UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH

Facultat d’'Informatica de Barcelona

Evaluation of Low-Power Architectures in a Scientific

Computing Environment

Author:

Constantino Gémez Crespo

MSc Innovation and Research in Informatics

High Performance computing and Computer Architecture

7h of July, 2016

Advisor: Eduard Ayguadé, DAC - UPC

Co-advisor: Filippo Mantovani, Barcelona Supercomputing Center

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Contents

Summary 11
1 Introduction 13
1.1 Production Scientific Applications 14
1.2 Parallelism and Scalability L. 15
1.3 Background and State of the Art 16
1.3.1 Multicore Performance and the Memory Wall 17

1.3.2 Level of Parallelism in production applications 17

1.3.3 Network interconnections 18

1.3.4 Energy Efficiency o0 18

1.3.5 Mobile low power architectures for HPC 19

1.4 DMotivation 20

1.5 Related work 22

2 The Montblanc prototype and mini Clusters 23
2.1 General Cluster Description 23
2.2 Mont-Blanc philosophy and platforms 25
2.2.1 The Mont-Blanc prototype 26

2.2.2 XGene2 mini-cluster L. 30

2.2.3 ThunderX mini-cluster 32

Constantino Gémez Crespo Facultat d’Informatica de Barcelona

4 Contents

2.2.4 JetsonTK1 mini-cluster 33

2.3 Computenodecost 33
3 Severo Ochoa Applications and Benchmarks 35
3.1 Severo Ochoa Programme applications 35
3.2 AlyaRED 36
3.2.1 Application description 36
3.2.2 Implementation comments L. 36
3.2.3 Inputs and experiments descriptions 37

3.3 Non-hydrostatic Multi-Scale Model on the B grid 37
3.3.1 Application description 37
3.3.2 Implementation comments 38
3.3.3 Inputs and experiments descriptions 38

3.4 SMUFIN . .. o 38
3.4.1 Application description 38
3.4.2 TImplementation comments 39
3.4.3 Inputs and experiments descriptions 39

3.5 Saiph ... 40
3.5.1 Application description 40
3.5.2 Implementation comments 40
3.5.3 Inputs and experiments descriptions 40

3.6 Benchmark layers Lo 40
3.6.1 Layer 1l e 41
3.6.2 Layer2 41
3.6.3 Layer3 42

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment 5

4 Test and results 43
4.1 Experiences porting production applications 43
4.1.1 Porting Methodology 44

4.1.2 Porting issues at ARMv7 Mont-Blanc prototype 45

4.1.3 Porting issues at ARMvS8 platforms. 49

4.1.4 Compiler comparison: intel vs gcc 50

4.2 Mont-Blanc performance results L. 52
421 AlyaRED 52

422 NMMB e 56

4.2.3 Saiph 58

4.24 SMUFIN . .. 0. 60

4.3 Performance evaluation of ARM 64-bit platforms 65
4.3.1 Methodology 66

4.3.2 Layer 1 benchmarks results 68

4.3.3 Layer 2 benchmarks results 73

4.3.4 Layer 3 benchmarks results 79

5 Development Issues 81
5.1 Issues at the Mont-Blanc prototype 81
5.1.1 Mont-Blanc prototype overall issues 82

5.1.2 In depth study of very low MPI performance on Alya RED . 83

5.2 Issues at Cavium ThunderX 85
5.2.1 MILCmk trace analysis 86

5.2.2 AMGmk trace analysis L oL 88

6 Conclusions 91

Constantino Gémez Crespo UPC, Barcelona School of Informatics

6 Contents
Acknowledgements 95
Bibliography 100
Annex 101

A Installation guides L. L 101
A.1 Alya RED installation guide 101
A.2 NMMB-CTM installation guide 102
A.3 SMuFiN installation guide 107
A4 Saiph installation guide 109
B Compilation Flags 109

UPC, Barcelona School of Informatics

Constantino Gémez Crespo

List of Figures

1.1 Evolution of performance of mobile vs hpc commodity processors.[25] 20
2.1 MareNostrum 3 Compute node block diagram 24
2.2 Mont-Blanc prototype racks at Barcelona Supercomputing Center . 27
2.3 Mont-Blanc prototype compute node (SDB) 29
2.4 Mont-Blanc prototype sotftware stack 30
2.5 Mont-Blanc prototype building blocks. L. 31
2.6 Layout of the components and connectors on the Merlin Board . . . 32
2.7 Picture of a Cavium ThunderX 2K server board. 33
2.8 Picture of a Jetson TK1 development board [J]. 34
4.1 Image of NMMB output files opened in NCView. 48

4.2 Performance comparison executing NMMB built with Intel or GCC. 51

4.3 Mont-Blanc and MareNostrum3 parallel speedup and efficiency run-

ning Alya RED oo 53
4.4 Performance and energy comparison 53
4.5 Performance and energy comparison 54
4.6 Alya RED perfomance evolution 55
4.7 NMMB parallel performance o7
4.8 NMMB performance on Mont-Blanc compared to MareNostrum3 . . 58

Constantino Gémez Crespo Facultat d’Informatica de Barcelona

List of Figures

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

5.1

5.2

5.3

0.4

9.5

5.6

Saiph performance on Mont-Blanc compared to MinoTauro 59
Memory footprint scaling the number of MPI processes. 61
SMuFiN timeline showing useful duration of threads. 62
SMuFiN timeline view with communication lines. 63
Analysis of the outlier work blocks 64
Double Precision Floating-point performance SoC comparison 69
STREAM benchmark memory bandwidth results. 70
Network Bandwidth peak performance comparison scaling the buffer

SIZE. .. e 72
OpenMP comparison.o 75
MPI comparison. L 78
ThunderX results running Alya. 80

Trace showing irregular execution of Alya RED iterations on Mont-

Blanc prototype. 84
Zoom into master thread during faulty iteration. 84

Trace showing irregular thread duration in two different MILCmk

kernels.o 86
Histograms of one iteration of mile.k2 87
Trace showing irregular thread duration on AMGmk. 88
AMGmk memory instructions count histogram and statistics. 89

UPC, Barcelona School of Informatics Constantino Gémez Crespo

List of Tables

2.1 Mont-Blanc prototype SDB hardware characteristics. 28
3.1 Severo Ochoa applications summary. 36
4.1 Layer 2 OpenMP benchmarks memory stats. 74
1 Ifortran to gfortran flag equivalences. 110

Constantino Gémez Crespo Facultat d’Informatica de Barcelona

10 List of Tables

UPC, Barcelona School of Informatics Constantino Gémez Crespo

11

Summary

HPC (High Performance Computing) represents, together with theory and experi-
ments, the third pillar of science. Through HPC, scientists can simulate phenomena
otherwise impossible to study. The need of performing larger and more accurate

simulations requires to HPC to improve every day.

HPC is constantly looking for new computational platforms that can improve cost
and power efficiency. The Mont-Blanc project is a EU funded research project that
targets to study new hardware and software solutions that can improve efficiency of
HPC systems. The vision of the project is to leverage the fast growing market of

mobile devices to develop the next generation supercomputers.

In this work we contribute to the objectives of the Mont-Blanc project by evaluating
performance of production scientific applications on innovative low power architec-
tures. In order to do so, we describe our experiences porting and evaluating sate of
the art scientific applications on the Mont-Blanc prototype, the first HPC system
built with commodity low power embedded technology. We then extend our study
to compare off-the-shelves ARMvS8 platforms. We finally discuss the most impact-

ing issues encountered during the development of the Mont-Blanc prototype system.

Constantino Gémez Crespo Facultat d’Informatica de Barcelona

12 List of Tables

UPC, Barcelona School of Informatics Constantino Gémez Crespo

13

Chapter 1

Introduction

Nowadays, High Performance Computing is used as a tool that allows the research
community to push science forward. In the same way, it has also a positive impact
in industry and our society. The need of performing larger and more accurate sim-
ulations requires to HPC to improve every day. Current research in HPC is trying
to tackle many of the challenges that affect the development of the next generation

of supercomputers.

Historically in HPC, special purpose technology has been always replaced by a more
cheaper and competitive commodity technology available in the market. For exam-
ple, although vector processors were especifically designed for HPC environments,
RISC and later x86 processor architectures replaced them as a dominating HPC
systems technology[”"]. Given the current massive mobile market, it is possible that
in a similar way, mobile architectures become the next commodity technology that

replaces x86.

This chapter introduces first the production scientific applications and parallelism
concepts. In the background section we present the current state of the art and
challenges in the topics related to the area of HPC architecture and scientific appli-
cations. Later, we talk about the motivation and main objectives of our work and

finally, we discuss similar projects and research in the related work subsection. The

Constantino Gémez Crespo Facultat d’Informatica de Barcelona

14 Chapter 1. Introduction

rest of the thesis is structured as follows: we introduce the architecture details of
the computing clusters involved in our study in chapter 2, in chapter 3 we describe
the set of applications and benchmarks we used to evaluate and compare those plat-
forms. We present the results of our experiments and issues in chapters 4 and 5.

Finally, we share our conclusions in chapter 6.

1.1 Production Scientific Applications

We refer to production applications to those scientific applications that are used as a
tool to perform real simulations whose results allow an improvement in the scientific
knowledge e.g. simulations generating data for a paper in a given scientific area.
We also include in this category the complex codes, usually used in industrial R&D
environment for development of complex products e.g. Computer Fluid Dynamics
(CFD) software to perform wind tunnel simulations in a car company. As opposite
to production, we call benchmark or mini-applications, the software which purpose
is to provide a synthetic framework to test the performance of the applications on
different platforms or hardware configurations, or to validate itself as a valid scien-

tific computing method.

Performing real scale simulations in industry and science requires high quantity
of compute resources both in terms of CPU time and memory. Regular personal
computers and servers can not perform those simulations mainly because of mem-
ory limitations or lack of computational power. In these cases, researchers make use
of HPC clusters, also called Supercomputers. Supercomputers are built using a high
number of computational nodes, each node with one or more processors, intercon-
nected with a high-speed network. Scientific applications (can) take advantage of
this architecture by splitting the computational problem in tasks, and distributing
those tasks among the computational nodes. This way scientists can exploit the
computational power of several nodes working in parallel and split bigger problems

among the memories of the nodes.

Developing applications that can run in parallel is not trivial. Developers must

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment 15

take design decisions and face a set of technical issues based on the target cluster
architecture. Exploiting parallel efficiency at high number of cores requires a deep
knowledge about the application algorithms and hardware details. In this thesis, we
discuss about this technical issues and challenges of porting and executing scientific

applications on a HPC cluster based in low power technology.

1.2 Parallelism and Scalability

Parallel programming is not an emerging paradigm anymore and also not restricted
to the HPC world. Paralelism is found and exploited in variety of workloads, from
user mobile applications to embedded real time systems in industry, and all the so
called cloud services in between. To be able to execute applications in parallel we
have to find concurrency in them, to do that, we break a problem into discrete parts
(tasks) and determine dependencies between them, two tasks that do not depend on

each other are concurrent and potentially can be executed in parallel.

Although the previous description refered to tasks in general, we can distinguish

three main sources of parallelism based on its granularity.

Task Level Parallelism Also known as Thread level parallelism. Execution in
parallel functions and blocks of instructions without data dependeces between

them.

Data Level Parallelism The same block of instructions is executed with different
data. SIMD instructions and GPU floating-point (FP) units exploit this. Also,
it is common in parallel programs to leverage DLP to easily transform the code
to be executed in different threads obtaining TLP e.g. a for struct paralelized

with #pragma omp parallel for.

Instruction Level Parallelism Instructions can be executed in parallel or re-
ordered. For example, out-of-order processor architectures leverage the in-

struction flow paralellism to obtain performance benefits.

Constantino Gémez Crespo UPC, Barcelona School of Informatics

16 Chapter 1. Introduction

To scale applications to a high number of cores, the most important types of paral-
lelism are the task level and data level parallelism, which usually allows the creation

of threads of a reasonable size with no dependencies.

1.3 Background and State of the Art

The performance curve along the years show an exponential increase of the pefor-
mance of the Supercomputers in the top 500. This trend is expected to continue
[21] but not without first tackling many of the challenges of the current commodity

HPC cluster technology.

In the last decade, the most common way to build supercomputers is the so called
cluster architecture. A HPC cluster is build interconnecting high number of nodes,
where each node has the same hardware components. The state of the art hard-
ware found in HPC clusters is based on x86 server-class node technology with high
speed fiber optics network interconnects. However, its becoming usual that the most
powerful machines in supercomputing also include compute accelerators on its ar-

chitecture.

The next milestone in HPC will be achieving at least one exaflop compute capacity.
In order to build the next generation of supercomputers, the HPC research commu-
nity must tackle one by one, several important issues found in the current technology.
In the latest years, supercomputers have been designed with several constraints in
mind that have become progressively outdated. For example, the primary tech-
nological constraint to build HPC systems is not longer the peak clock frequency,
instead, we are now limited by power consumption. Floating point compute ca-
pacity relevance has been displaced by the need of minimizing the data movement
in the system. Exascale machines will require applications that exploit parallelism
up to millions of cores and develop new techniques to reduce the performance gap
withi CMPs (Chip Multi-processors) between the memory and the cores[”7]. This
breakthrough in compute performance will directly benefit many state of the art ap-

plications allowing the research community to perform more advanced simulations.

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment

17

For example in combustion research, it will allow to move from simulations using

simplified models of rocket engines to full detailed models of those parts[”7].

1.3.1 Multicore Performance and the Memory Wall

Memory bandwidth is a critical resource in multicore systems. The processor per-
formance is doubling every two years while DRAM performance is doubling every
three years; every year the performance gap between both is increased. This trend,

which is expected to continue, is also known as the memory wall.

DRAM has been used for years to build memory DIMMs because it is very con-
vinient; fast, simple and cheap to manufacture. However, scaling of DRAM technol-
ogy is expected to end in the next years[”|]. Several alternatives have been proposed
to improve or replace DRAM, for example: TSV (Through-Silicon Vias) 3d stacked
memory aims to improve memory performance by heavily increasing the memory
bandwidth from the processor to the memory banks; and non-volatile emerging tech-
nologies which aim to replace the current DRAM cell technology with more energy
efficient, non-volatile memory cells with similar speed to DRAM and better scaling
potential [?1]. 3d stacked memory is used in the latest generation of Intel Xeon Phi
accelerators and non-volatile technology in main memory will be included in the

architecture of new supercomputers [1].

1.3.2 Level of Parallelism in production applications

As we mention, developing production application that exploit efficiently the com-
pute capabilities of a HPC cluster is not trivial. Our maximum level of parallelism
is determined by the size of the total parallel region of an application [}7]; that is
in this case, the region that exhibits task level or data level parallelism. In HPC we
have to deal with several sources of inefficiency or overheads that can be classified

in MPI transfers, serialization and load unbalance.

Constantino Gémez Crespo UPC, Barcelona School of Informatics

18

Chapter 1. Introduction

Although there is plenty of techniques to hide or solve the most common sources
of overheads, it is also common to find production applications that does not apply
them. For example, even if there are several libraries that allow us to write files
to disk in parallel, we often find applications that still use only one thread to do it
causing the parallel efficiency to drop very low when scaling to high number of cores
due to serialization. Note that, not all optimizations might be suitable for an appli-
cation, or the difficulty to apply them in the code might be very high, therefore it is
necessary to study in each case which optimizations would yield higher parallelism

improvements.

1.3.3 Network interconnections

In distributed memory systems, we rely on off-chip message passing over the network
to send and recieve data from remote nodes. Some applications require collective
all-to-all comunications, meaning that every node has to send and recieve informa-
tion from all of the other nodes. Dealing with such collective operations are a big
challenge for HPC systems with more than thousands of nodes; network topologies
with good collective performance might be less powerful in other communication
patterns. 3D torus interconnects are designed to exploit better communications
with neighboring nodes while a standard fat tree interconnect provides cost efficient
interconnection with a lower maximum number of hops between nodes. For exam-
ple, BlueGene/L included [?] separate interconnection hardware for MPI collective
operations and the rest of MPI operations. The design of new topologies will be key

to enable high parallel efficiency in next generation exascale supercomputers.

1.3.4 Energy Efficiency

Energy consumption is one of the main constraints to build the next generation of
supercomputers. If we take a look at the greenb00 list we observe that the top of
the list is populated with systems using compute accelerators. In this case, such
accelerators pack a high density of floating point units connected to high bandwidth

memory. The price to pay for this performance at low energy cost is the use of

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment

19

a dedicated programming interface. Although elaborate implementations of HPL
can take advantage of the compute power of those accelerators, exploiting them its
not always possible, or at least not an easy task, in other kinds of applications.
Therefore, to really develop an efficient machine running production applications we
can not only rely on accelerators, we must take in consideration other parts of the
cluster achitecture in order to save energy, for example: processor, memory, network
and cooling system technology. Processor power dissipation is mostly determined by
three factors, feature size, frequency and microarchitectural components like the size
of the caches; the impact of the ISA being RISC or CISC in nowadays processors is
negligible[]. We mentioned already, that new emerging technologies are set to take
over and replace DRAM in future exascale systems [!1]. As for cooling systems,
liquid submersion featured by the first time in TSUBAME KFC [10] in a large scale
supercomputer is considered of the most energy efficient approaches to cool a sys-
tem, however, we have to consider other aspects like the scalability and cost of such
technology. Finally, we also have to keep in mind that developing parallel efficient
applications also improves performance per watt by not wasting resources during

the execution of an application.

1.3.5 Mobile low power architectures for HPC

To justify the approach of using mobile technology to build HPC systems it is
necessary to look at the evolution of performance of mobile SoCs in the latest years

compared to the x86 processors used in HPC.

In figure 1.1 we observe how the performance gap of mobile SoCs against current
comodity HPC technology is closing rapidly. The main reason for this rapid incre-
ment in performance is the current market volume supporting using this technology.
This phenomenon opens the door to another shift, this time from x86 to ARM ar-

chitecture in HPC processors due to its relative low cost.

Constantino Gémez Crespo UPC, Barcelona School of Informatics

20

Chapter 1. Introduction

1E+06

!
&€ DEC Alphas
B Intel
: AMD

NVIDIA Tegras

TE+05H ¥ SAMSUNG Exynoses
@ 4-core ARMv8 @ 2GHz
Exponentional regression Server

E == Exponentional regression Mobile
O 1E+04} 1
L
=
1E+03 E
*
TE+02 — = — .
1990 1995 2000 2005 2010 2015

Figure 1.1: Evolution of performance of mobile vs hpc commodity processors.[”7]

1.4 Motivation

The work presented in this thesis has been performed within the BSC (Barcelona
Supercomputing Center) in the context of the national Severo Ochoa programme
and the EU funded Mont-Blanc project. In this section, we describe the main mo-
tivation and goals of these projects, highlighting the original contributions of this

thesis to those goals.

In 2011, and renewed in 2015, BSC receives the Severo Ochoa Center of Excelence
accreditation from the Spanish Government, acknowledging the important contri-
butions of the supercomputing resources to the scientific community, while at the
same time, develops its own research lines (Computer sciences, Earth Sciences, Life

Sciences and Engineering Applications).

In order to keep promoting the cross department collaboration that benefits both
ends, the center initiate several projects and partnerships, one of those being the
study of feasibility and performance of the scientific applications in low power archi-
tectures, which brings together relevant in-house scientific applications and the new

class of energy-efficient architectures being developed within the Mont-blanc project.

The vision of the Mont-Blanc project is to leverage mobile technology for devel-

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment 21

opment of next generation HPC systems. Various observations hide behind this
vision:

1. mobile market can leverage large volumes and consequently lower prices

2. mobile devices are intrinsically sensitive to power efficiency

3. computational power of mobile devices is increasing faster than standard HPC

technology

More details about the Mont-Blanc prototype can be found in section 2.2.1.

As we will see, our work contributes to the following specific objectives of the Mont-

Blanc project:

e To develop a fully functional energy-efficient HPC prototype using low-power

commercially available embedded technology.

e To design a next-generation HPC system together with a range of embedded
technologies in order to overcome the limitations identified in the prototype

system.

e To complement the effort on the Mont-Blanc system software stack, with em-

phasis on programmer tools, system resiliency, and ARM 64-bit support.

Tasks and goals

Within this framework, we establish these specific tasks and goals.

1. Deploy and run succesfully in the Mont-blanc prototype the set of
in-house BSC Scientific applications.
e Alya RED from CASE department
e NMMB from Earth Sciences department
e SMuFiN from Life Sciences department

e And Saiph (DSL) from Computer Sciences department

Constantino Gémez Crespo UPC, Barcelona School of Informatics

22

Chapter 1. Introduction

This point includes porting of the applications, collaborating with the sys-
admin prototype team to prepare the correspoding software stack to support

each application, and verification of the results obtained.

. Analysis and evaluation of performance. Obtaining and reporting scal-

ing, parallel efficiency and energy consumption metrics of each application.
Analysing the performance gap comparing results obtained on the Mont-Blanc
platforms with state of the art cluster technology (Intel Xeon). Trace driven

deep analysis for fine-grain identification and quantification of cluster issues.

. Optimizations, issue solving and experiences. Gathering of experiences

while solving application and platform issues, applying specific optimizations
of the cluster architecture. Evaluation of the impact of those optimizations

and fixes.

. Extension of the study to available ARMvS8 platforms. Although at

the beginning of this work the platforms only 32 bit platforms were available
on the market, meanwhile 64 bit ARM based platforms made their appearance
on the market. As the Mont-Blanc project acquired two mini-cluster based on
this technology (see section 2.2.2 and 2.2.3) it has been possible to perform an

evaluation on those platforms as well.

1.5 Related work

Researchers at CERN published studies showing the viability of scientific codes on
low power ARM platforms using Odroid-U2 and XGene2 development kits in a single
node configuration[’] [!]. Before the Mont-Blanc prototype the Mont-Blanc team
assembled smaller prototypes, Tibidabo [*(], Pedraforca and a Arndale Board based
mini-cluster[”"], showing an in depth analysis and evaluation of the market available
technology in order to develop a future full size high performance computer based

on mobile ARM processors.

UPC, Barcelona School of Informatics Constantino Gémez Crespo

23

Chapter 2

The Montblanc prototype and

mini Clusters

In this chapter we describe the architecture of all the platforms used in our work
and experiments. First, we describe the architecture of a generic state of the art
HPC cluster, the MareNostrum3 supercomputer. Second, we describe the Mont-
Blanc prototype and mini-clusters, platforms in which we have been active in the

development, testing and evaluation.

2.1 General Cluster Description

This section describes the MareNostrum 3 supercomputer at BSC with two pur-
poses: first, provide information about a plaftorm used in our comparisons, and
also, give an example of a state of the art supercomputer architecture that is used

for scientific computing.

With a peak performance of 1.1 Petaflops, the MareNostrum 3 supercomputer is
placed in the 106 position in the top 500 ranking (April 2016 list [17]). It is a Tier-0
supercomputer system of the PRACE network, which provides supercomputing re-

sources access to research centers across Europe.

Constantino Gémez Crespo Facultat d’Informatica de Barcelona

24 Chapter 2. The Montblanc prototype and mini Clusters

Currently it has 3056 nodes, a total of 115.5 TB of main memory and 2 PB of
disk storage. Compute nodes are interconnected using an Infiniband FDR10 fat tree
network topology. Each node has two sockets with Intel Xeon E5-2670 processors,
together they achieve a peak performance of 332.8 GFLOP /s. At 8 cores per socket,
that makes up to a total of 48896 cores in the whole system. In figure 2.1, we see a
detailed schema of a MareNostrum3 compute node. Each node has 32 GB of DDR3
RAM @ 1600 MHz distributed in eight 4GB DIMMs. Both sockets have four mem-
ory channels each and perform non-uniform memory accesses and mantain cache
coherence between them through QPI. Additionally, each node also has a Mellanox
ConnectX-3 network card that interfaces directly with a socket via PCI-ExS8, two
ethernet network cards to access the management network and GPFS and a local
500 GB hard drive. The whole system is cooled using mainly water cooling, although

there is also small fans placed behind each pair of nodes.

VRD12 -
= 1]

........

8 3 DIMMs
800/1066/13331600MHz
GPUIRAID

Bx 3 DIMis
B00/1066/13331G00MHz

PCLE %24 Gena_ PCI-E %24 slot

PCLE %24 slot peLE w24 Gend
48GBs

48GEs

PCla xB Gal
16GB's

LAN Connector

GbE '
4 Front USE | — — —— T R
[¢
ZiPASS |
SAS 66 I Connected to the LAN connector
| BASR— NCTE— | f—m————m————mmmm
1
| i L C
| ; @
I
EP SSI Planar ! . _ oo e s

R e | e s | e | s | e s

Figure 2.1: MareNostrum 3 Compute node block diagram

It is usual that the architectural features of supercomputers are influenced by the
computational requirements of the applications that the machine is intended to run.
As we mention in section 1.3.1, memory bandwidth is key to achieve multicore per-
formance, specially in memory intensive applications. Similarly, efficient network

interconnections are necessary to scale distributed applications to a high number of

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment 25

cores.

Other important part of the supercomputer is the software stack. The software
stack is composed of all the necessary packages to execute applications, from the op-
erating system to the scientific libraries and compilers. To allow the users to easily
compile, install and run applications a cluster it is usual to manage the operating
system binary and library paths using a module manager. A module manager allows
us to modify userspace environment variables to work with specific versions of soft-
ware, for example, if we require to compile our software with an older version of a
library for compatibility. Also, to manage efficiently the resources in a HPC cluster
it is necesary to use a job queue manager. A user that wants to run an application
has to write a small bash script that is submmited to a queue, additionally to the
execute command, those scripts usually include information about the number of
cores required to run the job and how long and in which folder the ouput will be
placed. A job queue manager uses that information to schedule in the best possible
way the jobs in the cluster. MareNostrum 3 uses a GNU module manager and IBM

LSF job queue manager.

Nowadays, it is common that these platforms offer power monitoring inside each
node. Fine-grained energy monitoring keeps sampling data extracted from the power
monitor and exposes it to the user, allowing him to obtain more detailed power pro-
files of a job execution. Coarser-grained tools only report a total measurement at
the end of a job. MareNostrum 3, reports the total energy consumption (kWh) of all
the nodes during a job execution. Additionally to the power monitoring hardware,
it is also possible to obtain power measurements from hardware counters (Running

Average Power Limit) available at Intel processors.

2.2 Mont-Blanc philosophy and platforms

As we mention before (see section 1.4), the main objetive in the Mont-Blanc project
is to contribute to the development of next generation energy-efficient HPC systems.

In the project, all designs of new platforms and architectures are developed using

Constantino Gémez Crespo UPC, Barcelona School of Informatics

26 Chapter 2. The Montblanc prototype and mini Clusters

the same philosophy. Decisions about what technology to install are based on the
current commodity market. In detail, first we identify the platforms that satisfy this
simple characteristics: 1) they can run Linux, 2) they have node interconnection ca-
pabilities. Then, we compare them in terms of prices, socket peak performance,
network capabilities and cooling; considerations needed to ensure scalability. Once
we select a platform we produce a small cluster for testing before building a bigger

full scale version of it.

2.2.1 The Mont-Blanc prototype

The Mont-Blanc prototype is the result of the first phase of the Mont-Blanc Euro-
pean project, an international collaboration of 14 academic and industrial partners.
The vision of the project is to leverage commodity embedded technology, i.e. the
one of smartphone and tablets, for performing scientific computation. The main
objective of the first phase of the project, ended in July 2015, was to deploy a full
scale prototype based on mobile technology. This objective has been succesfully
achieved between January and July 2015 when the Mont-Blanc prototype has been

installed at the Barcelona Supercomputing Center.

The Mont-Blanc prototype has a total of 1080 nodes, being 1064 compute nodes
and 16 login nodes. They are organized in blades, chassis and racks as follows: each
blade contains 15 compute nodes, each chassis contains 9 blades and each rack has
4 chassis, with a total of two racks. That is, 135 nodes per chassis and 540 per rack.
Each node has two cores adding a total of 2160 cores in the system, 2128 available

to run parallel applications.

Figure 2.2 shows a picture of the prototype at BSC facilities. Both racks are
42U — 19” standard format.

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment 27

Figure 2.2: Mont-Blanc prototype racks at Barcelona Supercomputing Center

Compute node

The Mont-Blanc compute node uses a Server-on-Module architecture. Each node
card (Samsung Daughter Card or SDB) has one Samsung Exynos 5250 that includes
two ARM Cortex-A15 CPU running at 1.7 GHz and an ARM Mali GPU. More spe-
cific details about the SoC can be found in table 2.1. Main memory is located on
the board connected to the SoC via two memory channels. A pSD slot allows us
to connect a 16 GB pSD card which includes the boot-loader, operating system
and local storage. Each SDB is connected to the blade board through PCl-e 4x
and has a TDP of 15W. The peak DP floating-point performance of each core is
3.4 GFLOPS and the Mali GPU, 21.3 GFLOPS, for a total of 28.1 GFLOPS per
compute node. Figure 2.3 shows the physical layout of the components over the SDB.

Constantino Gémez Crespo UPC, Barcelona School of Informatics

28

Chapter 2. The Montblanc prototype and mini Clusters

System-on-Chip

Type
Frequency
LLC

Peak performance (DP)

Main Memory

CPU GPU
2 x ARM Cortex-A15 ARM Mali T-604
1.7 GHz 533 MHz

1M L2 Shared -
6.8 GFLOPS 21.3 GFLOPS

Type

Size

Memory channels
Shared GPU and CPU
Peak bandwidth

Network interconnect

LPDDR3-1600 RAM
4 GB

2

Yes

12.8 GB/s

NIC
Link

USB 3.0 to Ethernet bridge
1 Gbps

Table 2.1: Mont-Blanc prototype SDB hardware characteristics.

Network interconnection

Software stack

With high number of nodes, we require an efficient and scalable topology to achieve
good performance in MPI applications. Mont-blanc prototype integrates a fat tree
topology on three levels. The first level of switching is implemented inside the blades
using a 1 GbE embedded switch with 2x10 GbE up-links. The second level inter-
connects all blades in a rack with 10 GbE links. At the top, the third level of the

tree interconnects both rack switches using 4x40 GbE links.

One of the objectives of the Mont-Blanc project is to develop the HPC software
ecosystem required to run HPC applications like in any other x86 based cluster.
With this we want to help pave the way for market acceptance of ARM solutions.
Figure 2.4 shows the software stack available at the prototype.

UPC, Barcelona School of Informatics

Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment 29

4GB pSDslot
DDR3-1600 UPt0 (|54 GB

Exynos5 Dual:

2X ARM Cortex-Al5

ARM Mali-T604
USB 3.0
to 1GbE
bridge

Figure 2.3: Mont-Blanc prototype compute node (SDB)

Other information

In figure 2.5 we show a picture of the Mont-Blanc prototype building blocks, blade
(2.5a) and chassis (2.5b). Following, we describe the rest of important aspects of
the prototype:

Power monitoring The system collects power samples using sensors connected to
the supply rails of each SDB. Every ~ 1100ms a FPGA collects the average
value mesured in those sensors and stores them in an intermediate buffer.
Then, using the Board Manager Controller (BMC) in the blade board, a system
monitoring tool extracts data from such buffer along with a timestamp and

stores it in a database; which is accesible to the prototype users.

Storage The storage system is connected to the rack switches through four 10 GbE

cables. It uses Lustre as a parallel file system.

Cooling Each blade has its own set of fans in the front (left of the picture), also,

each SDB card mounts a heat sink.

Constantino Gémez Crespo UPC, Barcelona School of Informatics

30 Chapter 2. The Montblanc prototype and mini Clusters

f—

Source files (C, C++, FORTRAN, Python, ...)

—

[Compilers
E [JoK | | Mercurium |

Cluster management

[Nagios [Puppet | OpenLDAP
| Ganglia [SLURM [nNTP

Runtime libraries
[Nanos=+ J[OpenCL J[CUDA J[__MPI]

—

Hardware support / Storage
lrﬁonlorrjl DVFS Jl NFS Jl Lustre J

Linux OS / Ubuntu
[OpenCL driver | [Network driver]

f—

Figure 2.4: Mont-Blanc prototype sotftware stack

2.2.2 XGene2 mini-cluster

Following the Mont-Blanc philosophy, this mini-cluster is built with the purpose
of evaluating the capabilites of ARMv8 commercially available platforms for HPC.
The development related to this platform takes place during the second phase of the
Mont-Blanc project in Q1 2016.

For each XGene2 mini-cluster node we use a single socket Applied Micro Merlin
server board based on its custom ARMvS8 core implementation XGene2. We have a
total of four Merlin boards, we use three as compute nodes, that is 24 cores available
for running jobs, and the last one as login node. The form-factor of the node is a

standard 1U.

APMB883408-X2 is the codename of the System-on-Chip that mounts the Merlin

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment 31

(a) Blade

Figure 2.5: Mont-Blanc prototype building blocks.

board. This processor features: eight XGene2 cores running at 2.4 GHz, 256 KB
Shared L2 per pair of cores with ECC, 8MB Shared L3 protected by parity, four
on-die memory controllers also with ECC support and two 10 Gbps Ethernet with
link aggregation and RDMA over ethernet support.

Figure 2.6 shows the layout of components and connectos of the Merlin board. Mer-
lin comes with 128 GB of DDR3 ECC in eigh 16 GB DIMMSs to take advantage of
the four memory controllers. In our cluster configuration we connected all boards
using a single switch and one 10 GbE fiber optics link per board in a point-to-point
topology. For cooling the components the board includes both heat sinks on top of
the processors and 6 fans aligned in the front inside the 1U chassis. The storage is

shared across mini-clusters and it uses a remote NFS file system.

Constantino Gémez Crespo UPC, Barcelona School of Informatics

32 Chapter 2. The Montblanc prototype and mini Clusters

SATAD m
T Z5m]
@ 2 :s,m PWR ATX
S [SATA4] CH1 DIMM #0
mSATA @ L UMY
@‘ CH1 DIMM #1
g @‘ CHO DIMM #0
> ‘ CHO DIMM #1
DDR3 Channel 0
CPLD
c 0
< 2 VRD
AIR FLOW
- CPU VRD pr—
3 e
T DDR3 Channel 2
o CH2 DIMM #1
% X CH2 DIMM #0
CH3 DIMM #1
5 o CH3 DIMM #0 -
| MAINBOARD PWR ATX

Figure 2.6: Layout of the components and connectors on the Merlin Board

2.2.3 ThunderX mini-cluster

With the same purpose and during the same timeframe as XGene 2 mini-cluster
(see 2.2.2), we also deploy mini-cluster using Cavium ThunderX 2K server system
as a compute node. We have available 4x Cavium ThunderX 2K boards mounted
in a 2U chassis that we use as four independent compute nodes. As a login node we
reuse the same node used in the ARMvS8 based XGene2 mini-cluster. Each board
features 96 Cavium ThunderX cores, therefore we have a total of 384 in the whole

cluster.

Figure 2.7 shows a picture of the board containing both sockets, memory slots and
additional components. More in detail, the board includes two 48-Core processors
(codename CN8890) connected in dual socket cache coherent configuration through
CCPI (Cavium Coherent Processor Interconnect). Each processor runs at 1.8 GHz
has a 16MB L2 (LLC) shared cache, network controller with support for 2 x 10 GbE
and 1 x 40 GbE. Our board configuration includes 128 GB (8 x 16 GB) DDR3 ECC
RAM running at 1880 MHz.

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment 33

FChe RISER

Figure 2.7: Picture of a Cavium ThunderX 2K server board.

Given the low number of nodes, we interconnect them with the same point-to-point
topology as in XGene2 cluster, but in this case, using two 10 GbE cables with link
agreggation. Each node has 1TB SSD for local storage and is connected to a remote

NFS file system.

2.2.4 JetsonTK1 mini-cluster

JetsonTK1 mini-cluster is an ARMv7 platform built using 8 Nvidia Jetson TK1 de-
velopment boards; 7 compute nodes, 1 login node. Interconnected using 1 GbE links
in a point-to-point topology. Each board features: a 4-plus-1 multicore processor
(4x ARM Cortex-A15 4+ 1x Cortex-AT), a Kepler GPU with 192 cores, 2 GB of
DDR3 RAM, a single memory controller with 64-bit width shared between the GPU
and the CPU, and a 1 Gb dedicated Ethernet port.

2.3 Compute node cost

It is not possible por us to provide a breakdown of the costs of the Mont-Blanc
prototype or many of the boards we use to build our mini-clusters. It is important
to remark that very often the final price depends in big measure on the negotations

with the provider. Also, it is difficult to reason about the cost effectiveness of our

Constantino Gémez Crespo UPC, Barcelona School of Informatics

34 Chapter 2. The Montblanc prototype and mini Clusters

Figure 2.8: Picture of a Jetson TK1 development board [')].

platforms based on their volume of market; they can not compete against standard

HPC products.

UPC, Barcelona School of Informatics Constantino Gémez Crespo

35

Chapter 3

Severo Ochoa Applications and

Benchmarks

In this chapter we present the applications and benchmarks we used in our experi-
ments to evaluate our prototypes and mini-clusters. First, we describe the in-house
BSC production scientific applications included in the Severo Ochoa programme,
and second, the set of benchmarks that compose the three layers of our platform

comparison methodology.

3.1 Severo Ochoa Programme applications

The scientific applications included in the Severo Ochoa Programme are the follow-
ing: Alya RED[(], from CASE department; NMMB-CTM][7], from Earth Sciences
department; SMUFIN["], from Life Sciences department; and Saiph, from Computer
Sciences department. Table 3.1 shows a summary of the main characteristics of these

applications.

Constantino Gémez Crespo Facultat d’Informatica de Barcelona

36

Chapter 3. Severo Ochoa Applications and Benchmarks

Application Model Domain
Alya RED Fortran&MPI Biomedical mechanics
NMMB Fortran&MPI Weather Model
SMUFIN C++&pthreads&MPI Sequence Alignment
Saiph C++&O0OmpSs&OpenCL DSL for PDEs

Table 3.1: Severo Ochoa applications summary.
3.2 Alya RED

3.2.1 Application description

Alya RED is a biomedical mechanics simulator used for research in biological sys-
tems: cardiac models, cerebral aneurysms and human respiratory system among
others. Alya RED is based on the parallel multiphysics code Alya, developed at
BSC and it is part of PRACE Unified European Applications Benchmark Suite.
Designed to run with high efficiency in large scale supercomputers, it has reported
extremely good scaling results up to 100.000 cores in Blue Waters supercomputer,

proving the viability of engineering simulation codes in exascale systems[’].

3.2.2 Implementation comments

Alya RED is written in Fortran and runs in parallel using MPI to split the workload
along the nodes; uses a master/slave parallel model. To enable high parallelism
and scalability, it uses non-blocking MPI calls, allowing overlapping of computation
and comunications. Similar to a stencil code, Alya RED simulations are divided in
iterative steps; every step advances a fixed amount of simulation time. Although in
our experiments we disabled the output of binary files, Alya supports serial writing
to disk using its own binary data format and parallel writing to disk using HDF5
data format. By default, Alya RED only depends on a third party library (metis-
4.0), which is used for partitioning of the problem, provided with the package and

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment 37

statically linked.

3.2.3 Inputs and experiments descriptions

All timings we show in the results section belong to the parallel iterative part, exclud-
ing initialization and finalization, running 10 timesteps. For energy measurements,
the system reports energy values for the whole execution. To obtain meaningful
energy measurements of the iterative part we run the simulations for 100 iterations,
that way the iterative part represents around 90% of the execution time. Output to
disk of intermediate and final results is disabled due to instability in the Mont-Blanc
prototype. The data input we use in our experiments represents a rabbit heart beat-

ing.

3.3 Non-hydrostatic Multi-Scale Model on the B grid

3.3.1 Application description

NMMB is designed to be a flexible, state of the art atmospheric simulation system
that is portable and efficient on available parallel computing platforms. NMMB
is an evolution of the operational Non-hydrostatic Mesoscale Model (WRF-NMM),
and it is currently used to obtain mid-range weather forecast predictions in the
United States. In the last years, researchers at BSC, in conjunction with NOAA
(National Oceanic and Atmospheric Administration) developed NMMB/BSC-Dust,
an atmospheric dust model. Another NMMB version this time including a Chemical
Transport Model [7] is also being developed at BSC. The code version we run in our
experiments includes this last feature and it performs chemical transport forecast in

addition to the regular weather forecast computation.

Constantino Gémez Crespo UPC, Barcelona School of Informatics

38

Chapter 3. Severo Ochoa Applications and Benchmarks

3.3.2 Implementation comments

Although new code is written in Fortran 90 and it uses MPI as a parallel program-
ming model. NMMB partitions the earth surface in tiles and assigns each one of
those tiles to a MPI Rank. Such tiles are determined manually configuring three
parameters of the application: i, j and k; i especifies the number of horizontal tiles,
j the horizontal and k the number of MPI ranks in charge of writing intermediate
results to disk. That is, in a 64 MPI Rank weather forecast simulation we need to

satisfy: ixj+ k = 64

3.3.3 Inputs and experiments descriptions

In our experiments we perform 24 hour weather forecasts using a low resolution input
set which allow us to perform basic simulations at a global scale. In other words,
low accuracy 1-day weather forecasts of the whole world. Our timing results are
obtained measuring the whole duration of the execution of the application. During
the development of the project, we tested up to three different input sets, but as we
explain in section 4.1.2 we could not run them due to memory allocation problems.
Also in this case, during our test we disabled ouput to disk of results. We do not

report energy measurements for this application.

3.4 SMUFIN

3.4.1 Application description

Somatic Mutation Finder (SMUFIN), is an implementation of the sequencing method
with same name. Specifically, this method is able to achieve high throughput
characterizing somatic structural variants while still obtaining high sensitivity and
specificity values (which are the quality parameters in sequencing methods). Its
main characteristic is that directly compares sequence reads from normal and tumor
genomes, avoiding comparing sequences against the reference human genome. This

application has been developed by the Computer Genomics group at the BSC Life

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment

39

Sciences department and is also included in the Severo Ochoa programme. Although
this application is not currently used in productionit is included in such programme
based on its scientific relevance[”(]. Computer Genomics group developed this appli-
cation with two objectives: first, to validate SMUFIN as a bioinformatics method;
and second, to open the door for a future tool to enhance personalized medicine

diagnostics.

3.4.2 Implementation comments

The version of the code we analyze in this work was developed during 2014 and it
is written in C++ using phtreads and MPI to parallelize the computation in tasks.
Although the implementation generates correct results, we observed poor scaling
performance while testing the application in MareNostrum3. In 4.2.4 we show a
detailed analysis of this implementation and reason about the possible causes for

this issue.

3.4.3 Inputs and experiments descriptions

The input used for our experiments is an in-silico genome sequence of the chromo-
some 22. In this case, the set of files required to sequence this genome takes up to
17 GB of space in disk. Timing measurements correspond to the whole duration of
the application execution. At the end, the application generates a text based report
indicating the mutations found in the sequences. In our tests we do not disable the

output, it has a negligible impact on the application performance.

Constantino Gémez Crespo UPC, Barcelona School of Informatics

40

Chapter 3. Severo Ochoa Applications and Benchmarks

3.5 Saiph

3.5.1 Application description

Saiph is a domain-specific language (DSL) for solving Partial Differential Equations
(PDEs) implemented as an extension of SCALA. Compiling codes written in Saiph
language generates an intermediate code written in C++ plus OpenCL with OmpSs
pragmas. Our performance analisis work starts after this last step, we compile those
intermediate codes using the Mercurium [*9] compiler obtaining executable binary

files. Finally, we run these binaries to perform convection and diffusion simulations.

3.5.2 Implementation comments

As it is usual, the intermediate generated codes use variable names based on incre-
mental numbers e.g: z0, 1, x2... and so on; those codes are extremely difficult to

understand without knowing the original algorithm code.

3.5.3 Inputs and experiments descriptions

In our experiments we use three different Saiph generated kernels to simulate bi-
tumen, convection and diffusion physics. Input parameters and input values are

defined and generated inside the code, we use the default values provided there.

3.6 Benchmark layers

This section shows a brief description of the benchmarks included in the layers of
our platform comparison methodology. Further, in section 4.1.1, we discuss about

the objectives of each layer.

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment

41

3.6.1 Layer 1

ARM FPU Benchmark It consists on two microkernels that we developed at

the Mont-Blanc team embedding ARMv7/8 and ARM NEON assembly in-
structions into a C program. This kernels execute 50 million iterations of
32 scalar floating-point or SIMD instructions without dependencies between
them, aiming to achieve the peak floating-point performance of the SoC. It

reports average and individual GFLOP /s per core.

STREAM Proposed in 1995 by John D. McCalpin, STREAM is a benchmark for

measuring sustainable memory bandwidth[?5]. In order to stress the memory
subsystem it uses datasets way bigger than the standard cache sizes. Executes
four vector operation kernels: copy, scale, scale sum and triad using 8-byte

size variables.

MultiPingPong Custom simple kernel developed at BSC, which tries to saturate a

network link between two nodes by performing PingPong MPI communication

in pairs where each processor in a pair belongs to a different node.

3.6.2 Layer 2

MILCmk, AMGmk and GFMCmk these codes are selected as a part of the

benchmarking tools to evaluate machines in the CORAL project[! |]. They
are based on the most common algorithms used in full scale production appli-
cations that solve problems in areas that require to compute linear systems in
unstructured grids or quantum chromodynamics simulations. They are imple-

mented in C or Fortran and they run in parallel using OpenMP.

LULESH mini-app developed at LLNL (Lawrence Livermore National Lab) to per-

form simplified hydrodynamics stencil calculations, however LULESH repre-
sents the workload characteristics of more complex hydrodynamics codes. Uses

both MPI and OpenMP to achieve parallelism.[!(] [15] [17]

miniFE mini-app developed at Sandia National Laboratories included in the man-

tevo benchmark suite. Represents the computational behavior of the finite

element generation, assembly and solution for an unstructured grid problem.

Constantino Gémez Crespo

UPC, Barcelona School of Informatics

42 Chapter 3. Severo Ochoa Applications and Benchmarks

It is written in C4++ and supports hybrid MPI plus OpenMP parallel execu-

tion.[! 7]

CoMD mini-app developed at LANL (Los Alamos National Lab) and also included
in the mantevo benchmark suite. Used as a mockup of the typical molecular
dynamics applications used in material science. It is written in C and runs in

parallel using MPI.

HPCG High Performance Conjugate Gradient is a benchmark developed as a par-
tial substitute of the High Performance Linpack benchmark. It aims to repre-
sent a wider range of computational behaviors that are usually found in current
important scalable applications. Executes: Sparse matrix-vector multiplica-
tion, sparse triangular solve, vector updates, global dot products and a local

symmetric Gauss-Seidel smoother. Written in C++ with MPI and OpenMP

support [1 1] []

3.6.3 Layer 3

At this time, we only include Alya RED as a full production application suitable for

comparing platforms (see section 3.2).

UPC, Barcelona School of Informatics Constantino Gémez Crespo

43

Chapter 4

Test and results

Following, we show the most relevant results we obtained during the testing and
evaluation of the platforms. While doing so, we reason about the differences in
performance, we discuss the issues we encountered and share our experiences and
lessons learnt. Although the real dynamic of work was iterative, next sections are
structured to follow an order based on the logic development stages of a prototype:
port, test and optimize. In reality, we had to often revisit our experiments and apply
modifications based on new information and findings obtained from other tests or

other actors involved in the project.

This chapter is structured as follows: first, we share our experiences while port-
ing the applications to ARM 32-bit and 64-bit architecture platforms; second, we
present the performance results obtained with these applications in the Mont-Blanc
prototype; third, we describe methodology to perform tests and performance com-
parison across mini-clusters; finally, we present the results and experiences using

such methodology.

4.1 Experiences porting production applications

Running an application for the first time in a new architecture, specially in platforms

in development, has a high-crash potential. Failure during compilation or execution

Constantino Gémez Crespo Facultat d’Informatica de Barcelona

44

Chapter 4. Test and results

could be caused by missing dependences (e.g: our app requires BLAS libraries to
run but they are not installed) and architecture dependent code among others. The
actions we take around the application in order to execute and verify that it works
correctly are part of the porting process of this application. Following, we share our
experiences and describe our work done porting the Severo Ochoa applications to

the Mont-Blanc prototype and mini-clusters.

4.1.1 Porting Methodology

Our methodology to port applications to a new platform is divided in three logic
steps that we called: preparation, deployment and verification. During this process
we keep track of all the actions required to work in the new platform and elaborate

detailed installation guides. Those guides appear in Annex A

Preparation To prepare each application we first set up a startup meeting with
members of the development team. The objective is to get to know first hand
all the important information regarding the application in order to start work-
ing with it. Each team provides source code of the application (preferably a
current working version installed on MareNostrum3), along with the instal-
lation steps, input sets and commands to execute it. Once we have this, we
proceed to compile the code and execute it in MareNostrum3. This way we
can check thath the application does not have any major issue on a x86 HPC

system before porting it to ARMvT.

Deployment Next step is to deploy the application, once we have copied its files
and before compiling, we install all the known dependencies (libraries and
executables) based on the information obtained in the previous step. At the
same time, we adapt the makefile and configure files to be coherent with our
new target platform, we also might get rid of platform dependent code at this
point. If compilation is succesful we continue to prepare files for execution, if

not we identify the causes, fix them if possible. We consider this step finished

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment

45

when we are able to run the application on the target platform without major

issues.

Verification During verification we try to ensure two things, first and more impor-
tant, the results obtained are correct and later, application still works when
running with real input sets or resource configurations. To ensure the cor-
rectness of results, we compare the output files with the ones obtained on
MareNostrum3. We can compare them at binary level using the linux com-

mand diff, or at visual level using visualization tools (e.g. Paraview, Ncview).

In our experience, all the applications we had to port are complex, highly con-
figurable and different in usage. Therefore, all the information obtained from the
developers team is key off to a good start. Also in our case, the follow up meetings
were very productive for faster issue solving and better understanding of the applica-
tion behavior. Although the step consisting of running and testing in MareNostrum3
is not sctrictly necessary, dealing with complete new production scientific software
requires a process of learning its environment: inputs, outputs, configuration files,
execution flags, visualization tools, etc. Application misbehavior can be caused by
technical issues at many levels in an HPC cluster, better understanding of the ap-
plication running in a stable platform helped us to identify faster at which level are

the problems located.

During the porting process, we tightly collaborated with the Mont-Blanc sysad-
min team to install the dependencies of each application. To avoid stall time in our
work waiting for the dependences to be installed, we worked concurrently on port-
ing several applications. Although this requires extra effort tracking the in-flight
porting status of applications it allows the sysadmin team to establish a better work

planning, resulting in an overall faster deployment.

4.1.2 Porting issues at ARMv7 Mont-Blanc prototype

In this section we describe in detail the specific technical issues encountered when
porting applications to clusters based on ARMv7 architecture, i.e. the 32-bit in-
struction set of ARM.

Constantino Gémez Crespo UPC, Barcelona School of Informatics

46 Chapter 4. Test and results

Slow compilations We compile the codes and dependencies of each application in
the Mont-Blanc prototype using the cluster login nodes. The first observation
that can be reported is related to the average compilation time compared to
MareNostrum3: on the Mont-Blanc prototype the compilation time are 4 to
10 times longer than on MareNostrum3. Although we do not report the exper-

iments, we found that Lustre file system was the main cause of this bottleneck.

In order to reduce the long compilation times, we attempted to set up a cross-
compile environment in a x86 server to build ARMv7 binaries. However a
set of issues in deploying critical tools (i.e. gfortran and OpenMPI compilers)

forced us to abandon this effort.

Alya RED Alya is the first application we started porting. Compiling and run-
ning this application is straightforward because it only has one self-contained

dependency, besides the MPI runtime libraries.

We encountered two minor issues that required to be fixed during the port of
this application. First, we found one instance of an intrinsic function INT4()
which is only available in the ifortran compiler. We replaced this function
with the standard intrisic form INT() available in both compilers. Second, we
encountered a type mismatch in Alya’s code when enabling HDF5 support. A
function expecting an 8-byte integer was receiving a datatype that in 64-bit
platforms is in fact 8-byte, but in 32-bit platforms is 4-byte long. This caused

the compilation to fail in the prototype but not in MareNostrum3.

Sanity checks on this application are performed by visually comparing the

results of the simulation in Paraview.

NMMB This is the largest and most challenging application in terms of complex-
ity, number and size of files and thirdparty dependencies. In our experience,

the gfortran compiler is more restrictive in terms of line length syntax than his

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment 47

intel counterpart. As adapting length line of the whole code was not viable,
we added the gfortran line-length control flag in almost every makefile. Also,
the gfortran compiler flags that define the datatype lenghts during the prepro-
cessing require special attention as they do not have an exact equivalent flag

to ifortran.

In conjunction with the Earth Sciences NMMB-CTM team we developed a
ARMv7 compatible version of the code, make and config files. As consequence
of this effort, the fixed files were given to the NCEP developers and included

in the next version release of the application.

When we tested the application with real input sets, we experienced a critical
issue preventing us to run simulations with high resolution, like for example,
world size simulations at 10km resolution. When using such inputs, the pro-
cess in charge of managing the memory space of the output filegARMv7s was
trying to allocate a number of bytes in memory that was exceeding the biggest
integer number representable on 32 bit integer. This was causing an integer

overflow exception and making the execution to fail.

This problem is of course not visible on 64 bit architectures because integers
can be represented using 64 bit and this variable size is enough for mapping

the memory size needed by the application.

Theoretically, this issue could be addressed parallelizing the memory alloca-
tion for I/O, however NMMB relies on only one MPI process for I/O requiring
major changes in the code for the implementation of this solution. For this

reason, we had to leave larger cases not-tested on 32 bit platforms.

As more general comment, we can expect several other scientific applications
requiring the allocation of arrays with a number of elements larger than 232 —1.
This also implies the need of a larger address space addressable by one process.
And finally this is one of the main reason because scientists tend to assume

that real HPC workload is performed using 64 bit architectures. We know

Constantino Gémez Crespo UPC, Barcelona School of Informatics

48 Chapter 4. Test and results

however that in some case this limitaitons could be avoided with a better de-

sign of the applications.

To validate the correct execution, we transform the output files generated
during execution to NetCDF data format and visualize them with it is de-
fault viewer, NCView. Figure 4.1 is an example of our view when comparing

MareNostrum3 and Mont-Blanc prototype ouputs.

(a) MareNostrum3 (b) Mont-Blanc prototype

Figure 4.1: Image of NMMB output files opened in NCView.

Saiph During the porting phase of this application we reported a bug in the Mer-
curium compiler when dealing with C++ Templates[:]. We also experienced
issues with the OpenCL libraries that caused wrong results when performing
floating point operations in the Mali GPU. Both issues were fixed in collabora-
tion with the Programming Models team at BSC and the Mont-Blanc sysad-
min team respectively. Finally, we adapted the work group_size parameter,
the Mali-T604 GPU available on the Mont-Blanc prototype do not support in
fact values higher than 256.

In this case, to validate the results we used MinoTauro Cluster, a x86 platform
with NVIDIA CUDA GPUs.

SMUFIN We received the code of the application knowing that the code was de-
pending from the BWA library that used x86 SIMD Intrinsics. Here, we de-

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment 49

scribe which approaches we took to fix or workaround this problem, and why

they did not work.

First, we analyzed the previous and newer versions of the BWA library. Previ-
ous versions allowed to disable SIMD intrinsics at compile time, but downgrad-
ing to older versions was not possible since those versions did not implement
some of the functions the functions needed by SMUFIN. Newer versions were
also x86 dependent. Second, we searched for alternative implementations of
the BWA functions without success. We finally had to discard the idea of a
quick partial porting of the key functions to the NEON SIMD and ARMv7
FP instructions due to our lack of knowledge in sequence aligment methods.
Because of that, we were not able to succesfully port this application on ARM
based platforms. Instead of performance tests and results in Mont-Blanc, we
report an analysis of the parallel issues of this application based on the source

code and the traces obtained in MareNostrum3 (see section 4.2.4).

4.1.3 Porting issues at ARMvS8 platforms

In this section we report our experiences porting scientific applications to ARMv8

based platforms.

As a general comment, the deployment of both applications and the software stack
was way faster than the previous one in Mont-Blanc prototype. In our opinion, the
main reasons causing such speedup are the following: first, the experience adquired
during the Mont-Blanc prototype deployment; second, the improved support for
ARM architectures in the HPC ecosystem; and finally, the fact that ARMvS8 is a
64-bit ISA, that avoids several of the conflicts and datatype mismatchs encountered

in 32-bit architectures while installing and running applications and libraries.

From the four Severo Ochoa applications we decided to port and test Alya RED

and NMMB, the two most promising and active applications.

As we have seen in the previous section, Alya RED did not require major port-

Constantino Gémez Crespo UPC, Barcelona School of Informatics

50

Chapter 4. Test and results

ing actions to run properly in Mont-Blanc prototype, and in our experience, neither
is the case for ARMv8. NMMB on its side required two minor actions. First, a
dependence had its configure files generated using an autoconf version without sup-
port form ARMvS; official forums offer technical support for this issue[’?]. Second,
we had to add support for ARMv8 architectures for some parameters in NMMB is
framework libraries that were under DEFINE clauses which did not contemplate the

ARMvS8 option.

We did not experience other impediments while trying to install and run other bench-
marks and mini-apps. In our opinion, currently the HPC software stack ecosystem

support for ARMvS is highly satisfactory.

Further, in section 4.3.1, we test the ARMvS platforms using different applications
than on the Mont-Blanc prototype.

4.1.4 Compiler comparison: intel vs gcc

For intel x86 based HPC clusters, Intel provides its own compilers, MPI and linear
algebra libraries. Such implementations are not open source, and obviously neither
they support ARM architectures. As Intel HPC software and compilers are known
because its good performance, we attempted to measure the potential performance
losses caused by the use of software alternatives. In this section we compare the
performance compiling NMMB using GCC (i.e. gfortran + OpenMPI) versus Intel
(i.e. ifortran + OpenMPI) in MareNostrums3.

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment

51

(a) Using small scale input set (b) Using global scale input set

|— intel - gccl I- intel - gccl

3500
3000
2500

=
o u
S o
S O

Execution time [s]
Execution time [s]
N
o
o
o

w
o
o

o

8 16 32 64 256
MPI Ranks # MPI Ranks

Figure 4.2: Performance comparison executing NMMB built with Intel or GCC

We build the same sources using two diferent compilers but linking the same MPI
runtime libraries (OpenMPI v1.8.1). The Intel version of NMMB is built using ifort
13.0.1 and the GCC version is built using gfortran 4.9.1. In figure 4.2 we present
the performance results executing NMMB using small scale (4.2a) and a big scale
(4.2b) input sets on both versions. In (a) we observe an irregular behavior showing
from 30% speedup using gcc up to 6x faster execution time using ifortran with 64
cores. Global scale input set shows performance results in favor of ifortran with

speedups ranging from 10% up to 60%.

As we said, big production applications not always exhibit good parallel behavior,
being NMMB one of those applications. Because of that, although this comparison
shows results in favor of Intel compilers, the fact that we are such unstable applica-
tion makes them far from conclusive. Based in this experience with NMMB, future
expansion of this study would require the use of a wider set of benchmarks as a tool
to quantify the performance impacts. For example, we should find at least one pro-
duction application that shows reasonable parallel scaling behavior, like Alya RED;
and a set of miniapps which are more flexible but still representative of workload
characteristic of full production applications. Besides the compiler comparison, we
should also expand the study to consider linear algebra libraries, like MKL versus

ATLAS; and MPI implementations, like Intel MPT versus OpenMPI.

Constantino Gémez Crespo UPC, Barcelona School of Informatics

52 Chapter 4. Test and results

4.2 Mont-Blanc performance results

We present in this section the computational performance and energy efficiency
results obtained on the Mont-Blanc prototype. As we mention before, the Mont-
Blanc prototype experienced many changes along the months of development of the
project (at hardware, system software and application level). This changes cause
variations in the performance on the cluster, therefore giving relevance to the timing
of each experiment. In our results we reason about how the current state of the

cluster affects our experiments.

4.2.1 Alya RED

In this section we show results obtained evaluating the prototype using Alya RED.
We present the best results up to date in the final results section. We also show
some intermediate results obtained in previous months to be able to discuss about

the progression of stability and performance during the development of the proto-

type.

Final results

In this section we show the final performance (4.3, 4.4a) and energy (4.4b) results
obtained on the prototype (MB) and MareNostrum3 (MN3) in late February 2016.
As input set, we use a rabbit heart model with a resolution of 2.6 Million elements

and run the simulation for 100 time steps.

Figures 4.3a and 4.3b shows that we can scale the application up to 512 cores with

99% efficiency and up to 1500 cores with 70% parallel efficiency.

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment 53

(a) Strong scaling (b) Strong efficiency

1600
1400
1200
1000
800
600
400
200

0.8

Speed-up

Parallel efficiency
o
3

0.6H®—@ MB | ...
¥—¥ MN3

L L L L L 05 I I 1 .
128 256 512 1024 1500 128 256 512 1024 1500
MPI Ranks # MPI Ranks

Figure 4.3: Mont-Blanc and MareNostrum3 parallel speedup and efficiency running

Alya RED

The parallel efficiency over 100% on MareNostrum3 when increasing the number of
cores suggests that, in Alya, we obtain locality benefits when each processor has to

compute smaller parts of the global solution.

(a) Performance

Execution time normalized
Energy normalized
to MN3

128 256 512 1024 1500 ' 256 512 1024
MPI Ranks # MPI Ranks

Figure 4.4: Performance and energy comparison

Figure 4.4a shows the performance of Alya on Mont-Blanc prototype compared to
MareNostrum3 supercomputer. When using the same amount of cores, Mont-Blanc

is 3x to 4.5x slower.

Constantino Gémez Crespo UPC, Barcelona School of Informatics

54

Chapter 4. Test and results

In figure 4.4b we compare the total energy consumption (Joules) per execution.
The results show that in this case, energy consumption is very similar when using
the same amount of cores in both platforms. In order to obtain relevant energy mea-
surements, each execution runs for at least 10 minutes so we minimize the impact

of the initialization and finalization phases.

Evolution of performance

In this section we depict the evolution of results obtained on the Mont-Blanc pro-

totype along the months of development.

After July 2015 the prototype underwent several upgrades in the network stack.
In early november 2015 we repeat some experiments to test the cluster performance
after the network improvements. During these tests we encountered additional crit-
ical issues causing performance loss that were related to the network configuration.
Once the problems were identified and fixed, we repeat the same experiments. In

section 5.1.1 we describe in detail these issues and the actions required to fix them.

(a) Strong scaling (b) Strong efficiency

1.2
1600{e—e MB_uly2015 | 11
1 - - .
14004 ¥—¥ MB_NewDriver]
A—4 MB_NewDriver+SACK -7 1ol |

1200

1000
800
600
400

Speed-up
o
[e¢]
T

arallel efficiency
o
©
T

°
9

@—@ MB_July2015
|| ¥V—¥ MB_NewDriver IR
A—4 MB_NewDriver+SACK

p
o
(=2}

2001

L L L L I 05 I I I L L
128 256 512 1024 1500 128 256 512 1024 1500
MPI Ranks # MPI Ranks

Figure 4.5: Performance and energy comparison

Previous figure (4.5) shows the scaling results after each network stack upgrade of

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment

55

the prototype. The line labeled as MB_July2015 represents the results gathered
during Summer 2015, MB_NewDriver represents results obtained in november 2015,
MB_NewDriver+ SACK represents the results presented during the review of the
project in december 2015. In this executions we use the same input set and we run

for 10 simulation timesteps.

As we see in figure 4.5a, compared to July 2015, in November we do not obtain any
significant scaling benefits from the network upgrades. Although those upgrades
improved the perfomance of several other applications when using high number of
cores (> 512), Alya parallel efficiency was virtually unaffected. The plot in figure
4.5a is an example of the many technical setbacks we experienced during the devel-

opment of the project.

mmm MB July2015 @ MB NewDriver
mmm MB_Dec2015 wwr MB_NewDriver+SACK
40 I I I I
o) SETTRRELTIREETTIRRRTIRRET REREES [ETTREE [ERREEY EERERS ERRREE .
A 0] e N N N e -
9]
R I N N e §
)
lilo]0] SETPUR I D N D e e 4
o
S15bcc R R R R .
0 7
x 10(-@-----&-----®%---- @& @B @ R R
L % g
5 gx Bl ‘ ’ 1

6 7 8 9 10

Simulation time step

Figure 4.6: Alya RED perfomance evolution

In our experiments, all the timesteps of a simulation should take the same amount of
time (variability under 10%). We now analize the stability of the cluster performance
after applying each network improvement. In figure 4.6, we show the individual du-

ration of each timestep inside a simulation. As we mentioned, in november prior to

Constantino Gémez Crespo

UPC, Barcelona School of Informatics

56 Chapter 4. Test and results

the review of othe project, we experienced important performance issues; bars cut
in the plot represent iterations of 121 seconds duration. We observe timesteps (see
MB_Nov2015 results) that range from 3x to 25x slower than in the previous exper-
iments in July. Again, we see that after the first upgrade we improved the results
and reduced heavily the timestep duration variability of simulations, although the
results were still worse than in July. Second upgrade (MB_NewDriverSACK) not
only fixed completely the variability issues in Alya, it also caused a 1.25x speedup

in the timesteps.

Note that in terms of speedup we seemed to obtain better results at the end of
December 2015 (4.5a purple line) than in February 2016. This is due to a change in-
troduced on the timing function of Alya before the February experiments. Since the
beginning of the experiments up to the end of 2015, we used a measuring function
based on the elapsed cputime, meaning that we are not taking into acount System
time in our measurements. Opposed to MareNostrum 3 nodes, Mont-Blanc nodes
do not include a DMA support, therefore, the system is not capable of offloading
network transfers. A DMA engine allow us to send messages over the network with-
out active usage of the CPU to copy the buffer from memory. The original Alya
RED timing functions are based in CPU time instead of Wall Clock time, that is
a potential source of unfairness when measuring iteration time, because of that, we
modify the timing functions to measure the time based on the Wall Clock time.
Using this new version, we obtain worst scaling at high number of processors, where

potentially the overhead of the operating system is more significant.

4.2.2 NMMB

As we present in the porting experiences (see 4.1.2), due to critical issues we are not
able to execute global scale simulations in the Mont-Blanc prototype. All the results
we show in this section are obtained using the low resolution inputset (basetest).
Even if this input is not relevant for scientific experiments, it still remains represen-

tativo for studying the behaviour of the application at scale.

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment 57

Final results

Following we present the final results of NMMB. The power monitor was disabled at
the time of these experiments, thus, we do not show any power consumption results

for this application in the Mont-Blanc prototype.

(a) Strong scaling (b) Strong efficiency

Parallel efficiency

8 16 32 64
MPI Ranks # MPI Ranks

Figure 4.7: NMMB parallel performance

In Figure 4.7, we present strong scaling performance results running NMMB using
up to 64 cores to perform weather forecast simulations. We already observed the bad
scalability of NMMB in a previous section (see 4.1.4). Also in this case, the parallel
efficiency drops quickly below 40% showing that there is almost no improvement in
performance when we increase the number of MPI Ranks in both platforms. At 64
MPI ranks MareNostrum3 improves heavily its performance achieving up to 80%
parallel efficiency. We are not able to identify the causes of this performance im-
provement, to do so, as a future work we should study the differences in performance
based on traces by observing the evolution of the different computational phases on

strong scaling tests.

In Figure 4.8 we compare again the execution time normalized to MareNostrums3.

In NMMB the Mont-Blanc prototype is 5x to 19x slower, being 9x slower in average.

Constantino Gémez Crespo UPC, Barcelona School of Informatics

58

Chapter 4. Test and results

Execution time normalized

8 16 32 64
MPI Ranks

Figure 4.8: NMMB performance on Mont-Blanc compared to MareNostrum3

In our experience, NMMB can be hardly used to compare platforms in terms of
scalability. Dedicating high quantity of effort to run NMMB in the prototype barely

produced any results in terms of performance numbers or figures.

4.2.3 Saiph

Following, we present the results we obtained testing the prototype with CFD codes
generated using Saiph. As we said, Saiph generates OpenCL kernels capable or run-
ning on GPUs. The execution time of these codes is spent in the OpenCL kernels;
in the GPU. As its normal, our test scaling the number of CPU cores show no im-
provements in the execution time. Instead, we show a platform comparison enabling

or disabling the output of the application to disk.

Final results

We test three kernels: Bitumen, Convection and Diffusion2Eqgs. The input set pa-
rameters are embedded in the source code and we do not perform any tuning on

them. We compare the results against MinoTauro, the BSC platform housing 61

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment

59

nodes with dual socket Intel 6-core processors and 2x Nvidia Tesla M2090 accelera-

tors.

B MT-ouput-OFF @ MB-output-OFF
mmm MT-ouput-ON W@ MB-output-ON

N W
v O

=
Ul

to MT-ouput-OFF
= N

o o

1

u

Execution time normalized

Bitumen Convection , Diffusion2Eqs
MPI Ranks

Figure 4.9: Saiph performance on Mont-Blanc compared to MinoTauro

Looking at figure we observe two things: the GPU performance gap between plat-
forms, and how it relates to the disk writting of the output. In terms of GPU
performance, the Mali-T604 is 6x to 16x times slower. In MinoTauro, compared to
disabling the output to disk, enabling it causes slowdowns up to 4x. In the same

circumstances Mont-Blanc prototype is 1.25x to 6x times slower.

In our experience, writing files to disk in the Mont-Blanc prototype is more ex-
pensive than in other conventional HPC cluster. In this results, the performance
gap between GPUs is relatively bigger than the Cortex-A15 vs Intel Sandybridge
gap. As a final comment, since we are focused in the scaling of scientific produc-
tion applications, we just performed a preliminary study on the Saiph kernels, as
they are not suitable for scalability tests on the full cluster. However, we consider
that an OmpSs ad Cluster (an OmpSs version with distributed memory support)

version of this codes would be an interesting benchmarking tool because it would

Constantino Gémez Crespo UPC, Barcelona School of Informatics

60

Chapter 4. Test and results

allow to easily evaluate new physics codes using the full cluster with optimized code.

4.2.4 SMUFIN

As we mentioned before (see 4.1.1), it was not possible to port SMUFIN to the
Mont-Blanc prototype. Instead of the standard performance analysis and compar-
ing Mont-Blanc prototype against MareNostrum3, we present an in-depth analysis
of the scaling behavior of the application. To do so, we analyze the scaling and
memory consumption of the application; and also, we share insight about the be-
havior of the application using paraver traces. At the end of this section, we discuss
the overall problems of SMUFIN and add some comments related to the impact of

the collaborative work done around this application.

Scaling and memory consumption analysis

We run all our tests using the synthetic input set ’ch22_in_silico’ which aims to rep-
resent the genome sequences of the chromosome 22. This input set is distributed at

the SMUFIN website for evaluation purposes.

In our strong scaling tests we do not obtain almost any speedup. Also, reducing
the input set length in about 80% causes only a 15% execution time reduction. This
suggests two things. First, for the new method that SMuFiN describes (see 3.4),
the BWA library for sequence alignment is not efficient because this library forces to
load the human reference genome data (> 10GB) which is not used later. Second,

the parallel implementation of this method has critical parallel efficiency problems.

Like several other sequencing applications, also SMUFIN deals with complex and
large data structures translating into a large memory footprint. A regular execution
aligning one chromosome (ch22) uses on average 46GB of RAM. In figure 4.10 we
see that the total amount of RAM required to execute the same problem increases

linearly with the number of processors, there is almost a 100% replication of data

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment 61

structures between processes.

200)) T
— @&—@ Average
g V¥—¥ Maximum
— 50 A -
)
£
| -
o
9 100
S D P < _
L
>
| -
o
E S0 T -
(@]
=
O 1 1 1
4 8 32
MPI Ranks

Figure 4.10: Memory footprint scaling the number of MPI processes.

Trace analysis

We use tracing tools (Extrae and Paraver) to visualize and analiyze the behavior
of the application. The images we show here correspond to a trace obtained from
a execution using 64 cores equally distributed between 8 nodes. Every figure cor-
respond to a different view that renders different information. in further specific

observations, we refer to the number annotations inside each image.

Figure 4.11 shows the useful duration of the computational bursts. Light/Green
values represent lower values, dark/blue for higher values. In the figure we see two
kinds of lines, horizontal (1) and stepped (2). After the first (1), each horizontal

line represent a slave MPI process (1a, 1b) that manages a node.

In SMuFiN, when a node has an idle core, the slave process of that node request

and fetch work blocks from the master MPI process. Then, the slave process creates

Constantino Gémez Crespo UPC, Barcelona School of Informatics

62

Chapter 4. Test and results

THREAD 1.1.1

THREAD 1.3.23

THREAD 1.4.43

THREAD 1.4.G868

THREAD 1.5.552

THREAD 1.6.512

THREAD 1.7.586

THREAD 1.8.538 ,

Figure 4.11: SMuFiN timeline showing useful duration of threads.

a thread to compute the block and gives it to the idle CPU. Upon finishing, the
results are sent to the master and the CPU is again free/idle. In the stepped lines
(2), each step represents a pthread performing the computation required for a work
package for some amount of time (on that depends the lenght of the line) before
being destroyed. As we see, everytime we create a thread its running only for a few

milliseconds.

Below in figure 4.12, we see now a trace where each thread is colored by its computa-
tional state (legend right). We observe how the communication rate between master
and slave is very intensive during the first half of the trace. Those comunications
correspond to the slave processes fetching and returning work blocks to the master.
After that, in the second half, there is only three events where slave processes send
work to the master (circled in red). While waiting for this three work blocks to
finish, all the other nodes finished its work and their cores are idle. This outlier

work blocks take ~ 200z more time to complete than the average.

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment 63

New window #2 @ SMuFin.prv #1
v nr

11 | e

H Running

[Mot created

M vaiting a message

W Blocking Send

@ Test/Probe

[scheduling and Fork/Join
W vaitMaith1l

I Immediate Send

[athers

Figure 4.12: SMuFiN timeline view with communication lines.

In figure 4.13a, we show a histogram of the computational bursts duration. The
region marked outlines a set of bursts that are exceptionally long. With paraver we
zoom into that region, this way we can isolate the abnormal behavior bursts. Figure
4.13b shows only these marked objects in a view which has the same scale as the

previous view in figure 4.12.

We observe two different groups. First, the group of slave threads (Thread 1.2.1,
1.3.1, etc), they are expected to be this long, as they are running during all exe-
cution till the end. The second group is divided in 3 subgroups of eight threads,
each subgroup corresponds at the last work block computed at different nodes. If
we extract the total instructions hardware counter values for these bursts we obtain
that these bursts execute up to ~ 180x more instructions than the average. At this
point, finding the issue causing this behavior was out of the scope of our target work,
since it required an in-depth debugging of the application and major changes in the

code.

Overall issues and conclusions

Now we comment on the overall issues we found in terms of parallel performance

and conclusions about this application.

Constantino Gémez Crespo UPC, Barcelona School of Informatics

64 Chapter 4. Test and results

New Histogram #1 @ SMuFin.prv #1

(a) Useful duration histogram.

Useful Duration 2DZoom range [2.76158e+09,4.069692+89) @ SMuFin.prv #1

]
Fe

T
1
T
1
T
1
i
T
1
T
1
1
1
I
Tk

N Y Y Y Y Y N N Y Y O e e b |
< 2,842,163,965.4438 3,372,083, 646.8163 3,982,803,328.1897 =

(b) Zoom of the outlier bursts we found in the histogram.

Figure 4.13: Analysis of the outlier work blocks

Parallel efficiency of this SMuFiN version is very poor, increasing the number
of nodes beyond 8 or 16 nodes does not yield any benefit in performance; it
does not scale. Trace analysis shows heavy load unbalance between nodes. On
the other hand, we consider that a solution to the current distribution of the
data structures in memory is required; it should not increase linearly with the

number of processors.

We suggest reconsidering the parallelization approach of the application in
favor of a more state of the art programming model with tasks runtime sup-
port in addition to MPI, that is, OpenMP 4.0 or OmpSs. Also, in the current

implementation threads are managed by SMuFiN’s own runtime functions that

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment 65

are: first, inefficient to work with a complex workload like this one; and also,

very difficult to analyze using tracing tools.

Inapropiate libraries Our test shows that changes in the input sets have low
impact in the execution time. We are strongly convinced that this is caused
by the BWA library used for sequence alignment. As we said, this library loads
the full reference genome of 17GB when the original design of the method does
not require reference genome comparisons at all. This justifies the effort to
migrate to another library or create our own set of sequence aligment and
management functions. Also, replacing BWA will remove the x86 intrinsic

code, opening the possibility of a full port of the application to ARMv7/8

Interdepartamental collaboration The testing and evaluation of SMuFiN in
MareNostrum3 and the report of results to the developers influenced several
actions on the application development itself. As of May 2016, this applica-
tion its currently being reimplemented from scratch, based on the collaborative
work with several groups: Heterogeneous Architectures, Storage and Big Data.
In this new application the developers are considering new approaches to tackle

the problems identified by the collaborators.

In the future, Life Science group expects to obtain a production level scientific ap-
plication based on SMuFiN capable of handling several full genome sequences at the

same time.

4.3 Performance evaluation of ARM 64-bit platforms

As we mentioned, during the progress of the Mont-blanc project, the research and
development team deployed several mini-clusters and one large HPC prototype (see
chapter 2). Although the new platforms share majority of its software stack, they
are very diverse in hardware. Each SoC has different configurations: number of

cores and nodes, ISA (ARMv7-a/8-a), topology and network interconnection.

In the project, we wanted to perform a fair perfomance comparison of all our avail-

Constantino Gémez Crespo UPC, Barcelona School of Informatics

66

Chapter 4. Test and results

able platforms. For that, we design and develop a methodology to evaluate per-
formance based on obtaining timings and metrics that allows us to compare the
clusters and also specific parts of each platform architecture. We test and improve
our methodology by using it to compare the last Mont-Blanc generation platforms:

Applied Micro XGene, Cavium ThunderX and Nvidia Jetson TKI1.

Below, we present and reason about our methodology and results evaluating these
platforms. We also include an issues subsection to comment on the technical and
performance problems we encounter during our tests. The porting experiences re-

lated to ARMv8 platforms are shown in the previous section 4.1.3.

4.3.1 Methodology

In order to perform a fair and complete comparison of performance running scientific
applications in low power architectures, we cannot rely only in a single application.
As we have seen in the previous section, full production applications generally are
not designed to work as a benchmark. In consequence, adapting the parameters and
inputs to perform a wide range of tests is very difficult. We realized that testing
for HPC performance we need to use applications as close as possible to production
scientific applications, but we need also to understand the performance at a smaller,
detailed scale. Because of that, we decided to select a new set of benchmarks that
will allow us not only to perform a fair comparison, but also, compare individually
several points in the architecture of our mini-clusters. Finding applications that can
run properly on every platfrom is not a trivial task because we are constrained by
their heterogeneity. In the list of hardware characteristics of our platforms we find

variety in the number of nodes, cores per node, main memory sizes, etc.

To select and organize the set of benchmarks that target different parts of the
architecture, we decided to structure our benchmarks in layers. The objective of
each layer is to gather a different set of metrics that allows us to fairly compare the
performance of our platforms executing HPC applications. We develop or select the
benchmarks that we consider more suitable for each metric. To fill each layer, we

explore several state of the art scientific community accepted benchmarks like: NAS

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment

67

parallel benchmarks [27], Polybench/C[”*], Mantevo[!]|, Rodinia[(], CORAL[!],
PARSEC[”], etc.

In the following sections we define three layers of benchmarking, including the ob-

jectives and the target study for each layer.

Layer 1 aims to individually test the architecture limits of a single node. More
specifically, we execute benchmarks to study throughput and latency of three
main component of HPC systems: the floating point unit, the memory sub-

system and the network infrastructure.

Our approach in this layer is pretty straightforward, we use one single bench-
mark for each metric. First, to measure the maximum achievable floating-point

performance we execute FPU benchmark.

Second, to test the memory bandwidth capabilities of our memory hierarchy
we use STREAM. STREAM is a well-known and widely accepted benchmark
that measures sustainable memory bandwidth (MB/s) executing four different
vector operation kernels. Memory bandwidth measurements are key to study

and understand the behavior of applications in multicore systems.

Finally, we test the maximum attainable network bandwidth (in Mb/s) run-
ning another custom benchmark, MultiPingPong. MultiPingPong tries to sat-
urate a network link between two nodes by performing PingPong communica-
tion in pairs where each processor in a pair belongs to a different node. This
also allow us to reason about the limits and behavior of the network perform-

ing demanding message passing operations.

Layer 2 aims to test the parallel perfomance of our platforms using scientific com-
munity accepted benchmarks. Among the set of benchmarks we have chosen,
we distinguish three types: first, the miniapps CoMD, LULESH and miniFE;
second, the standard HPC Benchmark suites HPCC and HPCG; and finally,
the OpenMP microkernels MILCmk, AMGmk, GFMmk. With the first two

Constantino Gémez Crespo UPC, Barcelona School of Informatics

68 Chapter 4. Test and results

groups, we are able to test the performance of the full machine with applica-
tions designed to test parallel efficiency up to a high number of nodes. With
the last one, we focus on the multicore inside a node with OpenMP kernels.
That allows us to study the impact (coherence network, memory bus, NUMA
penalty, etc.) and sources of overheads when running shared memory applica-

tions.

All the benchmarks we selected belong to state of the art benchmark suites.
LULESH miniFE, MILCmk, AMGmk and GFMmk are part of the CORAL
project benchmarks. CoMD is included in Mantevo benchmark suite. Finally,
HPCC (which includes HPL) and HPCG are considered as they are used for

international ranking of HPC systems.

Layer 3 aims to evaluate the full cluster scaling with state of the art scientific
production applications. Applications in this layer allow us to stress all the
HPC cluster architecture at once. Benchmarks in layers 1 and 2 are not de-
signed to write to disk big output files while production application usually
provide support for it, thus, allowing us to test also our storage subsystem
behavior. Considering the complexity of porting and testing large production

applications, we limited our study in this layer to Alya RED.

4.3.2 Layer 1 benchmarks results

Below, we present the Layer 1 benchmark results. From this tests, we are able to
obtain the maximum values per platform of this following metrics: floating-point per-
formance (FLOP/s), memory bandwidth (MB/s) and network bandwidth (Gbps).
These values allow us to directly compare the capabilities of each socket; this is key
to reason later on about the impact of running parallel benchmarks using all the

cores in a socket or shared memory domain.

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment

Floating-point performance comparison

To obtain the floating-point performance of each socket we run the FPU benchmark
(see 3.6.1). Although we obtain single and double precision performance for both
ARM VFPU and NEON SIMD units, in this study we only report double precision
performance of the VFPU.

(a) Raw (b) Normalized

mmm DoublePrecision_FPU
50 T T T T

mmm DoublePrecision_FPU

44.60x

FLOP/s

Figure 4.14: Double Precision Floating-point performance SoC comparison

Figure 4.14 shows, for each platform, the aggregated double precision floating-point
performance of all cores in one node. For future references, we also show the normal-
ized FLOP performance (4.14b). In the X axis of these plots, ThunderX_48 refers
to executions using 1 socket (48 cores) of the two available in each ThunderX node,
similarly, ThunderX_96 means we use both sockets. We use as baseline 1 Mont-Blanc

prototype socket (MB) with 2 cores.

First, a JetsonTK1 socket has performance improvement of 2.72x over Mont-Blanc.
Although both SoC’s use the same Cortex-A15 implementation, JetsonTK1 has 4
cores instead of 2; running at a 2.32GHz frequency instead of 1.7 (1.36x improve-
ment). Mutiplying Mont-Blanc performance value by both factors, number of cores
and frequency increase, we obtain the same value that we obtained in the bench-
mark, 2.72x; which is in fact, expected. If we apply the same reasoning comparing

JetsonTK1 and XGene2 we also obtain that the improvements in performance match

Constantino Gémez Crespo UPC, Barcelona School of Informatics

70 Chapter 4. Test and results

exactly the relative increment of number of cores and frequency. As we mentioned
before (see chapter 2) both architectures have a throughput of 2 FLOP per cycle.
However, this trend does not continue with the ThunderX socket, considering its
frequency and number of cores and floating-point throughput we expected a 25.3x

increase in performance.

Memory bandwidth comparison

In this section we present the STREAM benchmark results in the three platforms.
Executions run an out-of-the-box version of STREAM and use all cores available in

each socket (running with OpenMP).

Em jetsonTK1 @ ThunderX 48
mmm XGene2 Ee® ThunderX 96

35000

30000

25000

20000

MB/s

15000

10000

5000

Copy Scale Add Triad

Figure 4.15: STREAM benchmark memory bandwidth results.

Figure 4.15 shows the maximum memory bandwidth achievable by each socket when
running the four vector kernels of STREAM. Again, ThunderX 48 and ThunderX_96

refer to the use of one or two sockets on a ThunderX node.

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment

71

Compared to JetsonTK1, XGene2 achieves 5x more memory bandwidth. Thun-
derX_48 achieves at least 20 to 25 GB/s of memory bandwidth; using both sock-
ets in ThunderX_96 achieves 30 and 35GB/s. From this results we remark three
things. First, with only 8 cores, XGene2 has approximately the same bandwidth
compared to one ThunderX socket, therefore, XGene2 has 8 times more memory
bandwidth per core when threads occupy all the cores in both platforms; this will
favor XGene2 scalabiliy in memory intensive applications. Second, JetsonTK1 is far
behind the rest of the platforms; in the previous section, JetsonTK1 compared to
XGene2 achieved reasonable floating point performance results. The ratio memory
bandwidth to computation decreases significantly meaning that even running appli-
cations with the same number of cores, JetsonTK1 would suffer earlier from memory
bottlenecks. Third, when going up from 48 cores to 96 cores we experience a big
drop in efficiency, doubling the number of cores yields only 20% to 40% increase in
performance. This is a consecuence of NUMA, where the second socket is accessing
has to perform remote accesses to the memory connected to the first socket throught
the coherence network. In further experiments (not shown in this work), we were
able to improve ThunderX performance using both sockets by introducing NUMA-

aware directives in the code.

Network bandwidth comparison

In this section we present our experiments to obtain the peak bandwidth performance

of our platforms.

Constantino Gémez Crespo UPC, Barcelona School of Informatics

72

Chapter 4. Test and results

=
AN

=
N

=
o

—® JetsonTK1

1 V—¥ XGene2

A—4A ThunderX

1 <4¢—d ThunderX-NewBound

Network Bandwidth [Gbps]

— | | | | | | | | |
A NGO ONSTOONSOONSSO0ONSTST 0 ON <
HMOANINHANSTSOOTOO0WOMNSONINO
A ANNOCOOIMNINOANLHM
AN O0OONIN =N 00N
—AMOMONSO O
A NN OO -
— N <

Buffer size (Bytes)

Figure 4.16: Network Bandwidth peak performance comparison scaling the buffer

size.

Figure 4.16 shows the results of our network bandwidth stress test benchmark, multi-
PingPong. As we mention in chapter 2, JetsonTK1, XGene and ThunderX platforms
use 1 Gigabit ethernet, 10 Gigabit ethernet (with ROCE capabilities) and double
aggregated link 10 Gigabit ethernet respectively. In the legend, ThunderX refers
to the first interconnection configuration, where nodes are interconnected using one
single 10 Gigabit ethernet link. ThunderX-NewBownd represents the performance
with the later configuration, double 10 Gigabit ethernet aggregated link.

Between 16KB and 32KB we reach a plateau in performance, after that, perfor-
mance decreases consistently in all plaftorms. Decrease in perfomance is caused by
a change in the way MPI messages are sent. MPI implementations usually use two
different techniques [/ 7]. To send short messages (32KB and below) it uses an eager
algorithm, where data is sent as soon as possible. To send long messages (above

32KB) it uses a rendezvous algorithm, where the sender sends a message asking

for permision to send a bigger message, and waits for a response that confirms the

UPC, Barcelona School of Informatics

Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment 73

receiver is ready. In rendezvouz mode we are able to reach similar performance in

all 64-bit platforms.

ThunderX obtains a 10% to 20% improvement in network performance from link
aggregation. Note that, for this type of workloads, link aggregation is not supposed

to yield great improvements.

4.3.3 Layer 2 benchmarks results

This section gathers our results and experiences with parallel mini-apps and bench-
marks whose workloads have scientific relevance. First, we present our experiment
results executing three OpenMP-only CORAL benchmarks: GFMCmk, MILCmk
and AMGmk. And second, we present our results running MPI-only applications:
HPCG, CoMD, LULESH and miniFE. At the end of this section, we share our ob-

servations and lessons learnt during the testing process.

Single node: OpenMP benchmarks

As we mentioned (see section 1.3.1), memory bandwidth is a critical resource in mul-
ticore processors. Previous section showed that even having similar floating point
performance per core, memory bandwidth available per core could be different in
orders of magnitude. In HPC workloads, memory contention has a high impact in

parallel performance.

To understand better the behavior and results we present, we extract shared mem-
ory bus events statistics i.e: last level cache misses, writebacks and TLB misses;
executing the different benchmark kernels. Table 4.1 shows the memory pressure
statistics we obtained running each kernel in a single ThunderX socket (48 cores)

ordered by L2 Cache Misses. Note that, these stats may differ from platform to

Constantino Gémez Crespo UPC, Barcelona School of Informatics

74

Chapter 4. Test and results

Benchmark L2 MPKI L2 WBPKI TLB MPKI
gfmemk 0.15 0.15 0.034
mile.k5 3.72 1.44 0.0048
mile.k4 5.05 2.19 0.006
mile.k1 6.22 1.33 0.0142
milc.k2 6.65 1.35 0.0133
mile.k7 7.666 0.0268 0.0232
amgmk.k1 11.31 0.96 0.034
amgmk.k2 11.15 2.05 0.0502
milc.k6 15.53 0.057 0.0454
mile.k3 28.23 16.17 0.1006

Table 4.1: Layer 2 OpenMP benchmarks memory stats.

obtained using Extrae and Paraver.

platform. However, we assume they are similar enough to do a coarse-grain discrim-

ination between memory and compute intensive applications. All these metrics are

UPC, Barcelona School of Informatics

Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment

75

Speed-up

Speed-up

Speed-up normalized
to JetsonTK1

(a) Platform socket performance comparison.

I— JetsonTK1 mmm XGene2 w4 ThunderX_48 aw®i ThunderX_96 s MN3_8 MN3_16
2k o
¥ ¥
0 . P e ...,
fs ? 3:
Bl N ,: ... ’
0 7 ('
6l EN. I ’ 4. v: < S | S
Bl KS :j, :: :: ’
al BN RN R S -
5 7 ; e 7% M s
2k AN A Je i ’ ,,,,, ,/o ’ ’ : Q
X el b / ;ou b el S
ok L K AL B gax N
gfmcmk milc.k5 milc.k4 milc.kl milc.k2 milc.k7 amgmk.kl amgmk.k2 milc.ké
(b) Jetson strong scaling (¢c) Jetson strong efficiency
6 — T T 1.2
@—@ gfmcmk &—e milc.k7
5H¥—¥ milc.k5 O O amgmkkl|...................] I] O S i
A—A milck4 e—a amgmk.k2 z
4 ||+ milckl f—k milcké [] S 08l NS——— . — |
> milc.k2 ©—@ milc.k3 ©
=
I 0B O O T 1
]
© 0.4H0—0 milc.k7 ~—— J
© V—¥ milck5 0O O amgmk.kl
a 0.2 A—A milc.k4 *—e amgmk.k2
““| =< milc.k1 d—k milck6 [T 1
>—> milc.k2 ©—0@ milc.k3
[o) - ! ! 0.0 I L
— ~ < 1 2 4
OMP threads # OMP threads
(d) XGene2 strong scaling (e) XGene2 strong efficiency
10— T T T 1.2
—@ gfmcmk
V¥—¥ milc.k5
8 a—a milcka [g >
<+—< milc.kl S
gl|>—> milck2 1l C
—e milc.k7 &
O O amgmk.kl w
41| e—e amgmk.k2|................... g A L] Q
*—k milc.k6 T 0.4H@—@ gfmcmk @@ milck7 foooo i
e—o milc.k3 o ¥—¥ milcks O O amgmk.kl
e e— o 0.2]/&A micks e—e amgmk.k2
4[] ¢—< milc.k1 *—k milc.k6 o]
>—> milc.k2 ©—0@ milc.k3
0 L L L L 00 1 1 L L
— ~ < © 1 2 4 8
OMP threads # OMP threads
(f) ThunderX strong scaling (g) ThunderX strong efficiency
T T T T T T T T T 12
s50H®—@ gfmcmk |
¥—¥ milc.k5 1.0l
A—A milc.k4 >
40 H milekl | RN 9
> milc.k2 Q0 0.8
30H ®—e milc.k7 |] u‘:;’
0O O amgmk.kl w 0.6
20l *—e amgmkk2(4 A\~ | o]
*—tk milc.k6 © 0.4H®—® gfmcmk milc.k7 E
o—a& milc.k3 o ¥—¥ milck5 O O amgmk.kl
W AT a 0.2 A—A milc.k4 *—e amgmk.k2
4[] =< milc.k1 *—k milck6 |]
v >—p milc.k2 ©—@ milc.k3
0 p L L 0.0 T T T T T L L L L
I S - S 1 2 4 8 16 32 48 64 96

OMP threads

OMP threads

Figure 4.17: OpenMP comparison.

Constantino Gémez Crespo

UPC, Barcelona School of Informatics

76

Chapter 4. Test and results

In figure 4.17 we gather all our results running OpenMP microkernel benchmarks.
First, we compare Jetson, XGene2, ThunderX and MareNostrum3 performance us-
ing all cores in a socket (a). Second, for the three first platforms, we show paralel
speedup and efficiency performing strong scaling tests (b, c, d, e, f, g). The order of
appearance of the lines and bars in the plots is based on the L2 MPKI shown in the
previous table; we leverage that ordering to reason about the memory bandwidth

impact in terms of parallel performance.

About figure (a) we have several observations related to unexpected issues. First,
as we see, in most of the benchmarks, ThunderX performance using one socket is
higher than using two. We observe these critical performance issues when executing
OpenMP kernels using both sockets in ThunderX (Thunder_96). We perform a de-

tailed analysis of such issues in section 5.2.

By looking at the performance gap between platforms we observe that, in com-
pute intensive kernels (gfmcmk, milc.k5, milc.k4) XGene2 is still 2x faster than
JetsonTK1; but in memory intensive applications this gap increases up to 6x. Com-
paring ThunderX 48 to XGene2, as L2 Cache Misses increase (and so it does the
memory bus contention), the performance gap is reduced in favor of the XGene2.
Although we cannot reason coherently about ThunderX_48 and ThunderX_96, we
observe that going up from 8 to 16 cores in MareNostrum3, i.e. one or two sockets,

yields minimal performance improvements.

Figures (b, ¢) show JetsonTK1 strong scaling results. We observe that in general,
as memory bus pressure increases, parallel efficiency drops very fast. Compared to
other platforms JetsonTK1 obtain very bad scaling results even at 4 cores. These
figures also suggest that AMGmk is experiencing additional issues, although we were
unable to identify its source. Figures (d, e) show XGene2 strong scaling results. In
terms of efficiency, at maximum number of cores on each platform (right furthest
point), XGene2 obtains the best results in all applications having 90% efficiency for
kernels with lower memory intensity and 60% for the most intensive ones. Addi-
tionally, if we compare XGene2 and ThunderX at 8 cores, ThunderX obtains better
scaling results. We think that this is caused by the relative low throughput per

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment 77

core of ThunderX, meaning that for the same number of cores in both platforms,
the average memory bandwidth running the same benchmark in ThunderX is lower.
Finally, in figures (f, g) aside from particular issues we mentioned before, at 48 cores
ThunderX is efficiency on most applications is close to 75%, beyond that point effi-
ciency drops down to a least 40% on most applications. In general in HPC, parallel

efficiency below 75% is considered not acceptable.

Full cluster: MPI only benchmarks

In this section we present the results we obtain running MPI only applications. With
this MPI benchmarks we are able to test the full architecture of the mini-clusters.
We obtained all the results performing weak scaling; all benchmarks allow us to per-
form weak scaling but only a small subset offers strong scaling test support. Also,
these applications have restrictions in the problem partitioning, and because of that,

we are missing several intermidiate performance points in our plots.

Figure 4.18, gathers our results running HPCG, CoMD, LULESH and miniFE. As
in previous figures, we show parallel speedup and efficiency of each benchmark sep-
arated by platform. Although some of these applications support hybrid execution
using OpenMP plus MPI, we disabled OpenMP in all benchmarks; in all tests, every

process has it is own memory space.

In general, we observe that CoMD and LULESH are the more predictable appli-
cations in terms of performance. In the other hand, HPCG behavior differs heavily
between platforms. miniFE suffers from big efficiency losses going up from one to

two cores, but after that, scales reasonably well.

JetsonTK1 (see figures a,b), we only obtain reasonable scaling results running CoMD

with 8 cores. The rest of results achieve poor scaling efficiency at 50% or lower.

Constantino Gémez Crespo UPC, Barcelona School of Informatics

78 Chapter 4. Test and results

(a) JetsonTK1 weak scaling (b) Jetson weak efficiency
12
1.0
>
2
Q o 0.8
3 S
? & os
2 g
n ‘© 04
©
o
0.2 e TOEaHl o O
V—¥ CoMD <—<« miniFE
ol 0.0 T T L . .
1 2 4 8 16 20 1 2 4 8 16 20
MPI Ranks # MPI Ranks
(c) XGene2 weak scaling (d) XGene2 weak efficiency

Speed-up

Parallel Efficiency

0-2/T6—@ HPCG &—& LULESH|

V¥—¥ CoMD <—d miniFE

0.0 T T il Il 1
1 2 4 8 16 24

MPI Ranks # MPI Ranks

(f) ThunderX weak efficiency

(e) ThunderX weak scaling

350{@—e@ HPCG
V¥—¥ CoMD
300 a~—A LULESH >
<+—< miniFE <
o 250H _ _ . @
5 ideal é
g 200 /- 5
Q. 150 o
v ©
101] E < <+
501 0-2{o—@ HPCG a—a LULESH| =~~~
- V—¥ CoMD <=« miniFE
0 L L L 00 T T T T T T T T 1 1 1 1 1 1 1
N R D 0L R (O AR O O R D o NY R R0 @ >0 DO LD D o>
N A @ 0% 07 2 4% 20 o R N YR 0" 00 A7 N 100 07 o
MPI Ranks # MPI Ranks

Figure 4.18: MPI comparison.

Comparing all platforms at 8 MPI Ranks, XGene2 obtains the best parallel effi-
ciency; increasing the number of MPI Ranks inside a XGene2 (subfigures e, f) chip
has minimal efficiency loss. However, we observe up to 25% efficiency losses when
message passing over the network is required (executions with more than 8 cores).
Our results show that XGene2 memory bandwidth allows us to scale applications

reasonably well. Nonetheless, we should consider a deeper study of the network

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment

79

performance running MPI applications to be able to optimize the network stack.

Finally, in subfigures (e) and (f) we observe that ThunderX parallel efficiency drops
at a consistent rate in LULESH and HPCG for tests running 96 cores or lower. Over
96 cores, meaning the processes use the ethernet interconection for message passing,
we observe sustained parallel efficiency at miniFE and LULESH and also a slower

dropping rate in HPCG.

In our experience, in terms of flexibilty performing tests, these mini-app bench-
marks are a step down compared to the previous OpenMP. The low number of
nodes and diversity in number of cores in our platforms, increases the difficulty of
performing fair comparisons. In other hand, the complexity of these applications
also stepped up significantly. These benchmarks introduce more complex perfor-
mance testing techniques (e.g: the several testing phases in HPCG), bigger codes
and computational challenges like load unbalance. Testing with applications archi-
tecturally similar to the ones in HPC’s state of the art provides relevant and useful
insight but also requires an order of magnitude higher of dedication to understand

the particularities of each benchmark or mini-app.

4.3.4 Layer 3 benchmarks results

In this section we present our results using production size scientific applications.
As we mentioned, this testing layer is under development, and the only application

we experiment with is Alya RED.

Figure 4.19, show scalability (a) and execution time (b) comparisons. We were
only able to execute the application in ThunderX with a relevant input size for
high number of cores; neither XGene2 or JetsonTK1 could allocate the problem in
memory. In this case ThunderX scaling overlaps with the ideal scaling line. Note

that, even executing with 384 cores, we are only using 4 ThunderX nodes, meaning

Constantino Gémez Crespo UPC, Barcelona School of Informatics

80 Chapter 4. Test and results

(a) Strong scaling

500 H @@ ThunderX
V¥—¥ Montblanc
A—A MN3

400 H

300 e

Speed-up

200]

TOO |-

128 256 384 512
MPI Ranks

(b) Execution time comparison

|— ThunderX mmm Montblanc @@a MN3

Execution time [s]

128 256 384 512
MPI Ranks

Figure 4.19: ThunderX results running Alya.

that the network has to handle a low number of remote connections. In terms of
exection time, we observe how that using the same number of cores, ThunderX is

30% slower compared to Mont-Blanc.

UPC, Barcelona School of Informatics Constantino Gémez Crespo

81

Chapter 5

Development Issues

In this chapter, we describe some of the most important issues affecting the deploy-
ment of the prototype and mini-clusters. We also share our experiences and describe
the actions that we performed, individually and as a team, in order to solve each
issue. At the end, we also share our conclusions about the impact of these issues as

a limiting factor to perform efficient HPC computing with low-power architectures.

To be more specific, the most common types of actions we needed to apply are:
changes in the configuration of packages, upgrading user and system libraries, up-
grading the linux kernel or apply hardware improvements. The majority of the
issues we faced and solved during the development of a platform resulted in valuable

lessons that helped us to deploy next prototypes faster.

5.1 Issues at the Mont-Blanc prototype

Here we reason about the major issues we encounter during the development of
Mont-Blanc prototype. Later, we present our in depth study on one of such issues

where that caused critical network performance issues.

Constantino Gémez Crespo Facultat d’Informatica de Barcelona

82 Chapter 5. Development Issues

5.1.1 Mont-Blanc prototype overall issues

Software stack maturity In section 4.1.2 and 4.1.3 we presented our experiences
porting applications. Although, we had many setbacks during the deployment
of the system software and libraries in Mont-Blanc prototype, we were able to
succesfully develop a full HPC software stack. Having good communication
between prototype users and sysadmins was one of the keys to this success. A
important part of the state of the art libraries and compilers are designed with
portability in mind, because of that, we were able to port them to ARMv7/8
only applying small changes in most cases. At the end, using our software

stack we were able to provide support for complex applications like NMMB.

System unstability It is expected to deal with unstability during the development
of a new platform. However, it has been a major source of slowdowns in our
work. We use the term system unstability to refer to the issues, which we are
not able to identify at the moment, that causes intermittent critical failures in

the execution of our experiments.

File system Execution of jobs with a high number of nodes > 128 caused the
Lustre filesystem to not sync files properly, even with low I/O activity; acceses
to such files raised 'no such file or directory’ errors. This is consequence of
a bad design of the file server hardware configuration. Although it improved
performance, upgrading to new version of Lustre both clients and servers was
not enough to solve the issue. In our future cluster configurations we should
review and and design a better I/O system that can handle high number of

clients requesting file data and meta-data.

Network stack Three important issues affecting the bandwidth and latency of our
network since the beginning were: the use of an ASIX driver optimized to work
with USB1.0, wasting USB3.0 capabilities; the TCP retransmision timeout set
at 200ms, causing huge delays when some packet is missing; and the use of only
one 40 Gbps link at the top-of-the-rack switches. Upgrading the usb bridge
driver, reducing retransmision time to 5ms and adding extra links up to 160

Gbps total bandwidth greatly improved the overall network performance.

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment

83

Termal throttling We identified several nodes running permanently at low fre-
quencies. It was affecting specially the nodes located at the 12th node slot in
the blades. This reveals a flaw in the cooling system and distribution of nodes
in the board. We were forced to turn off those nodes, which also resulted in

termal benefits to the rest of the nodes.

CPU frequency Instead of reporting the real operating frequency value, the op-
erating system was reporting a fixed maximum. This issue was identified as a
kernel bug. It was solved to regularly force low frequency values so the system

adjusts the correct value itself.

5.1.2 In depth study of very low MPI performance on Alya RED

As we mention in section 4.1.2 we experience critical performance issues in Alya
RED when running with more than 1000 cores. We show the process we followed to

properly identify the source.

Using extrae we obtained traces from executions with faulty iterations, which at
the moment, were all of them. We study the traces using the paraver trace analysis
tools. In the traces we located the faulty iterations and noticed irregular duration of
MPI_Recv calls in the Master thread of the application. Such MPI_Recv occur dur-
ing an all-to-one communication where all slave threads send computation results to
the master thread. This messages, of about 1KB size, take hundreds of microseconds
to complete in most cases, but in those faulty iteration they were taking from 5 to

20 seconds.

In figure 5.1a we quickly spot wider pink regions at the end of the trace, meaning
that there is iterations taking way more time than others. Pink color represents
MPI_Waitall synchronization barrier calls, meaning that threads will not progress
until all the other threads reach that barrier. If we enable the communication lines
and zoom in into one of these iterations (see figure 5.1b) we observe the all-to-one
communication pattern we mentioned before. In this particular case, we are ob-

serving the first 71 (of 1023) slave threads, each one of them sending 2 messages of

Constantino Gémez Crespo UPC, Barcelona School of Informatics

84 Chapter 5. Development Issues

(a) MPI Calls view

THREAD 1.40.1

Figure 5.1: Trace showing irregular execution of Alya RED iterations on Mont-Blanc

prototype.

around 1KByte.

Figure 5.2: Zoom into master thread during faulty iteration

MPI_Allreduce

What / Where | Timing = Colors

Semantic ¥ Events @ Communicatioyls Previous / Next & Text

Object: THREAD 1.1.1 Click time: 155.183/538 us

MPI_Recv Duration: 17.325.767,57 us

Logical RECEIVE at 155.385.248 us from THREAD 1.69.1 at 137.981.777 us, Duration: 17.403.470 us (size:
1096, tag: 0)

In figure 5.2 we zoom again, now into the first 6 threads of the same faulty iteration
(see 5.1b). We observe that a single MPI_Recv call (pointed with a blue arrow)
takes 17 seconds to complete, being the size of that message exactly 1096 Bytes.

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment

85

To discard that the source of this issue was the use of damaged compute nodes,
we performed several runs shuffling arbitrarily the placement MPI Ranks in the
physical nodes. To tackle this apparent we decide to take two approaches. First,
traceback all the changes in the configuration of the network stack software. From
this effort, the sysadmin team concluded that the change was Selective ACK in the
configuration of linux implementation of tcp protocol. Second, install and test new
linux kernel and network driver versions that included improvements for ARM plat-
forms. This decision is made based on that other researchers also indentified several
sources . The main changes this updates included were. Finally, enabling back the
selective ack option allowed us to recover the initial performance levels, but as we
see in the results of section 4.1.2, the additional improvements in the kernel and

libraries allowed us to improve further in performance.

5.2 Issues at Cavium ThunderX

In our experience, deploying the full Mont-Blanc software stack in both ARMv8
platforms, APM XGene2 and Cavium ThunderX, required cosiderably less effort
than on the Mont-Blanc prototype. Also, the relative low number of nodes in the
mini-clusters leaves little room for relevant network issues. During our tests we did
not encounter any relevant issue regarding the XGene2 platform. Alternatively, we
observed recurrent and important performance problems in ThunderX. In this sec-

tion we focus in these last problems.

Following, we present an in depth trace driven study of the critical performance
issues we experience on ThunderX. Specifically, we detect huge workload unbal-
ance and performance losses when running OpenMP applications using more than
one socket. For this study, we obtained traces running the MILCmk and AMGmk
OpenMP benchmarks with 48 (1 socket) and 64 cores.

Constantino Gémez Crespo UPC, Barcelona School of Informatics

86 Chapter 5. Development Issues

5.2.1 MILCmk trace analysis

(a) mile.k1 (b) mile.k2

THREAD 1.1.1 1.)
THREAD 1.1.9 EAD 1.1.0 48 cores in 1socket
THREAD 1.1.17

THREAD 1.1.25

THREAD 1.1.33

THREAD 1.1.41

THREAD 1.1.48 °

THREAD 1.1.1
EA

64 Cores (48+16) in
2 sockets

"% 5,131,848 us

Figure 5.3: Trace showing irregular thread duration in two different MILCmk ker-

nels.

In each figure 5.3a and 5.3b, we present Paraver timeline windows corresponding
to the useful thread duration in a MILCmk kernel. In detail, in figure 5.3a we ob-
serve how a milc.kl execution timeline with 48 cores (top) using only one ThunderX
socket behaves coherently with the code of the kernel, an embarrasingly parallel
workload. However, using 64 cores (bottom) we observe irregular duration on the
range of threads 42 to 48. Note that top and bottom timeline views have the same
timescale. Similarly, milc.k2 in figure 5.3b shows virtually the same behavior, again
being the last threads of the first socket (threads 42 to 48) the ones experiencing
duration unbalance. In this last kernel, slow threads duration averages 161ms, while

regular thread duration averages 91ms, that is a 75% increase in execution time.

In our traces, we keep hardware counter information regarding the number of spec-
ulative instructions executed per thread and computational burst. Additionaly we
keep information about other events like cpu cycles, memory stalled cycles, and so
on. This allows us to obtain the specific values for each thread that correspond to
the execution of one iteration of a milc kernel. We gather this information to study
the possible correlation between those event values and the thread duration, and in

consequence identify the source of the issue.

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment

87

(a) Speculative instructions (b) Frequency (¢c) Cycles stalled in memory
34_cycles parus @ dla bsnch-gla-L7. 13, p

]

Figure 5.4: Histograms of one iteration of milc.k2 .

Figure 5.4 shows a set histograms corresponding to three metrics: speculative in-
structions, frequency and cycles stalled on the processor due to memory events.
These metrics are obtained or derived from the hardware counter information. Along
the Y axis of each histogram represents the OpenMP threads, meaning that any
point colored in the first row represents an event value on thread 1, second row for
the thread 2 and so on. Higher values of the metric are represented on the right side
of the X axis. The points that appear in the histograms, correspond to the values we
obtain during one iteration of the milc.k2 kernel, the same timeframe we show in the
previous figures (see 5.3b). The coloring of each point is used to represent the time
duration of them. Light green represents lower values while dark blue represents

higher values.

In this case, the points colored in dark blue belong to the problematic (slower)
threads. From there we observe three things. First, slower threads execute 0.05%
more instructions compared to the rest. Considering that slower threads are 80%
longer, a minimal increase in the number of instructions executed does not explain
this behavior. Based on that, we discard load unbalance as a possible source of the
issue. Second, each threads is running at the same frequency discarding faulty cores
or preemptions. Finally, we observe an 2.3x increasing in the number of cycles stalled
in memory for slower threads. Dividing the values by the frequency we obtain how
much time a core is stalled waiting for memory instructions to complete, the result
of that division is 65ms. Although, with this information we still cannot identify

the specific issue, we have a strong indicator that it has to do with memory acceses.

Constantino Gémez Crespo UPC, Barcelona School of Informatics

88

Chapter 5. Development Issues

This is a first study based on traces and hardware counters. Using this information
we obtain more traces with other hardware counters, but now, all of them related

to memory hierarchy events.

Further analysis of memory related hardware counters like L1 and L2 Data Cache
Misses, show similar values as in executed instruction counters, where slow threads
have < 0.1% increase in cache misses. Therefore, cache misses are not either the

direct cause of the memory stalls.

5.2.2 AMGmk trace analysis

Before digging further in the MILCmk analysis we started performing the same tests
with AMGmk. As we see in the following figures, we experience similar issues as in

MILCmk.

(a) Timeline view (b) Histogram view

Memory Stall Cycles.c3 2DZoom range [2.32031e+87,8.4204 ocles stall in memory @ AMGMk.armv8.prv

THREAD 1
THREAD
THREAD
THREAD

THREAD

THREAD
THREAD 1.1.49 "

THREAD
THREAD

20,741,776 us 20,798,870 us

Figure 5.5: Trace showing irregular thread duration on AMGmk.

In our traces (see figure 5.5) we observe again direct correlation between cycles
stalled in memory and extended execution time. And also (see figure 5.6), a very
specific but minimal increase of number of memory instructions executed (below

0.01%) for those threads that take, in this case, almost double execution time for

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment 89

the same task.

(a) Histogram view

(b) Histogram statistics

Total 261,170,854
e Average 4,212,433.1290

i Maximum 4,222,080

o Minimum 4,209,518

. StDev 3,890.0319

. Avg/Max 0.9977

Figure 5.6: AMGmk memory instructions count histogram and statistics.

Finally, based on the data collected, we were not able to determine the exact source
of this issue. Anyway, we think it is most likely an issue related to the mapping
of virtual memory into physical memory causing that often threads need to access
remote data. Our proposal to keep working solving the issue requires two actions.
First, as a future work expand this trace driven study to analyze prefetcher and
NUMA accesses during execution. And second, present this analysis to the Cavium
tech support and get relevant information that allow us to identify and possibly fix

this issue.

Constantino Gémez Crespo UPC, Barcelona School of Informatics

90 Chapter 5. Development Issues

UPC, Barcelona School of Informatics Constantino Gémez Crespo

91

Chapter 6

Conclusions

In this chapter we share our conclusions and remark the main contributions of our
work to the development of the Mont-Blanc project, along with observations about

future improvements to extend our study.

We succesfully ported and evaluated three out of four scientific applications first
on the Mont-Blanc prototype and later in our ARMv8 mini-clusters. On top of
that, we have been actively involved to the development of the Mont-Blanc proto-
type software stack, contributing to two of the Mont-Blanc project main objectives:
first, demonstrating the feasibility of running full production applications in an ARM
based prototype, and also, improving the software ecosystem and paving the way

for future ARM HPC systems.

Using our testing methodology we are able to compare several mini-clusters with
different scopes. We discovered that the floating point performance per core of mar-
ket available ARMv8 platforms slightly improves compared to ARMv7 platforms.
Platforms with low memory bandwidth per core ratio like ThunderX obtain poor
scaling results in common HPC OpenMP benchmarks that generate moderate ac-
tivity in the memory bus. In our opinion, none of the ARMv8 plaftorms we tested
is still mature enough to be used to build a HPC system. We noticed however that
64-bit platforms developed for sever market, offers better stability and better soft-

ware support for running large productions codes, mainly due to the availability of

Constantino Gémez Crespo Facultat d’Informatica de Barcelona

92

Chapter 6. Conclusions

larger amout of memory per core.

In this thesis we described most of the important issues affecting the development
of the prototype and mini-clusters. Also, we explain our approach in each case to
solve the issues or the reason behind our failures. Based in our experiences, most
of the HPC applications are designed to work in 64-bit environments, using 32-bit
processors may imply several critical limitations and a non negligible effort by the
developers to support this architecture. Compared to ARMv7, ARMv8 processors

are a huge step forward in terms of compatibility with applications and libraries.

We would like to add some comments about some aspects of our work that we

should consider for future work.

Except for Alya RED, we are missing energy consumption results of the applica-
tions. As we pointed out, this is caused by problems in the PMU across platforms

and in some cases the lack of support for energy measurements.

Although we are satisfied with the information obtained based on the results using
our testing methodology, we identified several aspects that require improvements.
First, we can not ensure that our selected benchmarks represent the total spectrum
of state of the art HPC applications, we need to perform a better study and classi-
fication of the computational workload they represent. We should also expand the

set of applications on layer 3.

Constant setbacks and issues in the Mont-Blanc prototype did not leave room for
developing specific optimizations in Alya RED or NMMB as it was one of our ob-
jectives in the project. Developing such optimizations require a deep understading
of the application. Instead we invested our efforts in ensuring a correct porting and

stable execution of applications.

To conclude, compared to the MareNostrum3 supercomputer, the Mont-Blanc pro-
totype is ~ 4 times slower running HPC applications with the same number of cores,

while at the same time, obtains good parallel efficiency and similar energy efficiency.

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment 93

Our results running Alya RED have been included in a paper that presents the
architecture and performance results of the Mont-Blanc prototype. This paper has
been accepted at the Supercomputing Conference 2016 that will be held in Salt Lake
City during November 2016.

Constantino Gémez Crespo UPC, Barcelona School of Informatics

94 Chapter 6. Conclusions

UPC, Barcelona School of Informatics Constantino Gémez Crespo

95

Acknowledgements

This research has been supported by the Mont-Blanc project (European Commu-
nity’s Seventh Framework Pro-gramme [FP7/2007-2013] under grant agreement n.
288777 and 610402), the Spanish Ministry of Science and Technology through Com-
putacion de Altas Prestaciones (CICYT) VI (TIN2012-34557), the Spanish Govern-
ment through Programa Severo Ochoa (SEV-2011-0067)

Constantino Gémez Crespo Facultat d’Informatica de Barcelona

96 Chapter 6. Conclusions

UPC, Barcelona School of Informatics Constantino Gémez Crespo

97

Bibliography

[1] David Abdurachmanov et al. “Heterogeneous high throughput scientific com-
puting with apm x-gene and intel xeon phi”. In: Journal of Physics: Conference
Series. Vol. 608. IOP Publishing, 2015, p. 012033. URL: http://iopscience.
iop.org/article/10.1088/1742-6596/608/1/012033 /meta (visited on
04/27/2016) (cit. on p. 22).

[2] David Abdurachmanov et al. “Initial explorations of ARM processors for sci-
entific computing”. In: Journal of Physics: Conference Series 523 (June 6,
2014), p. 012009. 1sSN: 1742-6588, 1742-6596. DOI: 10 . 1088/ 1742~ 6596 /
523/1/012009. URL: http://stacks.iop.org/1742-6596/523/i=1/
a=0120097key=crossref . cbfc6628245aff25d87335f5a9e08aal (visited on
04/27/2016) (cit. on p. 22).

[3] George Almési et al. “Optimization of MPI collective communication on Blue-
Gene/L systems”. In: Proceedings of the 19th annual international conference

on Supercomputing. ACM. 2005, pp. 253-262 (cit. on p. 18).

[4] hpcg benchmark.org. HPCG homepage. 2015. URL: http://www.hpcg-benchmark.
org/index.html (cit. on p. 42).

[5] Emily Blem, Jaikrishnan Menon, and Karthikeyan Sankaralingam. “Power
struggles: Revisiting the RISC vs. CISC debate on contemporary ARM and x86
architectures”. In: High Performance Computer Architecture (HPCA2013),
2013 IEEE 19th International Symposium on. IEEE. 2013, pp. 1-12 (cit. on

p. 19).
[6] Barcelona Supercomputing Center. Alya Homepage. 2016. URL: http://bsccase02.

bsc.es/alya/overview/ (cit. on p. 35).

Constantino Gémez Crespo Facultat d’Informatica de Barcelona

http://iopscience.iop.org/article/10.1088/1742-6596/608/1/012033/meta
http://iopscience.iop.org/article/10.1088/1742-6596/608/1/012033/meta
http://dx.doi.org/10.1088/1742-6596/523/1/012009
http://dx.doi.org/10.1088/1742-6596/523/1/012009
http://stacks.iop.org/1742-6596/523/i=1/a=012009?key=crossref.cbfc6628245aff25d87335f5a9e08aa1
http://stacks.iop.org/1742-6596/523/i=1/a=012009?key=crossref.cbfc6628245aff25d87335f5a9e08aa1
http://www.hpcg-benchmark.org/index.html
http://www.hpcg-benchmark.org/index.html
http://bsccase02.bsc.es/alya/overview/
http://bsccase02.bsc.es/alya/overview/

98

Bibliography

[10]

[11]

[12]

[14]

[15]

Barcelona Supercomputing Center. NMMB-C'TM Homepage. 2016. URL: https:

//www.bsc.es/earth-sciences/nmmbbsc-project (cit. on p. 35).

Barcelona Supercomputing Center. SMUFIN Homepage. 2015. URL: http:
//cg.bsc.es/smufin/ (cit. on pp. 35, 107).

Nvidia Corporation. JetsonTK1 Homepage and characteristics. 2016. URL:
http://www.nvidia.com/object/jetson-tkl-embedded-dev-kit.html
(cit. on p. 34).

Toshio Endo, Akira Nukada, and Satoshi Matsuoka. “TSUBAME-KFC: A
modern liquid submersion cooling prototype towards exascale becoming the
greenest supercomputer in the world”. In: 2014 20th IEEE International Con-
ference on Parallel and Distributed Systems (ICPADS). IEEE. 2014, pp. 360—
367 (cit. on p. 19).

Michael A Heroux, Jack Dongarra, and Piotr Luszczek. “HPCG technical spec-
ification”. In: Sandia report SAND2013-8752 (2013) (cit. on p. 42).

Oriol Jorba et al. “The NMMB/BSC-CTM: A multiscale online chemical
weather prediction system”. In: HARMO 14: Proceedings of the 14th Inter-
national Conference on Harmonisation Within Atmospheric Dispersion Mod-

elling for Regulatory Purposes. Vol. 14. 2011, pp. 345-349 (cit. on p. 37).

Tan Karlin et al. “Exploring Traditional and Emerging Parallel Programming
Models using a Proxy Application”. In: 27th IEEE International Parallel &
Distributed Processing Symposium (IEEE IPDPS 2013). Boston, USA, May
2013 (cit. on p. 41).

LLNL.gov. Coral Benchmark Codes. 2014. URL: https://asc.1llnl. gov/
CORAL-benchmarks/ (cit. on pp. 41, 67).

LLNL.gov. LULESH characteristics summary. 2016. URL: https://asc.11lnl.
gov/CORAL-benchmarks/Summaries/LULESH_Summary_v1.pdf (cit. on p. 41).

LLNL.gov. LULESH Homepage. 2016. URL: https://codesign.1lnl.gov/
lulesh.php (cit. on p. 41).

LLNL.org. MPI Performance Topics. 2014. URL: https://computing.1llnl.

gov/tutorials/mpi_performance/ (cit. on p. 72).

UPC, Barcelona School of Informatics Constantino Gémez Crespo

https://www.bsc.es/earth-sciences/nmmbbsc-project
https://www.bsc.es/earth-sciences/nmmbbsc-project
http://cg.bsc.es/smufin/
http://cg.bsc.es/smufin/
http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html
https://asc.llnl.gov/CORAL-benchmarks/
https://asc.llnl.gov/CORAL-benchmarks/
https://asc.llnl.gov/CORAL-benchmarks/Summaries/LULESH_Summary_v1.pdf
https://asc.llnl.gov/CORAL-benchmarks/Summaries/LULESH_Summary_v1.pdf
https://codesign.llnl.gov/lulesh.php
https://codesign.llnl.gov/lulesh.php
https://computing.llnl.gov/tutorials/mpi_performance/
https://computing.llnl.gov/tutorials/mpi_performance/

Evaluation of Low-Power Architectures in a Scientific Computing Environment 99

[18] Mantevo.gov. Mantevo Project Homepage. 2016. URL: https://mantevo.org/
(cit. on pp. 42, 67).

[19] Satoshi Matsuoka. “Japanese HPC, Network, Cloud and Big Data Ecosystem
circa 2015 onto Post-Moore”. BDEC. 2015. URL: http://www . exascale.
org/bdec/sites/www.exascale.org.bdec/files/6-BDEC2015-Matsuoka-

Japan-update-final.pdf (cit. on p. 17).

[20] Valenti Moncunill et al. “Comprehensive characterization of complex struc-
tural variations in cancer by directly comparing genome sequence reads”. In:

Nature biotechnology 32.11 (2014), pp. 1106-1112 (cit. on p. 39).

[21] Onur Mutlu. “Memory Scaling: A Systems Architecture Perspective”. Mem-
Con. 2013. URL: https://users.ece.cmu.edu/~omutlu/pub/mutlu _

memory-scaling_memcon13_talk.pdf (cit. on p. 17).

[22] nasa.gov. Nasa Parallel Benchmarks. 2016. URL: http://www.nas.nasa.gov/

publications/npb.html (cit. on p. 67).

[23] ncsa.illinois.edu. Alya code scaled to 100,000 cores on Blue Waters supercom-
puter. 2014. URL: http://www.ncsa.illinois . edu/news/story/alya_
code_scaled_to_100000_cores_on_blue_waters_supercomputer (cit. on

p. 36).
[24] princeton.edu. The Parsec Benchmark Suite. 2016 (cit. on p. 67).

[25] Nikola Rajovic et al. “Supercomputing with commodity CPUs: are mobile
SoCs ready for HPC?” In: ACM Press, 2013, pp. 1-12. 1SBN: 978-1-4503-2378-
9. DoI: 10.1145/2503210.2503281. URL: http://dl.acm.org/citation.
cfm?doid=2503210.2503281 (visited on 04/14/2016) (cit. on pp. 13, 20, 22).

[26] Nikola Rajovic et al. “Tibidabo: Making the case for an ARM-based HPC
system”. In: Future Generation Computer Systems 36 (July 2014), pp. 322—
334. 18sN: 0167739X. DOI: 10.1016/ j . future.2013.07.013. URL: http:
//linkinghub.elsevier.com/retrieve/pii/S0167739X13001581 (visited
on 04/14/2016) (cit. on p. 22).

[27] John Shalf. The Exascale Challenge: How Technology Disruptions Fundamen-
tally Change Programming Systems. 2013 (cit. on pp. 16, 17).

Constantino Gémez Crespo UPC, Barcelona School of Informatics

https://mantevo.org/
http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/6-BDEC2015-Matsuoka-Japan-update-final.pdf
http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/6-BDEC2015-Matsuoka-Japan-update-final.pdf
http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/6-BDEC2015-Matsuoka-Japan-update-final.pdf
https://users.ece.cmu.edu/~omutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf
http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
http://www.ncsa.illinois.edu/news/story/alya_code_scaled_to_100000_cores_on_blue_waters_supercomputer
http://www.ncsa.illinois.edu/news/story/alya_code_scaled_to_100000_cores_on_blue_waters_supercomputer
http://dx.doi.org/10.1145/2503210.2503281
http://dl.acm.org/citation.cfm?doid=2503210.2503281
http://dl.acm.org/citation.cfm?doid=2503210.2503281
http://dx.doi.org/10.1016/j.future.2013.07.013
http://linkinghub.elsevier.com/retrieve/pii/S0167739X13001581
http://linkinghub.elsevier.com/retrieve/pii/S0167739X13001581

100

Bibliography

[34]

ohio state.edu. Polybench/C Homepage. 2016. URL: http://web.cse.ohio-
state.edu/~pouchet/software/polybench/ (cit. on p. 67).

Programming Models Team. Mercurium Compiler Homepage. 2016. URL: https:

//pm.bsc.es/mcxx (cit. on p. 40).

Programming Models team. Mercurium ticket tracker website. 2016. URL: https:

//pm.bsc.es/projects/mcxx/ticket/2168 (cit. on p. 48).

top500.org. Performance Development — TOP500 Supercomputer Sites. 2016.
URL: http://top500.org/statistics/perfdevel/ (cit. on p. 16).

top500.org. Top 500 June 2016. 2016. URL: http://www.top500.org/lists/
2016/06/ (cit. on p. 23).

ucar.edu. [Bug 926219] New: netcdf: Does not support aarch6. 2013. URL:
http://www.unidata.ucar.edu/support/help/MailArchives/netcdf/
msgl11728.html (cit. on pp. 50, 103).

J. S. Vetter and S. Mittal. “Opportunities for Nonvolatile Memory Systems
in Extreme-Scale High-Performance Computing”. In: Computing in Science
Engineering 17.2 (2015), pp. 73-82. 1ssN: 1521-9615. por: 10.1109/MCSE .
2015.4 (cit. on pp. 17, 19).

University of Virginia. STREAM benchmark Homepage. 2016. URL: https:

//www.cs.virginia.edu/stream/ (cit. on p. 41).

virginia.edu. Rodinia Benchmark Suite. 2016. URL: https://wuw.cs.virginia.
edu/~skadron/wiki/rodinia/index.php/Rodinia:A_Benchmark_Suite_
For_Heterogeneous_Computing (cit. on p. 67).

Wikipedia.org. Amdahl’s law. 2016. URL: https://en.wikipedia.org/wiki/
Amdah1%27s_law (cit. on p. 17).

UPC, Barcelona School of Informatics Constantino Gémez Crespo

http://web.cse.ohio-state.edu/~pouchet/software/polybench/
http://web.cse.ohio-state.edu/~pouchet/software/polybench/
https://pm.bsc.es/mcxx
https://pm.bsc.es/mcxx
https://pm.bsc.es/projects/mcxx/ticket/2168
https://pm.bsc.es/projects/mcxx/ticket/2168
http://top500.org/statistics/perfdevel/
http://www.top500.org/lists/2016/06/
http://www.top500.org/lists/2016/06/
http://www.unidata.ucar.edu/support/help/MailArchives/netcdf/msg11728.html
http://www.unidata.ucar.edu/support/help/MailArchives/netcdf/msg11728.html
http://dx.doi.org/10.1109/MCSE.2015.4
http://dx.doi.org/10.1109/MCSE.2015.4
https://www.cs.virginia.edu/stream/
https://www.cs.virginia.edu/stream/
https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Rodinia:A_Benchmark_Suite_For_Heterogeneous_Computing
https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Rodinia:A_Benchmark_Suite_For_Heterogeneous_Computing
https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Rodinia:A_Benchmark_Suite_For_Heterogeneous_Computing
https://en.wikipedia.org/wiki/Amdahl%27s_law
https://en.wikipedia.org/wiki/Amdahl%27s_law

101

Annex

A Installation guides

In this section we share the prototype and mini-clusters installation guides of all

Mont-Blanc Severo Ochoa applications we worked with.

A.1 Alya RED installation guide

Dependences

e metis 4.0 Library for partitioning of finite element meshes. It is provided with

Alya in Thirdparties/metis-4.0

Configure and Build

Starting at the root path of Alya RED folder
Step 1: Configure

This are the configure parameters required to work with gfortran

£90== mpif90 -01 -J$0 -I$0 -c -ffree-line-length-none
£77== mpif90 -01 -J$0 -I$0 -c

fpp90== mpif90 -01 -J$0 -I$0 -c -cpp -ffree-line-length-none
fomp90== mpif90 -01 -J$0 -I$0 -c -cpp -ffree-line-length-none
fpp77== mpif90 -01 -J$0 -I$0 -c -cpp -ffree-line-length-none

#cpp== mpicc -no-multibyte-chars -c
cpp== mpicc -c
link== mpif90 -01

Constantino Gémez Crespo Facultat d’Informatica de Barcelona

102 Bibliography

libs== -L../../Thirdparties/metis-4.0 -lmetis
fa2p== mpif90 -J../../Utils/user/alya2pos -I../../Utils/user/alya2pos -c
~CPPpP

Syntax: ./configure -x -f=<your_config_file> [module 1 | module 2 |
]

Alya RED configure command

$> ./configure -x -f=configure_ MB_ARMv71_mpif90_gfortran.txt parall exmedi
solidz

Step 2, Build

After executing configure command, build with:

$> make

#Run

#Change directory to the folder containing your Alya RED input data.

#$> mpirun -np 3 /path/to/Alya.x <Test Name>

A.2 NMMB-CTM installation guide

File and Folder structure

We assume pathtoNMMB _vX.Y.Z as root folder for the install instructions.

DATA Contains the STATIC Database and the INPUT samples for NMMB.
MODEL Build directory for NMMB.

LIBS Build directory for the libraries needed for NMMB

SRC NMMB Source files

SRC_LIBS NMMB needed libraries source files

Configure and Build

First of all, we need to build the following dependencies provided inside the pack-

age:

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment 103

¢ ESMF

e bacio

e Makedepf90
® nemsio

e cnvgnib

e netedf

e sigio

e sp

e w3

e werib

AARMG64 additional fixes

netCDF autoreconf At netCDF source folder: autoreconf -f -i. The problem and

its solution were posted in the official forums [7]

Edit ESMC_Config.h In ESMC float sizes are specified by DEFINE clause that
is set depending on the target architecture. By default, AARMG64 flag is not
supported. We added a line forcing them to be 8 (8bytes)

makefim KSH (KornShell) is a dependence to make and make clean NMMB. Can
be easily avoided by editing the file that call it and doing this changing the

makefim clean command to simple make clean.

Building dependencies

ESMF

Followin environment variables are required for building. We create a file esmf-env-

vars.sh that includes this vars:

Constantino Gémez Crespo UPC, Barcelona School of Informatics

104 Bibliography

#!/bin/sh

export ESMF_0S=Linux

export ESMF_DIR=/path/to/nmmb/MODEL/SRC_LIBS/esmf_6_3_0r/
export ESMF_INSTALL_PREFIX=/path/to/nmmb/MODEL/SRC_LIBS/esmf_6_3_0r/
export ESMF_COMM=mpich2

export ESMF_BOPT=0

export ESMF_OPTLEVEL=3

export ESMF_ABI=32

export ESMF_COMPILER=gfortran

export ESMF_SITE=default

\end{lstlistings}

Then execute the script and build with make

source esmf-env-vars.sh

make

Bacio

For Mont-Blanc prototype configure makebacio.sh as follows:

Update 4-byte version of libbacio_4.a

export LIB="../../libs/libbacio_4.a"

export INC="clib4.h"

export FFLAGS="-03"

export AFLAGS=""

export CFLAGS="-03 -mcpu=cortex-alb -mtune=cortex-alb -mfloat-abi=hard
-mfpu=vfpv3-di6 "

make -f make.bacio

Update 8-byte version of libbacio_8.a

export LIB="../../libs/libbacio_8.a"

export INC="clib8.h"

export FFLAGS="-03 -fdefault-real-8 -fdefault-integer-8 "
export AFLAGS=""

export CFLAGS="-03 -mcpu=cortex-alb -mtune=cortex-alb -mfloat-abi=hard

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment 105

-mfpu=vipv3-di6 "

make -f make.bacio

Original ifortran config:

Update 4-byte version of libbacio_4.a
#

export LIB="../../libs/libbacio_4.a"
export INC="clib4.h"

export FFLAGS="-03 -fp-model precise"
export AFLAGS=""

export CFLAGS="-03"

make -f make.bacio

#

Update 8-byte version of libbacio_8.a
#

export LIB="../../libs/libbacio_8.a"
export INC="clib8.h"

export FFLAGS="-03 -i8 -r8 -fp-model precise"
export AFLAGS=""

export CFLAGS="-03 -m64 "

make -f make.bacio

makedepf90

CFLAGS="-03 -mcpu=cortex-alb -mtune=cortex-alb -mfloat-abi=hard
-mfpu=vfpv3-d16" && ./configure

make

Installation notes: We had problems building with make because we did not have

bison installed. For some reason lexer.c was empty and was causing problems.
nemsio

1. Edit conf/configure file

SHELL = /bin/sh

Constantino Gémez Crespo UPC, Barcelona School of Informatics

106 Bibliography

FC = mpif90

FREE = -ffree-form

FIXED = -ffixed-form

FFLAGS = -03

ccC = gcc

CCFLAGS = -DLINUX -mcpu=cortex-alb -mtune=cortex-al5 -mfloat-abi=hard
-mfpu=vfpv3-d16

AR = ar

ARFLAGS = -rvu

RM = rIm

Original file was configured as follows:

\[...\]

CcC = icc
FREE = -free
FIXED = -fixed
\[...\]

netCDF

In command line:

$ > ./configure --prefix=path/to/nmmb-libs
make
make check

make install

sigio

We edited makefile_4 as follows:

LIB ../../1libs/libsigio_4.a
INCMOD = ../../libs/incmod/sigio_4/

FC = gfortran
FFLAGS = -ffree-form -03 -I$(INCMOD)

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment 107

FFLAGB = -ffree-form -ffixed-form -03
AR = ar
ARFLAGS = -ruv

A.3 SMuFiN installation guide

Getting the source code and input files

Development team provided a temporary SVN repository to obtain the latest version

of the code. The one available at genomics group homepage is out of date [*].

svn co https://svn.bsc.es/repos/smufin

Input files can be obtained from http://cg.bsc.es/smufin/ s Downloads s Example
dataset. Dataset is called ch22_insilico, and contains the sequences for the chro-

mosome 22 from a healthy cell and a tumoral cell. Size uncompressed is around

13G.
Installation at MIN3
Compiler: g++ (GCC 4.9.1); MPI: OpenMPI 1.8.1

For better performance input files (13GB) should be placed at: /gpfs/scratch/ and
source code and bin at: /gpfs/projects/

Load GCC 4.9.1 and OpenMPI 1.8.1 modules

$> cd /path/to/sources/trunk

$> make

BSUB file example configured to obtain traces with EXTRAE

#!/bin/bash

#BSUB -J 32t_ch22_insilico

#BSUB -n 32

#BSUB -o /path/to/smufin/32t_ch22_insilico/32t_ch22_insilico_%J.out
#BSUB -e /path/to/smufin/32t_ch22_insilico/32t_ch22_insilico_%J.err

#BSUB -cwd /path/to/smufin/trunk/

Constantino Gémez Crespo UPC, Barcelona School of Informatics

108 Bibliography

#BSUB -W 04:00
#BSUB -x
#BSUB -R "span[ptile=4]"

module purge
module load gcc/4.9.1
module load openmpi

module load EXTRAE

mpirun trace_mn3.sh ./SMuFin --ref

/gpfs/scratch/bsc18/bsc18880/dataset/ref_genome/hgl9.fa
--normal_fastq_1
/gpfs/scratch/bsc18/bsc18880/dataset/normal_fastqgs_1.txt
--normal_fastq_2
/gpfs/scratch/bsc18/bsc18880/dataset/normal_fastqgs_2.txt
—-—tumor_fastq_1 /gpfs/scratch/bsc18/bsc18880/dataset/tumor_fastqgs_1.txt
-—tumor_fastq_2 /gpfs/scratch/bsc18/bsc18880/dataset/tumor_fastqgs_2.txt

--patient_id chr22_insilico --cpus_per_node 4

Note: trace_mn3.sh was modified in order to be able to solve the following error.

/.statelite/tmpfs/gpfs/home/bscl8/bsc18880/apps/smufin/trunk

mpirun noticed that process rank 22 with PID 4489 on node s16r1b49

exited on signal 11 (Segmentation fault).

Code added at the end of trace_mn3.sh:

if [! -z "${TMPDIR}"]; then
export TMPDIR=${TMPDIR}/extrae
mkdir -p ${TMPDIR}

fi

UPC, Barcelona School of Informatics Constantino Gémez Crespo

Evaluation of Low-Power Architectures in a Scientific Computing Environment 109

A.4 Saiph installation guide

File structure

The basic file structure of OmpSs/CL applications generated from Saiph sources
looks like this:

myApp.cpp which contains the C4++ code w OmpSs support.
myApp.cl which contains the definition of the OpenCL kernels
saiph.h which contains some common headers to execute Saiph-generated apps

Configure and build

Dependences and environment variables:

e Mecurium compiler
e BOOST (ver. >=1.42)

e VTK (ver. >=6.1)
Load following modules environment:

e gcc/4.9.0
e opencl/1.1.0

e ompss/stable

B Compilation Flags

Constantino Gémez Crespo UPC, Barcelona School of Informatics

110

Bibliography

ifotran flag

gfortran flag Use

-01
-module
-$0

-c

-fpp

-traceback

-01
-J $0

-180

Optimization level. Optimizations applied may differ between compilers.
Module path for libraries

Include Path for objects

compile (no linking)

Enable preprocessing

Includes debug information in the binary file

Table 1: Ifortran to gfortran flag equivalences.

UPC, Barcelona School of Informatics Constantino Gémez Crespo

	Summary
	Introduction
	Production Scientific Applications
	Parallelism and Scalability
	Background and State of the Art
	Multicore Performance and the Memory Wall
	Level of Parallelism in production applications
	Network interconnections
	Energy Efficiency
	Mobile low power architectures for HPC

	Motivation
	Related work

	The Montblanc prototype and mini Clusters
	General Cluster Description
	Mont-Blanc philosophy and platforms
	The Mont-Blanc prototype
	XGene2 mini-cluster
	ThunderX mini-cluster
	JetsonTK1 mini-cluster

	Compute node cost

	Severo Ochoa Applications and Benchmarks
	Severo Ochoa Programme applications
	Alya RED
	Application description
	Implementation comments
	Inputs and experiments descriptions

	Non-hydrostatic Multi-Scale Model on the B grid
	Application description
	Implementation comments
	Inputs and experiments descriptions

	SMUFIN
	Application description
	Implementation comments
	Inputs and experiments descriptions

	Saiph
	Application description
	Implementation comments
	Inputs and experiments descriptions

	Benchmark layers
	Layer 1
	Layer 2
	Layer 3

	Test and results
	Experiences porting production applications
	Porting Methodology
	Porting issues at ARMv7 Mont-Blanc prototype
	Porting issues at ARMv8 platforms
	Compiler comparison: intel vs gcc

	Mont-Blanc performance results
	Alya RED
	NMMB
	Saiph
	SMUFIN

	Performance evaluation of ARM 64-bit platforms
	Methodology
	Layer 1 benchmarks results
	Layer 2 benchmarks results
	Layer 3 benchmarks results

	Development Issues
	Issues at the Mont-Blanc prototype
	Mont-Blanc prototype overall issues
	In depth study of very low MPI performance on Alya RED

	Issues at Cavium ThunderX
	MILCmk trace analysis
	AMGmk trace analysis

	Conclusions
	Acknowledgements
	Bibliography
	Annex
	Installation guides
	Alya RED installation guide
	NMMB-CTM installation guide
	SMuFiN installation guide
	Saiph installation guide

	Compilation Flags

