number of problems in groundwater. One can

estimate the inflow/outflow at the sea or a river from temperature measurements at some

depth given the temperature fluctuations. In fact, a methodology has been proposed

to measure the unit discharge by measuring the amplitude and the peak delay with the

reference. To that end, a non-dimensional function has been defined and plotted.

The approach should be able to identify not only the flow direction but also its magni-

tude for fluxes between a few cm/d to m/day. Still further work should be done to refine

the validity limit of the model. Indeed, the solution neglects density effects and het-

erogeneity. Convective flow due to density instabilities in water intrusions could modify

the solution. A coupled model considering not only energy transport but also solute

transport would provide a more accurate model for seawater intrusion.

Second, we have also presented an analytical approach for the thermal dissipation from a

line source. The global solution is expressed in terms of the well function (or exponential

integral). An asymptotic behavior was found and the final temperature for the steady

state was defined analytically. A Finite Element Method based in Kratos framework was

used to model the problem stated. A sensitivity analysis was carried out to understand

the dependency on the unit discharge, the thermal conductivity of the outer part of
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the optical fiber, the thermal conductivity of the soil and the specific heat of the soil.

Three stages were defined: the initial heating is controlled by the cable properties, the

logarithmic heating that depends on the properties of the solid matrix and the steady

temperature stage that depends on the unit discharge, the cable properties and the bulk

properties. Thermal conductivity and capacity of the medium can be derived from the

straight (in semi-log scale) portion of the response. Unit discharge can be estimated

from the final temperature. Still, further work is required to refine this estimate by

taking into account the thermal resistance of the cable and, possibly, density effects

induced by heating.
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Appendix A

In this appendix, we resume the resolution of the advection-conduction equation from

the equation considered in section 3.2 and we solve it in detail. Therefore, we repeat

some previous conclusions for the sake of clarity and continuity.

A.1 Advection-conduction equation

We rewrite the PDE equation in the equation 3.31:

Cb
∂T

∂t
= (λ+ CwDp)

∂2T

∂z2
− qCw

∂T

∂z
(A.1)

Notation (International System of Units in parentheses):

• T : temperature, [T ] = θ (K)

• λ: thermal conductivity, [λ] = MLT−3θ−1 (J/m s K)

• Cw: water heat capacity, [Cw] = ML−1T−2θ−1 (J/m3K)

• Cb: bulk heat capacity, [Cb] = ML−1T−2θ−1 (J/m3K)

• q: unit discharge (flow velocity), [q] = LT−1 (m3/s m2)

• Dp: dispersivity, [Dp] = L2T−1 (m2/s)

We call Dλ =
λ

Cb
the thermal diffusivity [D] = L2T−1. On the other hand, bulk heat

capacity can be written as follows:

Cb = φCw + (1− φ)Cs

where φ is the porosity (in a saturated porous medium) and Cs is the heat capacity of

the solid matrix. If we reconsider Cw/Cb and we use R as the thermal delay:

Cw
Cb

=
1
Cb
Cw

=
1

φCw + (1− φ)Cs
Cw

=
1

φ

(
1 +

(1− φ)

φ

Cs
Cw

) =
1

φR
⇒ Cw =

Cb
φR

(A.2)

and if we replace it in equation A.1 as well as λ = DλCb, we get:

Cb
∂T

∂t
= Cb

(
Dλ +

Dp

φR

)
∂2T

∂z2
− q Cb

φR

∂T

∂z
(A.3)
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We call D the global diffusivity; it considers the thermal diffusion and the dispersion of

heat. It is defined as:

D = Dλ +
Dp

φR
(A.4)

and replacing it in (A.3) we obtain:

Cb
∂T

∂t
= CbD

∂2T

∂z2
− q Cb

φR

∂T

∂z
(A.5)

A.2 Boundary conditions

As we are working in a semi-infinite domain, the boundary conditions are applied at

z = 0 and at z →∞:

z = 0 : T (0, t) = Tm + ∆T sinωot (A.6)

z →∞ : lim
z→∞

T (z, t) = T∞ (A.7)

A.3 Dimensionless equation - Péclet number

First of all, we define the dimensionless values from the problem data:

TD =
T

Tc
, tD =

t

tc
, zD =

z

L
(A.8)

We replace the dimensionless values in (A.5):

CbTc
tc

∂TD
∂tD

= CbD
Tc
L2

∂2TD
∂z2

D

− qCbTc
φRL

∂TD
∂zD

∂TD
∂tD

= D
tc
L2

∂2TD
∂z2

D

− q

φR

tc
L

∂TD
∂zD

(A.9)

And for the boundary conditions:
TcTD(0, tD) = Tm + ∆T sin (ωotctD)

lim
zD→∞

TcTD(zD, tD) = T∞

That can be rewritten as follows:
TD(0, tD) =

Tm
Tc

+
∆T

Tc
sin (ωotctD)

lim
zD→∞

TD(zD, tD) =
T∞
Tc

(A.10)
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By using the dimensional analysis and Buckingham π theorem:

q

φR

tc
L

= 1 ⇒ tc = L
φR

q

that is the advection characteristic time1 and,

Tc = T∞

Replacing in (A.9) and in (A.10):

∂TD
∂tD

= D
φR

Lq

∂2TD
∂z2

D

− ∂TD
∂zD

[EDP]
TD(0, tD) =

Tm
T∞

+
∆T

T∞
sin

(
ωoL

φR

q
tD

)
lim

zD→∞
TD(zD, tD) = 1

[CC]

(A.11)

Péclet number is defined as:

Pe =
Lv

D

And we define Péclet numer for a porous medium as:

Pes =
Lq

D φR
(A.12)

We also define the dimensionless number that compares the advection time with the

periodicity of the boundary condition:

ωs
not.
=

ωo
q

LφR

=
ωoLφR

q
(A.13)

se we have,

∂TD
∂tD

=
1

Pes

∂2TD
∂z2

D

− ∂TD
∂zD

[EDP]
TD(0, tD) =

Tm
T∞

+
∆T

T∞
sin (ωstD)

lim
zD→∞

TD(zD, tD) = 1

[CC]

(A.14)

Note that Péclet number and the dimensionless periodicity (ωs) can be either positive

or negative depending on the direction of the flow, i.e. the sign of the unit discharge q.

1While tc = L2/D is the diffusion characteristic time. We could also consider it as the charac-
teristic time without changing the resolution of our equation.
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A.4 General resolution of the PDE

A.4.1 Eigenvalues and eigenfunctions

Starting with the dimensionless equation, we aim to find its eigenfunctions:

∂TD
∂tD

=
1

Pes

∂2TD
∂z2

D

− ∂TD
∂zD

(A.15)

For the sake of clarity, we simplify the notation by writing all dimensionless variables

aD without its dimensionless symbol “·D”. So we have:

∂T

∂t
=

1

Pes

∂2T

∂z2
− ∂T

∂z
(A.16)

Considering the Fourier transform (FT) and its inverse ∀f(t) ∈ L2(R):

F [f(t)] (ω) : ω → F [f(t)](ω)
not.
= f̂(ω) :=

∫ ∞
−∞

f(t) e−iωtdt

F−1
[
f̂(ω)

]
(t) : t → F−1

[
f̂(ω)

]
(t) = f(t) :=

1

2π

∫ ∞
−∞

f̂(ω) eiωtdω

(A.17)

Applying the Fourier transform, F , to the equation (A.16):

F
[
∂T

∂t

]
= F

[
1

Pes

∂2T

∂z2
− ∂T

∂z

]

With the notation, T̂ = F [T ] we get:

iωT̂ =
1

Pes

d2T̂

dz2
− dT̂

dz
(A.18)

Rearranging the equation,

d2T̂

dz2
− Pes

dT̂

dz
− iPesωT̂ = 0 (A.19)

This equation is a linear Ordinary Differential Equation (ODE) of second order with

constant coefficients. To solve it, we use its characteristic equation:

χ2 − Pesχ− iPesω = 0 (A.20)

And we get,

χ± =
Pes ±

√
Pe2

s + 4Pesωi

2
=

Pes ± |Pes|
√

1 +
4ω

Pes
i

2
(A.21)
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Using the sign function defined as follows:

sgnx =


−1 x < 0

0 x = 0

+1 x > 0,

the eigenvalues and eigenfunctions are presented in the next table,

χ+ =
|Pes|

2

(
sgn (Pes) +

√
1 + 4

ω

Pes
i

)
χ− =

|Pes|
2

(
sgn (Pes)−

√
1 + 4

ω

Pes
i

)

exp (χ+(ω)z) exp (χ−(ω)z)

A.4.2 Particular case ω = 0 – Steady problem

If ω = 0, the equation (A.19) loses the 0-order term and the eigenvalues have no longer

an imaginary part. On the other hand, the differential equation has the same form in

both frequency and time domains. Going back to time domain2 we find:

d

dzD

(
dTD
dzD

− PesTD

)
= 0 → dTD

dzD
− PesTD = C

and we can easily solve knowing that the solution is the sum of the homogeneous and

particular solution:

TD(zD, tD) = TD(zD) = T hD︸︷︷︸
homogeneous

+ T pD︸︷︷︸
particular

(A.22)

On the one hand, the homogeneous solution is:

T hD = AePeszD

And on the other hand, we obtain the particular solution by using the variation of

parameters method:

T pD =
C

Pes
= −B

Being the solution of the steady case:

fortheequationTD = AePeszD +B (A.23)

In A.5.1 we will apply the boundary conditions to this solution.

2ω = 0 implies steadiness in the temporal domain.
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A.4.3 Real and imaginary part of the eigenvalues

Once we have the eigenfunctions, it is also of interest to split into its exponential and

sinusoidal parts, implying the separation of the real and imaginary part of the eigenval-

ues. Analyzing the eigenvalues, we must focus on the discriminant of the characteristic

equation to find its imaginary part. Being z = 1 + 4 ω
Pes

i, we compute
√
z:

z = |z|eiϕ = |z| (cosϕ+ i sinϕ) = |z|
(

1

|z|
+ i

4ω

Pes|z|

)
donde |z| =

√
1 +

16ω2

Pe2
s

being,

cosϕ =
1

|z|
, sinϕ =

4ω

Pes|z|

As cosϕ > 0, the angle ϕ it is defined as,

ϕ = arctan
4ω

Pes
ϕ ∈

[
−π

2
,
π

2

]
we observe that, being arctan θ a monotonically increasing function going through the

origin of coordinates, we have,

sgn (ϕ) = sgn

(
arctan

4ω

Pes

)
= sgn

(
4ω

Pes

)
= sgn (ω) · sgn (Pes) (A.24)

To compute
√
z, we use the root formula for an imaginary number:

n
√
z = n

√
|z|eiϕ = n

√
|z|e

ϕ+2πk
n

i, ∀k ∈ {0, 1, ..., n− 1}

In the case of a square root, one can write:

√
z =

√
|z|eiϕ =

√
|z|e

ϕ+2πk
2

i, ∀k ∈ {0, 1}
√
z =

√
|z|e

ϕ
2
i or

√
z =

√
|z|e(

ϕ
2

+π)i = −
√
|z|e

ϕ
2
i

developing these expressions,

√
z = ±

√
|z|
(

cos
ϕ

2
+ i sin

ϕ

2

)
(A.25)

We use the half-angle formula3:

cos
ϕ

2
= ±

√
1 + cosϕ

2
, sin

ϕ

2
= ±

√
1− cosϕ

2

3From double-angle formula: cos 2x = cos2 x − sin2 x and the Pythagorean trigonometric identity:
sin2 x+ cos2 x = subfigure1, we obtain the half-angle formula.
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Since cosϕ > 0 and ϕ ∈
[
−π

2 ,
π
2

]
, the sign of the half-angle sine will depend on the sign

of ϕ, while the sign of the cosine will always be positive as it belongs to the quadrant I

and IV:

cos
ϕ

2
=

√
1 + cosϕ

2
, sin

ϕ

2
= sgn (ϕ)

√
1− cosϕ

2
= sgn

(
ω

Pes

)√
1− cosϕ

2

Back to the square root of z,

√
z = ±

√
|z|
(

cos
ϕ

2
+ i sin

ϕ

2

)
= ±

√
|z|

(√
1 + cosϕ

2
+ i sgn

(
ω

Pes

)√
1− cosϕ

2

)

= ±
√
|z|

(√
|z|+ 1

2|z|
+ i sgn

(
ω

Pes

)√
|z| − 1

2|z|

)

= ±
√

1

2
(|z|+ 1)± i sgn

(
ω

Pes

)√
1

2
(|z| − 1)

= ±

√√√√1

2

(√
1 +

16ω2

Pe2
s

+ 1

)
± i sgn

(
ω

Pes

)√√√√1

2

(√
1 +

16ω2

Pe2
s

− 1

)

For simplicity, we define γ±(ω) as follows:

γ±(ω) =

√√√√1

2

(√
1 +

16ω2

Pe2
s

± 1

)
(A.26)

so we have,
√
z = ±γ+(ω)± i sgn (ω) γ−(ω) (A.27)

Before proceeding with the PDE resolution, some properties of the functions γ+(ω) and

γ−(ω) are analyzed:

• When ω = 0:

γ+(0) = 1 , γ−(0) = 0 (A.28)

• Both functions are even functions (symmetry with respect to the y-axis):

γ+(−ω) = γ+(ω) , γ−(−ω) = γ−(ω) ∀ω ∈ R (A.29)

• Both functions are positive and have a minimum at ω = 0:

γ+(ω) ≥ 1, γ−(ω) ≥ 0 ∀ω ∈ R (A.30)

These results will be useful when considering the boundary conditions of the problem.
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Rewriting the eigenvalues separating the real and imaginary parts:

χ+ =
Pes
2

(1 + sgn (Pes) γ+ + i sgn (ω) γ−) (A.31)

χ− =
Pes
2

(1− sgn (Pes) γ+ − i sgn (ω) γ−) (A.32)

and the eigenfunctions,

f+(z) = exp

(
Pes
2

(1 + sgn (Pes) γ+) z

)
· exp

(
i sgn (ω)

Pes
2
γ−z

)
(A.33)

f−(z) = exp

(
Pes
2

(1− sgn (Pes) γ+) z

)
· exp

(
−i sgn (ω)

Pes
2
γ−z

)
. (A.34)

The general solution of the ODE can be written as a linear combination of the eigen-

functions f+(z) and f−(z):

T̂ (z, ω) = C+ exp

(
Pes
2

(1 + sgn (Pes) γ+) z

)
exp

(
i sgn (ω)

Pes
2
γ−z

)
+C− exp

(
Pes
2

(1− sgn (Pes) γ+) z

)
exp

(
−i sgn (ω)

Pes
2
γ−z

) (A.35)

where C+ (ω) and C− (ω) are the coefficients of the linear combination of the eigenfunc-

tions and they may depend on ω. The general solution can be expressed as the inverse

Fourier transform of the previous function (equation A.35):

T (z, t) = F−1
[
T̂ (z, ω)

]
(t) (A.36)

To have the complete expression of this solution we first need C+ (ω) y C− (ω). For this

purpose, boundary conditions must be imposed.

A.5 Imposition of the boundary conditions

Once we have the global solution of the dimensionless and transformed PDE, we turn

to solve the boundary equations so that we can find C+ (ω) and C− (ω). To this end,

we divide the problem into two using the linearity of the stated problem.

T (z, t) = T s(z)︸ ︷︷ ︸
steady

+T t(z, t)︸ ︷︷ ︸
transient

(A.37)

so that both verify the PDE (A.16):

Steady: 0 =
1

Pes

d2T sD
dz2
D

−
dT sD
dzD

(A.38)
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Transient:
∂T tD
∂tD

=
1

Pes

∂2T tD
∂z2

D

−
∂T tD
∂zD

(A.39)

This separation of the solution helps the resolution of the boundary condition problem.

Note that the behavior of the steady term is simpler then the transient term. Indeed,

being a time-independent solution, the temporal term disappears and spatial partial

derivatives become total derivatives for the steady problem. Taking the [BC] of (A.14),

we separate them as follows:

TD(0, tD) =
Tm
T∞︸︷︷︸

steady

+
∆T

T∞
sin (ωstD)︸ ︷︷ ︸

transient

= T sD(0) + T tD(0, tD)

lim
zD→+∞

TD(zD, tD) = 1︸︷︷︸
steady

+ 0︸︷︷︸
transient

= lim
zD→+∞

T sD(zD) + lim
zD→+∞

T tD(zD, tD)

(A.40)

Now, we can proceed to the resolution.

A.5.1 Steady boundary conditions

Omitting the dimensionless symbol “·D” to simplify the notation:

d2T s

dz2
− Pes

dT s

dz
= 0 [ODE]

T s(0) =
Tm
T∞

lim
z→+∞

T s(z) = 1

[BC]

(A.41)

The general solution of (A.41)-[ODE] is found in section A.4.2. By imposing the bound-

ary conditions (equation (A.41)-[BC]) to the equation (A.23), we will meet the steady

solution.

T s(x) = AePesx +B [GS]
T s(0) =

Tm
T∞

lim
zD→+∞

T s(x) = 1

[BC]

(A.42)

Regarding the general solution [GS], the sign of the Péclet number plays a crucial role

when imposing the boundary conditions. Hence, we will differentiate two different cases:

Case A : Pes < 0 Outgoing flow q < 0

Case B : Pes > 0 Incoming flow q > 0
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• Case A (Pes < 0, i.e. q < 0):

As Pes < 0, we can write −|Pes| instead of Pes in equation (A.42)-[GS], so the

equation reads:

T s(z) = Ae−|Pes|z +B [GS]
T s(0) = A+B =

Tm
T∞

lim
z→+∞

T s(z) = lim
z→+∞

Ae−|Pes|z +B = B = 1

[BC]

(A.43)

leading to,

A =
Tm
T∞
− 1

B = 1

 → T s(z) =

(
Tm
T∞
− 1

)
e−|Pes|z + 1 (A.44)

• Case B (Pes > 0, i.e. q > 0):

Rewriting (A.42)-[SG] we have:

T s(z) = Ae|Pes|z +B [SG]
T s(0) = A+B =

Tm
T∞

lim
z→+∞

T s(z) = lim
z→+∞

Ae|Pes|z +B = 1

[CC]

(A.45)

As the function has a finite value when x→ +∞, A must be equal to 0. When we

impose A = 0, we only have one unknown (B) and the first equation of the [BC]:

T s(0) = B =
Tm
T∞

, (A.46)

therefore,

A = 0

B =
Tm
T∞

 → T s(z) =
Tm
T∞

(A.47)
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A.5.2 Transient boundary conditions (or time-dependent)

Omitting the dimensionless symbol “·D” to simplify the notation:

∂T t

∂t
=

1

Pes

∂2T t

∂z2
− ∂T t

∂z
[PDE]

T t(0, t) =
∆T

T∞
sin (ωst)

lim
zD→∞

T t(z, t) = 0

[BC]

(A.48)

Applying Fourier transform to (A.48), the equation reads,

d2T̂ t

dz2
− Pes

dT̂ t

dz
− iωPesT̂

t = 0 [ODE]
T̂ t(0, ω) =

∆T

T∞

π

i
[δ(ω − ωs)− δ(ω + ωs)]

lim
zD→∞

T̂ t(z, ω) = 0

[BC]

(A.49)

As one can see, the Fourier transform has not only been applied to the PDE but also

to the boundary conditions. Indeed, as we are working in the frequency domain, the

boundary conditions must be expressed as well in the same domain. In the case of the

sine function, its Fourier transform is expressed through Dirac delta function4 δ defined

as follows,

δ(ω) =

{
+∞ ω = 0

0 ω 6= 0

∫ +∞

−∞
δ(ω) dω = 1 (A.50)

Or it can be defined as,

δ(ω) = lim
σ→0

1

σ
√

2π
exp

(
− ω2

2σ2

)
Dirac delta function has the following property that will be useful to solve inverse Fourier

transforms: ∫ +∞

−∞
δ(ω − ω0) f(ω) dω = f(ω0) (A.51)

Taking the general solution of the PDE (A.35), solved in section A.4.3, we first impose

the boundary condition at z = 0:

C+(ω) + C−(ω) =
∆T

T∞

π

i
[δ(ω − ωs)− δ(ω + ωs)] (A.52)

4Properly, it is a distribution, i.e. an object that generalize the classical notion of function.
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In order to apply the infinite boundary condition, we must consider two different cases:

Case A : Pes < 0 , ωs < 0 Outgoing flow q < 0

Case B : Pes > 0 , ωs > 0 Incoming flow q > 0

• Case A (Pes < 0 , ωs < 0, i.e. q < 0, outgoing flow):

Taking the general solution presented in equation (A.35), and considering the case

Pes < 0 (writing Pes = −|Pes| and sgn (Pes) = −1), the boundary condition

reads:

lim
z→+∞

T̂ t(z, ω) = lim
z→+∞

[
C+(ω) exp

(
|Pes|

2
(γ+ − 1) z

)
exp

(
−i sgn (ω)

|Pes|
2

γ−z

)
+

+C−(ω) exp

(
−|Pes|

2
(γ+ + 1) z

)
exp

(
i sgn (ω)

|Pes|
2

γ−z

)]
= 0 (A.53)

To solve this equation, first, we must recall that ω is different than 0; and second,

γ+ − 1 > 0 and γ− > 0, after equation (A.30). This means that all parameters

accompanying z in the exponent argument are different than 0. Focusing on the

sign, the real exponential argument of the first addent is positive, implying that

the addend tends to infinity when z tends to infinity. However, the real exponential

argument of the second addend is negative, carrying this second addend to tend

to zero when z tends to infinity. We thus deduce:

C+(ω) = 0

And from equation (A.52) we can determine C−:
C+ = 0

C− =
∆T

T∞

π

i
[δ(ω − ωs)− δ(ω + ωs)]

(A.54)

being T̂ t(z, ω):

T̂ t(z, ω) =
∆T

T∞

π

i
[δ(ω − ωs)− δ(ω + ωs)] exp

(
−|Pes|

2
(1 + γ+) z

)
exp

(
i sgn (ω)

|Pes|
2

γ−z

)
(A.55)
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Applying the inverse Fourier transform and taking into account the property de-

tailed in (A.51) we have:

F−1
[
T̂ t(z, ω)

]
(t) = T t(z, t) =

1

2π

∫ ∞
−∞

T̂ t(z, ω) eiωtdω =

=
∆T

T∞

1

2i

∫ ∞
−∞

[δ(ω − ωs)− δ(ω + ωs)] exp

(
−|Pes|

2
(1 + γ+(ω)) z

)
·

exp

(
i sgn (ω)

|Pes|
2

γ−(ω)z

)
eiωtdω

=
∆T

T∞

1

2i

[∫ ∞
−∞

δ(ω − ωs) exp

(
−|Pes|

2
(1 + γ+(ω)) z

)
·

exp

(
i sgn (ω)

|Pes|
2

γ−(ω)z

)
eiωtdω

−
∫ ∞
−∞

δ(ω + ωs) exp

(
−|Pes|

2
(1 + γ+(ω)) z

)
·

exp

(
i sgn (ω)

|Pes|
2

γ−(ω)z

)
eiωtdω

]

=
∆T

T∞

1

2i

[
exp

(
−|Pes|

2
(1 + γ+(ωs)) z

)
exp

(
i sgn (ωs)

|Pes|
2

γ−(ωs)z

)
eiωst

− exp

(
−|Pes|

2
(1 + γ+(−ωs)) z

)
exp

(
i sgn (−ωs)

|Pes|
2

γ−(−ωs)z
)
e−iωst

]
(A.56)

Taking into account the even symmetry of γ(ω) seen in equation (A.29), knowing

that sgn (ωs) = −1 and sgn (−ωs) = 1 (as ωs considers the direction of the flow as

seen in equation (A.13)) and using the definition of the sine function5:

T t(z, t) =
∆T

T∞

1

2i
exp

(
−|Pes|

2
(1 + γ+(ωs)) z

)
·[

exp

(
i

(
−|Pes|

2
γ−(ωs)z + ωst

))
− exp

(
−i
(
−|Pes|

2
γ−(ωs)z + ωst

))]

=
∆T

T∞
exp

(
−|Pes|

2
(1 + γ+(ωs)) z

)
sin

(
−|Pes|

2
γ−(ωs)z + ωst

)
(A.57)

• Case B (Pes > 0 , ωs > 0, i.e. q > 0 incoming flow):

5sinx = 1
2i

(
eix − e−ix

)

57



Appendix A 58

Taking the general solution presented in equation (A.35), and considering the case

Pes > 0 (writing sgn (Pes) = 1 and Pes = |Pes|), the boundary condition reads:

lim
z→+∞

T̂ t(z, ω) = lim
z→+∞

[
C+(ω) exp

(
|Pes|

2
(1 + γ+) z

)
exp

(
i sgn (ω)

|Pes|
2

γ−z

)
+

+C−(ω) exp

(
−|Pes|

2
(γ+ − 1) z

)
exp

(
−i sgn (ω)

|Pes|
2

γ−z

)]
= 0 (A.58)

With an analogous reasoning as done for the case A, as ω is different than 0 and

as γ+ − 1 > 0 and γ− > 0 (after (A.30)) we see that, all exponential arguments

are different than 0 once again. The real exponential argument of the first addend

is positive when z tends to infinity, while the real exponential argument of the

second addend is negative when z tends to infinity. Therefore,

C+(ω) = 0

And from equation (A.52) we can determine C−:
C+ = 0

C− =
∆T

T∞

π

i
[δ(ω − ωs)− δ(ω + ωs)]

(A.59)

being T̂ t(z, ω):

T̂ t(z, ω) =
∆T

T∞

π

i
[δ(ω − ωs)− δ(ω + ωs)] exp

(
−|Pes|

2
(γ+ − 1) z

)
exp

(
−i sgn (ω)

|Pes|
2

γ−z

)
(A.60)
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Applying the inverse Fourier transform and taking into account the property de-

tailed in (A.51) we have:

F−1
[
T̂ t(z, ω)

]
(t) = T t(z, t) =

1

2π

∫ ∞
−∞

T̂ t(z, ω) eiωtdω =

=
∆T

T∞

1

2i

∫ ∞
−∞

[δ(ω − ωs)− δ(ω + ωs)] exp

(
−|Pes|

2
(γ+(ω)− 1) z

)
·

exp

(
−i sgn (ω)

|Pes|
2

γ−(ω)z

)
eiωtdω

=
∆T

T∞

1

2i

[∫ ∞
−∞

δ(ω − ωs) exp

(
−|Pes|

2
(γ+(ω)− 1) z

)
·

exp

(
−i sgn (ω)

|Pes|
2

γ−(ω)z

)
eiωtdω

−
∫ ∞
−∞

δ(ω + ωs) exp

(
−|Pes|

2
(γ+(ω)− 1) z

)
·

exp

(
−i sgn (ω)

|Pes|
2

γ−(ω)z

)
eiωtdω

]

=
∆T

T∞
, i.e.q¿0) : 1

2i

[
exp

(
−|Pes|

2
(γ+(ωs)− 1) z

)
exp

(
−i sgn (ωs)

|Pes|
2

γ−(ωs)z

)
eiωst

− exp

(
−|Pes|

2
(γ+(−ωs)− 1) z

)
exp

(
−i sgn (−ωs)

|Pes|
2

γ−(−ωs)z
)
e−iωst

]
(A.61)

Taking into account the even symmetry of γ(ω) seen in equation (A.29), knowing

that sgn (ωs) = 1 and sgn (−ωs) = −1 and using the definition of the sine function:

T t(z, t) =
∆T

T∞

1

2i
exp

(
−|Pes|

2
(γ+(ωs)− 1) z

)
·[

exp

(
i

(
−|Pes|

2
γ−(ωs)z + ωst

))
− exp

(
−i
(
−|Pes|

2
γ−(ωs)z + ωst

))]

=
∆T

T∞
exp

(
−|Pes|

2
(γ+(ωs)− 1) z

)
sin

(
−|Pes|

2
γ−(ωs)z + ωst

)
(A.62)
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A.6 Global solution

Once the steady case and the transient case have been solved, we are able to formulate the

global solution as it is the sum of the previous two, as seen in (A.37). The dimensionless

solution is:

• Case A (Pes < 0 , ωs < 0, i.e. q < 0, outgoing flow):

TD(zD, tD) =

(
Tm
T∞
− 1

)
e−|Pes|zD + 1

+
∆T

T∞
exp

(
−|Pes|

2
(1 + γ+(ωs)) zD

)
sin

(
−|Pes|

2
γ−(ωs)zD + ωstD

)
(A.63)

• Case B (Pes > 0 , ωs > 0, i.e. q > 0 incoming flow):

TD(zD, tD) =
Tm
T∞

+
∆T

T∞
exp

(
−|Pes|

2
(γ+(ωs)− 1) zD

)
sin

(
−|Pes|

2
γ−(ωs)zD + ωstD

)
(A.64)

Note: ωstD = ωot.

And the dimensional global solution:

• Case A: Outgoing Flow (Pes < 0 , ωs < 0, i.e. q < 0):

T (z, t) = (Tm − T∞) exp

(
− |q|
DφR

z

)
+ T∞

+∆T exp

(
− |q|

2DφR
(1 + γ+(ωs)) z

)
sin

(
− |q|

2DφR
γ−(ωs)z + ωot

) (A.65)

• Caso B: Incoming Flow (Pes > 0 , ωs > 0, i.e. q > 0):

T (z, t) = Tm + ∆T exp

(
− |q|

2DφR
(γ+(ωs)− 1) z

)
sin

(
− |q|

2DφR
γ−(ωs)z + ωot

)
(A.66)

Where,

ωs =
LφR

q
ωo , γ±(ω) =

√√√√1

2

(√
1 +

16ω2

Pe2
s

± 1

)
, Pes =

Lq

DφR

D = Dλ +
Dp

φR
, R = 1 +

(1− φ)

φ

Cs
Cw

A.7 Approximations with expansions

In some situations, we may simplify the solutions by using an asymptotic or Taylor

expansion. For example, we may have a small unit discharge q and we can use an

asymptotic expansion to compute γ+.
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Calling s =
4ωs
Pes

we have:

s =
4ωs
Pes

=
4LφRq ωo

Lq
DφR

=
4ωoD(
q
φR

)2 (A.67)

A.7.1 Small unit discharge

If |q| � 1 then |s| � 1 so we have:

γ±(s) =

√
1

2

(√
1 + s2 ± 1

)
∼
√

1

2

(√
s2 ± 1

)
∼
√

1

2
(s± 1) ∼

√
s

2
(A.68)

and with the same reasoning we have that γ+ ± 1 = γ+. While using these expressions

in some of the arguments of the global solutions seen on A.6 we have:

|Pes|
2

(γ+(s)± 1)
|s|�1∼ |Pes|

2

√
s

2
=
|Pes|

2

√
2ωs
Pes

√
ωsPes =

√
2

2

√
ωsPes

|Pes|
2

γ−(s)
|s|�1∼

√
2

2

√
ωsPes

and replacing Pes and ωs,

√
2

2

√
ωsPes = L

√
ωo
2D

so the dimensional global solution reads:

• Case A: Outgoing Flow (Pes < 0 , ωs < 0, i.e. q < 0) with |q| � 1:

T (z, t) = (Tm − T∞) exp

(
− |q|
DφR

z

)
+ T∞

+∆T exp

(
−
√
ωo
2D

z

)
sin

(
−
√
ωo
2D

z + ωot

) (A.69)

• Caso B: Incoming Flow (Pes > 0 , ωs > 0, i.e. q > 0) with |q| � 1:

T (z, t) = Tm + ∆T exp

(
−
√
ωo
2D

z

)
sin

(
−
√
ωo
2D

z + ωot

)
(A.70)
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A.7.2 Large unit discharge

If |q| � 1 then |s| � 1 so we have:

γ±(s) =

√
1

2

(√
1 + s2 ± 1

)
≈

√
1

2

(
1 +

s2

2
± 1

)
(A.71)

γ+(s) ≈
√

1 +
s2

4
≈ 1 +

s2

8
(A.72)

γ−(s) ≈
√
s2

4
=
|s|
2

(A.73)

and then,

|Pes|
2

(γ+(s) + 1) ≈ |Pes|
2

(1 +
s2

8
+ 1) ≈ |Pes|

|Pes|
2

(γ+(s)− 1) ≈ |Pes|
2

(1 +
s2

8
− 1) ≈ |Pes|

16

16ω2
s

Pe2
s

=
ω2
s

|Pes|

|Pes|
2

γ−(s) ≈ |Pes|
2

|s|
2

=
|Pes|

4

4|ωs|
|Pes|

= |ωs|

and replacing Pes and ωs,

|Pes|
2

(γ+(s) + 1) ≈ L|q|
DφR

|Pes|
2

(γ+(s)− 1) ≈ LD(
|q|
φR

)3

|Pes|
2

γ−(s) ≈ LφR

|q|
ωo

The global solution reads:

• Case A: Outgoing Flow (Pes < 0 , ωs < 0, i.e. q < 0) with |q| � 1:

T (z, t) = (Tm − T∞) exp

(
− |q|
DφR

z

)
+ T∞

+∆T exp

(
− |q|
DφR

z

)
sin

(
−φR
|q|

ωoz + ωot

) (A.74)

• Caso B: Incoming Flow (Pes > 0 , ωs > 0, i.e. q > 0) with |q| � 1:

T (z, t) = Tm + ∆T exp

(
−D

(
φR
|q|

)3
z

)
sin

(
−φR
|q|

ωoz + ωot

)
(A.75)
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In this appendix, we resume the resolution of the advection-conduction equation from

the equation considered in section 3.3 and we solve it in detail. Therefore, we repeat

some previous conclusions for the sake of clarity and continuity.

B.1 Advection-conduction equation

We rewrite the PDE equation in the equation 3.43:

Cb
∂T

∂t
= (λ+ CwDpL)

∂2T

∂x2
+ (λ+ CwDpT )

∂2T

∂y2
− qCw

∂T

∂x
+ Ψ δ(x, y) [PDE]

T (x, y, 0) = T0 [IC]

(B.1)

Notation (International System of Units in parentheses):

• T : temperature, [T ] = θ (K)

• λ: thermal conductivity, [λ] = MLT−3θ−1 (J/m s K)

• Cw: water heat capacity, [Cw] = ML−1T−2θ−1 (J/m3K)

• Cb: bulk heat capacity, [Cb] = ML−1T−2θ−1 (J/m3K)

• q: unit discharge (flow velocity), [q] = LT−1 (m3/s m2)

• DpL: longitudinal dispersivity, [DpL] = L2T−1 (m2/s)

• DpT : transversal dispersivity, [DpT ] = L2T−1 (m2/s)

• Ψ: power density, heat source (power per unit of volume), [Ψ] = ML−1T−3 (W/m3)

We call Dλ =
λ

Cb
the thermal diffusivity [D] = L2T−1. On the other hand, bulk heat

capacity can be written as follows:

Cb = φCw + (1− φ)Cs

where φ is the porosity (in a saturated porous medium) and Cs is the heat capacity of

the solid matrix. If we reconsider Cw/Cb and we use R as the thermal delay:

Cw
Cb

=
1
Cb
Cw

=
1

φCw + (1− φ)Cs
Cw

=
1

φ

(
1 +

(1− φ)

φ

Cs
Cw

) =
1

φR
⇒ Cw =

Cb
φR

(B.2)
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and if we replace it in equation (B.1) as well as λ = DλCb, we get:

Cb
∂T

∂t
= Cb

(
Dλ +

DpL

φR

)
∂2T

∂x2
+ Cb

(
Dλ +

DpT

φR

)
∂2T

∂y2
− q Cb

φR

∂T

∂x
+ Ψ δ(x, y) (B.3)

We call DL the longitudinal diffusivity and DT the transversal diffusivity; they consider

the thermal diffusion and the dispersion of heat. They are defined as:

DL = Dλ +
DpL

φR
, DT = Dλ +

DpT

φR
(B.4)

and replacing them in (B.3) we obtain:

Cb
∂T

∂t
= CbDL

∂2T

∂x2
+ CbDT

∂2T

∂y2
− q Cb

φR

∂T

∂x
+ Ψ δ(x, y) (B.5)

B.2 Initial condition

As we are considering the problem for t > 0, the initial condition reads:

t = 0 : T (x, y, 0) = T0 (B.6)

B.3 Dimensionless equation - Péclet number

First of all, we define the dimensionless values from the problem data:

TD =
T

Tc
, tD =

t

tc
, xD =

x

Lx
, yD =

y

Ly
(B.7)

We replace the dimensionless values in (B.5):

CbTc
tc

∂TD
∂tD

= CbDL
Tc
L2
x

∂2TD
∂x2

D

+ CbDT
Tc
L2
y

∂2TD
∂y2

D

− qCbTc
φRLx

∂TD
∂zD

+
Ψ

LxLy
δ(xD, yD)

∂TD
∂tD

= DL
tc
L2
x

∂2TD
∂x2

D

+DT
tc
L2
y

∂2TD
∂y2

D

− q

φR

tc
Lx

∂TD
∂zD

+
Ψtc

CbTcLxLy
δ(xD, yD) (B.8)

And for the initial condition:

TD(xD, yD, 0) =
T0

Tc
(B.9)

Using the dimensional analysis and Buckingham π theorem:

q

φR

tc
Lx

= 1 → tc = Lx
φR

q
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that is the advection characteristic time6 and,

Lx = Ly = L

Tc =
Ψtc
L2Cb

=
ΨφR

CbLq

Replacing in (B.8) and in (B.9):

∂TD
∂tD

=
DLφR

qL

∂2TD
∂x2

D

+
DTφR

qL

∂2TD
∂y2

D

− ∂TD
∂zD

+ δ(xD, yD) [PDE]

TD(xD, yD, 0) =
T0

Tc
[IC]

(B.10)

We define Péclet number for a porous medium. It compares the diffusion and advection

times:

Pes =
td
ta

=
L2

D
LφR
q

=
Lq

DφR
(B.11)

and considering the difference between longitudinal and transversal dispersion we define:

PeL =
Lq

DLφR
, PeT =

Lq

DTφR
(B.12)

Rewriting equation (B.10),

∂TD
∂tD

=
1

PeL

∂2TD
∂x2

D

+
1

PeT

∂2TD
∂y2

D

− ∂TD
∂zD

+ δ(xD, yD) [PDE]

TD(xD, yD, 0) =
T0

Tc
[IC]

(B.13)

B.4 General resolution of the PDE

Starting with the dimensionless equation, we aim to find its eigenfunctions:

∂TD
∂tD

=
1

PeL

∂2TD
∂x2

D

+
1

PeT

∂2TD
∂y2

D

− ∂TD
∂zD

+ δ(xD, yD) (B.14)

For the sake of clarity, we note:

A =
1

PeL
, B =

1

PeT
(B.15)

6While tc = L2
x/DL is the diffusion characteristic time in x direction and tc = L2

y/DT is the diffusion
characteristic time in y direction. We could also consider it as the characteristic time without changing
the resolution of our equation.
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and we simplify the notation by writing all dimensionless variables aD without its di-

mensionless symbol ”·D” and it yields,

∂T

∂t
= A

∂2T

∂x2
+B

∂2T

∂y2
− ∂T

∂x
+ δ(x, y) (B.16)

where A, B and are constant.

We consider Fourier’s Transform (FT) on x and y defined as below:

T̂ (kx, y, t) = Fx [T (x, y, t)] (kx, y, t) =

∫ +∞

−∞
T (x, y, t) · e−ikxxdx (B.17)

T̆ (x, ky, t) = Fy [T (x, y, t)] (x, ky, t) =

∫ +∞

−∞
T (x, y, t) · e−ikyydy (B.18)

And applying the FT on x to the equation (B.16) we get:

Fx
[
∂T

∂t

]
= Fx

[
A
∂2T

∂x2
+B

∂2T

∂y2
− ∂T

∂x
+ δ(x, y)

]
(B.19)

∂T̂

∂t
= Fx

[
A
∂2T

∂x2

]
+ Fx

[
B
∂2T

∂y2

]
−Fx

[
∂T

∂x

]
+ Fx [ δ(x, y)] (B.20)

∂T̂

∂t
= A (ikx)2 T̂ +B

∂2T̂

∂y2
− (ikx) T̂ + δ(y) (B.21)

And applying now the FT on y:

Fy

[
∂T̂

∂t

]
= Fy

[
A (ikx)2 T̂ +B

∂2T̂

∂y2
− (ikx) T̂ + δ(y)

]
(B.22)

∂
˘̂
T

∂t
= A (ikx)2 ˘̂

T +B (iky)
2 ˘̂
T − (ikx)

˘̂
T + 1 (B.23)

we note
˘̂
T

not.
= T̃ . Equation (B.23) reads,

∂T̃

∂t
=
(
−Ak2

x −Bk2
y − ikx

)
T̃ + 1 (B.24)

∂T̃

∂t
= −ξT̃ + 1 ξ ≡ ξ(kx, ky)

not.
= Ak2

x +Bk2
y + ikx (B.25)

Using ODE resolution method for a first order linear ordinary differential equation:

T̃ = T̃h + T̃p

T̃h = Ce−ξt

T̃p =
1

ξ

 T̃ = Ce−ξt +
1

ξ

(B.26)
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B.5 Imposition of the initial condition

To determine C, we have to impose the initial condition. Before imposing it to T̃ , first,

we have to apply the FT to (B.16)[CI]:

T̃ (x, y, 0) = Fy [Fx [u(x, y, 0)]] = Fy
[
Fx
[
T0

Tc

]]
= Fy

[
T0

Tc
δ(kx)

]
=
T0

Tc
δ(kx, ky) (B.27)

So we have,

T̃ (kx, ky, 0) = C +
1

ξ(kx, ky)
=
T0

Tc
δ(kx, ky) ⇒ C =

T0

Tc
δ(kx, ky)−

1

ξ(kx, ky)
(B.28)

And then,

T̃ (kx, ky, t) =

[
T0

Tc
δ(kx, ky)−

1

ξ(kx, ky)

]
e−ξ(kx,ky)t +

1

ξ(kx, ky)
(B.29)

In order to obtain u(x, y, t) we need to go from the frequency domain to the space

domain. We consider the Inverse Fourier Transform (IFT):

T (x, y, t) = F−1
x

[
T̂ (kx, y, t)

]
(x, y, t) =

1

2π

∫ +∞

−∞
T̂ (kx, y, t) · eikxxdkx (B.30)

T (x, y, t) = F−1
y

[
T̆ (x, ky, t)

]
(x, y, t) =

1

2π

∫ +∞

−∞
T̆ (x, ky, t) · eikyydky (B.31)

Applying IFT on y:

T̂ (kx, y, t) = F−1
y

[
T̃ (kx, ky, t)

]
=

1

2π

∫ +∞

−∞

([
T0

Tc
δ(kx, ky)−

1

ξ(kx, ky)

]
e−ξ(kx,ky)t +

1

ξ(kx, ky)

)
eikyydky
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And then on x:

T (x, y, t) = F−1
x

[
T̂ (kx, y, t)

]

=
1

(2π)2

∫
R2

([
T0

Tc
δ(kx, ky)−

1

ξ(kx, ky)

]
e−ξ(kx,ky)t +

1

ξ(kx, ky)

)
eikyy+ikxxdkydkx

=
T0

Tc
− 1

(2π)2

∫
R2

(
1

ξ(kx, ky)
e−ξ(kx,ky)t

)
eikyy+ikxxdkydkx

+
1

(2π)2

∫
R2

1

ξ(kx, ky)
eikyy+ikxxdkydkx

=
T0

Tc
+

1

(2π)2

∫
R2

1

ξ(kx, ky)
eikyy+ikxx

(
1− e−ξ(kx,ky)t

)
dkydkx

(B.32)

where ξ(kx, ky) = Ak2
x +Bk2

y + ikx .

Resuming the dimensionless notation,

TD(xD, yD, tD) =
T0

Tc
+

1

(2π)2

∫
R2

1

ξ(kx, ky)
eikyyD+ikxxD

(
1− e−ξ(kx,ky)tD

)
dkydkx

(B.33)

where ξ(kx, ky) = Ak2
x +Bk2

y + ikx .

B.6 Final temperature at the source point

Computing the previous equation B.33 and substituting in (x, y) = (0, 0) we obtain the

temperature evolution for the source point:

(x, y) = (0, 0) ⇒ (xD, yD) = (0, 0)

TD(0, 0, tD)
not.
= TD(tD) =

T0

Tc
+

1

(2π)2

∫
R2

1

ξ(kx, ky)

(
1− e−ξ(kx,ky)tD

)
dkydkx (B.34)

Replacing TD = T
Tc

,

T (tD) = T0 +
Tc

(2π)2

∫
R2

1

ξ(kx, ky)

(
1− e−ξ(kx,ky)tD

)
dkydkx (B.35)

We consider the time derivative of the function TD(0, 0, tD). Equation (B.35) is too com-

plex to solve, therefore we will simplify the process by working with the time derivative

of the temperature.

dT

dtD
(tD) =

Tc
(2π)2

∫
R2

e−(Ak2x+Bk2y+ikx)tDdkydkx (B.36)
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separating the two integrals,

dT

dtD
(tD) =

Tc
(2π)2

∫ +∞

−∞
e−Bk

2
ytDdky

∫ +∞

−∞
e−(Ak2x+ikx)tDdkx (B.37)

• Integral on ky: Applying the change of variable z =
√
BtDky we find the Gaussian

integral: ∫ +∞

−∞
e−Bk

2
ytDdky =

1√
BtD

∫ +∞

−∞
e−z

2
dz =

√
π

BtD
(B.38)

• Integral on kx: Rearrenging the exponent,

(
Ak2

x + ikx
)
tD =

(√
AtD

(
kx +

i

2A

))2

+
tD
4A

it yields,

∫ +∞

−∞
e−(Ak2x+ikx)tDdkx =

∫ +∞

−∞
e−(
√
AtD(x+ i

2A))
2− tD

4A dkx

=
e−

tD
4A

√
AtD

∫ +∞

−∞
e−z

2
dz =

√
πe−

tD
4A

√
AtD

where z =
√
AtD

(
kx +

i

2a

)
(B.39)

Raplacing equations (B.38) and (B.39) into (B.37),

dT

dtD
(tD) =

Tc
(2π)2

√
π

BtD

√
πe−

tD
4A

√
AtD

=
Tc

4π
√
AB

e−
tD
4A

tD
(B.40)

using the dimensional time we have,

dT

dt

dt

dtD︸︷︷︸
tc

=
Tc

4π
√
AB

tc
e−

t
4Atc

t
⇒ dT

dt
=

Tc

4π
√
AB

e−
t

4Atc

t
(B.41)

Equation (B.41) provides valuable information. Indeed, it is the time derivative of the

temperature in the source point. Its slope reports the growth rate of the temperature.

If we consider the change of variable p = ln t and we compute dT/dp:

p = ln
t

tref
⇒ dT

dt
(t) =

dT

dp

dp

dt
(t) ⇒ dT

d(ln t)
=
dT

dt

(
d(ln t)

dt

)−1

=
dT

dt
·t (B.42)

and it yields,
dT

d(ln t)
=

Tc

4π
√
AB

e−t/4Atc (B.43)
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This expression will allow us to understand the plot in semilogarithm scale of the evo-

lution of the temperature of the source point. Using series expansion for t small,

dT

d(ln t)
=

Tc

4π
√
AB

(
1− t

4Atc
+O(t2)

)
(B.44)

That we can distinguish dT/d(ln t) for different cases depending on t:

dT

d(ln t)
≈


Tc

4π
√
AB

for t� 4Atc

Tc

4π
√
AB

(
1− t

4Atc

)
for t� 16A2t2c

(B.45)

We observe that for small values of t/4Atc, the derivative is approximately constant and

with a slope of Tc/4π
√
AB. In addition, as t increases, the slope begins to decrease (as

the the first order term is negative) that could lead to a stabilisation of the temperature.

Back to the time derivative of the temperature, we consider the case where t tends to

infinity:

lim
t→+∞

dT

dt
= lim

t→+∞

Tc

4π
√
AB

e−
t

4Atc

t
= 0 (B.46)

This result shows that the temperature becomes constant for t → +∞. However, we

still do not know if we have a finite temperature when t→ +∞.

In order to define the value of the temperature at time t at the source point, we integrate

the equation (B.41). We consider as hypothesis the fact that the temperature at t→ is

finite, i.e. Tf < +∞:

∫ Tf

T (t)
dT =

Tc

4π
√
AB

∫ +∞

t

e−
τ

4Atc

τ
dτ

Tf − T (t) =
Tc

4π
√
AB

∫ +∞

t

e−
τ

4Atc

τ
dτ

T (t) = Tf −
Tc

4π
√
AB

∫ +∞

t

e−
τ

4Atc

τ
dτ (B.47)

Considering the exponential integral Ei as follows:

Ei(x) = −
∫ +∞

−x

e−s

s
ds (B.48)

We apply the change of variable s = τ
4Atc

to the equation (B.47):

T (t) = Tf −
Tc

4π
√
AB

∫ +∞

t
4Atc

e−s

s
ds = Tf +

Tc

4π
√
AB

Ei

(
− t

4Atc

)
(B.49)
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Replacing Tf = T0 + ∆T we have,

T (t) = T0 + ∆T +
Tc

4π
√
AB

Ei

(
− t

4Atc

)
(B.50)

and evaluating T (0) we should obtain T0:

T (0) = T0 = T0 + ∆T +
Tc

4π
√
AB

Ei (0) (B.51)

∆T = − Tc

4π
√
AB

Ei (0)→ +∞ (B.52)

So the hypothesis made on Tf is not valid as we encounter an infinite increase of tem-

perature ∆T . We conclude that equation B.50 is consistent with the rate of growth,

but the absolute temperature is infinite. Physically, we are giving a finite energy to a

single point, so we are imposing an infinite energy density carrying the point to increase

infinitely its temperature.

In order to have the slope in dimensional terms, we replace Tc, A and B:

Tc

4π
√
AB

=
Ψ

4πCb
√
DLDT

=
Ψ

4π
√

(λ+ CwDpL) (λ+ CwDpT )

and if Dλ � DpL (and so it is Dλ � DpT ) then we have,

Tc

4π
√
AB
≈ Ψ

4πλ
(B.53)

B.7 Final temperature

Using the dimensional temperature for the equation B.33, we have

T (xD, yD, tD) = T0 +
Tc

(2π)2

∫
R2

1

ξ(kx, ky)
eikyyD+ikxxD

(
1− e−ξ(kx,ky)tD

)
dkydkx (B.54)

where ξ(kx, ky) = Ak2
x +Bk2

y + ikx . And its time derivative,

∂T

∂t
(xD, yD, tD) =

Tc
(2π)2

∫
R2

exp (ikyyD + ikxxD − ξ(kx, ky)tD) dkydkx (B.55)

separating the two integrals,

∂T

∂t
(xD, yD, tD) =

Tc
(2π)2

∫ +∞

−∞
e−Bk

2
ytD+ikyyDdky

∫ +∞

−∞
e−Ak

2
xtD+ikx(xD−tD)dkx (B.56)

using the identity −ax2 + bx = − (
√
a (x− b/2a))

2
+ b2/4a for the exponents, we have:
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• Integral on kx:

Ix =

∫ +∞

−∞
e−Ak

2
xtD+ikx(xD−tD)dkx

=

∫ +∞

−∞
exp

(
−
(√

AtD

(
kx −

i(xD − tD)

2AtD

))2

− (xD − tD)2

4AtD

)
dkx (B.57)

Applying the change of variable,

z =
√
AtD

(
kx −

i(xD − tD)

2AtD

)
, dkx =

dz√
AtD

we encounter the Gaussian integral:

Ix =
e−(xD−tD)2/4AtD

√
AtD

∫ +∞

−∞
e−z

2
dz =

√
πe−(xD−tD)2/4AtD

√
AtD

(B.58)

• Integral on ky:

Iy =

∫ +∞

−∞
e−Bk

2
ytD+ikyyDdky =

∫ +∞

−∞
exp

(
−
(
BtD

(
ky −

yD
2BtD

i

))2

−
y2
D

4BtD

)
dky

(B.59)

Applying the change of variable,

z =
√
BtD

(
ky −

iyD
2BtD

)
, dky =

dz√
BtD

we encounter the Gaussian integral:

Iy =
e−y

2
D/4BtD
√
BtD

∫ +∞

−∞
e−z

2
dz =

√
πe−y

2
D/4BtD

√
BtD

(B.60)

back to ∂T/∂tD:

∂T

∂t
(xD, yD, tD) =

Tc
(2π)2

IxIy =
Tc

4π
√
ABtD

exp

(
−(xD − tD)2

4AtD
−

y2
D

4BtD

)
(B.61)

If we integrate in time,

∫ T (t)

T0

dT =

∫ tD

0

Tc

4π
√
ABτ

exp

(
−(xD − τ)2

4AtD
−

y2
D

4BtD

)
dτ

T (t)− T0 =
Tc

4π
√
AB

∫ tD

0

1

τ
exp

(
−(xD − τ)2

4AtD
−

y2
D

4Bτ

)
dτ (B.62)
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Note that at (xD, yD) = (0, 0) we get the equation (B.47). From now on, we omit the

dimensionless symbol “·D” for xD, yD and tD. Integration is facilitated by denoting,

u =
Bx2 +Ay2

16ABτ

so that,
τ

4A
=
Bx2 +Ay2

16A2Bu
=
β2

4u
,

dτ

A
= −β

2

u2
du

where,

β =

√
Bx2 +Ay2

4A2B

Therefore,

T (x, y, t) =
Tc

4π
√
AB

ex/2A
∫ +∞

u

1

u
exp

(
−u− β2

4u

)
du (B.63)

=
Tc

4π
√
AB

ex/2AWH (u, β) (B.64)

=
Tc

4π
√
AB

ex/2AWH

(
Bx2 +Ay2

16ABτ
,

√
Bx2 +Ay2

4A2B

)
(B.65)

Where,

WH(u, β) =

∫ +∞

u

1

ξ
exp

(
−ξ − β2

4ξ

)
dξ (B.66)

Custodio and Llamas [16] discuss some interesting properties. In particular, the asymp-

totic behavior is:

WH(0, β) = K0(β) ≈
√

π

2β

(
1− 1

8β

)
e−β when β > 5 (B.67)

where K0 is the modified Bessel function of second kind and order zero.
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In this appendix, we summarize the procedure to obtain the unit discharge q and the

depth z from temperature data. We start from the global solution presented in section

3.2.2 and developed in appendix 5.

The transient part of the global solution (equations (A.57) and (A.62)) for incoming and

outgoing flow can be written as follows:

T t(z, t) = ∆T exp

(
− |q|

2DφR
(γ+(ωs)− sgn q) z

)
sin

(
− |q|

2DφR
γ−(ωs)z + ωot

)
(C.1)

where sgn q is the sign function, being 1 when q > 0 and −1 when q < 0. This equation

includes the two cases (outgoing and incoming flow). We consider γ± (ωs) = γ± (q), as

Péclet number and the reduced frequency depend on q. We define the amplitude A and

the phase θ:

A(z) =∆T exp

(
− |q|

2DφR
(γ+(q)− sgn q) z

)
(C.2)

θ(z, t) =− |q|
2DφR

γ−(q)z + ωot (C.3)

As expected, Aref = A(0) = ∆T and θref (t) = θ(0, t) = ωot. To measure in field, we

compare the amplitude and the time lapse with a reference state (figure C.1), i.e. we

measure ∆A and ∆t. We only compare the amplitude of the transient solution. To

that end, we would measure the amplitude in field by averaging A+ substracting the

mean value of the maximum recorded temperature, and A−, obtained substracting the

minimum T from the mean. For ∆t we have,

∆θ = θref (t)− θ(z, t) = 0 ⇒ ωotref −
(
− |q|

2DφR
γ−(q)z + ωo (tref + ∆t)

)
= 0

z =
ωo∆t 2DφR

|q|γ−(q)
(C.4)
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Figure C.1: Measured parameters in field

In red the reference curve, normally at z = 0, and in blue the measured curve in a particular depth z.

and for ∆A,

∆A(z) =Aref −A(z) = ∆T −∆T exp

(
− |q|

2DφR
(γ+(ωs)− sgn q) z

)
∆T −∆A

∆T
= exp

(
− |q|

2DφR
(γ+(ωs)− sgn q) z

)
replacing the equation (C.4) yields,

∆T −∆A

∆T
= exp

(
− |q|

2DφR
(γ+(ωs)− sgn q)

ωo∆t 2DφR

|q|γ−(q)

)
(C.5)

− 1

ωo∆t
ln

(
∆T −∆A

∆T

)
=
γ+(q)− sgn q

γ−(q)
(C.6)

and we note,

Md∗(q)
not.
=
γ+(q)− sgn q

γ−(q)
=

√
1
2

(√
1 + s2 + 1

)
− sgn q√

1
2

(√
1 + s2 − 1

) (C.7)

where s = Dωo

(
φR
q

)2
=
(
λ
Cb

+ αL|q|
φR

)
ωo

(
φR
q

)2

Figure C.2 displays the function Md∗(q).
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Figure C.2: Function Md∗ with several resolutions

With ω = 7.272 · 10−5 s−1 (τ = 1 day), φ = 0.3, R = 2.492, D = 5.0366 · 10−7 m2
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To sum up, to compute the unit discharge q and the depth z of the measuring point we

follow the next steps:

1. We measure the period τ of our problem, i.e. the elapsed time between two peaks

of the temperature. In our case, we consider the daily thermal fluctuation of the

sea, so τ = 1 day. We compute ω = 2π/τ = 7.272 · 10−5 s−1.

2. We measure the amplitude of the sea thermal fluctuation Asea = ∆T and the

amplitude of the thermal response of our measuring point Ap. Then, we compute

the difference.

3. We measure the peak delay ∆t: we measure the peak time for the sea temperature

tref and the first peak time tp after the reference time of our measuring point. We

compute the difference: ∆t = tp−tref . We could also measure the elapsed time ∆t

between the peak of the sea temperature and the peak of the temperature of the

measuring point, or the elapsed time between crossings of the mean temperature.

4. We compute Md:

Md = − 1

ωo∆t
ln

(
Ap
∆T

)
(C.8)

where ω is the angular frequency and ln is the natural logarithm.

5. Using the figures C.3 and C.4, we find the corresponding dimensionless unit dis-

charge r for the Md value found in step 4.

6. We compute β:

β = 2φR
√
Dω (C.9)

where D = λ/Cb (m2/s) is the dispersion coefficient7, φ the porosity of the bulk

and R the thermal delay computed as follows: R = 1 + 1−φ
φ

Cs
Cw

where Cs (J/m3K)

and Cw (J/m3K) are the heat capacities of the solid matrix and water.

7. We compute the unit discharge q:

q = βr (C.10)

8. The first time that we computed β, we did not consider the dispersion coefficient.

We repeat steps 6 and 7 to obtain a more accurate measure. One iteration is

enough to have an accurate result.

9. Once we have the unit discharge q, we compute the depth z:

z =
ω∆t 2DφR

|q|

√√√√1

2

(√
1 +

β2

q4
− 1

) (C.11)

7We will iterate in order to consider the dispersion coefficient.

78



Appendix C 79

0,01 

0,1 

1 

10 

100 

-5 0 5 

M
d(

r)
 

Dimensionless unit discharge, r 

(a) Lon-lin plot of Md

0,1 

1 

10 

-1 0 1 

M
d(

r)
 

Dimensionless unit discharge, r 

(b) Log-lin plot of Md

Figure C.3: Md function (high and medium values)

The axis of abscissa represents the dimensionless variable r computed as r = βq, where β = 2φR
√
Dω

and q is the dimensional unit discharge.
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Figure C.4: Md function (low values)

Lin-lin plot. The axis of abscissa represents the dimensionless variable r computed as r = βq, where

β = 2φR
√
Dω and q is the dimensional unit discharge.
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