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ABSTRACT 
 
 
This thesis contains a methodology whose aim is to compute trajectories describing 
natural motion of the phase space in a neighborhood of Libtation points and 
stable/unstable manifolds which correspond to these orbits in the Restricted Three 
Body Problem. There are two models the Circular Restricted Three Body Problem and 
Elliptic Restricted Three Body Problem which are special cases of RTBP. In this paper 
we pay attention to CRTBP which is autonomous (depending on time). The CRTBP is 
the most easily understood and well-analysed in a coordinate system rotating with two 
large bodies. The method is based on the collocation method implemented in AUTO – 
07p software and must provide an isolated periodic solution. The paper includes 
explanation of the collocation method, its application in case of CRTBP, numerical and 
graphical results of its implementation. 
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INTRODUCTION 
 
 
The objective of this project is to study the orthogonal collocation method implemented 
in AUTO – 07p software package and to apply the method of collocation for studying 
the phase space, natural motion, refining periodic orbits located in the neighborhood 
of libration points L1 and L2 and computing their stable and unstable manifolds. 
 
Space programs of many countries include not only active exploration of the near-Earth 
space but also far-space exploration. Planning every space mission takes years and 
many details should be taken into consideration and many subjects such as space 
weather, communications, orbital dynamics, attitude control and heat transfer must be 
thoroughly studied from different angles. In our work we pay attention to a discipline 
called orbital dynamics. 
 
Study of orbital dynamics is critical for space mission design. It is necessary both from 
a mathematical and an engineering points of view. Orbital dynamics is irreplaceable 
for computing trajectories of spacecrafts, asteroids, comets etc. The trajectory of a 
body moving in a gravitational field can be represented in wide varieties of models. 
The ease of integrations in a model depends on its simplicity. The most basic model 
uses Newton‘s laws of gravitation and integrations performance depends on this 
model. The model which we use, is the circular restricted three body problem. The 
CR3BP is the partial case of the three body problem. This problem is well described in 
many works, for example ‘The foundation of astrodynamics’ by Archie E. Roy [1].  
 
In mission design the focus is done on practical usage of studied and proven 
capabilities which are obtained, for instance, by placing spacecrafts on periodic orbits 
around libration points. 
 
Libration points, also called Lagrangian points, are special points in restricted three 
body problem where the third body with a negligible mass may stay fixed relative to 
primaries. There are 5 libration points. libration points L1, L2, L3 lay on the straight line 
connecting primaries and called collinear points, L4 and L5 are triangular points which 
form equilateral triangles with primaries on edges.  
 

 
Figure 0.1 Libration points in the Sun-Earth system (http://press.cosmos.ru) 



2   Title of the Master Thesis 

It is known that libration points can be orbited by small body, such as asteroid or 
spacecraft. There are five families of orbits existing around collinear libration points 
illustrated by Figure 0.2.  
 
The movement in the neighborhood of collinear libration points, which are solutions of 
the circular restricted three body problem, may be considered a complex of two 
oscillators, one in-plane and another out-of-plane, and also some hyperbolic behavior. 
This means that orbits are unstable and even small adjustments can lead to the 
abandonment of the periodic orbit.  
 
Orbits described by one of the oscillations (in-plane or out-of-plane), are usually called 
planar (horizontal) Lyapunov orbits or vertical Lyapunov orbits. Lyapunov was the first 
person who theoretically proved that there are periodical solutions (orbits) around 
points of equilibria with certain conditions. 
 

 
Figure 0.2 Different families of orbits [12] 

 
If the difference in frequencies is incommensurable, the movement is not periodical 
and its trajectory is called Lissajous orbit. Lissajous orbits are quasi-periodic orbits. 
 
Frequencies of oscillators change depending on amplitudes (non-linear problem) and 
equal frequencies result in Halo orbits. 
 
Halo orbits is a family of periodic, three-dimensional orbits in the neighborhood of 
collinear libration points L1, L2 and L3. They can be computed semi analytically and 
numerically by using the circular restricted three body problem model.  
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Using orbits in the neighborhood of collinear libration points allows us not only to carry 
out astronomical and space research, monitor the state of the space, but also warn in 
time Geo services about an unusual solar activity and power of solar storms. 
 
Launching a swarm of satellites, such us interferometers, is conceded for the study of 
far-space objects. 
 
The implementation of all these projects requires a deep study of dynamics and phase 
space around collinear libration points, increase in the accuracy of the trajectory 
computation in order to minimize 𝛥V which is needed for keeping the orbit. According 
to this, our work, whose aim is to study phase space and natural motion (passive 
motion in Russia) in the neighborhood of libration points by collocation methods, looks 
of current interest. 
 

 
Figure 0.3 Example of Halo orbit 

 
Libration point orbits can be defined by 2 parameters according to [2], in the case of 
the periodic Halo orbits 𝛼 and 𝛽 are in a relation:  
 

• 𝛼 – the degree of remoteness of the negligible mass (spacecraft) from libration 
point in the ecliptic plane (in-plane component); 

 
• 𝛽 – the degree of remoteness of the negligible mass (spacecraft) from libration 

point in the plane which is orthogonal to the ecliptic plane (out-of-plane 
component); 

 
 
Halo orbits were coined by Robert Farquar in 1968. He described them in his 
dissertation. Farquar suggested placing a spacecraft on Halo orbit in the neighborhood 
of collinear libration point L2 in the Earth – Moon system to use it as a retranslator to 
establish a connection with Apollo located on the far-side of the Moon. The spacecraft 
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taking this kind of orbit can be simultaneously and continuously observed from the 
Earth and the Moon. Apollo mission to the far-side of the Moon was not fulfilled.  
 
Farquar’s idea was implemented later and several missions used Halo orbits around 
L1 and L2 in the Sun-Earth system. The first mission was ISEE – 3 launched in 1978. 
It took the Halo orbit around L1 and orbited L1 for several years. The following mission 
which used Halo orbit was NASA and ESA project, which aimed at solar observation – 
SOHO. It parked at L1 point in 1996. Although many other missions have used orbits 
around libration points since 1996, usually they have taken quasi-periodic Lissajous 
orbits. For example, spacecraft Genesis launched in 2001 was the first mission using 
low energy transfer for reaching and leaving the orbit (Figure 0.3). 
 

 
Figure 0.4 Low energy transfer and orbit of Genesis mission 

(http://www.hindawi.com/journals/mpe/2012/351759/fig1/) 

 
The possibility of usage of low energy transfers was obtained as a result of studying 
invariant manifolds and connecting orbits. There are many works focused on these 
topics, for example Jobra and Masdemont (1999) [3, 4].  
 
There are several methods to describe orbits around libration points. Talking about 
semi-analytical representation of orbits, it is necessary to refer to high order expansion 
which is based on the Lindstedt – procedure. For more accurate results, we need to 
use numerical methods. The most popular method is “shooting method” and its better 
version “multishooting method”. These methods solve initial problem and apply 
corrections to initial conditions. The method of collocation provides high accuracy and 
requires small computation time and resources. It applies corrections to the whole 
trajectory. For the numerical study of the long-term (more than one period) behavior of 
an orbit we use numerical integrator which propagates given initial seed for a chosen 
period of time. As a numerical integrator we use function ode45 which which is based 
on Runge-Kutta method of order 4 and 5. 
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The paper is organized as follows. In chapter 1 we provide theoretical background 
about three body problem, its restricted version, reference frame used for the circular 
restricted three body problem, libration points and their orbits. Also explanation of the 
basic collocation method is given in chapter 1. Chapter 2 introduces the method of 
collocation applied for solving boundary value problem (BVP), representation of 
circular restricted three body problem as BVP, linear analysis of the orbits to obtain 
initial seeds numerical integrations and continuation of the family of orbits. In chapter 
3 numerical results and plots of computations are presented. All families except 
quasihalo are shown.  
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Chapter 1 
 

BACKGROUND 
 

1.1. Dynamical Model 
 
In this sub-section, we introduce a mathematical model which we decided to use for 
studying the neighborhood of the collinear libration points. Mathematical model is a 
description of some system or object by means of the mathematical language and 
equations. The process of building and developing of a mathematical model is called 
mathematical modelling. All natural (such as physics, biology), engineering (computer 
science) and even social (economics, linguistics and sociology) sciences are based on 
mathematical modelling: In them an object or a system of study is replaced by a 
mathematical model which closely describes the behavior of the object or the system. 
The model which we use in this work is The Circular Restricted Three Body Problem 
(CR3BP). The more detailed information is provided in the sections below. We show 
how we arrive at the CR3BP and start with a description of the main problem named 
The Three Body Problem. 
 

1.1.1. Three Body Problem 
 
In physics and celestial mechanics, the three body problem is a problem of taking three 
bodies with specific state vectors (positions and velocities) and masses in some 
chosen moment of time and then computing the motions of these three bodies 
according to the laws of classical mechanics, such as Newton’s laws of motion and 
universal gravitation. In 1687 Newton discovered the law which describes the 
interaction between bodies in the gravitational fields. Now we know this law as the 
Newton’s law of the universal gravitation (1.1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1.1) 
 
 

F = G m1m2

r2

Figure 1.1 The illustration of the Newton's law of the universal 
gravitation 
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Here F is the force between bodies, G is the gravitational constant which is equal to 
6.674 x 10−11 N · (m/kg)2, mi is the mass of one of the bodies, r is the distance between 
the bodies. 
 
The general statement for the three body problem is as follows. At an instant of time, 
for vector positions xi and masses mi, three coupled second-order differential equations 
exist: 
 
 
 
 

(1.2) 
 
 
 
 
 
The three body problem is a special case of the main problem which is termed The N-
Body Problem, where n – is a free number of bodies. It is well known that taking a 
bigger and bigger number of bodies tragically increases the complexity of the n-body 
problem. It is not possible to find a general solution even for the three body problem. 
Many famous scientists (Lagrange, Jacobi, Poincaré, Birkhoff and etc.) spent plenty of 
years trying to look for and form a general solution of the three body problem.  
 
Bruns and Poincaré proved that the system of differential equations of the motion of 
the three bodies cannot be reduced to an integrable problem, expanding it into 
independent equations.  
 
According to the fact that the three body problem does not have a general solution we 
need to transform this problem into a simplified problem: The Restricted Three Body 
Problem. There are two problems to describe: The Circular Restricted Three Body 
Problem which is the one that we use and The Elliptical Restricted Three Body Problem 
which is very interesting to be mentioned but is non-autonomus and thus more 
complex. Before introducing CR3BP it is necessary to present the reference frame 
applied for the model. 
 

1.1.2. Reference frame 
 
A frame of reference is a set which contains a reference body, the associated to this 
body coordinate system and the reference time of the system, with respect to which, 
the motion of some body/bodies is studied. In modern physics, any movement is 
considered as a relative movement, and a movement of the body should be considered 
only in relation to any other body (body of reference) or a system of bodies. We cannot 
specify, for example, that the Moon moves in general, we can only determine its 
motion, for example, in relation to the Earth, the Sun, stars, and so on. The right choice 
of a reference frame can simplify the computation of a problem. In our project we use 
the Synodic Dimensionless Reference System. To simplify the equations of motion we 
need to transform SI units to convenient units. Let us take units of mass, length and 
time such that the sum of the masses of the primary and the secondary body, the 

!!x1 = − Gm2

(x1 − x2 )
3 (x1 − x2 )−

Gm3

(x1 − x2 )
3 (x1 − x3)

!!x2 = − Gm3

(x2 − x3)
3 (x2 − x3)−

Gm1

(x2 − x1)
3 (x2 − x1)

!!x3 = − Gm1

(x3 − x1)
3 (x3 − x1)−

Gm2

(x3 − x2 )
3 (x3 − x2 )
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gravitational constant and the period of the primaries is 1, 1 and 2π, respectively. With 
these units the distance between the primaries is also 1 according to Kepler’s third law. 
Mass ratio 𝜇 needed for the problem can be obtained by Equation 1.3 (for the Sun-
Earth + Moon system 𝜇 = 3.040423398444176 x 10-6 according to JPL ephemeris 
DE403). 
 
 
 

(1.3) 
 
 
 
The synodic reference frame which is centered at the barycenter of mass of the primary 
and the secondary body and is rotating in a way that they keep their positions on the 
X-axis is used. The orientation of the X-axis is provided by the line going from the 
secondary body to the primary body. The Z-axis has a direction given by the angular 
motion of m1 and m2 and Y-axis is orthogonal to the previous ones to establish a 
positively orientated coordinate system. 
 

 
Figure 1.2 The Synodic Reference Frame of the RTBP 

In this reference frame, the secondary body is located at (𝜇 - 1, 0, 0) and the primary 
body is at (𝜇, 0, 0). The masses can be represented as 1 - 𝜇 for the primary body and 
as 𝜇 for the secondary body.  
The described above reference system is easily applied for the circular restricted three 
body problem. Our model – CR3BP is described in the next sub-section. 
 

1.1.3. The Circular Restricted Three Body Problem 
 
The aim of this sub-section is to introduce the circular restricted three body problem. 
The CR3BP is the most analyzed model in a coordinate system with rotating two large 
bodies (m1 and m2). We can consider that there is a motion of a small mass (a 
spacecraft) under gravitational attraction of the two large bodies. In the Sun - Earth 
system, the Sun is a primary body and the Earth is a secondary body. Assume that the 
primary and the secondary bodies are orbiting circular orbits. The attraction of the 
spacecraft on the primaries is so small that they are rotating around their center of 
mass. The study of the motion of this small mass means that it is necessary to solve 

µ = m2

m1 +m2
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the circular restricted three body problem. The structure of the circular restricted three 
body problem in the Synodic reference frame is illustrated in the Figure 1.2.  
 
To have our model perfectly clear we start describing it from the very beginning [2,5,6]. 
Consider that there are two gravitational points with large masses (A1, m1) (A2, m2) 
which are called primary and secondary bodies, and they are rotating around their 
barycenter C. We are interested in the passive motion of a point with a small mass (P, 
m) in the gravitation field which is produced by the primary and the secondary bodies 
(or primaries).  
 
Firstly, we define the right-orientated inertial coordinate system CXYZ (Figure 1.3) with 
the origin located in the barycenter C. 
 

 
Figure 1.3 Coordinate systems CXYZ and Cxyz 

 
The X – axis is taken in such a way that it is collinear with CX at the moment of time t 
= 0. The plane CXY is the plane where the primaries move. The positive direction of 
the rotation of the primaries is the anticlockwise direction. 
 
Now we consider some terms and start describing the system using mathematical 
language. Assume that: 
 
 
 

(1.4) 
 
 
 

CA
! "!!

1 = R1 ,CA
! "!!

2 = R2 ,CP
! "!!

= R,
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(1.5) 

 
 
 
Since C is the barycenter of points (A1, m1) and (A2, m2) we have m1R1 = m2R2. 
Moreover, R1 + R2 = a. And from here we obtain:  
 
 

 
(1.6) 

 
 
Forces F1 and F2, which are created by primaries and attracting the small body, are: 
 
 

 
(1.7) 

 
According to the second Newton’s Law: 
 
 

 
(1.8) 

 
 
whence  
 
 

 
 

(1.9) 
 
 
 
This is (1.9) differential equation which describes motion of the point with negligible 
mass (P, m) in the coordinate system CXYZ.  
 
Above we have mentioned that we choose the other reference system for our model. 
The famous German mathematician Jacobi discovered that it would be possible to 
refine valuable information about motion of the small body (P, m), if the rotating 
reference system has been applied: CZ – axis rotates together with A2A1 - axis.  
 
Let us take a new non-inertial reference system which is called Cxyz (Figure 1.3). Let 
Cx – axis be the same as CA1 at each moment of time, the plane Cxy and Cz – axis 
coincide with the plane CXY and CZ – axis, respectively. It is known that 𝜔 is angular 
velocity of the primaries orbiting the barycenter C. According to this our new system 
rotates around CZ – axis with angular velocity 𝜔.  

A1P
! "!!

= p1, A2P
! "!!!

= p2, a = A2A1,
M = m1 +m2, µ = m1 /M .

⎫
⎬
⎪

⎭⎪

R1 = µa, R2 = (1− µ)a.

m d 2R
dt 2

= F1 + F2,

Gm1m(R1 − R) / p1
3 and Gm2m(R2 − R) / p2

3.

dR2

dt 2
= G m1

p1
3 (R1 − R)+G

m2

p2
3 (R2 − R).
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Before deriving the differential equations of the motion of P, we need to consider one 
subsidiary equation. Denote that the unit vectors of the coordinate system CXYZ as I, 
J, K and the unit vectors of the coordinate system Cxyz as i, j, k. Coordinates of the 
point P, in this case, are X, Y, Z and x, y, z, respectively. 
 
Then 
 
 

    (1.10) 
 
 
Assume that 
 

 
(1.11) 

 
 
That brings us at  
 
 

 
 
 
Acceleration of the point P is given by the second derivative of the equation (1.10) in 
the coordinate system CXYZ:  
 
 

 
(1.12) 

 
 
and velocity and acceleration of the same point, but in the coordinate system Cxyz, 
are given by: 
 
 

 
(1.13) 

 
 
Rewrite 𝑅 by using 𝑟, 𝑟, 𝑟 𝑎𝑛𝑑 𝜔: 
 
 

 
 
 

(1.14) 
 
and  
 

R = r.

R = XI +YJ + ZK .

!!R = !!XI + !!YJ + !!ZK ,

!r = !xi + !yj + !zk, !!r = !!xi + !!yj + !!zk.

X = xcosωt − ysinωt,
Y = xsinωt + ycosωt,
Z = z.

r = xi + yj + zk.
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(1.15) 

 
 
 
 
If we use the equations (1.14) to obtain 𝑋, 𝑌, 𝑍 and then put the obtained equations 
together with I, J, K into the equation (1.12), after simplification we will obtain:   
 
 

 
(1.16) 

 
 
Consider the angular velocity vector: 
 
 

 
 
 
Then, using the rule 𝑎× 𝑏×𝑐 = 𝑏 𝑎𝑐 − 𝑐(𝑎𝑏), equation (1.16) can be rewritten as: 
 
 

 
(1.17) 

 
 
That is the subsidiary equation which we looked for. 
 
Now we have all the necessary information to derive the equation of the motion of the 
point P in the rotating coordinate system Cxyz. Consider that primaries A1 and A2 have 
coordinates (X1, Y1, 0), (X2, Y2, 0) and (x1, 0 , 0), (x2, 0 ,0) in the coordinate systems 
CXYZ and Cxyz, respectively, where 𝑥! = 𝜇𝑎 and 𝑥" = (𝜇 − 1)𝑎. 
It is obvious that: 
 
 

 
 
 
Assume that:  
 
 

 
From here we have: 
 

ω =ωk.

R1 = X1I +Y1J, R2 = X2I +Y2J.

r1 = x1i, r2 = x2i.

!!R = !!xi + !!yj + !!zk + 2ω (− !yi + !xj)−ω 2 (xi + yj).

!!R = !!r + 2(ω × !r)+ω (ω × r).

I = icosωt − j sinωt,
J = isinωt + j cosωt,
K = k.
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(1.18) 
 
 
Now we rewrite the equation (1.9) by using equations (1.17) and (1.18), and obtain: 
 
 

 
 

 
(1.19) 

 
where  
 

 
 
 
This equation (1.19) is the vector differential equation of the motion of the point P in 
the rotating coordinate systems Cxyz. There is another way to write the equation (1.19) 
using the (1.16): 
 
 

 
 
 
 

(1.20) 
 
 
The last vector differential equation (1.20) is equivalent to the system of three scalar 
differential equations:  
 
 

 
 
 
 
 

(1.21) 
 
 
 
 
 
 
 

pk = rk − r = (xk − x)
2 + y2 + z2 , k = 1,2.

CA
! "!!

1 = R1 = r1, CA
! "!!

2 = R2 = r2.

!!r = −2(ω × !r)−ω × (ω × r)+ Gm1

p1
3 (r1 − r)+

Gm2

p2
3 (r2 − r),

!!r = −2ω ( !yi − !xj)+ω 2 (yi + xj)+ Gm1

p1
3 (r1 − r)+

Gm2

p2
3 (r2 − r).

!!x = 2ω !y +ω 2x + Gm1

p1
3 (x1 − x)+

Gm2

p2
3 (x2 − x),

!!y = −2ω !x +ω 2y + Gm1

p1
3 y + Gm2

p2
3 y,

!!z = −Gm1

p1
3 z + Gm2

p2
3 z.

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪
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In case when m1 and m2 are well known values, it is possible to study numerically the 
behavior of the system for some small period of time. The system can be approximately 
solved by applying well-developed integration methods. 
 
Now we apply the reference frame to simplify the equations of the motion as it is 
possible. The name of the system is the Synodic Dimensionless Reference System. In 
this reference frame the sum of two masses m1 and m2 equals one, the distance 
between A1 and A2 is also equal to one. In this system period T is equal to 2𝜋. Now we 
need to obtain the value of f. For this we apply the formula #

$

%&
= 𝑓(𝑚! − 𝑚")/4𝜋" 

(2.9.10) from Lidov M.L.[5]. If 𝑎 = 1, 𝑇 = 2𝜋, 𝑚! + 𝑚" = 1, so 𝑓 = 1. In the Synodic 
Dimensionless Reference System, we can replace m1 with 1-𝜇 and m2 with 𝜇, 𝑓 = 1 
and 𝜔 = 1 in the equations (1.21). 
 
 

 
 
 
 
 

(1.22) 
 
 
 
 
 
 
 
It is necessary to note, that the equations (1.22) can be represented as a form which 
is much easier to memorize. For this we need to consider a new function: 
 
 

 
(1.23) 

 
 
 
It is easy to see that the system (1.22) can be rewritten as: 
 
 

 
 
 
 
 

(1.24) 
 
 
 
 
 

!!x = 2 !y + x + 1− µ
p1
3 (x1 − x)+

µ
p2
3 (x2 − x),

!!y = −2 !x + y − 1− µ
p1
3 y − µ

p2
3 y,

!!z = −1− µ
p1
3 z − µ

p2
3 z.

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

!!x = 2 !y + ∂Ω
∂x
,

!!y = −2 !x + ∂Ω
∂y
,

!!z = ∂Ω
∂z
.

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

Ω(x, y, z) = 1
2
(x2 + y2 )+ 1− µ

p1
+ µ
p2

+ 1
2
µ(1− µ).
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The system (1.24) is the set of equations which we use as our mathematical model. 
To complete the introduction of the model we need to present the Jacobi constant 
(named after Carl Gustav Jacobi) [7] which is the only conserved quantity in the 
CR3BP. The Jacobi constant is used as an effective tool to control the correctness of 
the integrations.  
 
We multiply the first, the second and the third equation of (1.24) by 2𝑥, 2𝑦 and 2𝑧, 
respectively, then obtain the equation by adding all multiplied results: 
 
 

 
 
 
or 
 
 

 
 
 
From here we can obtain:  
 
 

 
(1.25) 

 
 
where C – is the Jacobi constant. 
 
This equation (1.25) is the first integral for the system (1.24) and named the Jacobi 
integral. It is easy to see that: 
 

 
 

(1.26) 
 
 
 
In this section of chapter 1 we thoroughly described the mathematical model which is 
used in our project. In the next section we focus on describing the five partial solutions 
of the CR3BP and their application. 
 
 

2( !x!!x + !y!!y + !z!!z) = 2(∂Ω
∂x
!x + ∂Ω

∂y
!y + ∂Ω

∂z
!z),

d
dt
( !x2 + !y2 + !z2 ) = 2 dΩ

dt
.

( !x2 + !y2 + !z2 ) = 2Ω−C,

C = 2Ω(x, y, z)− ( !x2 + !y2 + !z2 ).
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1.2. Libration points 
 
The objective of this section is to provide the information about equilibrium points, their 
positions and practical meaning. It is well known that the CR3BP has five equilibrium 
points named libration or Lagrangian points which are named after Josef Lagrange 
who was the first person who proved the existence of L4 and L5 points in 1772 (Euler 
discovered L1,L2 and L3 in 1768). Figure 1.4 shows locations of libration points in the 
Sun - Earth system. A libration point is a location in Space where the mix of 
gravitational forces of two big bodies, like the Sun and the Earth, equals the centrifugal 
force which affects the point P with a small mass, such as a spacecraft. The 
combination of forces produces special places in the space where a spacecraft can be 
parked to make observations [1,2,8]. There are five points, three of them lie along the 
line connecting the primary and the secondary bodies. These points are called the 
collinear libration points L1, L2 and L3. The remaining two, known as L4 and L5, are also 
in the plane Z = 0 forming an equilateral triangle with the primary and the secondary 
body. 
 

Figure 1.4 Libration points of the Sun-Earth system 

Figure 1.4 shows locations of the all equilibrium points of the Sun-Earth system. The 
L1 point lies on the line defined by two large masses m1 and m2, and between them. At 
this point gravitational attraction of m2 partially cancels m1’s gravitational attraction that 
is why an object (a spacecraft) which is located closer to the Sun does not rotate 
around it faster than the Earth. At the L1 point, the orbital period of the object becomes 
exactly equal to Earth's orbital period. L1 is about 1.5 million kilometers from the Earth. 
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The L2 point lies on the same line, beyond the smaller mass (the Earth). On the 
opposite side of the Earth from the Sun, the orbital period of an object would normally 
be greater than that of the Earth. The extra pull of Earth's gravity decreases the orbital 
period of the object, and at the L2 point in such a way that the orbital period becomes 
equal to Earth's. L1, L2 are about 1.5 million kilometers from Earth. The L3 point lies on 
the line defined by the two large masses, beyond the larger of the two. L3 is located 
beyond the primary body of the system. The location of the point is a little bit closer 
than the Earth’s orbit and the attraction of combined pull of the Earth and the Sun 
provides the point with the period which is equal to the Earth’s one. The L4 and L5 
points lie in the third corners of the two equilateral triangles in the plane of orbit whose 
common base is the line between the centers of the two masses, such that the point 
lies behind or ahead of the smaller mass with regard to its orbit around the larger mass. 
L4 and L5 are stable equilibria if mass ratio m1/(m1+m2) is close to 0.0397 for L4 and for 
L5. In contrast to L4 and L5, where stable equilibrium exists, the points L1, L2, and L3 
are positions of unstable equilibria. Any object orbiting at one of L1–L3 will have a 
tendency to fall out of an orbit. 
 

1.2.1. How to compute the position of L-points 
 
Above we have provided the information about libration points positions, in this section 
we present how the positions are computed. Figure 1.4 illustrates a schematic view of 
the Sun-Earth system and its equilibrium points. Figure 1.5 provides a more detailed 
overview. 
 

 
Figure 1.5 Libration point locations 



Background   19 

There are two types of the libration points: collinear (such as L1, L2, L3) and triangular 
(such as L4, L5). According to this fact the ways of the computation of their locations 
are not the same. Let us start with calculations of the locations of the collinear group 
of the points. It is well known that L1 is located between the primaries closer to the less 
massive body, L2 is behind the less massive body and L3 is behind the large mass. 
The approximate distances to these points from the center of masses can be computed 
by:  
 

 
 
 
 
 
 

(1.27) 
 
 
 
 
 
 
 
but the true values come from the solving Euler's quintic equation. 
 
It is interesting to note, that in the Sun-Earth system L3 is located approximately at the 
same distance as the Earth. (for the Sun-Earth + Moon system 𝜇 = 
3.040423398444176 x 10-6 according to JPL ephemeris DE403) 
 

 
Figure 1.6 Collinear points of the Sun-Earth system 

 
The L3 point in the Sun - Earth is located on the opposite side of the Earth's orbit. 
However, despite its small gravity (compared to the Sun's gravity), the Earth still has a 
little impact on the Sun, so L3 point is not on the Earth's orbit, but a little farther from 
the Sun than the Earth, since the rotation is not around the Sun but around the 
barycenter. The combination of gravity of the Sun and the Earth at the point L3 results 
in that the object moves with the same orbital period as our planet. 
 
The existence of these points and their high instability is caused by the facts that the 
distance to the two bodies at these points is the same, the force of gravity of two mass 
bodies is in the same relation as their masses, and thus the resulting force is directed 

r1 ! (1− (
µ
3
)1/3, 0),

r2 ! (1+ (
µ
3
)1/3, 0),

r3 ! (1+
5
12

µ, 0).
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to the center of mass of the system; In addition, the geometry of the triangle of the 
forces proves that the resultant acceleration is associated with the distance to the 
center of mass in the same relation as the two massive bodies do.  
 

 
Figure 1.7 Gravitational acceleration at the L4 in the Earth-Moon system 

 
Since the center of mass is also a center of rotation of the system, the resultant force 
is exactly the same which is necessary to keep the body in the neighborhood of 
Lagrange point in orbital equilibrium with the rest of the system. (In fact, the third weight 
body should not be negligible). This triangular configuration was discovered by 
Lagrange and was described the first time in his work “The Three-Body Problem”. L4 
and L5 points are called triangular points. The locations of these points from the center 
of masses of the system are given by: 
 

 
 
 
 
 

(1.28) 
 
 
 
 
 
 
 
In out project, we focus on the neighborhood around two collinear Lagrangian points 
L1 and L2 which are more interesting in terms of space mission design. Above the 
method to obtain approximate positions of the libration points has been described, but 
to obtain true positions of the two collinear points we need to solve an equation which 
can be used for computation of the distance between the libration point and the closest 

r4 ! (
m1 − µ
2

, 3
2
),

r5 ! (
m1 − µ
2

, − 3
2
).
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primary body. A unique positive root of the Euler's quintic equation solution is the 
distance 𝛾 between the one of L1, L2 points and the nearest primary, in our case the 
Earth [11]: 
 
 

 (1.29) 
 
 
with upper signs for L1 and the lower sings for the L2. 
 
Solution of the equation is used for the linear analysis of the neighborhood of the 
libration points. The semi-analytical procedure is presented in chapter two. 
 
Above we have mentioned that points L1 and L2 are interesting in terms of space 
mission design, it is true because these points have high application capabilities. 
Talking about L1 point we have to say that in the Sun-Earth system L1 point can be a 
perfect site to host the space observatory to monitor the Sun, which at this point is 
never blocked by the Earth or the Moon. Moon Point L1 (in the Earth – Moon system) 
can be an ideal place to build manned space orbital station, which, being located in the 
"halfway" between the Earth and the Moon, would allow easy access to the Moon with 
the minimum cost of fuel, and to become a key hub of freight traffic between the Earth 
and its satellite. The L2 point has a completely different application. The L2 point in the 
Sun – Earth system is an ideal place for the construction of orbital space observatories 
and telescopes. Since the object at the point L2 is capable maintaining for a long time 
its orientation relative to the Sun and the Earth, it becomes much easier to calibrate its 
position and produce shielding. However, this point is located slightly on the Earth's 
shadow (in the penumbra), so that the solar radiation is not completely blocked. The 
L2 point in the Earth-Moon system can be used for placing communication satellite to 
establish contact with objects on the far side of the Moon, as well as being a convenient 
location for the fuel station to ensure traffic between the Earth and the Moon. The L3 
point in the Sun-Earth system is also worth to be mentioned. Orbital spacecrafts and 
satellites, located around the L3 point can constantly monitor the various forms of 
activity on the Sun's surface, in particular, the appearance of new spots or flashes, and 
efficiently transmit information to the Earth (for example, within the framework of an 
early warning system for space weather NOAA Space Weather Prediction Center). In 
addition, information from these satellites can be used to ensure the safety of long-
distance manned space flights, such as to Mars or asteroids. In 2010, several options 
for the launch of this satellite were studied.  
 
It is obvious that the libration point missions require deep study of orbital dynamics in 
the neighborhood of the collinear libration points and orbits existing around them. The 
next sub-section introduces libration point orbits. 
 
 
 
 
 
 

γ 5 ∓ (3− µ)γ 4 + (3− 2µ)γ 3 − µγ 2 ± 2µγ − µ = 0,
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1.2.2. Libration point orbits 
 
The motion of the negligible mass in the neighborhood around two collinear libration 
points L1 and L2 is an important thing to study in the case of libration point mission 
design. There are 5 different kinds of orbits around the equilibrium points. They have 
very different shapes but all of them can be described as a set of two oscillators, one 
in-plane and another out-of-plane, and also some hyperbolic behavior. That hyperbolic 
component means that orbits are unstable and even small adjustments can lead to the 
abandonment of the periodic orbit. Figures bellow illustrate all existing families of the 
libration point orbits. 
 
 

 
Figure 1.8 Planar Lyapunov family 

 

 
Figure 1.9 Top-left: Vertical Lyapunov orbit, top-right: Lissajous quasi-orbit,  

bottom-left: Halo orbit, bottom-right: Halo quasi-orbit [4] 
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In a mission design two families of orbits are more interesting than others: Halo orbits 
and Lissajous quasi – periodic orbits. But refering to the aim of our project, which is 
deep study of natural motion in the neighborhood of the libration points, we describe 
all families of the orbits. The motion around the libration points L1 and L2 can be 
separated by two classes: a periodic motion and a quasi – periodic motion.  
 
We suggest starting with the description of periodic orbits. As an example we take L2 
point and the linear six-dimensional phase space around it which is a center x center 
x saddle [4]. If the energy is close to that at L2, there exist two families of periodic orbits; 
the planar Lyapunov orbits, which are in the ecliptic plane, and the symmetric figure-
eight-shaped vertical Lyapunov orbits. These orbits were named after a famous 
Russian mathematician Aleksandr Mikhailovich Lyapunov whose theorem says that 
there is a family of periodic orbits surrounding each of these points; one can think of 
this meaning that one can “go into orbit about these points”. Refering to the fact that 
motion in the neighborhood of a libration point can be considered as two oscillators 
and hyperbolic component Lyapunov orbits can be described by one of the oscillations 
in-plane or out-of-plane and depending on oscillation we have planar Lyapunov orbit 
or vertical Lyapunov orbit, respectively. An increase in energy (bigger amplitudes) 
leads to several effects: non-linear terms become important, the phase space is 
broken, a new family of periodic orbits bifurcate from the planar Lyapunov orbit family. 
This family, which is three-dimensional and asymmetric about the ecliptic plane, is 
called Halo orbits. The name of Halo orbits was coined by Robert Farquar in 1968. He 
described them this way in his dissertation  
 
As we have mentioned in the introduction, all libration point orbits can be represented 
by two parameters: 
 
 
 
 

• 𝛼 – the degree of remoteness of the negligible mass (spacecraft) from libration 
point in the ecliptic plane (in-plane component); 

 
• 𝛽 – the degree of remoteness of the negligible mass (spacecraft) from libration 

point in the plane which is orthogonal to the ecliptic plane (out-of-plane 
component); 

 
 
 
For the case of Halo orbits 𝛼 and 𝛽 are depended. Different combinations of these 
parameters can result in different types of orbits. It is important, that by manipulating 
the amplitudes it is possible change the type of an orbit. Having 𝛼 and 𝛽 not equal to 
zero we obtain a Lissajous orbit, but if 𝛼 or 𝛽 is equal to zero, we have a vertical 
Lyapunov orbit or planar Lyapunov orbit, respectively. In the case of Halo orbits 𝛼 
depends on the value of 𝛽. The method how the Halo orbits are defined by these 
parameters is described in chapter two. 
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Figure 1.10 shows three existing families of periodic orbits around the libration point 2. 
 

 
Figure 1.10 Periodic orbits around L2 

In the neighborhood of the libration point (still use L2 as the example) there are two 
families of quasi-periodic families: The Lissajous family around the Vertical Lyapunov 
orbits, and the Quasi-Halos around the Halo orbits. If the ratio of the oscillation 
frequencies in the different planes is irrational, the motion takes quasi-periodic 
character. In the case of close frequencies and amplitudes of the oscillations of the 
spatial periodic solution - a Halo orbit - a quasi-periodic trajectory lies in the vicinity of 
the periodic Halo orbit to the surface of the two-dimensional torus. Such a trajectory 
family is called Quasi-Halo orbits. If the frequencies vary significantly, the trajectory is 
called Lissajous orbit (named after Julies Antoine Lissajous). Figure 1.11 illustrates 
Quasi – Halo and Lissajous orbits. 
 

 
Figure 1.11 Quasi - Periodic orbits around L2 

 
 
So there are five families of the orbits in the neighborhood of each collinear libration 
point. It is well known that the collinear libration points are unstable equilibria, so there 
exist transfer and return trajectories which can be considered as manifolds. The 
following sub-section gives basic information about the manifold and connecting orbits. 
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1.2.3. Invariant manifolds and connecting orbits 
 
In this sub-section we go over the basics of stable and unstable manifolds associated 
to the fixed points of a dynamical system. According to the fact that our problem – 
CR3BP is the dynamical system and the libration points are fixed, we can consider that 
stable and unstable manifolds exist in our system. In the section 1.2 we have 
mentioned that the Lagrangian points are unstable equilibria, so periodic solutions 
(orbits) in the neighborhood of the libration points are classified as unstable[14]. 
According to this, libration point orbits have a set of invariant manifolds. Invariant 
manifolds are natural trajectories in the phase space which show departure from or 
approach to an orbit. Figure 1.12 illustrates invariant manifolds and the direction of the 
motion. 
 

 
Figure 1.12 (a) Unstable invariant manifold (b) Stable invariant manifold 

 
The unstable manifold is a set of all possible trajectories, which asymptotically depart 
from a nominal orbit. The stable manifold includes the set of all possible trajectories 
that a particle could take to asymptotically arrive onto the nominal orbit.  
 
Talking about connecting orbits, it is worth mentioning two researchers Conley and 
McGehee who proved the existence of homoclinic connecting orbits [15, 16]. These 
connecting orbits establish the way from an orbit to the same orbit. From a practical 
point of view, heteroclinic orbits are more interesting. They provide a transfer from one 
libration point orbit to another one. This kind of connection is described by Koon [17]. 
These kind of orbits can be used for “Lagrange stairway”, for low cost transfers and as 
return trajectories.  
 
Choosing a point, an orbit and a transfer/return trajectory for a mission totally depends 
on the objectives of each mission. The following sub-chapter provides information 
about the mission around the Lagrangian points.  
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1.2.4. Libration point missions 
 
Libration point missions are of grate interesa in terms of space science, astronomy, 
astrophysics and fundamental science. Every mission is carefully planned and 
thoroughly studied from different angles. The first mission to Lagrangian points was 
organized by NASA in 1978 and spacecraft was named The International Sun Earth 
Explorer 3 (ISEE - 3). The ISEE – 3 was placed in a Halo orbit around the libration 
point L1 in the Sun – Earth system. Then another two spacecrafts (WIND and SOHO) 
were placed at the L1 point in 1994 and 1995. For example, SOHO (Solar and 
Heliospheric Observatory) orbited a Halo orbit with a period which is equal to 178 days 
(it circles L1 approximately twice a year). The Halo orbit provided SOHO with the site 
for constantly monitoring of the Sun and comets which flew by the Sun. Not only Halo 
orbits are used around the libration point L1, for instance, the spacecraft named 
Advanced Composition Explorer (ACE) used Lissajous orbit. It was launched in 1997. 
The spacecraft is still in generally good condition in 2016, and is projected to have 
enough fuel to maintain its orbit until 2024. 
 
The libration point behind the Earth (from the Sun) is used for scientific needs, 
telescopes and observatories. The Wilkinson Microwave Anisotropy Probe (WMAP) 
was a spacecraft operating from 2001 to 2010 which measured differences across the 
sky in the temperature of the cosmic microwave background (CMB) – the radiant heat 
remaining from the Big Bang. It took the Lissajous orbit around L2 point by using 
swingby to approach (figure 1.12).  
 

 
Figure 1.13 WMAP mission (http://map.gsfc.nasa.gov) 
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Another spacecraft which used a Lissajous orbit around L2 was Herschel Space 
Observatory. This satellite was launched together with PLANK which was placed in a 
Halo orbit around L2 in 2009. There are some missions which are being studied now 
and planned to fulfill in the future. For example, space telescope "James Webb" coming 
to replace the telescope "Hubble". The launch is planned for 2018. In 2017, Lavochkin 
and Roscosmos intend to place the point L2 space observatory Spektr-RG at the point 
L2. Spektr-RG instrumentation consists of 5 telescopes spanning the energy range 
from the far ultraviolet to the hard X-ray, plus an all-sky monitor. 
 
Although there are no satellites and spacecraft which are orbiting L4 of L5 points, there 
were two spacecraft of STEREO mission which used them as transit points in 2009. 
Moreover, there was the project named JIMO (Jupiter Icy Moons Orbiter). JIMO - the 
canceled NASA project to study the moons of Jupiter, which was supposed to actively 
use the Lagrange points of the system to transfer from one satellite to another with 
minimal fuel costs. This maneuver is called "Lagrange staircase". 
 
Now we have provided all theoretical background about the mathematical model and 
the system which this model describes. The goal of this project is to apply the method 
of collocation to the CR3BP for the study of a natural motion. The next section 
introduces basics of the method of collocation.  

1.3. The method of collocation 
 
In the last section of chapter one the method which was chosen for the project is 
introduced. The method of collocation and its variations are widely used for different 
kinds of computations in a large number of sciences. In engineering the method is used 
for, for instance, some computations of nuclear plant reactors, studying the pressure 
on roads [18] etc. In this section we give the basics of collocation. 
 
Suppose we want to define a function 𝑦 = 𝑦(𝑥) that satisfies the linear differential 
equation (note that p(x), q(x) and f(x) are known): 
 

 
(1.30) 

 
subjected to the linear boundary conditions: 
 
 

 
 

(1.31) 
 
 
where 𝑎' + 𝑎! ≠ 0, 𝛽' + 𝛽' ≠ 0. 
 
It is necessary to note that A, B, 𝛼0 and 𝛽0 are given preselected values. 
 
 
We choose a set of linearly independent functions: 
 

L(y(x)) ≡ ′′y + p(x) ′y + q(x)y = f (x)

Γa ≡ a0y(a)+ a1 ′y (a) = A
Γb ≡ β0y(a)+ β1 ′y (a) = B

⎫
⎬
⎭
,



28   Computation of Libration point orbits using collocation 

 
(1.32) 

 
which we call the system of basis functions. 
 
Suppose that the function 𝑈'(𝑥) satisfies the inhomogeneous boundary conditions: 
 

 
(1.33) 

 
 
and other functions 𝑈( , 𝑖 = 1: 𝑛 satisfy the corresponding homogeneous boundary 
conditions: 
 

 
(1.34) 

 
 
In case the boundary conditions (1.31) are homogeneous (A = B = 0), then we can 
suppose 𝑈' 𝑥 = 0 and consider only the system of functions 𝑈( 𝑥 , 𝑖 = 1, 2, … , 𝑛. 
 
We seek for an approximate solution to the problem (1.30), (1.31) as a linear 
combination of basis functions:  
 

 
 

(1.35) 
 
 
Then the function y satisfies the boundary conditions (1.31). In fact, because of the 
linearity of the boundary conditions we have: 
 

 
 
and the same for the Γ) 𝑦 = 𝐵. 
 
Compose residual function 𝑅 = 𝐿 𝑦 − 𝑓(𝑥). Substituting y for the expression (1.35), 
we obtain: 
 

 
(1.36) 

 
 
If for some choice of the ci coefficients following equation is true  
 

 

Γa (y) = Γa (U0 )+ ciΓa (Ui ) = A + ci
i=1

n

∑
i=1

n

∑ 0 = A,

R(x, c1, ..., cn ) ≡ 0 for a ≤ x ≤ b,

U0 (x),U1(x), ...,Un (x),

Γa (U0 ) = A, Γb (U0 ) = B,

Γa (Ui ) = 0, Γb (Ui ) = 0, i = 1, 2, ..., n.

R(x, c1, ..., cn ) ≡ L(y)− f (x) = L(U0 )− f (x)+ ciL(Ui ).
i=1

n

∑

y ! ŷ =U0 (x)+ ciUi (x).
i=1

n

∑
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that means the function y is an exact solution to the problem (1.30), (1.31). However, 
it is generally not possible to successfully choose Ui function and the ci coefficients. 
According to the previous sentence, it is required that the 𝑅(𝑥, 𝑐!, … , 𝑐*) function 
becomes zero in the given system of points 𝑥!, 𝑥", … , 𝑥* in the interval [a, b], which are 
called collocation points. The function R is called residual of the equation (1.30). So 
the collocation method leads to a system of linear equations: 
 

 
 
 
 

(1.37) 
 
 
 
 
In the case of compatibility, we can determine the coefficients from the system (1.37), 
then an approximate solution to the boundary value problem can be computed by using 
the (1.35). 
 
In this chapter we have provided a detailed overview of the theoretical background 
which is necessary to know to understand how the problem is defined and what the 
collocation method is. The mathematical model of CR3BP and the equations of motion 
are thoroughly described. The following chapter introduces the methods which are 
used for the study and computations in our project. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R(x1,c1,...,cn ) = 0
!
R(xn ,c1,...,cn ) = 0

⎫
⎬
⎪

⎭⎪
.
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Chapter 2 
 

METHODOLOGY 
 
 
The aim of this chapter is to describe analytical and numerical methods which are 
applied to our work. The semi - linear analysis of the neighborhood of a libration point 
is presented. The method of collocation can refine a periodic solution from an initial 
seed which is an initial guess of a period and an initial state vector (positions and 
velocities). Having the isolated solution with the exact period we can propagate one of 
the solution points for a longer time than the computed period in order to see how the 
system behaves.  
 
 

2.1. Lindstedt – Poicaré method 
 
 
In this section we deal with the Lindstedt – Poincaré procedure which is a semi – 
analytical method which can be used for obtaining an approximate representation of 
the libration point orbits and, what is much more important for our work, for a 
computation of an initial seed which is needed to initiate the collocation procedure. In 
order to perform the computations using the Lindstedt – Poincaré method, we need 
the equations of motion (1.24) which are expanded in power series. To describe exact 
orbits, the high-order expansions are usually used. But in our case, it is enough to 
obtain only an approximate representation and to collect initial seeds for the collocation 
procedure, so we use the expansions of order three. This method is well described in 
a large number of works and we refer to [3, 11]. According to the papers for applying 
the Lindstedt – Poincaré method we need to rewrite the equations of motion (1.24): 
 
 

 
 

 
 
 

(2.1) 
 
 
 
 
 
 
 
where 
 
 

!!x − 2 !y − (1+ 2c2 )x = cn+1(n +1)Tn
n≥2
∑

!!y + 2 !x + (c2 −1)y = y cn+1Rn−1
n≥2
∑

!!z + c2z = z cn+1Rn−1
n≥2
∑

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

,
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 (2.2) 
 
 
with upper signs for L1 and the lower sings for the L2. 
 
It is possible to compute T0 by the given equation and use it as initial guess of the 
period in the collocation method 
 
 

(2.3) 
 
 
Talking about  the analysis of the neighborhood of the libration points number 1 and 2, 
it is necessary to define two systems: one with origin in a libration point (x, y, z) and 
the other in CR3BP coordinates (X, Y, Z) which corresponds to the equations in chapter 
one. For changing coordinates, we use these equations 
 
 

 (2.4) 
 
where 
 

 (2.5) 
 
 
Note that this scaling have to be applied to the equations of motion (1.24). 
 
The Lindstedt – Poincaré procedure can be used for both the analysis of the periodic 
solutions in the neighborhood of the libration points and the analysis of quasi – periodic 
orbits around Lagrangian points.  
 
 

2.1.1. Lindstedt – Poincaré procedure for Lissajous orbits 
 
Looking for 2-D – invariant tori as a series expansion in two frequencies is the idea of 
the Lindstedt – Poincaré method. This expansion formally satisfies the equation of 
motion. The procedure is recursive and depends on the previous results. In our work 
we use the already obtained coefficients up to order three. As a starting point we need 
the librating solutions to the linear part of (2.1) 
 
 
 

(2.6) 
 
 
 
these equations can be rewritten as: 

c2 (µ) =
1
γ 3 (1)2µ + (−1)2 (1− µ)γ 3

(1∓ γ )3
⎛
⎝⎜

⎞
⎠⎟
.

T0 =
2π
ω 0

X = −γ x + β, Y = −γ y, Z = γ z

β = µ −1± γ .

!!x − 2 !y − (1+ 2c2 )x = 0, !!y + 2 !x + (c2 −1)y = 0, !!z + c2z = 0,
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(2.7) 
where 
 
 
 

(2.8) 
 
 
 
and from here the period of time can be calculated with (2.3). 
 
The parameters 𝛼 and 𝛽, which are in plane and out of plane amplitudes, respectively, 
and 𝜙1, 𝜙2, which are phases, give us all solutions to the equations. 
 
Considering nonlinear terms of the equations, we try to find expansions in powers of 
the amplitudes 𝛼 and 𝛽, which look like 
 
 
 

 
 
 
 

(2.9) 
 
 
 
 
where 𝜃! =  𝜔𝑡 +  𝜙! and 𝜃" =  𝜐𝑡 +  𝜙" and ijk will be expanded to 3 in our wale (𝑖 +
𝑗 ≤ 3). Since we have nonlinear terms of the frequencies, 𝜔 and 𝜐 cannot be constants 
longer, so we have to expand them as well in powers of amplitudes: 
 
 
 

 
(2.10) 

 
 
 
 
As it has been mentioned above we use the expansions of order three in our work. All 
necessary coefficients are provided in the tables below. The coefficients were 
calculated in the work by Jobra and Masdemont [3]. The coefficients are true when the 
mass parameter 𝜇 = 0.3040357143000000E-05 and 𝛾 = 0.1001090475489518E-01 for 
the libration point number 1 and 𝛾 = 0.1007816698993660E-01 for L2. 
 

x(t) =α cos(ω 0t +φ1), y(t) = kα cos(ω 0t +φ1), z(t) = β cos(υ0t +φ2 ),

ω 0 =
2 − c2 + 9c2

2 − 8c2
2

, υ0 = c2 and k = −(ω 0
2 +1+ 2c2 )
2ω 0

x(t) = xijkm cos(kθ1 +mθ2 )
k ≤i, m ≤ j
∑

⎛

⎝⎜
⎞

⎠⎟i, j=1

∞

∑ α iβ j , y(t) = yijkm sin(kθ1 +mθ2 )
k ≤i, m ≤ j
∑

⎛

⎝⎜
⎞

⎠⎟i, j=1

∞

∑ α iβ j ,

z(t) = zijkm cos(kθ1 +mθ2 )
k ≤i, m ≤ j
∑

⎛

⎝⎜
⎞

⎠⎟i, j=1

∞

∑ α iβ j ,

ω = ω ijα
iβ j

i, j=0

∞

∑ , υ = υijα
iβ j

i, j=0

∞

∑ .
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Table 2.1 Coefficients up to order 3 for Lissajous orbits around L1 

i j   𝜔ij 𝜐ij 
0 0   0.2086453455276053E+01 0.2015210551475634E+01 
2 0   -0.1720615798629176E+01 0.2227433602201768E+00 
0 2   0.2581845049892893E-01 -0.1631915163450506E+00 
i j k m xijkm or yijkm zijkm 
1 0 1 0 0.1000000000000000E+01 -0.3229268096183804E+01 
0 1 0 1 0.1000000000000000E+01  
2 0 0 0 0.2092695580695452E+01 -0.4778923164284034E+01 
2 0 2 0 -0.9059647953966100E+00 -0.4924458751013138E+00 
0 2 0 0 0.2482976702637036E+00 0.0000000000000000E+00 
0 2 0 2 0.1108251912938997E+00 -0.6776374300069993E-01 
1 1 1 -1 -0.1116868337925509E+01  
1 1 1 1 0.3549453066222734E+00  
3 0 1 0 0.0000000000000000E+00 0.2845081147294533E+01 
3 0 3 0 -0.7938201951138280E+00 -0.8857007762159341E+00 
1 2 1 -2 -0.1499994708837557E+01 -0.4841967094812451E+01 
1 2 1 0 0.0000000000000000E+00 0.2875530871063365E+00 
1 2 1 2 0.8387778032395528E-01 0.2082880779824395E-01 
2 1 0 1 0.0000000000000000E+00  
2 1 2 -1 0.1216565483254493E+02  
2 1 2 1 0.4060792886575456E+00  
0 3 0 1 0.0000000000000000E+00  
0 3 0 3 -0.1952722079096668E-01  

 
 
Table 2.2 Coefficients up to order 3 for Lissajous orbits around L2 

i j   𝜔ij 𝜐ij 

0 0   0.2057014295696122E+01 0.1985074963711547E+01 
2 0   -0.1531347696560955E+01 0.2943988259478343E+00 
0 2   0.3525050019435665E-01 -0.1474823682728311E+00 
i j k m xijkm or yijkm zijkm 
1 0 1 0 0.1000000000000000E+01 -0.3187229438133198E+01 
0 1 0 1 0.1000000000000000E+01  
2 0 0 0 -0.2053038911972471E+01 0.4844772537508761E+01 
2 0 2 0 0.8962835946742865E+00 0.4913574320833921E+00 
0 2 0 0 -0.2516462771258266E+00 -0.0000000000000000E+00 
0 2 0 2 -0.1132975889914482E+00 0.7016433879412928E-01 
1 1 1 -1 0.1135799090644544E+01  
1 1 1 1 -0.3605240591354948E+00  
3 0 1 0 0.0000000000000000E+00 0.2720780779594278E+01 
3 0 3 0 -0.7806464279381702E+00 -0.8553045853428568E+00 
1 2 1 -2 -0.1451359308311418E+01 -0.4591171666445184E+01 
1 2 1 0 0.0000000000000000E+00 0.2493806449729320E+00 
1 2 1 2 0.8490080672754975E-01 0.1794119790942379E-01 
2 1 0 1 0.0000000000000000E+00  
2 1 2 -1 0.1129777481199042E+02  
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2 1 2 1 0.4021703922115226E+00  
0 3 0 1 0.0000000000000000E+00  
0 3 0 3 -0.1926879636938705E-01  

 
 
In the analysis of quasi – periodic Lissajous orbit around the libration points we have 
two input parameters. They are amplitudes. It is necessary to note, that by 
manipulating the amplitudes we can change the type of an orbit. Having 𝛼 and 𝛽 not 
equal to zero we obtain a Lissajous orbit, but if 𝛼 or 𝛽 is equal to zero, we have a 
vertical Lyapunov orbit or planar Lyapunov orbit, respectively. After integrating the 
expansions for some chosen time we obtain an approximate profile of an orbit and can 
take any point as an initial condition for the collocation procedure. 
 
 

2.1.2. Lindstedt – Poincaré procedure for Halo orbits 
 
It has been mentioned above that Halo orbits bifurcate from the planar Lyapunov orbits 
and the existence of the Halo orbits occurs when in-plane and out-of-plane frequencies 
are equal. Since we have a 1:1 resonance we can look for 1-D invariant tori as some 
series expansions with a single frequency. For applying the Lindstedt – Poincaré 
procedure, we need to modify the equations of motion (2.1) by adding the components 
𝛥 and z to the third equation,  
 
 

 
 
 
 
 

(2.11) 
 
 
 
 
 
 
where, referring to [3], we can say that the condition 𝛥 must be equal to zero. In the 
Lindstedt – Poincaré method, we expand the factor 𝛥 as a frequency series: 
 
 

 
 

(2.12) 
 
 
Now we can write the liberating solution to the linear part of the (2.11): 
 

(2.13) 
 

!!x − 2 !y − (1+ 2c2 )x = cn+1(n +1)Tn
n≥2
∑

!!y + 2 !x + (c2 −1)y = y cn+1Rn−1
n≥2
∑

!!z + c2z = z cn+1Rn−1 + Δz
n≥2
∑

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

,

Δ = dijα
iβ j

i, j=0

∞

∑

!!x − 2 !y − (1+ 2c2 )x = 0, !!y + 2 !x + (c2 −1)y = 0, !!z + c2z = d00z.
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These equations can be represented as: 
 
 
 

(2.14) 
 
where 𝑑'' = 𝑐" − 𝜔'

" and  
 
 

 
(2.15) 

 
 
 
and 𝜙 is an arbitrary phase. 
 
As it has been shown in the previous sub – section, 𝛼 and 𝛽 are termed in-plane and 
out-of-plane amplitudes. It is obvious that the Halo orbits depend on only one frequency 
or one amplitude because they are 1-D invariant tori. So the relation between 𝛼 and 𝛽 
must be established. The relationship is contained in the factor ∆= 0. When we 
consider the nonlinear terms of (2.11), we look for formal expansions in powers of the 
amplitudes 𝛼 and 𝛽 of the type  
 
 

 
 
 
 
 

(2.16) 
 
 
 
where 𝜃 = 𝜔𝑡 +  𝜙 and the frequency 𝜔 and 𝛥 must be extended as 
 
 

 
(2.17) 

 
 
 
We have mentioned that to get an approximate representation of an orbit and to obtain 
an initial condition we do expansion of the equations (2.16) up to order three. All 
coefficients have been computed many times so we refer to [3] and use the coefficients 
provided in the paper. According to the fact that we focus our project on the study of 
the neighborhood of the libration points L1 and L2, it is necessary to provide some 
constants which are used for the computations: the mass parameter 𝜇 = 
0.3040357143000000E-05 and 𝛾 = 0.1001090475489518E-01 and 𝛾 = 
0.1007816698993660E-01 for L1 and L2, respectively. 
 

x(t) =α cos(ω 0t +φ), y(t) =κα cos(ω 0t +φ), z(t) = β cos(ω 0t +φ),

ω 0 = 2 − c2 + 9c2
2 − 8c2 / 2, κ = −(ω 0

2 +1+ 2c2 )
2ω 0

,

x(t) = xijk cos(kθ )
k ≤i+ j
∑

⎛

⎝⎜
⎞

⎠⎟i, j=1

∞

∑ α iβ j , y(t) = yijk sin(kθ )
k ≤i+ j
∑

⎛

⎝⎜
⎞

⎠⎟i, j=1

∞

∑ α iβ j ,

z(t) = zijk cos(kθ )
k ≤i+ j
∑

⎛

⎝⎜
⎞

⎠⎟i, j=1

∞

∑ α iβ j ,

ω = ω ijα
iβ j , Δ = dij

i, j=0

∞

∑
i, j=0

∞

∑ α iβ j = 0.
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Table 2.3 Coefficients up to order 3 for Halo orbits around L1 

i j  𝜔ij dij 
0 0  0.2086453455276053E+01 -0.2922144542546494E+00 
2 0  -0.1720615798629176E+01 0.1596559878224751E+02 
0 2  0.2526666105275838E+00 -0.1740900545935829E+01 
i j k xijkm or yijkm zijkm 
1 0 1 0.1000000000000000E+01 -0.3229268096183804E+01 
0 1 1 0.1000000000000000E+01  
2 0 0 0.2092695580695452E+01 -0.4778923164284034E+01 
2 0 2 -0.9059647953966100E+00 -0.4924458751013138E+00 
0 2 0 0.2482976702637036E+00 0.0000000000000000E+00 
0 2 2 0.1044641164074320E+00 -0.6074646717326299E-01 
1 1 0 -0.1040596381457606E+01  
1 1 2 0.3468654604858687E+00  
3 0 1 0.0000000000000000E+00 0.2845081147294533E+01 
3 0 3 -0.7938201951138280E+00 -0.8857007762159342E+00 
1 2 1 0.0000000000000000E+00 0.4316925766873952E+00 
1 2 3 0.8268538529318073E-01 0.2301982737772552E-01 
2 1 1 0.0000000000000000E+00  
2 1 3 0.3980954251673118E+00  
0 3 1 0.0000000000000000E+00  
0 3 3 -0.1904387005265064E-01  

 
 
Table 2.4 Coefficients up to order 3 for Halo orbits around L2 

i j  𝜔ij dij 
0 0  0.2057014295696122E+01 -0.2907852011438137E+00 
2 0  -0.1531347696560955E+01 0.1482882483635615E+02 
0 2  0.2572237584422004E+00 -0.1673691626171837E+01 
i j k xijkm or yijkm zijkm 
1 0 1 0.1000000000000000E+01 -0.3187229438133198E+01 
0 1 1 0.1000000000000000E+01  
2 0 0 -0.2053038911972471E+01 0.4844772537508761E+01 
2 0 2 0.8962835946742865E+00 0.4913574320833921E+00 
0 2 0 -0.2516462771258266E+00 -0.0000000000000000E+00 
0 2 2 -0.1065995583353226E+00 0.6271902291776088E-01 
1 1 0 0.1056355182043019E+01  
1 1 2 -0.3521183940143398E+00  
3 0 1 0.0000000000000000E+00 0.2720780779594278E+01 
3 0 3 -0.7806464279381702E+00 -0.8553045853428568E+00 
1 2 1 0.0000000000000000E+00 0.3693512915944317E+00 
1 2 3 0.8369602467327969E-01 0.2043544134245290E-01 
2 1 1 0.0000000000000000E+00  
2 1 3 0.3940279801458219E+00  
0 3 1 0.0000000000000000E+00  
0 3 3 -0.1882903780587591E-01  
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In the case of the analysis of the Halo orbits, there is only one input parameter 𝛽. In 
order to obtain a whole state vector, we need to take derivatives of expansions. 
Integrating the expansions and the derivatives for the chosen period of time we obtain 
a profile of a Halo orbit. Then taking one of the moments of time we obtain an initial 
seed which is needed to initiate the collocation procedure, but it is necessary to note 
that the expansions provide coordinates and velocities in coordinate system which is 
centered in the libration point, so before using a state vector as the initial conditions it 
is necessary to transform coordinates to CR3BP by using the equations (2.4) and (2.5). 
An initial guess of the period can be obtained by the (2.3). The way how the collocation 
method can be applied is presented in the following sections. 
 
 

2.2. Collocation method for solving non-linear BVP 
 
The description of the method of collocation is given in chapter one. Here we describe 
how the collocation method can be used for solving a non-linear boundary value 
problem (BVP). The behavior of non-linear dynamical systems can be described by 
solving a set of non-linear differential equations. A large number of works describe the 
method of collocation. As we have motioned before, one of the objectives is to study 
the method of collocation presented in the AUTO – 07p software package. In order to 
optimize, simplify a computational process and save resources we decided to avoid 
the integral equations which are widely used in the edition of the collocation method 
which is the base of the AUTO – 07p package algorithm. That is why we refer to the 
algorithm which is represented in the work by Mallon [19]. Our objectives are to apply 
the algorithm which is described below for the two problems: refining of the isolated 
solution and the period and refining the isolated solution with the exact period. The 
representation of how the method of collocation can be used for solving BVP is given 
as follows. 
 
We consider a set of ordinary non-linear autonomous differential equations 
 
 

 (2.18) 
 
 
Here x is the n (in our case 6 - dimensional) dimensional state vector and f(x) a set of 
n first order differential equations. Due to the non-linear nature of (2.18), it is not 
feasible to find a closed form solution x(t) by analytical methods. According to this we 
have to consider approximations xπ(t) for the solution (2.18). Numerical methods can 
be applied to the problem’s integration for computing these approximations and they 
lead to a discretization of the solution. A discretization is a representation of the 
solution by function values on so called mesh points which are mutually connected by 
interpolation functions. The method of collocation requires that the approximate 
solution satisfies the ordinary differential equations at certain preselected points which 
are termed the collocation points. Since we look for the periodic solutions with x(0) = 
x(T) our problem is a non-linear boundary value problem. The solution to this kind of 
problems can be computed by a Newton-type method known as quasi-linearization. 
Consider the BVP form of the problem (2.18) 
 

′x = f (x)
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 (2.19) 

 
 
 
An approximate Xп(t) solution to the problem (2.19) with the collocation method on a 
subinterval in a ≤ t ≤ b, denoted by [ti, ti+1], satisfies the following interpolation 
conditions: 
 
 

 (2.20) 
 
 

with tij the jth collocation point in subinterval i and xπ(t) being a polynomial of order k-1 
inside [ti, ti+1]. Figure 2.1 shows the locations of the intervals and the collocation points. 

 
 
 
The approximation xπ(t) can be computed as a sum of its initial conditions and its first 
derivative as shown in (2.21) 
 
 
 

 (2.21) 
 
 
 
The derivative f(x) equals the derivative x’π(t) at the k collocation point if the 
approximation satisfies the interpolation conditions (2.20). According to the given fact 

′x = f (x),
g(x(a), x(b)) = 0.

xπ (ti ) = xi and ′x (tij ) = f (xij ) for 1≤ i ≤ N ,1≤ j ≤ k,

xπ (t) = xi + ′xπ (ξ )dξ.
ti

t

∫

Figure 2.1 Intervals and collocation points tij inside [ti, ti+1] 
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we can define an interpolation polynomial of degree k−1 for the state equations. The 
Lagrange form is a usually used way to define the interpolation polynomial: 
 
 
 

 (2.22) 
 

and 
 
 

 (2.23) 
 
 
 
For the polynomials Ll(p) time must be rescaled to the domain [0,1] for each interval i. 
Since the polynomials satisfy 
 
 
 

 (2.24) 
 
 
 
it is easy to see that the polynomial p(t) satisfies f(xij) = p(tij). The state equations with 
the p(t) cease to be a function of the state variables x so the integration in (2.21) can 
be done straightforward. The substitution of (2.22) for (2.21) results in 
 
 
 

(2.25) 
 
 
 
Substituting the integral for a numerical quadrature method and the use of the scaled 
integration points as collocation points, we arrive at two equations for the local 
unknowns xij (2.26) and for the global unknowns xi+1 (2.27). 
 
 
 

 (2.26) 
 
 
 

 (2.27) 
 
 
 
Extending the polynomial to the subinterval [ti+1, ti+2] by using (2.27) with i+1 instead of 
i, results in the piecewise polynomial being continuously matched at ti+1. Extending to 

p(t) = f (xil )Ll (p)
l=1

k

∑ with p = t − ti
hi
, xil = xπ (til ) and p∈[0,1]

Ll (p) =
p − pj
pl − pj

where p(l) = til − ti
hij=1

j≠l

k

∏ , hi = ti+1 − ti .

xπ (t) = xi + f (xil )Ll (p)dp.
l=1

k

∑
ti

t

∫

Li = δ ij with δ ij =
1 for j = i
0 for j ≠ i

⎧
⎨
⎩

,

xπ (tij ) = xi + hi α jl f (xil ) = xij withα jl = Ll (p)dp
0

pl

∫
l=1

k

∑

xπ (ti+1) = xi + hi βl f (xil ) = xi+1 with βl = Ll (p)dp
0

1

∫
l=1

k

∑
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all 1 ≤ i ≤ N, we obtain a continuous piecewise polynomial function of the order k-1 over 
[a, b] which satisfies the vector field at the collocations points tij.  
The equation (2.27) has the identical form as the Runge-Kutta scheme. The final 
scheme has an implicit character because the function is based on a numerical 
quadrature method and according to these facts the collocation scheme is exactly alike 
a one-step implicit Runge-Kutta scheme. We apply Simpson’s quadrature which 
approximates integration over the interval [0, 1], and has the following set of 
parameters k = 3, ρ1 = 0, ρ2 = 0.5 and ρ3 = 1 to show this implicitness. The Lagrange 
interpolation functions for this parameters are defined by 
 
 

 
 
 
Figure 2.2 shows three Lagrange polynomials which satisfy properties (2.24). Having 
these polynomials, we can compute 𝛼il and 𝛽l using the equations (2.26) and (2.27), 
respectively. The numerical values for α and β, together with the (scaled) locations of  
 

 
Figure 2.2 Lagrange polynomials for k = 3 

L1(ρ) =
(ρ − 0.5)(ρ −1)

0.5
, L2 (ρ) =

(ρ − 0)(ρ −1)
−0.25

, L3(ρ) =
(ρ − 0)(ρ − 0.5)

0.5
.
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the collocation points ρl are presented in a so called Butcher-array, which is for this 
scheme shown in Table 1.1. 

Table 2.5 Butcher-array 

pl 𝛼11 … 𝛼13  

0 0 0 0 𝛼13 

0.5 5/24 1/3 -1/24 … 

1 1/6 2/3 1/6 𝛼33 

𝛽l 1/6 2/3 1/6  

 
The problem that we can see in Table 2.5 appears if we want to solve the equation 
(2.26). For the computation of, for instance, f(xi2) we first need f(xi3) and vice versa. 
Solving this non-linear equation would require an expensive Newton method for each 
subinterval. According to this we arrive at the point showing how the equations (2.26) 
and (2.27) are solved. There are two methods which could be applied, firstly, the 
method of quasi-linearization (Newton’s method for non-linear problems) for rewriting 
the solution to the non-linear BVP into a sequence of solutions to a linear BVP, and 
secondly, a parameter condensation procedure which can be applied to linear 
problems to eliminate the local unknowns. 
 
As we know, if we expand the functions in Taylor series and apply a correction for the 
non-linear terms at each iteration, we obtain Newton’s method for algebraic equations. 
In terms of the quasi-linearization method, it does the same for the non-linear boundary 
value problem (2.26). Now we rewrite the problem for the correction 𝜔 from the initial 
guess xm(t) 
 
 

 (2.28) 
 
 

 (2.29) 
 
 
where 
 
 

 (2.30) 
 
 
And the boundary conditions as 
 
 

 (2.31) 
 
with 

(xm (t)+ω ′) = f (xm (t))+ ∂ f
dx
(xm (t))ω

′ω = A(t)ω + q(t) = f *(t,ω )

g(x(a), x(b)) = 0→ Baω1 + Bbω N = −g(xm (a), xm (b))

A(t) = ∂ f
∂x
(xm (t)) and q(t) = f (xm (t))− (xm (t) ′) .
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 (2.32) 

 
 
The method has identical form as the Newton one, so a residual q(t) is a form of 
difference between the ODE and the derivative of solution and a Jacobian operator 
acting on a correction 𝜔. In the case of collocation method, the residual at each 
collocation point is equal to zero. The solution to the linearized BVP is the solution to 
the collocation equations for the new set of variables 𝜔i which are analogous to (2.26) 
and (2.27). 
 
 
 

 (2.33) 
 
 

 (2.34) 
 
 
In the linear problem the coefficients depend on the previous iteration xm(t). The quasi-
linearization procedure therefore defines a sequence of linear BVPs whose solutions 
will converge to the solution to the non-linear problem, given that the initial guess was 
close enough to it [20]. Thus, solving these equations, leads us to a method for solving 
non-linear BVP as well. 
 
In order to simplify the computational process we present a method to eliminate the 
local unknowns in the equation (2.34), the derivatives f ∗(til, 𝜔il) where the (∗) denotes 
the derivatives for the set of variables 𝜔i. This method is known as a parameter 
condensation in finite element literature. The substitution of (2.34) for (2.29) yields 
 
 
 
 

 (2.35) 
 
 
 
And a vector form for 1 ≤ j ≤ k as 
 
 
 
 

 (2.36) 
 
 
 
 
Isolating f ∗ = [f ∗i1, . . . , f ∗ik ] from (2.36) results in an expression for the local unknowns, 
which is only dependent on the global unknowns 𝜔i and function values of the previous 
iteration xm(t) 

Ba =
∂g(x(a), x(b))

∂x
(xm (a)) and Bb =

∂g(x(a), x(b))
∂x

(xm (b)).

ω (tij ) =ω i + hi α jl f
*(til ,ω il ) =ω ij

l=1

k

∑

ω (ti+1) =ω i + hi βl f
*(til ,ω il ) =ω i+1

l=1

k

∑

fij
* = f *(tij ,ω i + hi α jl f

*

l=1

k

∑ (til ,ω il ))

= A(tij )ω i + A(tij )hi α jl f
*

l=1

k

∑ (til ,ω il ))+ q(tij )

fi1
*

!

fik
*

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

A(ti1)
!

A(ti1)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
ω i + hi

a11A(ti1) … a1kA(ti1)
! " !

ak1A(tik ) # akkA(tik )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

fi1
*

!

fik
*

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+
q(ti1)
!

q(tik )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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 (2.37) 

 
where Wi ∈ Rnk×nk, Vi ∈ Rnk×n, fi∗ and qi ∈ Rnk are defined by 
 
 
 
 

 (2.38) 
 
 
 
It is easy to see that Wi inverted is enough for hi small. 
We have presented the strategy and described two procedures that we are going to 
use for solving the resulting set of equations. The final collocation equations (2.39) 
come from the substitution of (2.26) for (2.34) 
 
 
 
 
 
 
 

 (2.39) 
 
 
where  
 
 

 (2.40) 
 
 
The equation (2.39) together with the boundary conditions (2.31) form a set of n(N+1) 
equations which need to be solved in each iteration until convergence or another stop 
criterion has occurred 
 
 
 
 

 (2.41) 
 
 
 
 
The initial solution profile xπ(t) from where (2.41) the values x1,...,xN+1 and f1,...,fN come 
is needed for the startup of the procedure of collocation 
 

 
 

 (2.42) 

fi
* =Wi

−1Viω i +Wi
−1qi ,

Wi = I − hi

a11A(ti1) … a1kA(ti1)
! " !

a1kA(tik ) # akkA(tik )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
, Vi =

A(ti1)
!

A(tik )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

and qi =
q(ti1)
!

q(tik )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.

ω i+1 =ω i + hi α jl f
*(til ,ω il )

l=1

k

∑
=ω i + hi[β1I!βk I ] [Wi

−1Viω i +Wi
−1qi ]

= Γ iω i + ri

D = [β1I!βk I ], Γ i = I + hiDWi
−1Vi and ri = hiDWi

−1qi .

−Γ1 I 0 0
0 ! ! 0
0 0 −ΓN I
Βa 0 0 Βa

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

ω1

!
!

ω N+1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

r1
!
rN

−g(xm (a), xm (b))

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.

fi =
f (xi1)
!

f (xik )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.
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With the xi and fi the values for xil can be obtained by the (2.26). Subsequently the 
values for A(xil) and f(xil) can be computed and the set of equations (2.40) can be 
formed. After solving the linear system, the approximate solution xm(t) and the 
derivatives at the collocation points fi must be updated to finish an iteration according 
to (2.43) and (2.44)  
 
 

 (2.43) 
 
 

 (2.44) 
 
 
from which the new values of xil can be determined. 
 
Described above strategy illustrates how the collocation method is applied for solving 
BVP. The following sub-sections illustrate two ways of using the collocation method, 
the first one to refine both a periodic orbit and a period and the second one to refine a 
periodic orbit with the exact given period. Also the process of continuation in a family 
of orbits is described below. Theoretically the method of collocation provides high 
accuracy and requires a low capability of recourses (time and CPU). The increase in 
accuracy can be reached by choosing more accurate initial conditions. Anyway, the 
rate of convergence will not be constantly decreasing due to the fact that the energy is 
not fixed and there are many of the orbits with very similar parameters and states. 
 
 

2.2.1. Computing periodic solution and period by collocation 
 
One of the options to use the method of collocation is to refine a periodic orbit and a 
period of the orbit. Computing isolated periodic solutions of a set of autonomous non-
linear ordinary differential equations requires to solve the two points boundary value 
problem, which is defined as follows  
 
 

 (2.45) 
 
 
This BVP is similar to the problem as presented in (2.19) with the difference that the 
period T becomes an extra unknown parameter in the problem according to the fact 
that we look for a closed solution. Here the way how this problem can be transformed 
into an identical form as (2.19) to apply the method of collocation for the procedure is 
presented. For transformation we need to write the problem in a dimensionless form 
with the time scaled to [0, 1] domain 
 
 
 

 (2.46) 
 
 

′x = f (x)with x(0) = x(T ).

dx
dτ

= Tf (x)with x(0) = x(1), τ = t
T
and τ ∈[0,1].

xπ
m+1(ti ) = xπ

m (ti )+ω i

fi
m+1 = fi

m +Wi
−1Viω i +Wi

−1qi
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Next the set of n ODEs is rewritten for both small corrections w on the variables xi  and 
for a small perturbation dT on the period time T from an initial guess [xm(τ),Tm]T  as 
described for the method of quasi-linearization. 
 
 
 

 (2.47) 
 
 
with  
 
 

 (2.48) 
 
and the boundary conditions as 
 
 

 (2.49) 
 
 
Now we can rewrite the equation (2.37) for the elimination of the local unknowns with 
the (2.47) 
 
 

 (2.50) 
 
 
with fi, Wi, Vi and qi analogous to (2.38) and Ui ∈ Rnk which is defined by 
 
 
 
 
 

 (2.51) 
 
 
 
 
 
Substituting (2.50) for (2.34) results in a new set of n×N collocation equations for 
computation of the periodic solution. 
 
 
 
 
 
 
 

 (2.52) 
 

dw
dτ

= A(τ )w + f (xm (τ ))dT + q(τ )

A(τ ) = T m ∂ f
∂x
(xm (τ )) and q(τ ) = T m f (xm (τ ))− (xm (τ ) ′)

x(0)− x(1) = 0→ w1 −wN+1 = xN+1
m − x1

m .

fi =W
−1Vwi +W

−1UdT +W −1qi .

Ui =
f (xm (τ i1))
!

f (xm (τ ik ))

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.

wi+1 = wi + hi α jl f (til ,wil )
l=1

k

∑
= wi + hi[β1I!βk I ][Wi

−1Viwi +Wi
−1UidT +Wi

−1qi ]
= Γ iwi + ΛidT + ri .
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with D, Γi and ri analogous to (2.40) and 
 
 

 (2.53) 
 
 
 
Since the (2.53) and the (2.49) are a system of n(N + 1) equations with n(N + 1) + 1 
unknowns, it cannot be solved uniquely because the phase of the periodic solution is 
not yet fixed. To overcome this problem a phase condition, also known as an anchor 
equation, is added to the system of equations to avoid the rotation of the periodic 
solution. 
 
A phase condition can be represented as a fixed point at the periodic solution but this 
has a couple of drawbacks (we have to know that the initial point is really one of the 
orbit ones) and this is not applicable to our problem. A better anchor equation is given 
as the orthogonality conditions (2.54). Figure 2.3 illustrates geometrical meaning of the 
orthogonality conditions. 
 
 

 
Figure 2.3 Illustration of orthogonally conditions to fix periodic orbit 

 
 

 (2.54) 
 
 
Using this popular anchor equation [23] gives us some benefits, firstly, it makes our 
solution fixed in space and secondly, it provides a good rate of convergence despite 
the problem which has been mentioned above. The linear set of equations which must 
be solved sequentially is analogous to (2.41) which follows from (2.49), (2.51) and 
(2.54) now becomes 
 

Λi = hiDWi
−1Ui .

f (x1)w1 = 0.
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 (2.55) 
 
 
 
 
 
 
 
After each iteration the approximate solution xm(t) must be updated as in (2.43) and fi 
and the period time T as 
 
 

 (2.56) 
 
 

 (2.57) 
 

The last step is to present a new vector field which is needed to obtain A(𝜏) in (2.54). 
Since x is the state vector which includes [x, y, z, vx, vy, vz] and f(x) is the set of 
differential equations in the (2.49) we obtain a matrix which is needed to be added to 
the vector field (2.58) 
 
 
 
 
 
 
 
 
 
 
 

 (2.58) 
 
 
 
 
 
 
 
 
 
 
 
where partials are computed with (1.23), (2.49) and (2.50) 
 

−Γ1 I 0 0 −Λ1

0 ! ! 0 "
0 0 −ΓN I −ΛN

I 0 0 −I 0
f (x1

m ) 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

w1
"
"

wN+1

dT

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

r1
"
rN

xN+1
m − x1

m

0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

.

fi
m+1 = fi

m +Wi
−1Viwi +Wi

−1UidT +Wi
−1qi

T m+1 = T m + dT

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

∂Ωx

∂x
∂Ωx

∂y
∂Ωx

∂z
0 2 0

∂Ωy

∂x
∂Ωy

∂y
∂Ωy

∂z
−2 0 0

∂Ωz

∂x
∂Ωz

∂y
∂Ωz

∂z
0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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 (2.59) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now the entire algorithm to compute a solution to our problem is described. Using this 
algorithm, a periodic solution to the mentioned problem can be obtained. To start up 
the procedure it is necessary to set up a set of initial conditions which includes an initial 
state vector, an initial guess of the period, a number of mesh points, a number of 
collocation points and a criterion of convergence. In the case when the initial seed is 
well computed the procedure takes from 3 to 7 fast iterations. The next sub-section 
introduces the same algorithm with the only difference that the following one does not 
have the period T as the extra unknown parameter.  
 
 
 

∂Ωx

∂x
= 1+ 3(1− µ)(X − µ)2

p1
5 + 3µ(X − µ +1)2
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3 .
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2.2.2. Computing periodic solution with fixed period by collocation 
 
The second way to use the method of collocation for the study of the natural motion in 
the neighborhood of the libration points is to refine an isolated periodic solution with 
the exact period of time. This kind of problem looks interesting due to the specifics of 
some space missions which require some specific orbital period. We consider the 
same problem as (2.45) 
 
 

 (2.60) 
 
 
We ought to note that T is not an unknown, now it is some known number. Although 
the period is a known number, to set up the system and initiate the algorithm the scaling 
procedure must be done. We rescale the time to [0, 1] domain 
 
 
 

 (2.61) 
 
 
In the case when we have the period known, the only corrections w on the variables xi 
must be applied as  
 
 

 
(2.62) 

 
 
with  
 
 

 
(2.63) 

 
 
 
and the same boundary conditions as the (2.49). Now we can rewrite the equation 
(2.37) for the elimination of the local unknowns with the (2.61) but without the part 
which corresponds to corrections for dT. 
 
 

(2.64) 
 
 
 
where fi, Wi, Vi and qi are analogous to (2.38).  
 
Substituting (2.64) for (2.34) yields a new set of n×N collocation equations for the 
computation of the periodic solution with fixed period. 

′x = f (x)with x(0) = x(T ).

dx
dτ

= Tf (x)with x(0) = x(1), τ = t
T
and τ ∈[0,1].

dw
dτ

= A(τ )w + q(τ ),

A(τ ) = T ∂ f
∂x
(xm (τ )) and q(τ ) = Tf (xm (τ ))− (xm (τ ) ′)

fi =W
−1Vwi +W

−1qi ,
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(2.65) 
 
 
where D, Γi and ri are analogous to (2.40). 
 
Due to the fact that the system is still over defined, the phase conditions must be used. 
The phase conditions to fix the solution in a phase-space are the same and are given 
by the equation (2.54). The linear set of equations now looks like 
 
 

 
 
 
 

(2.66) 
 
 
 
 
 
 
 
Now we have the system of the collocation equations which need to be solved each 
iteration. And after each iteration the approximate solution xm(t) and fi must be updated 
the same way as in (2.43) and (2.44) as follows: 
 
 
 

 (2.67) 
 
 

 (2.68) 
 
 
It is easy to see that all changes are done only in terms of algorithm, so there is no 
need to apply any modifications to the vector field. We have 6 first order differential 
equations for our state vector and the matrix (2.58) with the equations which are 
described by (2.59). Now the whole strategy of the computation of a periodic orbit with 
a fixed period is presented. The accuracy of this method critically depends on the 
accuracy of the given period. The next sub-section introduces us the method of 
continuation approach which is interesting in terms of following the family of a chosen 
orbit. 
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2.2.3. Continuation approach 
 
Talking about a continuation procedure we mean that we follow a family/branch of 
some orbits which is located in the neighborhood of the collinear Lagragian points. It 
is well known that several kinds of periodic orbits exsist around the collinear libration 
points. These kinds of orbits form families or branches which contain a large number 
of orbits in each family. It is good to be informed about the neighborhood of the libration 
points for planning space missions at the Lagragian points. The continuation procedure 
can be represented by different methods (such as arc-length continuation). In our work 
we use the “step” method with a possibility of choosing parameters: a step and a 
number of orbits. Technically the continuation procedure is as follows: 
 
 

 
Figure 2.4 The basic concept of the continuation procedure 
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Figure 2.4 illustrates the basic concept of the procedure. We choose an initial seed for 
the collocation procedure and set up the step and the number of orbits. The step can 
be both: positive and negative. The collocation procedure is repeated for m iteration 
and each next iteration we add the step to the initial state vector and double it for the 
initial period of the orbit. The initial conditions for the iteration are the state vector and 
the period which are obtained in the previous iteration. As a result of the procedure we 
have a plot of a family of orbits and a list with the state vector and the period of each 
refined orbit. It is necessary to note that it is possible to obtain orbits from another 
family. It happens because the method which is used does not have the adaptive 
algorithm for the step, so after some iteration we can arrive at a bifurcation point and 
another family can bifurcate from ours. The continuation approach has the same 
features as the collocation procedure due to its basement. The accuracy of the method 
depends on the accuracy of taken initial seed and computational time is equal to the 
time of the collocation procedure multiplied by m. Having the list of state vectors and 
periods of the orbits of a family it is possible to study each orbit separately by using the 
collocation procedure or one of numerical integrators. For our needs it is enough to 
use fast low-order methods. The numerical integrator that we use for the project is 
described below. 
 
 

2.3. Numerical integrator 
 
 
A numerical integrator which is also called a propagator integrates a differential 
equation or a set of differential equations depending on a model for selected interval 
of time with a step. There exists a well-known Runge-Kutta scheme with different 
accuracy orders to propagate. The Runge-Kutta algorithm lets us solve a differential 
equation numerically (that is, approximately). 
 
 

 (2.69) 
 
 
The Runge-Kutta scheme can have high accuracy and fast propagation. It is known to 
be very accurate and well-behaved for a wide range of problems. According to the fact 
that our work is done in the MATLAB software package, we apply ODE45 function as 
a propagator which is based on Runge-Kutta scheme. 
 
 

 (2.70) 
 
 
where x0 - an initial state vector, [t0 tend] - time interval selected for the integration, 
options - set of preferences for the procedure, 𝜇 - mass parameter needed for a model. 
 
The CR3BP is the model which we use for the propagation and we have thoroughly 
described in chapter one. The model includes six first-order ordinary differential 
equations obtained from the (1.24). The model is a vector field which describes phase 

[T ,X]= ode45(@RTBP,[t0 tend ], xo,options,µ)

!x = f (t, x), x(t0 ) = x0.
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space around the libration points in the CR3BP. The structure of the vector field is 
provided as follows 
 
 

 (2.71) 
 
 
More detailed form is 
 
 
 
 
 
 
 
 

(2.72) 
 
 
 
 
 
 
 
where 𝛺x, 𝛺y, and 𝛺z are the partial derivative of (1.23) and can be determined by (2.73) 
 
 
 
 
 
 
 
 

(2.73) 
 
 
 
 
 
 
 
Here p1 and p2 are provided by  
 
 

 
 

(2.74) 
 
 
 

!X =Vx ,
!Y =Vy ,
!Z =Vz ,
!Vx = 2Vy +Ωx ,
!Vy = −2Vx +Ωy ,
!Vz = Ωz .

!X(t) = f (X(t)).

ΩX = X − (1− µ)(X − µ)
p1
3 − µ(X +1− µ)

p2
3 ,

ΩY = Y − (1− µ)Y
p1
3 − µY

p2
3 ,

ΩZ = − (1− µ)Z
p1
3 − µZ

p2
3 .

p1 = (X − µ)2 +Y 2 + Z 2 ,

p2 = (X +1− µ)2 +Y 2 + Z 2 .
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The use of this numerical propagator gives us opportunities to approximately predict 
the time of refined orbit being stable and to see how the orbit behaves in the course of 
time longer than a period. It can be used for planning maneuvers and correction for 
missions. Also this method can be used as the test tool for the collocation procedure 
and for the Lindstedt-Poincaré expansions. Now we have presented all methods which 
we apply to our work to calculate initial seeds, to refine periodic solutions and to 
propagate the trajectory in the vector field. The following section describes a method 
which is used to study stable and unstable manifold, heteroclinic and homoclinic 
trajectories. 
 
 

2.4. Stable and unstable manifolds 
 
 
The study of stable and unstable manifolds is critical in terms of low energy transfer 
trajectories. As it has been mentioned above stable and unstable manifolds are sets 
of possible trajectories with very interesting applications. The unstable manifold is the 
set of all possible trajectories, which asymptotically depart from a nominal orbit, they 
can be approximated by a negligible mass in case a small adjustment directed by an 
unstable eigenvector is applied to the mass. The stable manifold includes the set of all 
possible trajectories that a particle could take to asymptotically arrive onto the nominal 
orbit along the orbit’s stable eigenvector. The manifolds can be easily computed by 
using the following algorithm. Firstly, we need to compute a monodromy matrix which 
is a State Transition Matrix after an orbit become closed, after one period. The State 
Transition Matrix (STM), so-called vector flow, illustrates changes in the vector field 
(2.72) over the time and the concept and the computational process of it must be 
explained. So the state of a dynamical system can be represented by STM. Let us term 
𝜙t(x0) as a parameter of the state of chosen system at some moment of time t. It is 
necessary to note that at the time t = 0 the initial point is x0. This can be stated as, 
 
 

(2.75) 
 
 
The following figure illustrates the concept of STM.  
 

 
Figure 2.5 State Transition Matrix concept 

φ0 (x0 ) = x0.
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We can add a small deviation 𝛥x0 to the x0 and then the state at the moment of time t 
is 𝜙+(𝑥' +  ∆𝑥'). And this can be expanded as  
 
 

(2.76) 
 
 
By cutting the high order terms, we can approximate (2.76) as   
 
 

(2.77) 
 
 
The matrix M is termed the State Transition Matrix and is given by 
 
 

(2.78) 
 
 
The concept of the equation (2.77) is represented in Figure 2.5. It is easy to see that 
 
 

(2.79) 
 
 
where I represents the identity matrix of order six. In our case we are more interested 
in the differential of the STM. It is well known that our dynamical system is represented 
by  
 
 

 
(2.80) 

 
 
It is clear that the state of the dynamical system 𝜙+ 𝑥  will be a solution to (2.80). Thus, 
 
 

 
(2.81) 

 
 
 
Taking the differential of (2.80) with respect to x we obtain 
 
 

 
(2.82) 

 
 
 

φt (x0 + Δx0 ) = φt (x0 )+ Dxφt (x0 )Δx0 +!

φt (x0 + Δx0 )−φt (x0 ) ≈ Dxφt (x0 )Δx0

Mt (x0 ) = Dxφt (x0 )

!X = f (X)

d(φt (x))
dt

= f (φt (x)).

Dx (
d(φt (x))
dt

) = Dx ( f (φt (x)))Dx (φt (x)),

M 0 (x0 ) = I ,
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but we need to rewrite this equation to another form. 
 
 

 
(2.83) 

 
 
where 𝐷,(𝜙+(𝑥)) is the State Transition Matrix, which is the same that is given by 
(2.78). Thus the equation (2.83) can be rewritten as  
 
 

 
(2.84) 

 
 
The matrix D is called Variational matrix and it is represented by 
 
 

 
(2.85) 

 
 
Due to the fact that our dynamical system is autonomous, the state of the system is 
given by vector X and its derivative with respect to time: 
 

 
 

(2.86) 
 
 
For our model which is CR3BP the Variational matrix is given by the equation (2.87) 
 

 
 
 
 
 
 
 
 
 

(2.87) 
 
 
 
 
 
 
 
 

d
dt
(Dxφt (x)) = Dx ( f (φt (x)))Dx (φt (x)),

!M = Dx ( f (φt (x)))M .

D = Dx ( f (φt (x))).

X = (x, y, z, !x, !y, !z)T
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Having the method that describes computational process of the State Transition Matrix 
we can obtain an important for us Monodromy matrix (6 x 6) which is represented as 
 
 

 
(2.88) 

 
 
The next step is to compute eigenvector and eigenvalues of the monodromy matrix.  
 
 
 

 
(2.89) 

 
 
 
 
Since we have stable and unstable manifolds we need two eigenvectors which 
correspond to stable and unstable states. It is necessary to note that the eidenvectors 
have size (6 x 1). It is possible to choose the number of trajectories which to be 
computed. For this we need to take the State Transition Matrix which corresponds to 
the point from where we depart or to where we approach. For choosing the points we 
use time as it is illustrated bellow. 
 
 

 
Figure 2.6 Concept of choosing points for manifold local linear approximation 

 
 
As we have mentioned above the directed adjustment is required to abandon an orbit. 
We form new initial conditions and they must be directed. To set a needed direction 
we need, firstly, to normalize STM at chosen points: 
 
 

 
 

(2.90) 
 
 
 
The second step is the computation of direction vectors which are needed to form new 
initial conditions. It is interesting to note that the normalization factor is computed only 
with coordinates whereas velocities are skipped. 

D = D(t), t = T .

DT →
υ s (λ s )
υu (λ u )

D(ti ) = STMi

wi
s/u = STMiυ

s/u .
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(2.91) 

 
 
 
 
where 
 
 

 
(2.92) 

 
 
 
Now we need to choose the last parameter which is needed to form new initial 
conditions. The 𝜀 means a distance which is added to the state vector at a chosen 
point. 
We decided to use 200 kilometers. Due to the fact that our system is dimensionless, 
we divide 200 by 1 AU. The new initial conditions are given as follows.  
 
 

 
(2.93) 

 
 
 
The following figure illustrates the sense of the new initial conditions that have been 
computed on the local linear approximation of the manifold. 
 

 
Figure 2.7 New initial conditions 

υi
s/u = wi

s/u

Li
,

Li = (wi1
s/u )2 + (wi2

s/u )2 + (wi3
s/u )2.

Wi
s/u = xi ± ευi

s/u .



60   Computation of Libration point orbits using collocation 

Having initial conditions for each point, we can use the technique which we have 
described above and which is named numerical propagation. Due to the fact that we 
start from very different positions it is not possible to choose one propagation time for 
all trajectories, so we set up the period of time that 2-3 times longer than we usually 
need to reach the Earth. Also the Poincaré map must be established. We create a 
function which cuts the phase space in chosen plane and stops integration when the 
Poincaré map’s section is crossed first or second time (depending on objective) by 
trajectory. The interesting point is that in the case of stable manifold it is necessary to 
propagate backward in time due to the fact that stable manifold’s trajectories approach 
an orbit, so formally the new initial conditions are the last points of the propagated 
trajectories. 
 
Now the strategy of the computation of the stable and unstable manifolds has been 
thoroughly described. In our case the most interesting states are trajectories that form 
heteroclinic or homoclinic orbits. The following sub-section describes the methodology 
for obtaining homoclinic and heteroclinic types of trajectories.  
 
 

2.4.1. Homoclinic and Heteroclinic trajectories 
 
 
The point of homoclinic and heteroclinic trajectories is to provide free maneuver nearby 
the closest primary body or free transfer from one libration point orbit which is located 
at libration point 1, for example, to another libration point orbit located at another point. 
The secret of searching these trajectories lies in the sense of Poincaré’s map. Due to 
the fact that we placed cross section of the map in the Earth’s position at x-axis, we 
obtain one of six values which is needed to build up a state-vector when one of 
trajectories crosses the plane (first of second time). The simplest and interesting 
application of homoclinic and heteroclinic appears when we study manifolds of planar 
libration point orbits. In this case we can obtain free transfer from one orbit to another. 
The algorithm of the calculation of these trajectories is as follows. Suppose that we 
have to planar orbits with the same energy which are located at libration point 1 and 
LIbration point 1, respectively. The first step is to compute unstable manifold which 
corresponds to the orbit around libration point 2 and stable manifold corresponded to 
the orbit located in the neighborhood of libration point 1. From here we obtain x – 
coordinate for our state vector.  
 
 

 
 
 

(2.94) 
 
 
 
 
According to (2.94) we see that we need to find three parameters in the case of 
heteroclinic and homoclinic orbits, it is easy to see that 𝑧, 𝑧 = 0 since orbits are planar 

xE = x,
z, !z = 0,
X = (xE , y,0, !x, !y,0)

T .
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and x is equal to the Earth position. The figure below illustrates how y – coordinate and 
y – component of speed can be obtained. 
 

 
Figure 2.8 Cross section 

 
It is easy to see that there are some intersection points in the second picture. These 
points mean that the y – coordinate and y – component of speed are the same for both 
manifolds stable and unstable. So all intersection points show the existence of the 
connecting orbits. After analyzing the obtained data, we have state vector with only 
one unknown. This unknown 𝑥 can be computed by means of Jacobi constant. Due to 
the fact that we have natural motion and do not apply any maneuver we can say that 
Jacobian constant is the same for the connecting trajectories and orbits which 
correspond to the trajectories. Using the equation (1.26), it is possible to compute the 
x – component of speed. Having all components of the state vector, we can propagate 
forward and backwards in time with the initial conditions which are the state vector. 
The same method can be used for the computation of the homoclinic trajectories with 
the only difference that stable and unstable manifold for one orbit is computed. We 
have considered the case when libration points orbits have the same energy. 
According to the fact that the energy of connecting orbits is the same energy that orbits 
have, we can successfully suppose that connecting orbits are free transfer trajectories. 
It is not possible to fulfil a free transfer from one orbit to another one if they have 
different energy levels. Although, the usage of manifolds can be very efficient even in 
this situation. In this case we compute the manifolds of two orbits, which now could be 
not only planar orbits, and use the Poincaré map to stop the integration. The x – 
position is equal to the Earth coordinate. Now we plot y – z components instead of 𝑦/𝑦 
and search for the intersection points. In these points we have state vectors as follows 
 
 

 
 
 
 

(2.95) 
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where 
 

 
 

(2.96) 
 
 
 
 
It is easy to see that it is possible to fulfil a maneuver when a spacecraft is located at 
these interaction points. A maneuver is given by  
 
 

 
 
 

(2.97) 
 
 
 
 
 
The statement (2.97) can be represented as 
 
 

 
 
 

(2.98) 
 
 
 
 
 
 
Now we have presented all methodology which we use to study the neighborhood of 
libration points orbits and their manifolds in the Sun – Earth system. The next chapter 
presents numerical results and their graphical interpretation which are computed in our 
work.  
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Chapter 3 
 

NUMERICAL RESULTS 
 
 
In this chapter we present numerical results of our computations and its graphical 
interpretation. The chapter includes results of several different computations in a 
specific order: The first part is the Lindstedt – Poincaré procedure which provides an 
initial seed for the collocation method and refined orbits by collocation procedure which 
are computed using the initial seed; The second one is the evolution of orbits over the 
mass parameter change and some variations in initial guess of the period; Then 
continuation approach procedure’s results are represented; And the fourth part is the 
stable/unstable manifolds and connecting orbits. As we have mentioned above we 
work in the Sun-Earth/Moon system with the mass parameter 𝜇 = 
3.040423398444176x10-6. It is necessary to remind that all calculations are done in 
the dimensionless reference system. It has to be noted that all values in the following 
tables are cut to provide better looking. 
 
 

3.1. Lindstedt – Poincaré procedure and Collocation Method 
 
 
We have mentioned many times in our work that the Lindstedt – Poincaré procedure 
can be used for the computation of initial conditions which are needed to initiate the 
collocation procedure and refine an isolated solution. In this sub-section the results of 
the Lindstedt – Poincaré procedure and the method of collocation are presented. The 
difference between semi-analytical method and numerical is shown. We represent 
three types of orbits: Vertical Lyapunov orbit, Planar Lyapunov orbit and Halo orbit. 
The following tables, which are provided in this sub-section, contain the initial seeds 
which are obtained by the Lindstedt – Poincaré procedure and state vectors of the 
refined orbit by the collocation collocation. We suggest starting with Vertical Lyapunov 
orbit. All computations are done for both collinear points L1 and L2 but due to the fact 
that in the Sun – Earth/Moon system the orbits around the opposite points are very 
similar, we present orbits around L1. 
 
Table 3.1 State vector of initial conditions (Vertical Lyapunov) 

Method X Y Z Vx Vy Vz Period 

Lindstedt-
Poincaré 

-9.9002192e-01 2.8423650e-05 -2.0436054e-03 1.8682814e-04 8.7872059e-05 1.96421650e-03 3.12040725 

Collocation -9.9014980e-01 2.7851450e-05 -2.0436054e-03 1.8094694e-04 8.7323887e-05 1.9911658e-03 3.1311087 
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The next two figures 3.1 and 3.2 show the difference in the orbits. It is easy to see that 
the computed numerically orbit (red) which is refined by collocation method in the 
CR3BP model is bigger that the orbit which is computed semi – analytically. This 
happens because the blue orbit is an approximate solution and does not exist in the 
CR3BP model, whereas the red one is numerically refined using the vector field of the 
model. 
 
 

 
Figure 3.1 Vertical Lyapunov orbits obtained semi-analytically (blue) and numerically 

(red) 

 
 

 
Figure 3.2 Vertical Lyapunov orbits' positions related to the Earth 
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The second represented type is Planar Lyapunov orbits. This family contains 2D orbits 
and there are free transfers from one planar orbit to another with the same energy 
level. Table 3.2 illustrates the state vectors of Planar Lyapunov orbits which are 
computed by the Lindstedt – Poincaré semi - analytical procedure and the method of 
collocation which is a numerical method using vector field. The orbits are shown in the 
figures 3.3 and 3.4. 
Table 3.2 State vector of initial conditions (Planar Lyapunov) 

Method X Y Z Vx Vy Vz Period 

Lindstedt-
Poincaré 

-9.9237570e-01 1.96066966e-04 0 -1.8653083e-05 1.39724833e-02 0 3.1153750615600 

Collocation -9.9233197e-01 1.7482299e-04 0 -1.3630561e-05 1.37406317e-02 0 3.1118363929997 

 

 
Figure 3.3 Planar Lyapunov orbits obtained semi-analytically (blue) and numerically 

(red) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Figure 3.4 Planar Lyapunov orbits' positions related to the Earth 
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In the case of Planar Lyapunov orbit we see that the approximate profile which is 
obtained by the Lindstedt – Poincaré expansion is not so different from the collocated 
orbit. Anyway, the orbit which is refined by collocation procedure is more accurate and 
exists in the CR3BP model therefore can be used for further computations. 
 
The last family that we provide as the comparison is the Halo family. This type of orbits 
which exists in the neighborhood of the collinear libration points is the most popular in 
the case of the space mission design. Table 3.3 illustrates the state vectors of Halo 
orbits which are obtained by the Lindstedt – Poincaré procedure and the method of 
collocation. 
 
 
Table 3.3 State vector of initial conditions (Halo) 

Method X Y Z Vx Vy Vz Period 

Lindstedt-
Poincaré 

-9.9002192e-01 2.8423650e-05 -2.0436054e-03 1.8682814e-04 8.7872059e-05 2.77748151e-04 3.000746366511 

Collocation -9.9197452e-01 1.75536960e-10 1.8842046e-03 2.25424406e-11 1.09696432e-02 1.62919982e-10 3.055724464866 

 
 
The following two figures 3.5 and 3.6 illustrate the orbits. It is easy to see that the 
computed numerically orbit (red) which is refined by collocation method in the CR3BP 
model is bigger that the orbit which is computed semi – analytically (blue). The 
difference appears because the blue orbit is an approximate solution and is computed 
using semi – analytical algorithm, whereas the red one is refined using the vector field 
of the model. 
 

 
Figure 3.5 Halo orbits  obtained semi-analytically (blue) and numerically (red) 
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Figure 3.6 Halo orbits' positions related to the Earth 

 
 
Due to the fact that we look for closed solution and represent our problem as BVP, it 
is not possible to obtain quasi – periodic orbits without modifying the algorithm. We 
can study the approximate quasi – periodic solutions which are computed by the 
Lindstedt – Poincaré procedure. The figures 3.7 and 3.8 below provide two Lissajous 
orbits with 𝛼 = 0.01 and 𝛽 = 0.05 and 𝛽 = 0.15, respectively. 
 

 
Figure 3.7 Lissajous orbit with 𝛽 = 0.05 
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Figure 3.8 Lissajous orbit with 𝛽 = 0.15 

 
 
We can see that using the Lindstedt – Poincaré procedure to calculate the initial 
conditions for the collocation procedure is efficient. Also the expansions can be used 
for an approximate study of quasi – periodic orbits. The next sub-section shows 
changes in orbits when А small deviation in some parameters of system is applied. 
  
 

3.2. Evolution of orbit families 
 
 
There is a reason why we need to have high accuracy in the case of the computation 
of the libration point orbits. The reason is that even some small deviations can have 
critical effects on orbits. That’s why this sub - section shows an evolution of orbit in the 
case when we apply some small deviations for different parameters such as: mass 
parameter and initial period. Lyapunov vertical orbit around L1 point and Halo orbit 
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around Lagragian point number two are used for the demonstration due to the fact that 
these orbits are 3D orbits and it is easy to see any changes. The tables which appear 
in this section provide the state vectors and the periods of the initial orbits. 
 
Table 3.4 State vector of Vertical Lyapunov orbit 

Libration 
Point X Y Z Vx Vy Vz Period 

L1 -9.9014980e-01 2.7851450e-05 -2.0436054e-03 1.8094694e-04 8.7323887e-05 1.9911658e-03 3.1311087 

 
Using the data from table 3.4 for the collocation procedure we obtain isolated periodic 
solution which corresponds to the family of Lyapunov vertical orbits. The family of 
Lyapunov vertical orbits has very a specific shape. It looks like a circle or ellipse in the 
case of X-Y view and like a ‘eight’ in case of Y-Z view. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.9 Vertical Lyapunov orbit's state vector over the time (null deviation) 

Figure 3.10 Vertical Lyapunov orbit around L1 (null deviation) 



70   Computation of Libration point orbits using collocation 

We have mentioned above that the mass parameter – the most important parameter 
of the system in CR3BP. According to this fact, it looks interesting and reasonable to 
see an evolution of orbits over the mass parameter changes. Now we apply small 
deviation to mass parameter 𝜇 = 3.040423398444176x10-6. The value of the deviation 
is equal to ±10-9. Applying the negative deviation, we obtain 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We can see that changes, even very small changes, in mass parameter can deform 
an orbit significantly. Size and shape can be changed in different ways.  
 

Figure 3.11 Vertical Lyapunov orbit's state vector over the time (negative deviation) 

Figure 3.12 Vertical Lyapunov orbit around L1 (negative deviation) 
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Applying a positive deviation, the orbit results in 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
  
In the case of positive deviation and this particular orbit we see a considerable increase 
in size and period. The following figures illustrate the calculated orbits together to show 
the difference. 
 

Figure 3.13 Vertical Lyapunov orbit's state vector over the time (positive deviation) 

Figure 3.14 Vertical Lyapunov orbit around L1 (positive deviation) 
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Figure 3.16 Comparison of the orbits 

 
 

Figure 3.15 Evolution of Vertical Lyapunov orbit over mass parameter 
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The next step is to fulfil the same test but using the Halo orbit located in the 
neighborhood of libration point 2. This test is not successful with the deviation value 
which is equal to ±10-9. Since the solutions do not converge, so the deviation value 
decreases to ±10-11. Having smaller deviation, the solutions converge and Halo orbits 
are refined. The table 3.5 below provides the initial state vector of the Halo orbit. 
 
Table 3.5 State vector of Halo orbit 

Libration 
Point X Y Z Vx Vy Vz Period 

L2 -1.0080192e+00 -1.2708061e-10 -1.8743063e-03 -1.4769194e-11 -1.1101702e-02 -1.2026598e-10 3.096804317210 

 
We start the collocation procedure three times, once without deviation and once with 
positive and negative deviation respectively. As the initial seed data from the table 3.5 
is used. 
 

 
Figure 3.17 Halo orbit's state vector over the time (null deviation) 

 

 
Figure 3.18 Halo orbit around L2 (null deviation) 
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Now we apply the negative deviation and can see that the size increases significantly. 
The following two figures show a refined by the collocation process orbit with a negative 
deviation added to the mass parameter. 
 
 

 
Figure 3.19 Halo orbit's state vector over the time (negative deviation) 

 

 
Figure 3.20 Halo orbit around L2 (negative deviation) 
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Applying the positive deviation to the initial conditions of the collocation procedure, the 
orbit results in 
 
 

 
Figure 3.21 Halo orbit's state vector over the time (positive deviation) 

 
 

 
Figure 3.22 Halo orbit around L2 (positive deviation) 

 
 
It is interesting to note that we can see tremendous decrease in z – components of the 
orbit. The following figure illustrates an evolution of the orbit over the mass parameter. 
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Figure 3.23 Evolution of Halo orbit over the mass parameter 

 
Another test is to apply different deviations to the initial guess of the period. Applying 
a small deviation 10-7 to the period gives us very small changes of orbits 

 
Figure 3.24 Comparison of three orbits when 10-7 deviation to the period is applied 
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Now we apply a bigger deviation to see what happens. The value of deviation equals 
10-5. 

 
Figure 3.25 Comparison of three orbits when 10-5 deviation to period is applied 

 
 
 
Now we increase the deviation applied to the initial guess of period up to 10-3 and 10-

1. 
 

 
Figure 3.26 Comparison of three orbits when 10-3 deviation to period is applied 
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Figure 3.27 Comparison of three orbits when 10-1 deviation to period is applied 

 
 

3.3. Continuation approach 
 
 
It is well known that there are several kinds of orbits. Some of them have already been 
presented in the previous sections, for instance: Lissajous orbits and vertical Lyapunov 
orbits. This section focuses to Halo and Planar Lyapunov families of orbits. The 
following table provides state vectors and periods for the presented orbits and this is 
enough to refine the orbit with the collocation procedure. The continuation of an orbit 
is implemented without any adaptive step and stopping point, so the number of orbits 
and step must be selected by a user. 
 
 
Table 3.6 State vectors and periods of orbits 

Class X Y Z Vx Vy Vz Period 

Halo -1.00801920e+00 -1.2708061e-10 -1.8743063e-03 -1.4769194e-11 -1.1101702e-02 -1.2026598e-10 3.096804 

Planar 
Lyapu

nov 
-1.00667003e+00 -2.8401638e-04 0 1.53946454e-04 -1.8992240e-02 0 3.243072 
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Figure 3.28 Halo orbit computed by the collocation procedure 

 
Figure 3.29 Evolution of state vector of given orbit over the time 

 

 
Figure 3.30 Family of Halo orbits around L2 (3-D and X-Y) 
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Figure 3.31 Family of Halo orbits around L2 (X-Z and Y-Z) 

 
This family of Halo orbits contains 20 orbits and for the continuation process is 
performed with step = 0.00005 in dimensionless reference system. 
 
 
Now the family of Planar Lyapunov orbits in the neighborhood of libration point 2 is 
presented. The family contains 20 orbits and the step between orbits is equal to 
0.00006. The Figure below shows the initial orbit. 
 
 

 
Figure 3.32 Planar Lyapunov orbit computed by collocation 
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Figure 3.33 State vector of given orbit over the time 

 
 

 
Figure 3.34 Family of Planar Lyapunov orbits 

 
 
We introduce only isometric and X-Y view according to the fact that z – components 
equal to zero. 
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There is a possibility that one family of orbits bifurcates from another one and when 
this situation occurs we can see two types of orbit’s branches during one continuation 
process. The following figure illustrates two different families of orbits which are 
obtained by one continuation procedure with 30 orbits and step = 0.00007. 

 
Figure 3.35 Halo and Planar Lyapunov families 

 
 

3.4. Stable and unstable manifolds 
 
 
Stable and unstable manifolds and connecting orbits which are provided by manifolds 
is an important subject for thorough study. This sub-section provides results of 
manifolds’ computations, heteroclinic and homoclinic orbits and maneuvers 
calculations. It starts with homoclinic trajectories, then provide the results of 
computations of heteroclinic trajectories which exist between two planar orbits which 
are located around opposite collinear points and the final part of this sub-section is the 
representation of stable and unstable manifolds of Halo orbits. Table 3.7 contains the 
state vector of the orbit which is used to show homoclinic trajectories. 
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Table 3.7 The state vector of orbit to obtain homoclinic trajectory 

Libration 
Point X Y Z Vx Vy Vz Period 

L1 -9.9179544e-01 1.4999947e-04 0 1.7918310e-05 1.0836423e-02 0 3.0733640063177092 

 
Now we use algorithm which we have described in the previous chapter to calculate 
stable and unstable manifolds of given orbit. 
 

 
Figure 3.36 Stable and unstable manifolds of one orbit around L1 

 

 
Figure 3.37 Intersections needed to obtain Y - components 
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Figure 3.36 illustrates 50 (the number that can be chosen by operator) arrival (green) 
and departure (red) trajectories which correspond respectively to stable and unstable 
manifolds of this particular orbit. Figure 3.37 presents profiles of y – components of 
each trajectory of both manifolds. They are not boundary due to the feature of the 
computational process. It will be correct if we simply connect the first and the last 
points. The intersections of red and green curves mean that there are connecting 
trajectories. Here, it is easy to see that there are two trajectories. The figure below 
shows homoclinic trajectory. 
 

 
Figure 3.38 Homoclinic trajectory 

 
Table 3.8 Initial conditions for Homoclinic trajectory 

Libration 
Point X Y Z Vx Vy Vz Period 

L1 -0.9908599626 0.004921758301120 0 0.003161076322996 0.000642750481497 0 4.497347857684 

 
Now we represent manifolds of two orbits which are located in different collinear points 
in the Sun – Earth/Moon system. The vector states can be found in the table below. 
 
Table 3.9 The state vectors of orbits to obtain heteroclinic trajectory 

Libration 
Point X Y Z Vx Vy Vz Period 

L1 -9.9179544e-01 1.4999947e-04 0 1.7918310e-05 1.0836423e-02 0 3.0733640063177 

L2 -1.008018e+00 0 0 0 -1.1938388e-02 0 3.1262900575331 
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We apply the same algorithm with the only difference that we have two orbits, one 
around L1 and another around of L2. The stable manifold is calculated for the orbit 
around L1 and the unstable manifold is obtained for the orbit around L2. 
 

 
Figure 3.39 Stable and unstable manifolds of the orbits around L1 and L2 

 
Figure 3.40 Intersections needed to obtain Y - components for heteroclinic trajectories 
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The following table presents initial conditions of the heteroclinic trajectory which 
connects two planar orbits located around libration point number one and two. A 
heteroclinic trajectory can be propagated from both libration points. 
 
Table 3.10 Initial seeds for heteroclinic trajectory 

Libration 
Point X Y Z Vx Vy Vz Period 

L2 -1.0080048578 -0.0012955670044 0 -0.00003643689332 -0.01155341399799 0 4.45233415873 

L1 -0.9887330247 -0.00082288614890 0 0.001487719169338 -0.01059113024800 0 4.45233415873 

 
 
 

 
Figure 3.41 Heteroclinic trajectory 

 
 
 
 
It has been mentioned above that heteroclinic and homoclinic trajectories can be 
computed only for planar orbits. In the case when we have 3D orbits we can provide 
maneuvers to reach one orbit from another. The following table provides state vector 
of Halo orbits in the neighborhood of collinear libration points. 
 
 
 



Numerical results  87 

Table 3.11 State vectors of Halo orbits 

Libration 
Point X Y Z Vx Vy Vz Period 

L1 -9.9197556e-01 0 -1.886612e-03 0 1.0973081e-02 0 3.0557121784474464 

L2 -1.0080185894 -1.5479509e-04 -1.875113e-03 -3.4376537e-05 -1.1098152e-02 1.677541e-04 3.0967911641348698 

 
 

 
Figure 3.42 Stable and Unstable manifolds of Halo orbits (Isometric view) 

 

 
Figure 3.43 Stable and Unstable manifolds of Halo orbits (X-Y view) 
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Figure 3.44 Stable and Unstable manifolds of Halo orbits (X-Z view) 

 

 
Figure 3.45 Intersection of Y and Z profiles 



Numerical results  89 

From figure 3.45 we can see that there are a big number of possibilities to maneuver. 
We can reach one orbit from another by adding computed delta V to a spacecraft 
velocity vector. 
 
Now all results of our work are presented. The next chapter contains the summary of 
the project. 
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Chapter 4 
 

Conclusion 
 
 
Summarizing all data which has been obtained during the research we can say that 
the collocation method is very efficient for studying the neighborhood of the collinear 
libration points. The procedure is very cheap in terms of computational time from 1.5 
to 5 seconds depending on criterion of convergence and accuracy of an initial seed. 
According to the fact that the accuracy of the collocation procedure depends on initial 
conditions, we can say that using the Lindstedt – Poincaré method is a good option. 
Looking at the results we can see that: 
 

- the orbits which are computed using the collocation method describe natural 
motion in phase space around an equilibrium point very well; 

 
- a state vector obtained with the collocation method gives very accurate data for 

propagation and prediction of the system behavior; 
 

- the procedure can be used for following the family of orbits; 
 

- orbits obtained by collocation procedure can be used for studying stable and 
unstable manifolds; 

 
- heteroclinic and homoclinic trajectories have been computed. 

 
This method can be used for the mission design when, for example, you have only the 
state vector of an object entering a neighborhood of a libration point of the chosen 
system and you need to know how a spacecraft or a probe will orbit the libtation point 
for an obtained period of time. Having this information, it is possible to propagate the 
trajectory to see stability of the orbit for a longer period of time and compute the point 
where it will be necessary to apply corrections to eliminate the tendency to fall out of 
the periodic orbit. 
 
As a result of the work we provide several MATLAB scripts, which are located in 
appendix section of the paper. There are two scripts of collocation algorithm. The first 
script for the refining an orbit and a period and the second one for finding orbit with 
selected period of time. There is also a plotter with an implemented interpolation part 
and saver and loader to/from txt formatted file. 
 
As a further research I can propose applying the method of collocation to refine 
homoclinic and heteroclinic trajectories. Using the method of collocation for computing 
connecting trajectories provides much higher accuracy results and saves 
computational time and resources.  
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Appendix A 
 
 
Here we attach the collocation algorithms (Refining of the trajectory and period and 
fixed period refining). 
 
 
function [x, t, T, JC, Si, Ti] = GLcollocation(x0, T0, N, QUAD, mu, ANCH, diffeps) 
 
tol = 1e-12; 
fi=[]; 
ffun = @CollRTBP; 
%setting some variabeles   
n = size(x0,2);              %Dimenson of the system 
I = eye(n);                     %Identity matrix of size [n,n] 
T = T0;                          %initial guess for period time 
x = [];                             %variable for state nodes [N,n] 
h = 1/N;                         %time step for mesh (scaled) 
t = linspace(0,1,N+1)';  %time nodes (scaled) 
Norm=1e99; Normmax = 40; stop=0; conv=1; 
options=odeset('Reltol',tol,'Abstol',tol); 
 
[rho,alpha,beta]=Gquad(QUAD); 
 
%setting arrays 
np=max(size(rho));      %Number of points 
D=[];                   %D matrix for local parameter elimination 
B=[];                   %B matrix for determine xij 
B2=[];  
 
for i=1:np 
    D=[D I*beta(i)]; 
    br=[]; 
    for j=1:np 
        br=[br alpha(i,j)*I]; 
    end 
    B=[B; br]; 
    B2=[B2; I]; 
end 
 
%Colocation points tij 
tij=[];  
 for i=1:max(size(t))-1 
    tij=[tij t(i)+h*rho]; 
 end 
 
 %Integration from x0 for initial guess 
 tic 
 disp('* Integration from x0 for initial guess') 
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 [ti,xi] = ode45(ffun,[0,T],x0,options, 0,mu); 
 
 %Scale time (tau=t/T) 
    
   ti=ti./T; 
 %determine values xij for initial guess 
   for i=1:n 
      xij(:,i) = interp1(ti,xi(:,i),tij','spline'); 
   end 
  xij=xij.'; 
  
  %setting up the initial mesh xi 
   for i=1:n 
      x(:,i) = interp1(ti,xi(:,i),t,'spline'); 
   end 
    
   x=x.'; 
    
 %derivatives fi for initial guess 
   fi=[]; 
   for i=1:max(size(tij)) 
       fi  = [fi; T*feval(ffun,0,xij(:,i), 0, mu)]; %derivative 
   end   
    
%collocation 
 
NM=[];  %empty array for norm 
i=0;    %Iteration counter 
Si =[]; 
Ti =[]; 
while (Norm>diffeps) & (stop == 0) 
     
     i=i+1;                %Iteration counter 
     H = zeros(n*(N+1)+1); %variable for set of equations 
     R  = [];              %rhs 
     FP=[];                %variable for update data for fi  
      
   for pp=1:N   
      
       E  = zeros(np*(n+1)); 
       V  = []; 
       U  = []; 
       qi = []; 
       Q  = []; 
       s1 = n*np*(pp-1);    
        
       %Determine xij 
       xij=B2*x(:,pp)+h*B*fi(s1+1:s1+np*n); 
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       %determine f(xij), df(xij)/dx 
       fxi=[]; 
       dfxi=[]; 
       for j=1:np 
          fxi  = [fxi  feval(ffun,0,xij(((j-1)*n+1):j*n,:), 0, mu)]; %derivative 
          dfxi = [dfxi feval(ffun,0,xij(((j-1)*n+1):j*n,:), 1, mu)]; % Jacobian(6x6) 
       end 
        
       %Collocation equations 
       for qq=1:np                    %for each coll. point 
          s2 = n*(qq-1)+1; 
          A  = T*dfxi(:,s2:n+s2-1);   %A(tij,xij) 
          V  = [V; A]; 
          U  = [U; fxi(:,qq)]; 
          qi = [qi; T*fxi(:,qq) - fi(s1+s2:s1+s2+n-1,:)]; 
           
          for rr=1:np                 %column 
             s3 = n*(rr-1)+1; 
             Q(s2:s2+n-1,s3:s3+n-1) = alpha(qq,rr)*A; 
          end 
       end 
        
       %Local parameter elimination 
       W=eye(np*n)-h*Q; 
       iW=inv(W); 
       GAMMA=I+h*D*iW*V; 
       LAMBDA=h*D*iW*U; 
       R=[R; h*D*iW*qi];           %column with ri; 
       FP=[FP; iW*V iW*U iW*qi];   %storage for update fi 
       rowH=(pp-1)*n+1:pp*n; 
       H(rowH,rowH)=-GAMMA; 
       H(rowH,rowH+n)=I; 
       H(rowH,(N+1)*n+1)=-LAMBDA; 
   end 
   
   %Boundary equations 
   H(N*n+1:(N+1)*n,1:n)=I; 
   H(N*n+1:(N+1)*n,N*n+1:(N+1)*n)=-I; 
    
   %Residual 
   R=[R; x(:,N+1)-x(:,1); 0]; 
    
%Anchor equation (orthogonality condition on x0') 
   if ANCH==1 
      f1=feval(ffun,0, x(:, 1), 0, mu); 
      H((N+1)*n+1,1:n)=f1'; 
    elseif ANCH==2 
      H((N+1)*n+1,1)=1; 
   end 
  %Create sparse matrix 
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  H=sparse(H); 
 
  %Solve linear system 
  w = H\R;  
 
  wi = w(1:n*(N+1)); 
  wi = reshape(wi,n,N+1); 
  dT = w(n*(N+1)+1); 
   
  %Update variables 
   
   x = x + wi;        
   T = T + dT;        
   
  for rr=1:N       %Update fi with eq. 
    s=np*n*(rr-1); 
    
fi(s+1:s+n*np,:)=fi(s+1:s+n*np,:)+FP(s+1:s+n*np,1:n)*wi(:,rr)+FP(s+1:s+n*np,n+1)*dT
+FP(s+1:s+n*np,n+2); 
  end 
  
  %Store values of each iterations Si and Ti 
  Sii=x.'; 
  Si = [Si, Sii]; 
  Tii = T; 
  Ti = [Ti; Tii]; 
   
  %Determine |w| for converge check 
  NormOld = Norm; 
  Norm = norm(w); 
  NM=[NM Norm]; 
   
  disp(sprintf('* Iteration : %d, T = %0.7g, Norm = %0.7g',i,T,Norm)) 
   
 if   Norm > Normmax 
     disp('* not convergent, norm is higher than 40') 
       stop = 1; 
       conv = 0; 
 end 
end                   %end of while 
 
%rescale t 
t=t*T; x=x.'; 
 
xJ = x(length(x),:); 
xJ = xJ.'; 
JC = computeJacobi (xJ, mu); 
disp(sprintf('* Elapsed time = %0.4g',toc)) 
 
end 
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function [x, t, T, JC, EV] = FPcollocation(x0, T, N, QUAD, mu, ANCH, diffeps) 
 
tol = 1e-12; 
fi=[]; 
EV=[]; 
ffun = @CollRTBP; 
%setting some variabeles  
n = size(x0,2);          %Dimenson of the system 
I = eye(n);              %Identity matrix of size [n,n] 
x = [];                  %variable for state nodes [N,n] 
h = 1/N;                 %time step for mesh (scaled) 
t = linspace(0,1,N+1)';  %time nodes (scaled) 
Norm=1e99; Normmax = 40; stop=0; conv=1; 
options=odeset('Reltol',tol,'Abstol',tol); 
 
[rho,alpha,beta]=Gquad(QUAD); 
 
%setting arrays 
np=max(size(rho));      %Number of points 
D=[];                   %D matrix for local parameter elimination 
B=[];                   %B matrix for determine xij (2.12) 
B2=[];  
 
for i=1:np 
    D=[D I*beta(i)]; 
    br=[]; 
    for j=1:np 
        br=[br alpha(i,j)*I]; 
    end 
    B=[B; br]; 
    B2=[B2; I]; 
end 
 
%Colocation points tij 
tij=[];  
 for i=1:max(size(t))-1 
    tij=[tij t(i)+h*rho]; 
 end 
 
 %Integration from x0 for initial guess 
 tic 
 disp('* Integration from x0 for initial guess') 
  
 [ti,xi] = ode45(ffun,[0,T],x0,options, 0,mu); 
 
 %Scale time (tau=t/T) 
    
   ti=ti./T; 
 %determine values xij for initial guess 
   for i=1:n 
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      xij(:,i) = interp1(ti,xi(:,i),tij','spline'); 
   end 
  xij=xij.'; 
  
  %setting up the initial mesh xi 
   for i=1:n 
      x(:,i) = interp1(ti,xi(:,i),t,'spline'); 
   end 
    
   x=x.'; 
    
 %derivatives fi for initial guess 
   fi=[]; 
   for i=1:max(size(tij)) 
       fi  = [fi; T*feval(ffun,0,xij(:,i), 0, mu)]; %derivative 
   end   
    
    
%collocation 
 
NM=[];  %empty array for norm 
i=0;    %Iteration counter 
Si =[]; 
Ti =[]; 
while (Norm>diffeps) & (stop == 0) 
     
     i=i+1;                         %Iteration counter 
     H = zeros(n*(N+1)+1, n*(N+1)); %variable for set of equations 
     R  = [];                       %rhs 
     FP=[];                         %variable for update data for fi  
      
   for pp=1:N   
      
       E  = zeros(np*(n+1)); 
       V  = []; 
       U  = []; 
       qi = []; 
       Q  = []; 
       s1 = n*np*(pp-1);    
        
        
       %Determine xij  
       xij=B2*x(:,pp)+h*B*fi(s1+1:s1+np*n); 
     
       %determine f(xij), df(xij)/dx 
       fxi=[]; 
       dfxi=[]; 
       for j=1:np 
          fxi  = [fxi  feval(ffun,0,xij(((j-1)*n+1):j*n,:), 0, mu)]; %derivative 
          dfxi = [dfxi feval(ffun,0,xij(((j-1)*n+1):j*n,:), 1, mu)]; % Jacobian(6x6) 
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       end 
        
       %Collocation equations 
       for qq=1:np                    %for each coll. point 
          s2 = n*(qq-1)+1; 
          A  = T*dfxi(:,s2:n+s2-1);   %A(tij,xij) 
          V  = [V; A]; 
          U  = [U; fxi(:,qq)]; 
          qi = [qi; T*fxi(:,qq) - fi(s1+s2:s1+s2+n-1,:)]; 
           
          for rr=1:np                 %column 
             s3 = n*(rr-1)+1; 
             Q(s2:s2+n-1,s3:s3+n-1) = alpha(qq,rr)*A; 
          end 
       end 
        
       %Local parameter elimination 
       W=eye(np*n)-h*Q; 
       iW=inv(W); 
       GAMMA=I+h*D*iW*V; 
       %LAMBDA=h*D*iW*U; 
       R=[R; h*D*iW*qi];           %column with ri; 
       FP=[FP; iW*V iW*U iW*qi];   %storage for update fi 
       rowH=(pp-1)*n+1:pp*n; 
       H(rowH,rowH)=-GAMMA; 
       H(rowH,rowH+n)=I; 
       %H(rowH,(N+1)*n+1)=-LAMBDA; 
   end 
   
   %Boundary equations 
   H(N*n+1:(N+1)*n,1:n)=I; 
   H(N*n+1:(N+1)*n,N*n+1:(N+1)*n)=-I; 
    
   %Residual 
   R=[R; x(:,N+1)-x(:,1);0]; 
    
   %Anchor equation (orthogonality condition on x0') 
   if ANCH==1 
      f1=feval(ffun,0, x(:, 1), 0, mu); 
      H((N+1)*n+1,1:n)=f1'; 
    elseif ANCH==2 
      H((N+1)*n+1,1:n)=x0; 
   end 
    
  %Create sparse matrix 
%   H=sparse(H); 
 
  %Solve linear system 
  w = H\R;  
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  wi = w(1:n*(N+1)); 
  wi = reshape(wi,n,N+1); 
   
   
  %Update variables 
   
   x = x + wi;       %  
   
   
  for rr=1:N       %Update fi  
    s=np*n*(rr-1); 
    fi(s+1:s+n*np,:)=fi(s+1:s+n*np,:)+FP(s+1:s+n*np,1:n)*wi(:,rr)+FP(s+1:s+n*np,n+2); 
  end 
  
  %Store values of each iterations Si and Ti 
   
  Sii=x.'; 
  Si = [Si, Sii]; 
  Tii = T; 
  Ti = [Ti; Tii]; 
   
  %Determine |w| for converge check 
  NormOld = Norm; 
  Norm = norm(w); 
  NM=[NM Norm]; 
   
  disp(sprintf('* Iteration : %d, T = %0.7g, Norm = %0.7g',i,T,Norm)) 
   
 if   Norm > Normmax 
     disp('* not convergent, norm is higher than 40') 
       stop = 1; 
       conv = 0; 
 end 
end                   %end of while 
 
%rescale t 
 
t=t*T; x=x.'; 
 
xJ = x(length(x),:); 
xJ = xJ.'; 
JC = computeJacobi (xJ, mu); 
 
disp(sprintf('* Elapsed time = %0.4g',toc)) 
 
end 
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Appendix B 
 
 
Here the functions used for collocation procedures and our vector field are presented. 
 
 
function [rho,alpha,beta]=Gquad(n) 
%returns scaled Gauss-Legendre quadrature butcher array 
%rho   = vector with points 
%alpha = [nxn] matrix 
%beta = vector with weights 
%first get the roots and weights 
[rts,beta] = GLNodeWt(n); 
%Next determine matrix alpha 
syms x  
a=-1; alpha=[]; 
%beta=[]; 
for i=1:n 
    L=1; 
    for ii=1:n 
        if ii~=i 
           L=L*(x-rts(ii))/(rts(i)-rts(ii)); 
        end 
    end 
     for iii=1:n 
        alpha(iii,i)=int(L,x,a,rts(iii)); 
     end 
    %beta(i)=int(L,x,a,1); 
end 
%scale integration limits from [-1,1] to [0,1] 
rho=(rts'+1)/2; alpha=alpha*0.5; beta=beta*0.5; 
end 
 
 
function [x,w] = GLNodeWt(n) 
% GLNodeWt Nodes and weights for Gauss-Legendre quadrature of arbitrary 
%          order obtained by solving an eigenvalue problem 
% 
% Synopsis:  [x,w] = GLNodeWt(n) 
% 
% Input: 
% 
% Output: 
% 
%  Algorithm based on ideas from Golub and Welsch, and Gautschi.  For a 
%  condensed presentation see H.R. Schwarz, "Numerical Analysis: A 
%  Comprehensive Introduction," 1989, Wiley.  Original MATLAB 
%  implementation by H.W. Wilson and L.H. Turcotte, "Advanced Mathematics 
%  and Mechanics Applications Using MATLAB," 2nd ed., 1998, CRC Press 
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beta = (1:n-1)./sqrt(4*(1:n-1).^2 - 1); 
J = diag(beta,-1) + diag(beta,1);   % eig(J) needs J in full storage 
[V,D]  = eig(J); 
[x,ix] = sort(diag(D));             %nodes are eigenvalues, which are on diagonal of D 
w = 2*V(1,ix)'.^2;                  %V(1,ix)? is column vector of first row of sorted V 
end 
 
 
function U = CollRTBP (t, x, Joption, mu) 
 
Xmu = (x(1)+1-mu); 
xmu = (x(1)-mu); 
MU  = (1-mu);  
 
r13 = (sqrt(xmu^2 + x(2)^2 + x(3)^2))^3; 
r23 = (sqrt(Xmu^2 + x(2)^2 + x(3)^2))^3; 
 
r15 = (sqrt(xmu^2 + x(2)^2 + x(3)^2))^5; 
r25 = (sqrt(Xmu^2 + x(2)^2 + x(3)^2))^5; 
 
Ux = x(1) - ((MU*xmu) /(r13))  - ((mu*Xmu) /(r23)); 
Uy = x(2) - ((x(2)*MU)/(r13))  - ((mu*x(2))/(r23)); 
Uz =      - ((x(3)*MU)/(r13))  - ((mu*x(3))/(r23)); 
 
 
% VECTOR FIELD 
    
xdot = zeros(6,1); 
 
xdot(1) = x(4); 
xdot(2) = x(5); 
xdot(3) = x(6); 
xdot(4) = Ux + (2*x(5)); 
xdot(5) = Uy - (2*x(4)); 
xdot(6) = Uz; 
 
U = xdot; 
 
 
if Joption==1 %f(x)/dx jacobian 
         
 
    Uxx = ((3*MU*(xmu^2))  /(r15))  + ((3*mu*(Xmu^2))  /(r25))   - (MU/(r13)) - (mu/(r23)) 
+ 1; 
    Uxy = ((3*x(2)*MU*xmu) /(r15))  + ((3*mu*x(2)*Xmu) /(r25)); 
    Uxz = ((3*x(3)*MU*xmu) /(r15))  + ((3*mu*x(3)*Xmu) /(r25)); 
 
    Uyx = ((3*x(2)*MU*xmu) /(r15))  + ((3*mu*x(2)*Xmu) /(r25)); 
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    Uyy = ((3*(x(2)^2)*MU) /(r15))  + ((3*mu*(x(2)^2)) /(r25))   - (MU/(r13)) - (mu/(r23)) + 
1; 
    Uyz = ((3*x(2)*x(3)*MU)/(r15))  + ((3*mu*x(2)*x(3))/(r25)); 
 
    Uzx = ((3*x(3)*MU*xmu) /(r15))  + ((3*mu*x(3)*Xmu) /(r25)); 
    Uzy = ((3*x(2)*x(3)*MU)/(r15))  + ((3*mu*x(2)*x(3))/(r25)); 
    Uzz = ((3*(x(3)^2)*MU) /(r15))  + ((3*mu*(x(3)^2)) /(r25))   - (MU/(r13)) - (mu/(r23)); 
 
 
xdot = zeros(6,6);     
xdot(1,4) = 1; 
xdot(2,5) = 1; 
xdot(3,6) = 1; 
xdot(4,1) = Uxx; 
xdot(4,2) = Uxy; 
xdot(4,3) = Uxz; 
xdot(4,5) = 2; 
xdot(5,1) = Uyx; 
xdot(5,2) = Uyy; 
xdot(5,3) = Uyz; 
xdot(5,4) = -2; 
xdot(6,1) = Uzx; 
xdot(6,2) = Uzy; 
xdot(6,3) = Uzz;         
 
U = xdot; 
 
%       x        y        z     Vx   Vy   Vz 
% U = [ 0     0       0       1    0    0; 
%          0     0       0       0    1    0; 
%          0     0       0       0    0    1; 
%       Uxx  Uxy  Uxz     0    2    0; 
%       Uyx  Uyy  Uyz    -2    0    0; 
%       Uzx  Uzy  Uzz     0    0    0]; 
 
end 
end 
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Appendix C 
 
 
In this section additional scripts are provided. 
 
 
Collocation.m 
clear all; close all; clc;  
 
name = input('Enter the name of the file to read: '); 
 
name2 = input('Enter the name of the file to save: '); 
 
[T, X, P0, mu, N, QUAD, JC] = loaddata(name); 
 
sd = 1e-1; 
 
IC = X(1,:); 
conv = 1e-9; 
ANCH = 1; 
[x, t, P, JC] = GLcollocation(IC, P0, N, QUAD, mu, ANCH, conv); 
 
%Number of points to plot 
m = 250;     
%Animation 
A=0; 
[ti, xi] = plotter(t, x, P, m, mu, A); 
 
savedata(t, x, QUAD, mu, JC, name2) 
 
 
function [t, x, P, mu, N, QUAD, JC] = loaddata(name) 
 
tx = load(name); 
 
t = tx(:,2); 
x = tx(:,3:8); 
mu = tx(1,1); 
N = (length(t)-1); 
P = t(length(t)); 
QUAD = tx(2,1); 
JC = tx(3,1); 
end 
 
 
function savedata(t, x, QUAD, mu, JC, name) 
  
Mu = zeros(length(t),1); 
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Mu(1,1) = mu; 
Mu(2,1) = QUAD; 
Mu(3,1) = JC; 
%save orbit data 
tx = [Mu, t, x]; 
save(name,'tx','-ascii'); 
 
end 
 
 
function [ti, xi]=plotter(t, x, P, m, mu, A) 
 
ti=[];xi=[]; 
 
[ti, xi] = intersolution(t, x, P, m); 
 
figure 
subplot(3,1,1); plot(ti,xi(:,1));grid; title('Coordinates over time'); xlabel('Time'); 
ylabel('X'); 
subplot(3,1,2); plot(ti,xi(:,2));grid; xlabel('Time'); ylabel('Y'); 
subplot(3,1,3); plot(ti,xi(:,3));grid; xlabel('Time'); ylabel('Z'); 
       
 
figure 
subplot(3,1,1); plot(ti,xi(:,4));grid;title('Velocities over time'); xlabel('Time'); ylabel('Vx'); 
subplot(3,1,2); plot(ti,xi(:,5));grid; xlabel('Time'); ylabel('Vy'); 
subplot(3,1,3); plot(ti,xi(:,6));grid; xlabel('Time'); ylabel('Vz'); 
 
 
figure 
plot3(xi(:,1),xi(:,2),xi(:,3),'r');grid; title('Periodic orbit'); xlabel('X'); ylabel('Y');zlabel('Z') 
 
figure 
subplot(2,2,1); plot3 (xi(:,1),xi(:,2),xi(:,3),'r'); axis vis3d; grid; title(sprintf('Isometric 
view')); xlabel('X'); ylabel('Y');zlabel('Z') 
subplot(2,2,2); plot (xi(:,1),xi(:,2),'r'); axis vis3d; grid;title(sprintf('X-Y view')); xlabel('X'); 
ylabel('Y'); 
subplot(2,2,3); plot (xi(:,1),xi(:,3),'r'); axis vis3d; grid;title(sprintf('X-Z view')); xlabel('X'); 
ylabel('Z'); 
subplot(2,2,4); plot (xi(:,2),xi(:,3),'r'); axis vis3d; grid;title(sprintf('Y-Z view')); xlabel('Y'); 
ylabel('Z'); 
 
figure 
plot3(xi(:,1),xi(:,2),xi(:,3),'r');grid; title('Periodic orbit'); xlabel('X'); ylabel('Y');zlabel('Z') 
hold on 
plot3(mu-1,0,0,'marker','o','MarkerFaceColor','b') 
 
% figure 
% quiver3(x(:,1),x(:,2),x(:,3),x(:,4),x(:,5),x(:,6));title('Periodic orbit with velocities 
direction'); xlabel('X'); ylabel('Y');zlabel('Z') 
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if A==1 
Animations(xi, length(xi)); 
ends 
end 
 
 
function [xsts, NXs, xuns, NXu, Jacobi_Constant, Cjst, Cjun] = Homoclinic_function(R, 
V, P, m) 
 
format long 
 
%-------- Variables ------------- 
 
NXs = []; 
NXss = []; 
xstlength = []; 
xsts = []; 
NXu = []; 
xuns = []; 
xunlength = []; 
Cjst =[]; 
Cjun =[]; 
Cjstin =[]; 
 
%-------- Constants -------------------------- 
 
pi = 3.1415926535897932384; 
e  = 2.7182818284590452353; 
AU = 149597870.7; 
RAD= pi/180; 
mu = 3.040423398444176e-6; 
Mu = mu - 1;                                       % Position of the Earth 
OPTIONS = odeset('RelTol',1.e-12,'AbsTol',1.e-12); % Options for propagation 
 
%------- Initial conditions ----------------------------- 
 
I = eye(6); STM0 = matrixtovector(I); % IC for STM 
 
IC = [R V STM0]; 
 
 
%------- Propagation ----------------------------- 
 
[t,x] = ode45(@RTBPVF,[0 P],IC,OPTIONS,mu); 
 
 
figure() 
plot3(x(:,1),x(:,2),x(:,3),'r');grid; title('Propagation of orbit'); xlabel('X'); 
ylabel('Y');zlabel('Z'); 
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%------------ Forming Monodromy matrix ---------------- 
 
X = x(:,[1:6]);      % State vector  
STM = x(:,[7:42]);   % Set of STMs in vector form 
 
JC = computeJacobi (X(1,:), mu); 
M = statetransitionmatrix(STM(length(STM),:));  % Momodromy matrix 
 
 
%------------ Eigenvalues and eigenvector -------------- 
 
lambda = eig(M);    % Eigenvalues L1 
[eV, eD] = eig(M);  % Eigenvector and eigenvalues as diagonal matrix 
 
 
[lambdamin, pos] = min(lambda);                % The smallest eigenvalue and its position  
Vst = eV(:,pos);                               % Eigenvector corresponding to the smallest 
eigenvalu 
 
[lambdamax, pos] = max(lambda);                % The largets eigenvalue and its position  
Vun = eV(:,pos);                               % Eigenvector corresponding to the largest 
eigenvalue 
 
%------- Choose solutions for needed amount of points ---------------------- 
 
[ti, xi]=stepsolution(t, x, m); 
 
 
XI = xi(:,[1:6]);      % State vector  
STMI = xi(:,[7:42]);   % Set of STMs in vector form 
 
 
figure() 
plot3(XI(:,1),XI(:,2),XI(:,3),'r');grid; title('Propagation of orbit'); xlabel('X'); 
ylabel('Y');zlabel('Z'); 
 
%---------- Forming STM matrixs for points  ------------- 
S = cell(1,length(ti));  
 
 
for ii=1:length(ti) 
     
    S{ii}=statetransitionmatrix(STMI(ii,:)); 
     
end 
 
%---------- Normaliztion --------------------- 
 
for ii = 1:length(ti) 
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Si=cell2mat(S(1,ii));    % Taking STM(t) (6 x 6) 
 
Wst = Si*Vst;                         % Shift the position for each STM (6 x 1) stable 
Wun = Si*Vun;                         % Shift the position for each STM (6 x 1) unstable 
 
%----------- Stable L1 
Lst = norm(Wst);       
Vsti = Wst/Lst; 
 
%----------- Unstable L2 
Lun = norm(Wun); 
Vuni = Wun/Lun; 
 
%----------- New Initial conditions ------- 
 
eps = 200/AU;  
if ii < (length(ti)-8) 
    NXst = XI(ii,:) - eps*Vsti.'; 
else 
    NXst = XI(ii,:) + eps*Vsti.'; 
end 
NXs = [NXs; NXst]; 
 
NXun = XI(ii,:) - eps*Vuni.';          % '+' or '-' depending on the orbit 
 
NXu = [NXu; NXun]; 
 
Cj = computeJacobi (NXun, mu); 
 
Cjstin =[Cjstin; Cj]; 
 
end 
 
%----------- Propagation of New initital conditions ---------------------- 
 
figure() 
plot3(x(:,1),x(:,2),x(:,3),'b','LineWidth',4);grid; title('Stable and Unstable Manifolds'); 
xlabel('X'); ylabel('Y');zlabel('Z') 
hold on  
plot3(Mu,0,0,'marker','o','MarkerFaceColor','b') 
 
for ii = 1:length(ti) 
% create an options variable 
flag = 0; 
 
%------------------------------------ Stable manifold (propagates backward) 
 
options = odeset('RelTol',1e-12,'AbsTol',1e-12,'Events',@event_function_stable);  
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[tst,xst, TE, VE] = ode45(@RTBP,[0 -3*P],NXs(ii,:),options,mu);   
 
TE; % this is the time value where the event occurred 
VE; % this is the value of X where the event occurred 
 
plot3(xst(:,1),xst(:,2),xst(:,3),'g'); 
 
iteration = ii 
 
xstlength = [xstlength; length(xst)]; 
 
xsts = [xsts; xst(length(xst), :)]; 
 
Cj = computeJacobi (xsts, mu); 
 
Cjst =[Cjst; Cj]; 
 
%------------------------- Unstable manifold (propagates forward) 
 
options = odeset('RelTol',1e-12,'AbsTol',1e-12,'Events',@event_function_unstable);     
     
[tun,xun,TE,VE] = ode45(@RTBP,[0 10*P],NXu(ii,:),options,mu);    
 
TE; % this is the time value where the event occurred 
VE; % this is the value of X where the event occurred 
 
NSV{ii} = xun; % Save each iteration 
 
plot3(xun(:,1),xun(:,2),xun(:,3),'r'); 
 
 
xunlength = [xunlength; length(xun)]; 
 
xuns = [xuns; xun(length(xun), :)]; 
 
Cjs = computeJacobi (xuns, mu); 
 
Cjun =[Cjun; Cjs]; 
 
end 
 
figure() 
plot(xsts (:,2),xsts(:,5),'-gs',... 
    'LineWidth',1,... 
    'MarkerSize',2,... 
    'MarkerEdgeColor','g',... 
    'MarkerFaceColor',[0.3,0.2,0.5]); grid; title('Y and Ydot'); xlabel('Y'); ylabel('Ydot'); 
hold on 
plot(xuns(:,2),xuns(:,5),'-rs',... 
    'LineWidth',1,... 
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    'MarkerSize',2,... 
    'MarkerEdgeColor','r',... 
    'MarkerFaceColor',[0.5,0.5,0.5]); 
end 


