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Abstract

This work aims at contributing to the definition of a new file format for genomic
data. In the last years we have seen improvements in our ability to sequence the
DNA, which means that the amount of genomic data increases at a growing pace.
This creates a need for a new file format specifically intended for the compression
of such information. Genomic data is extremely sensitive by nature: it has intrinsic
properties for individual identification, ancestry discovery, and disease prediction
among others.

This motivates the definition of security strategies for the new file. The present
work focuses on contributing to this task. We divide the work in two parts. First
we review the research trends. Currently, the main usage of genomic data is
through an aggregation of individuals: for medical studies it is helpful to search
the common mutations among persons suffering of the same disease and compare
the findings to what is observed in a healthy group. This approach was believed to
be secure: at no point the data of one individual is disclosed, only statistics over
the whole population. However, Homer et al. published a way to infer the presence
of one individual in a mixture. This has led to the current orientation of research
which examines closely this particular issue. We review in this work what Homer et
al. proposed and ways which have been taken to increase the efficacy of this attack,
but also the doubts about its realism. Although the last point can be considered
an open question, many publications aim at protecting against Homer’s attack:
how to publish statistical information about the aggregation without endangering
the privacy of the individual. A technique to achieve this is differential privacy,
which consists in adding noise to the response in order to hide differences between
neighbouring sets (i.e. sets which differ by possessing one individual more or
less). Although this introduces a trade-off between privacy and utility, and though
some claim that no good middle point can be found, this approach has gained
momentum, as proved by the different papers we review.

We can also find literature on how to guess portions of the DNA that have
been erased for privacy reasons. This attack is of special interest for architectures
providing rules on how to access genomic data. For example, an individual could
say that just some of his/her genes are to be accessible. This approach is described
by different services aiming at providing a more specific control over the data.

The use of genomic information is not bounded only to research purposes.
Another goal is to be able to estimate the risk of certain diseases through the
analysis of DNA, but also to offer other services like genealogy tools. In order to
give access to such applications, the main approach is to envision a cloud platform
where the user could accept to let different algorithms run over his records. In
order to avoid misuse, the common consensus is that the access to the data has to
be regulated through policies. There are multiple ideas, but all rely on a repository
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of data offering some API. Requests coming through this API are verified, and only
if the request appears legitimate, the result is returned. Another approach which
avoids the use of any rule is the path offered by homomorphic cryptography. The
idea behind this is that we can pack all the data in an encrypted input. The
program executed on this data is unable to decrypt it, however, its output is
still meaningful when decrypted. This allows individuals to have a computation
executed without revealing any information. This approach is still computationally
costly, but there is much research being done on this topic.

The publications we review give many insights in what the believed threats for
genomic data are, and in ways to address them. However, we do not find many
studies on how to protect the DNA records within the file: the publications take
the point of view of a layer above, where a privacy-aware access to the data stored
in the file is offered.

In the second part of the present work we try to contribute to topics which
are rarely treated in current research. Among other things we make a proposal
on how to achieve protection within the file, by describing ways to apply the rules
directly to the data, encrypting only certain portions of the file. The idea is that
with minimal communication we could grant a new access right to an encrypted
region by sending the key for this particular section of the DNA.

We first analyse how to protect a file format of our invention. The invented file
format is by no means a proposition for a file specification, it is just an example
on which to build an approach for constructing the encryption strategies. Then
we apply these strategies to two currently used formats for genomic data, namely
the SAM and the CRAM format. SAM is an earlier file type, which attempts at
reducing the size of the file, but does not focus on compression (we should note,
however, that its binary counterpart BAM does). The CRAM format is far more
structured and offers a hierarchical organization of containers which aggregate
blocks of data. We see how this structure helps when encrypting some portions of
the file.

The CRAM format is one of those achieving better compression scores. There-
fore we can expect the future format to take a similar structure. Our findings are
therefore likely to be transferable.

We also propose a strategy on how to split the DNA records into multiple files.
This procedure allows to gain utility by sharing the information with multiple
parties who are at the same time prevented from colluding. This way to proceed
should be applicable to any file specification.

iii



Chapter 1

INTRODUCTION

Deoxyribonucleic acid (DNA) was first observed around the middle of the 19th
century and since then we have kept deepening our knowledge about it. The
genetic material has unique properties, especially when we compare it to other
types of medical metrics.

For example an ECG recording helps understand the current physical state of
a patient, but it does not have the potential to identify an individual as a dental
radiography has. As frequently depicted in popular culture, there are different
ways to identify a person: through fingerprints, dental records or, our point of
interest, using DNA samples. However, the DNA is more than just a mere tool to
identify persons. In [1], the authors establish a list of special features the DNA
has:

• Uniqueness: as we have said, the DNA is unique to each individual. Some-
times there are just some tiny variations, as in the case of twins, but in the
regular case it is easy to distinguish persons according to their DNA.

• Predictive capability: we are also familiar with the fact that the DNA en-
codes all our body. Thus, thanks to its study, we can infer the risk of catching
a particular disease many years before any symptom appears.

• Immutability: Globally, the genetic code does not change over time. This
opposes it clearly to our previous example of an ECG recording where a new
healthier lifestyle and/or medication can have huge impact.

• Requirement of testing: according to the authors, genetical diseases need
more than the usual clinical tests to be diagnosed. From their point of
view, the actual genetical test is frequently required to correctly diagnose
the disease.
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Figure 1.1: Venn diagram representing the special characteristics of DNA

• Historical misuse: we already have examples of people trying to use DNA
readings for eugenics intentions. This can only be a word of caution regarding
possible abuse.

• Impact on family: as commonly known, blood relatives share part of their
DNA, which explains the physical likelihoods among them. The fact that it
might be possible to discover something about one individual and be able to
extrapolate this finding to his or her family is a new type of privacy threat.

• Evolving perception: not everybody has the same understanding of the me-
chanics in genetic information, and even amongst researchers we have to
expect frequent breakthroughs in the next years. This implies that our per-
ception of the DNA information will evolve as in the past (and currently) our
perception of other diseases has changed. (In some cases even, we classified
things as diseases that we do not classify as such any more.)

• Ubiquity: according to the authors, we leave so many biological footprints
behind us (such as hair and saliva), that DNA can be viewed as ubiquitous.

As we have seen previously, we can find other things which have one or more than
one of these features, but DNA is indeed unique in the fact that it combines all of
these.

These special features have increased the interest of researchers in using DNA
in their studies. As always when there is a new demand, there is soon enough
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Figure 1.2: Analysis of cost evolution for the genome sequencing, copied from Yong
Zhang ’s presentation The Time of Peta-byte is Coming, January, 23rd 2016

a solution which is found for it. In this case the solution is the development of
new hardware which is able to perform the reading of the DNA. This endeavor is
already some years old, and we see yet again a very familiar pattern. As can be
seen in other fields such as Big Data, physical studies or similar, we have engineered
ways to produce huge amounts of information, and, maybe more importantly, we
have learned to decrease the cost to obtain it. All of this combined, has created a
growth curve which requires to find new solutions at the Information Technology
level to cope with it.

The path taken by the DNA analysis is exactly the same (see Figure 1.2), and
now we need to find the solutions to keep the pace of the hardware’s evolution.
Some issues are well-known, for example the requirement in space, which also
leads to difficulties in simply sending the information over the Internet, or the
need to efficiently compute analysis over this data. This challenges can be faced
by the design of specially dedicated compression algorithm, much as we were to
able to achieve with previous types of information such as images, audio and video.
However due to the specificity of the DNA we face additional challenges.

As we have seen, DNA is immutable over a lifetime, and it is even inherited
by one’s offspring. DNA has also intrinsic identification capabilities which might
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render certain anonymization strategies useless. In order to gain the willingness
of individuals to share their DNA for studies, we nevertheless need to address this
challenge, and at the same time we must cope with the file weight issue in order
to define a file standard to store and make use of genomic information.

The ISO/IEC MPEG group has started a standardization project which aims at
solving both issues, weight and security. This group is a subentity of The ISO/IEC
JTC 1 which is a joint technical committee of the International Organization for
Standardization (ISO) and the International Electrotechnical Commission (IEC)
which aims at developing standards for information technology and communica-
tions. The subcommittee 29 (SC 29) within ISO/IEC JTC 1 is devoted to the
coding of audio, picture, multimedia and hypermedia information. The ISO/IEC
JTC 1/SC 29 has in turn formed different working groups, among others WG
11, the working group dedicated to the coding of moving pictures and audio. Its
official designation is ISO/IEC JTC 1/SC 29/WG 11, but the working group is
commonly known as MPEG. In its past meetings, the group has drawn a list of
requirements for both the compression and the security aspect. The objective is to
use the experience gathered in compressing other types of files in order to define a
new file format for genomic data which will obtain better results than the currently
used specifications and take into account the privacy issues within the file itself.

The present work will focus on the strategies that have already been devised to
guarantee the security of genomic data, and will then turn to make a proposal on
how to apply them to the file formats currently in use. First we will introduce the
required basic concepts of the genome, its sequencing, and the workflow to make
use of it. Then we will review the literature in search of strategies and solutions to
protect such information. This chapter is divided into four parts which correspond
to the main trends currently present in the literature. We review Homer’s attack,
which consists in discovering the presence of individuals in study groups where
the participants were not disclosed. We then analyse publications on differential
privacy, a field aiming at providing information on a group without endangering the
privacy of individuals. We then review studies on another attack which consists in
inferring non-disclosed parts of the DNA records of an individual. Finally, the last
part is dedicated to the publications concerning homomorphic encryption and its
application to genomic data. Homomorphic encryption refers to the field of study
where the data is encrypted in such a way that computations are still possible,
but the party doing the computation is unable to retrieve any piece of information
from it. This research path is still in its early stages, which explains that not all
publications we see offer ideas ready for production.

We then need to compare the current proposals to the goals fixed by the
ISO/IEC MPEG group for a file format for DNA records. The approach taken by
the current publications and the standardization group differ in some aspects, but
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they share most of their goals. Finally we will make a step towards a proposal:
we first work on an invented file format in order to develop some ideas and then
apply them to existing formats.
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Chapter 2

THE GENOME

2.1 Introduction to the genome

Our bodies are the result of combining different systems (e.g. the circulatory
system, the digestive system,...). Each system is the sum of different organs,
which are made up of tissues which are the aggregation of different cells. There
are different types of cells, each with a different function. Nevertheless, all cells
have the same coding (i.e. building instructions for the different molecules our
body produces), the differences among types reside in the ”interpretation” of the
coding (e.g. only the beta cells in the pancreas will read the portion of DNA which
encodes the recipe for insulin).

The cell’s coding, or genetic information, is stored in the Deoxyribonucleic
acid (DNA)) molecules. These molecules are most neatly distinguishable when
the cell is preparing to divide itself: either for mitosis 1(producing two identical
cells), or meiosis (producing two different cells). During these two operations,
the DNA molecules take clearly defined structures known as chromosomes. We
humans have 23 pairs of chromosomes, each chromosome being made of one DNA
molecule. Therefore we have by default 46 molecules of DNA. During mitosis one
copy of each DNA molecule is produced, therefore during some periods the cells
have doubled the number of DNA molecules.

As we have seen previously, the DNA is one of the most elemental building
blocks of our bodies. This gives many reasons to investigate how it works, and
how differences among codings can lead to advantages or disadvantages. In order
to understand where the differences originate, we first need to give some more
details about the structure of the DNA molecules. DNA molecules are made of
two strands. Each strand is a sequence of nucleotides, and there are four types

1A glossary of technical terms is enclosed at the end of the study. The number at the end of
each entry corresponds to the page where the term is first defined.
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of nucleotides: adenine (A), thymine (T), guanine (G), and cytosine (C). The
nucleotides at a given position of one strand let us know the nucleotide at the same
position on the other strand: we refer to the combination of the two nucleotides
as a base pair, and there are two different such pairs: A-T and G-C. When adding
up all 46 molecules of DNA we have around 3 billion base pairs, which are almost
identical among all individuals.

In order to simplify the understanding of this structure we have defined the
concept of a gene. A gene is a certain location of the genetic information which
encodes a given protein. As we said, the genetical information is almost the same
among all humans: there are just some punctual mutations which can produce
differences. These mutations lead to the fact that for one given portion of the
genetic information or gene, we have different versions we call alleles.

During the formation of the gametes or sexual cells, as a result of meiosis,
we produce two cells with half the genetic information we possess. Mutations will
occur during this process, but the vast majority of the coding will be inherited
by the offspring as a combination of each of the half genotype provided by each
parents. This explains the physical similarity we see among persons of the same
family. The genetic information resulting of the fecundation remains the same
during the whole life (except for mutations due to radiation and similar incidents,
or a viral infection).

One can classify mutations as either an insertion, a deletion or a modification.
When this mutation only affects one nucleotide, we call this Single-Nucleotide
Polymorphism (SNP). In order to understand the possible effects of one SNP we
can turn to the so-called genetic code table (Table 2.1). Proteins are built aggre-
gating specific amino acids in a specific order. In order to know which amino acid
comes next, the cell decodes the information stored in the DNA: groups of three
nucleotides, called codon, encode one amino acid. We can see in Table 2.1 that
one change in a letter can already have consequences, despite the fact that there
are three nucleotides involved in the encoding. For example, the codon ’GUU’ en-
codes valine (noted as Val in the table), but just by changing the first letter to ’A’,
the result is changed into isoleucine (noted as Ile in the table). The most radical
change in a protein due to a mutation, however, might occur when a mutation
leads to a codon which encodes a ’STOP’, i.e. the codon indicating the end of a
protein. In other words, just one mutation can shorten the obtained protein.

These mutations are at the origin of some of the differences we observe: some
mutations will just affect for example hair colour, but in other cases one muta-
tion can explain a bigger risk of getting a disease: for example, a higher risk of
contracting Alzheimer’s disease. This fact motivates comparative studies among
broad populations of individuals, in order to understand which mutations lead to
which diseases. As always these studies need to compare healthy populations and
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Second letter
U C A G

UUU UCU UAU UGU U
UUC

Phe
UCC UAC

Tyr
UGC

Cys
C

UUA UCA UAA STOP UGA STOP A
U

UUG
Leu

UCG

Ser

UAG STOP UGG Trp G
CUU CCU CAU CGU U
CUC CCC CAC

His
CGC C

CUA CCA CAA CGA A
C

CUG

Leu

CCG

Pro

CAG
Gin

CGG

Arg

G
AUU ACU AAU AGU U
AUC ACC AAC

Asn
AGC

Ser
C

AUA
Ile

ACA AAA AGA A
A

AUG Met ACG

Thr

AAG
Lys

AGG
Arg

G
GUU GCU GAU GGT U
GUC GCC GAC

Asp
GGC C

GUA GCA GAA GGA A

First letter

G

GUG

Val

GCG

Ala

GAG
Glu

GGG

Gly

G

Third letter

Table 2.1: The genetic code table. Summarizes which amino acid will be added
to the protein being synthesized depending on the codon (sequence of three nu-
cleotides) being read

populations with the disease. This kind of studies is denoted as Genome Wide
Association Studies (GWAS).

Once a given mutation is understood, we can use this information, for example
to evaluate the risk of a given disease for a patient whose genome is known. This
usage of the genetic information in order to offer a service to one person is called
Direct-To-Consumer (DTC). But besides the medical usage there are also more
unexpected applications such as tools for genealogy (finding relatives) or cosmetics
(compositions which better suit certain skins).

2.2 Retrieving the genome

The genome needs to be retrieved from cells and the results of this operation need
to be post-processed. Currently, it is not possible to sequence the whole genome
of an individual at a time. In fact, just some chunks of information are retrieved
subsequently: they represent one reading of one portion of the genome. The
length of these readings depends on the equipment which is used, but in general
the longer the read, the more error prone it is. In this early stage of the DNA
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analysis workflow we do not know from which region of the genome the reading
is, and (some of) the nucleotides which we believe to have seen might in fact be
incorrectly identified.

Such reads can be represented in the FASTA format. We first store the id of
the read in the first line: we prepend the symbol ”>” to establish the nature of
such a line, and then we give the sequence of nucleotides. This sequence can span
over multiple lines. The end result looks as follows:

>HWUSI-EAS100R:6:73:941:1973#0/1

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT

After iterating these reading operations many times, we reach a point where
it is very likely that we have more than one reading for each nucleotide of one
area of interest in the genome, or for the whole code. Now, this raw data needs
to be processed in order to make it useful. As we have seen in chapter 2.1, the
vast majority of the human genome is common to everybody. The post-processing
builds upon this fact by comparing each read to a reference genome. It finds the
most similar location (i.e. the one with the smallest edit distance), and assumes
that that read comes from that location. After this operation, only the differences
with the reference genome should be of interest: everything else is supposedly the
same as our reference. However, not every discrepancy with the expected genome
is actually a mutation. In fact, divergences could be errors of the sequencing.
The trend is therefore to store all the raw data, since in some future we might
better understand it and be able to better differentiate between mutation and
measurement noise. In order to grade the assumable reliability of the measures
different approaches exist.

The first one is to add a new possible output to the four nucleotides: alongside
the usual A, C, T and G, we add a new symbol N indicating that no decision
could be taken for the identification of that given position. In the same spirit, the
International Union of Pure and Applied Chemistry (IUPAC) published a nucleic
acid notation which includes symbols for the different doubts: on top of A, G, C,
T, U (in the case of using it with RNA), it gives symbols which encode either one
or the other nucleotide (for example W encodes either A or T, and S either C or
G), and also symbols which indicate that it might have been any nucleotide except
one (for example B means either C, G, and T ruling out A as an option).

Another strategy to indicate the confidence of a measure is to simply grade the
read at that position. To this end we use the FASTQ format: in this format we
indicate every nucleotide forming the read and associate a mark in the range from
0 (noted as ”!”) to 93 (”˜”) using the order of symbols in the ASCII table. The end
result looks as follows (being the counterpart of the previous FASTA example):

@HWUSI-EAS100R:6:73:941:1973#0/1
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GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT

+

!’’*((((***+))%%%++)(%%%%).1***-+*’’))**55CCF>>>>>>CCCCCCC65

The first line indicates the name of the read (after the @), the second line is
the actual read, the third line is becoming obsolete, and the fourth one contains
the marks of the read.

As we previously said, once we have the different readings we try to map
them on a reference genome: building on top of the fact that most of the DNA
is shared among individuals, the reference genome is a kind of average code. We
now search for each read which portion of the reference is the most resembling:
we expect most mutations to be Single Nucleotide Polymorphism (SNP), therefore
there should be plenty of information in each read to find the ”right place”. With
”right place” we refer to the one which minimizes the edit distance, i.e. we need
the fewest modifications to go from the reference to the read (the modifications
being a nucleotide permutation, deletion or insertion). The end result is something
similar to the following, but far longer and with far more reads.

Coor 12345678901234 5678901234567890123456789012345

ref AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT

+r001/1 TTAGATAAAGGATA*CTG

+r002 aaaAGATAA*GGATA

+r003 gcctaAGCTAA

+r004 ATAGCT..............TCAGC

-r003 ttagctTAGGC

-r001/2 CAGCGGCAT

This alignment can then be stored to memory using different formats, for example
the SAM format. The previous alignment in SAM format is the following one:

@HD VN:1.5 SO:coordinate

@SQ SN:ref LN:45

r001 163 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *

r002 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAAGGATA *

r003 0 ref 9 30 5S6M * 0 0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;

r004 0 ref 16 30 6M14N5M * 0 0 ATAGCTTCAGC *

r003 2064 ref 29 17 6H5M * 0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;

r001 83 ref 37 30 9M = 7 -39 CAGCGGCAT * NM:i:1

Some similarities are clear: for example the first column is the same read identifier,
the tenth column is the actual read sequence. On top of that we have extra
information such as bitwise flags in column two, the possibility to add quality
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information in the eleventh column using the same notation as in FASTQ (in
this example this information is omitted using the symbol ’*’), or marking the
quality of the alignment in column 5. What might be surprising at first is how the
indication of the position is done: if we look at our example we have theoretically
no read starting at position 9; however, in column 4 it is what we indicate for the
reads r002 and r003. In fact, we do not indicate the first position of the read, but
rather the first nucleotide of the read which is a match. It is also interesting to
note that the second r003 is located at 29: we are therefore using the indexation
of the reference, not a special indexation resulting of the different insertions and
deletions. For example, in read r001 we detect two nucleotides more than expected
after position 14 in the reference, and we just transcribe this as two insertions
(”2I”) in the 6th column.

The SAM format relying heavily on ACII characters might be too heavy. In
order to introduce a first level of weight reduction, the BAM format was intro-
duced. This format is a gzip compression of SAM, but splitting this file in blocks
in order to simplify random access.

Alongside SAM/BAM there is also CRAM, which has better compression rates
than CRAM in the benchmarks. The overall structure of CRAM files, as described
in the specifications for its third version, can be seen in Figure 2.1. As in BAM,
compression is done in a per-block way, but there is a differentiation depending on
the type. Core data blocks are compressed with bit encoding, external data blocks
with byte encoding (external blocks are meant to refer to other blocks using an
id).

As in SAM, CRAM has a field to indicate which reference was used. In CRAM,
slices have the field for an identification of which reference(s) DNA was/were used.
This information is stored in the slice header block. Among other information
the header also contains where the alignment of that slice begins, and for how
many nucleotides it spans. In order to simplify the query of specific regions of
the information, one can generate an index. Cram accepts BAM indexes, but
also CRAM indexes: for every slice in the document,this file lists - among other
information - which region of the DNA it covers (first position and length) and
where the slice can be found in the overall structure of the file.

The core data blocks are the actual collections of CRAM records. CRAM
records have similar fields to what we have previously seen: a link to the reference
which was used (one of those specified for that slice), read length, the alignment
start position, quality scores among others.

We have seen by now the pipeline used from the point where the DNA is se-
quenced, aligned and written to files. However this is not the end of the pipeline
which is shown in Figure 2.2. The next step in the analysis is to detect the vari-
ations which are present in the individual (according to the reference genome).
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Figure 2.1: CRAM file structure

As always when performing some kind of measurement we will experience mea-
surement noise, i.e. the result of the measure will not be the exact value. As we
saw with the FASTA and FASTQ such types of measurement noise are already
contemplated in the sequencing of the DNA.

On top of these technical difficulties, there are also intrinsic challenges with
DNA. One cell might have been exposed to environmental factors such as radiation,
affecting the DNA, while others remained protected from it. In that case two cells
of the same individual might have different codings. On a similar note, a virus
infection could lead to the fact that some cells have genetic information within the
human DNA strands.

However in some cases we will have a consistent set of reads which have se-
quenced a different nucleotide for one position in the genome. Such a consistency
is an indication that it is very likely that in fact the sequenced person presents a
mutation at this location. We refer to this step with variation detection, and we
summarize the findings in one Variant Code Format (VCF). One example is shown
in the File snippet 1): from the lines 23 to 40, we can see how the mutations are
listed, indicating for each chromosome and each position what did the reference
indicate and what is the actually belief of the value at that position.

Once the mutations are detected and annotated, the genomes of different in-
dividuals can be compared in order to find similar patterns among healthy and
unhealthy populations. One of the usual patterns to search for is the Minor Allele
Frequency (MAF). As we have seen there is a common nucleotide for one given
position in the DNA, but if one mutation causes a disease then we will see consis-
tently a minority of individuals having another nucleotide at that location. This is
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by definition an allele which is less frequently present. In order to discover which
mutations are at the roots of a disease, it is therefore useful to compare such Mini-
mum Allele Frequency for healthy and unhealthy populations in order to construct
hypothesis to explain the observed phenotype and maybe finding ultimately a new
diagnose tool or even a cure.

It is interesting to note that in the papers published on security for genomic
data, so many work on this last stages of the pipeline. The main focus is to provide
secure tools to retrieve securely the MAFs, and perform other statistical methods
for the analysis of genomic data. Since they make an important abstraction,
forgetting about the actual process of sequencing, aligning and detecting variants,
many papers take a simplified notations for the mutations. Namely just assigning
a numerical score to the (non)mutation at one particular location. The idea is
that, as we have two chromosomes (one from the mother’s side and one from the
father’s side), we can express the mutations with a three value scale. For example,
0 can be the mark for no mutations, 1 for a mutation on both chromosomes
and then 0.5 indicates the case of just a mutation on one of the chromosomes.
This notation simplifies indeed the expression of queries, but it also hides many
interesting findings: namely those which are not a SNP mutation and which are
therefore not easy to query using just a position on the reference genome.
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1 ##fileformat=VCFv4.0

2 ##fileDate=20110705

3 ##reference=1000GenomesPilot-NCBI37

4 ##phasing=partial

5 ##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">

6 ##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">

7 ##INFO=<ID=AF,Number=.,Type=Float,Description="Allele Frequency">

8 ##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">

9 ##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">

10 ##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">

11 ##FILTER=<ID=q10,Description="Quality below 10">

12 ##FILTER=<ID=s50,Description="Less than 50% of samples have data">

13 ##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">

14 ##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">

15 ##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">

16 ##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">

17 #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT Sample1 Sample2 Sample3

18 2 4370 rs6057 G A 29 . NS=2;DP=13;AF=0.5;DB;H2 GT:GQ:DP:HQ 0|0:48:1:52,51 1|0:48:8:51,51 1/1:43:5:.,.

19 2 7330 . T A 3 q10 NS=5;DP=12;AF=0.017 GT:GQ:DP:HQ 0|0:46:3:58,50 0|1:3:5:65,3 0/0:41:3

20 2 110696 rs6055 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4

21 2 130237 . T . 47 . NS=2;DP=16;AA=T GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:56,51 0/0:61:2

22 2 134567 microsat1 GTCT G,GTACT 50 PASS NS=2;DP=9;AA=G GT:GQ:DP 0/1:35:4 0/2:17:2 1/1:40:3

23 chr1 45796269 . G C

24 chr1 45797505 . C G

25 chr1 45798555 . T C

26 chr1 45798901 . C T

27 chr1 45805566 . G C

28 chr2 47703379 . C T

29 chr2 48010488 . G A

30 chr2 48030838 . A T

31 chr2 48032875 . CTAT -

32 chr2 48032937 . T C

33 chr2 48033273 . TTTTTGTTTTAATTCCT -

34 chr2 48033551 . C G

35 chr2 48033910 . A T

36 chr2 215632048 . G T

37 chr2 215632125 . TT -

38 chr2 215632155 . T C

39 chr2 215632192 . G A

40 chr2 215632255 . CA TG

File Snippet 1: VCF example file
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Figure 2.2: Workflow of DNA analysis

2.3 Foreseen usages

As said in Chapter 2.1, we can subdivide the usages of the DNA in two main
types: the use in a Genome Wide Association Study (GWAS) and Direct To
Consumer (DTC) services. During the ”Genomics and Patient Privacy: Research
and Practice” workshop at Stanford ([2]), this clear separation in two fields was not
present during the presentations. The speakers rather proposed solutions which
integrate both views. Michael Snyder for example showed that obtaining very
complete data sets periodically has advantages for both fields: as research material,
but also in order to detect diseases early and treat them more successfully in a
DTC approach.

This same idea of enabling multiple usages is the main motivation for the
different app-like usage experiences described. Carl Gunter’s presentation ([2]) in-
troduces the use of a cloud repository of genetic data where apps could be run. The
apps could be devised for either medical research purposes or direct to consumer
services. In contrast to current practice, with such a platform individuals should
not send their DNA sequencing to the companies (e.g. www.genepartner.com/,
one example given during the workshop) offering the service, but rather accept
the execution of the algorithm over their data. In order to achieve this, it is
mandatory to define a standard for the data, but also how the API would work
and how to ensure reliability and accuracy.

On a similar note, Dave Maher ([2]) from Intertrust Corp presented their cloud
platform which allows different services to access the data. Their architecture
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already takes into account account individual preferences. According to his pre-
sentation, their cloud system contains the encrypted data, and a policy engine
which controls the access to the data. The different applications are executed in
a trusted environment, and are only granted access through the policy engine.
Intertrust takes clearly the route of bringing the computation to the data, arguing
that every time copies of the information are sent, its governance is threatened if
not lost.

This concern about respecting the will of the patient (or sequenced person) is
the central point of Robert Shelton’s presentation ([2]). He argues that in order
to give incentives to individuals to use and share their genetic information, they
need to see that their opinion is taken into account. Basing himself on published
statistics, he shows that asking the individuals whether they want to participate or
not in a study ensures more engagement. Private access, the platform that Robert
Shelton is describing, is based on rules where the patient defines for each gene either
whether the data should be publicly available or not, or whether his permission
should be asked for. Such a platform offers great potential to simplify the task
of the researchers who know that the data they obtain is already compliant with
the different laws and the will of the individuals concerned: they will not receive
information which is not intended for them.

We should note for completeness that the ISO group considers the use of a
standard for genomic data also for forensic and animal genomic sequencing, use
cases which are neither a GWAS nor a DTC application.
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Chapter 3

CURRENT SECURITY
CHALLENGES AND
PROPOSED SOLUTIONS

Not so long ago we did not even know how to sequence the genome. It is true that
the cost of retrieving the genomic code has now started to decrease drastically, but
it is still too soon to have very large collections of data leading to high incentives
to attack them. However, due to the utility of sequencing and the fact that it
becomes more affordable, it seems reasonable to expect that, in a near future, we
will have such big repositories with high incentives.

We are continuously deepening our knowledge about the DNA, genes and mu-
tations. We do not yet know every function of every gene, but we are continuously
discovering new applications. Some of them will imply significant issues for pri-
vacy. For example, in [3] a method to derive facial composites from 24 SNPs
and ancestry information is proposed. This is just one of the examples of how a
possibly non-legitimate attack on a DNA repository could be a severe threat to
privacy.

As Bradley Malin says in his presentation at Standford’s GAPP conference
([2]), we do not have examples of real attacks. What we have are attack experi-
ments run by researchers which are now motivating current research paths. In this
chapter we will review these trends.

First, we look into Homer’s attack: this attack describes how to infer whether
a person is present in a genomic data base, even though we do not have metrics
on the individual scale. This attack has motivated many publications in recent
years, an important part of which belongs to the field of differential privacy: in this
line of work, researchers try to find new paths to publish statistics over a whole
population without leaking any information about any individual or sub-group.
We group these publications in a section apart, since the attention given to this
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domain of study is considerable. Homer’s attack is not the only one we review,
we also look at publications concerning the attempts to infer portions of DNA
which have been censured, as was done with Dr. Watson’s records. Finally we see
that there is an important trend in genomic computation towards homomorphic
encryption, which has promising features when it comes to combining both utility
and privacy. But first of all, we need to introduce the concept of beacon which is
used in many approaches.

Currently one of the main reasons to sequence a person’s DNA is the conduction
of a GWAS on a specific disease: we know that a particular person has the disease
and we want to study his/her DNA along with that of other patients to detect
common mutations. In such a case, the research team gathers many sequences
which might also be relevant for other studies (e.g. using that DNA as control for
another GWAS). The research group would also gather genomic data of healthy
individuals as a comparison tool. In order to share the information without putting
individuals’ privacy at risk, the data is not accessible on a per-individual basis.
Instead, the queries which will be accepted concern the whole aggregation. Such
queries might refer to a given position in the genome, for example: Is there at least
one individual with a mutation at that position? or: What is the proportion of
the Minor Allele Frequence (MAF) for this position? Such a repository of data is
called beacons. We also have to point out that other repositories exist where one
can retrieve entire individual genome records for those studies requiring it. For
example the 1000 Genomes Project has sequenced many individuals with different
ancestries in order to offer a broad spectrum of genetic material to conduct research
on.

3.1 Homer’s attack

Homer et al. described in [4] a technique for detecting the presence of an individual
in a group. In their publication, they consider the case of forensic analysis, but they
also prove the validity of their contribution with DNA sequences from the HapMap
repository. They have access to the allele frequencies estimates for the group,
and to reference values from a reference population, for each SNP. In order to
determine whether the individual is in the mixture they compare whether his or her
frequencies are more similar to the reference population or to the mixture. With
a statistical test they then give an answer to the question whether the individual
is in the mixture or not.

Due to the fact that the frequency of SNPs might be bounded to ancestry,
the authors propose solutions to reduce this influence. One of them consists in
using SNPs which are known to be less tied to ancestry. The other solution is to
use a reference population adapted to the individual who is being searched. By
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knowing, or discovering through SNPs, which reference is better suited, we are
better equipped to correctly assert whether the individual was in the mixture or
not. Since blood-relatives share at least some DNA, this attack can be reformulated
to detect someone close to the studied individual in the mixture.

This technique is considered as privacy threatening since being in a study mix-
ture might be an indication of a disease or similar. For example, if it is a study on
how some mutations might imply higher threats of becoming addicted, being in
the case group mixture of DNAs is something which should remain secret. How-
ever, a straightforward implementation of a beacon where every frequency request
is answered without any control enables such an attack. This led to some drastic
changes in how published genomic data was perceived: the National Institute of
Health (NIH) withdrew the data they had published and released a communicate
apologizing for the privacy issues they had caused. The NIH was not the only
repository to take this solution to the problem posed by Homer et al.

The publication by Homer et al. led to further improvements on the strategy.
For example in [5], a mathematical reformulation of the attack was proposed,
which also allowed to include prior knowledge to further enhance the reliability.

In [6], Jacobs et al. propose to use a likelihood test to improve Homer’s ap-
proach: they build upon the logarithm of genotypes in stead of using allele fre-
quencies as Homer does. Their conclusion is that by doing so, they increase the
sensitivity of the attack.

Due to various factors, the probability of finding a certain mutation is possi-
bly not independent of finding another. Jacobs et al. stated in 2009 ([6]) that
at that point, for their method to behave correctly, they needed to be in link-
age equilibrium. In other words, the mutations they were using had to present
uncorrelations until the underlying dynamics were better understood. Wang at
al. prove in [7] that linkage disequilibrium is in fact a powerful tool to further
improve re-identification attacks in Genome Wide Association Studies. According
to the authors, just with the results which are usually published after such a study
it could be possible to discover the presence of one individual in the case group.
Wang et al. describe the likelihood of such an attack as ”even more realistic than
expected”.

However, it is not everyone’s opinion that Homer’s attack and derivatives are
realistic. These methods need input which is not trivially obtained. On top of
access to the beacon, or otherwise the statistics of the study, one needs the DNA
of the victim and a reference population. Wang et al. in [7] propose to use the
HapMap collection of genomes, which are classified according to origins, as refer-
ence, but the problem of the victim’s DNA is still present. According to Bradley
Malin in his Stanford talk ([2]), a group of researchers were asked to evaluate the
feasibility of such an attack. In order to do so they used ”anonymized” genome
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sequences that were available to them, and applied re-identification techniques on
aggregations of data. They were able to correctly detect the presence of some
individuals in groups, however they were not able to tell who they were. In other
words, the DNA has the property to identify uniquely one individual, but you
actually need the comparison to assert the match. In their case that meant they
knew that the person with that DNA was in the study but without knowing who
s/he was, the negative effect of such a breach was greatly limited.

Braun et al. made a follow-up study on Homer’s publication: in [8] they show
that Homer attack has good sensitivity indeed, but that it lacks in specificity. Some
assumptions for the null case in [4] are not met, thus the observed behavior is not
the one Homer et al. anticipated. The end result is that true-positives are very
likely, but false-positives are also too likely, which undermines the effectiveness of
Homer’s method. According to Braun et al., the strategy described in the attack
is not promising as an attack, but could become a useful statistical tool for some
GWAS, if it is modified and further improved,

Bradley Malin ([2]) considers that the current ways of obtaining data are al-
ready dissuasive: too many controls such as need to give contact information and
even review boards in order to have access to the input for the previously seen
family of attacks. From his point of view it takes little more to remove any ’ratio-
nal’ incentive for an attack. By ’rational’, the presenter refers to those attacking
in order to obtain some profit other than knowing that the attack was successful.
He compares estimates of the reward obtained when breaching the security and
obtaining a reidentification, to the cost of obtaining the data to perpetrate such
an attack. The latter is much easier to evaluate. For the first, he uses estimations
of the prejudice in other attacks against medical privacy. Through game theory he
proves that it is possible to find a result where no rational person would attempt
such action, but where there are still incentives to give access to the data. From
his presentation we could conclude that making the process of obtaining the data
so costly in time and money is already a guarantee of security, but as he says,
it is still hard to evaluate the actual reward of such an attack and therefore it is
difficult to know what the cost should be.

The attack published by Homer at al. is based on frequencies. In 2015,
Shringarpure et al. introduced a variation on it in [9], which is based on an-
swers to yes or no questions. The idea is that certain beacons allow to query
whether, for a given position, they have a certain mutation in the aggregation,
whereas the question was previously about the minimum allele frequency for that
position (i.e. what is the probability to see the least common variation). We
can see the proposal of Shringarpure et al. as an adaptation of a Bloom filter to
Homer’s attack.

Bloom filters are a tool to detect the presence of one element in a set and
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are frequently used in network monitoring. They are specially designed to allow
fast insertions and fast tests of presence in the set (the corresponding response
has a certain probability of false positives). The idea is that each element which
is inserted is hashed with k different hash functions. A bit array is maintained,
where each position is related to one of the values of the hash function. When the
element is inserted, all bits corresponding to the returned hash values are set to
true. A query is then similar to an insertion: we hash the element, but instead of
setting all the referenced bits to true, we test whether all of them are true. If not,
the element was never introduce; if yes, we return that indeed it might have been
introduced, but that there is a false-positive risk. Of course, the higher the value
of k, the less likely the false positive is.

As in a Bloom filter, what Shringarpure et al. propose considers that each
insertion leaves a certain amount of traces in the aggregation. In this case, instead
of having k such traces, we have the amount of SNP mutations of the DNA inserted.
If the beacon accepts queries like ”Do you have at least one record with a mutation
in this position?”, then we can readily adapt the regular query in a Bloom filter to
this situation based on a succession of such queries. This procedure is summarized
in Figure 3.1.

3.2 Differential privacy

One key element to succeed in a Homer-like attack, with high confidence in the
results, is to have accurate measurements of the frequencies. When much time
and effort have been spent to obtain statistically significant results, it seems odd
to add noise to the result, even though it would defend against such attacks.
Nevertheless, this is the path which is taken by researchers studying differential
privacy ([10]). The idea behind this is to add so much noise to the data that
the effects of one individual on the aggregated result is not perceivable any more,
but enough accuracy is preserved to draw meaningful conclusions about the the
population as a whole. As Dwork ([2]) says: being able to discover that humans
have one left foot and one right foot is no privacy challenge. The privacy challenge
resides in the fact that we might be able to tell for one specific individual in the
aggregation that s/he does have twice the same feet.

In order to achieve differential privacy we add noise to the output. We want to
achieve a situation where the result of a query over the aggregated data is virtually
the same as the result of the same query over the same data with one individual
more or less. We achieve this by adding noise to the result obtained from the
aggregated data.

We define a parameter ε which gives a sense of the privacy we are striving for.
For two neighboring sets, the results of the aggregation function should not differ
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Figure 3.1: Shringarpure et al attack. In the first part we represent the different
individuals included in the beacon (we mark in orange the regions where they have
a mutation according to the reference). In the second we indicate the state of the
beacon: an area is marked as orange (mutated) if for at least one patient that
region was not as the reference. We present three test attacks: the result of the
first one is negative since a mutation in the first region is unknown; the result of
the second one is positive, as we have correctly asserted the presence of patient 2;
the result of the third one gives a false positive: we think there is someone with
this genomic code, but this is a mistake.

22



Figure 3.2: Visual representation of differential privacy. Three aggregation values
are represented: one for N individuals and two for the neighbouring sets (i.e.
removing one individual or inserting one). The noise which is added creates a likely
segment of values. As can be seen, these segments overlap for the neighbouring
sets: this makes it harder to guess from which set the result originated. This
illustrates the idea of privacy. We also loose track of the real value: this is the loss
of accuracy.
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more than by a ratio of exp ε. We then need to balance the levels of noise in order
to define a compromise between privacy and utility. This balance is the critical
point of Differential Privacy (see Figure 3.2). An example of this can be found in
the pharmacogenetics study published in [11]. In this publication, the authors try
to establish what the correct dosing of warfarin would be, using differential privacy
as a protective method for the privacy of the patient. Their conclusion is that if
the trade-off between privacy and utility is set in such a way that we do prevent
attacks, the dosing is so far off that ”patients would be exposed to increased risk
of stroke, bleeding events, and mortality”. This is of course the worst possible
outcome.

However, this is not the only challenge when constructing a differential privacy
defensive mechanism. The first issue is that in order to correctly build the trade-off
between utility and privacy, one has to make assumptions about the data. This
was introduced by Kifer and Machanavajjhala in [12], in a paper with a much
broader scope than GWAS.

The main issue in GWAS studies is that there are so many different variables
that the possible metrics far outreach the number of patients. This huge number
of possible outputs leads to the need of increasing the levels of noise added to the
results. Researchers attempted to reduce the number of such outputs. In this line
of work, Bhaskar et al. ([13]) propose methods to discover the K most frequent
patterns in a genome association study (here the noise is in the form of the changes
introduced in the returned patterns). But, as Johnson et al. point out in [14], the
difficulty resides in that the correct number k is hard to know beforehand.

Although this line of study has these intrinsic flaws, the research on it has been
strong in the field of protecting aggregation of genomic data. The research interest
concerns, of course, the metrics which are most relevant for a genomic association
wide study, for example ways to reveal minor allele frequencies, or the chi-square
statistics as in [15]. Such methods were further refined: for example the work
in [15] was extended in [16] with the introduction of χ2 statistics with variable
numbers of individuals in the case and control groups.

One solution to ensure high privacy and high utility at a time is to increase
the number of participants in the study. However, this is costly, and we prefer
to find other approaches. In [17] we are introduced to the idea that by better
assessing the attackers’ knowledge we will be able to use less noise: we have the
required privacy levels, without the loss of accuracy. Whereas we assume in other
differential privacy studies that the attacker has complete knowledge about both
the data used in the aggregation and of his victim, Tramer et al. introduce the
idea that just for some individuals the attacker will be entirely sure that s/he is
or is not in the data set. For the others the attacker bounds probability of the
individual being in the data set in the range [a, b].
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As we have said, the most obvious drawback of differential privacy is that
we have done costly extraction of data, and we then add noise loosing accuracy.
Dwork’s answer in the Standford’s GAPP conference ([2]) and in [18] is that we
can use differential privacy over a hold-out set, when training some kind of algo-
rithm. A hypothesis is built using data which is entirely accessible, but when the
researcher wants to test it, he goes to the hold-out set where differential privacy
will prevent any over-fitting. In this situation, the noise is even turned to an ad-
vantage. Such an approach adapts to the will of the individuals: in the case where
they accept to participate in the study they can prefer to hide in the multitude or
give a much more extensive read permission.

3.3 James Watson

In 2008, a team of researchers sequenced and published the DNA of Dr. James
Watson. He was concerned about publishing portions regarding hereditary risk of
Alzheimer’s disease: he asked that his APOE gene (linked to Late Onset Alzheimer
Disease or LOAD) be removed from the publication.

This privacy measure was defeated by Nyholt et al. in [19], or at least it was
indicated how to defeat, since the authors did not want to go against the will of
Dr. Watson. They show how using linkage disequilibrium in the surrounding area,
one can accurately infer the data which was hidden. This word of caution led to
erasing 2-Mb worth of information around the region of interest.

In 2015, Samani et al. ([20]) proved that such an attack could also be carried
out using another mathematical approach. The authors build a Markov model
which tries to represent the probability to see a given allele, on the basis of the
knowledge about the previously seen alleles.

3.4 Homomorphic encryption

We are considering how to execute some algorithm on information which has to
be private due to its sensitivity. This use case is not a specificity of the genomic
data. Quite on the contrary, this feature is needed in many different fields: for
example a web search engine where the server could not know what the submitted
query is, or just a database with very limited access to the query being run and
the data which is stored (e.g. CryptDB).

The idea behind homomorphic encryption is quite straightforward: we want
to send an encrypted input to a machine which will execute a task on this input
and reply with a response which is unintelligible except if one has the key. This is
represented in a visual way in Figure 3.3.
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Figure 3.3: Remote computation using homomorphic encryption. White envelopes
are the input of the program, red envelopes are the output, while the blue region
is a possibly non-secure region such as the cloud. We encrypt the input and send
it to the service, we obtain the encrypted output, which we need then to decrypt.
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In order to achieve this we need the following mathematical property for the
encryption and decryption functions (E and D respectively) and the function f
being executed, x being the input and y the output:

y = f(x) (3.1)

y = D(f(E(x))) (3.2)

In other words, it should be the same to execute the algorithm on top of the
original input as to execute it on encrypted content which is then decrypted.

With the ElGamal encryption scheme we can give an example quite easy to
follow. We name the generator g, the secret key x, a random number r and we
define also h = gx. The ElGamal encryption of a message m is then

E(gr,m · hr) (3.3)

Therefore, if we have two separate messages and we encrypt both, we obtain two
cyphers (C1 and C2) equal to:

C1 = E(gr1,m1 · hr1) (3.4)

C2 = E(gr2,m2 · hr2) (3.5)

(3.6)

If we now multiply both we obtain the following result:

C1 · C2 = E(gr1,m1 · hr1) · E(gr2,m2 · hr2) (3.7)

= E (gr1 · gr2,m1 · hr1 ·m2 · hr2) (3.8)

= E
(
gr1+r2 , (m1 ·m2)h

r1+r2
)

(3.9)

From the last line we can clearly see that the result of multiplying two cyphers
is a new cypher encrypting the multiplication of both messages (using the sum of
the random numbers of the original messages).

The idea is that a cypher which would be able to accept any given number
of homomorphic sum and multiply operations would allow for the computation of
any kind of circuit, i.e. program. Until lately this was clearly out of reach, but
recent breakthroughs have brought us closer to it ([21]). However, executing a
multiplication on the homomorphically encrypted data is still costly in time.

In order to overcome these technical difficulties, authors have, for example, built
strategies which could to some extent be assimilated to a variation of homomorphic
encryption. The authors of [22] have clearly taken this option. In their article they
describe how to make usage of the cloud computational resources to compute the
alignment of the reads with the reference genome. They rely in fact on two distinct
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clouds/groups of computation: a public cloud and a private cloud (where data can
be executed without worries of being hacked by the service provider). In order
to use the cloud without letting the reads be readable in the clear, they compare
them with the references using hashes, searching for the most similar regions. This
process is not based on the entire read, but rather on a smaller portion of it. The
idea is that the public cloud retrieves possible location candidates, and then the
private cloud checks whether those regions really match properly: this approach
is based on the ”seed-and-extend” method. Based on views expressed during
the first GenCom workshop, we could ask ourselves whether the overhead due to
communication could nullify any advantage. According to the authors, however,
the communication overhead is ”rather small”. Using a 40MBps link, and due to
the fact that the reads are not sent entirely but rather hashes of portions the time
needed for the actual transfer was shorter than what we could have anticipated.

In order to perform alignments, the usual approach is using edit distances.
The objective is to compare two sequences and determine how close they are
from one another (an insertion, a deletion or a mutation are all one difference).
A method able to compute this securely on the public cloud would be another
path for the use of commodity computation clouds for the alignment of DNA
sequences. The authors of [23] describe such a method. They avoid to use a full-
homomorphic encryption in order to escape the hurdles which come with that.
However, even when eluding the need of bootstrapping (technique used to correct
possible mistakes in the homomorphically encrypted data after a multiplication),
their algorithm is very memory intensive. On top of that, it is also very slow:
they estimate that if the memory problem was resolved, they could compute the
comparison of two 50 nucleotides long DNA strings in one day (while the length
of the genome is in the order of magnitude of the billion). It is important to
note that both strings are encrypted with the same key since the contrary is never
stated. One is left wondering whether, in the case of using this proposal in a real
production environment, we would have to resend the reference genome to the
cloud encrypting it with another key. In the previously described paper ([22]) this
was avoided by having the same hash values for everyone. The solution might be
to use the same key for all the patients of a same institution.

Yasuda et al. ([24]) also focus on recognizing regions of the DNA, but they
concentrate on pattern matching. Their method returns the Hamming distance,
executing the computation securely on the cloud using Somewhat Homomorphic
Encryption. We should note that in the system they describe, they also assume
that the DNA and the pattern to search are encrypted under the same key. They
consider the doctor or institution starting the computation as being a trusted party.
Based on previous publications on the matter, they also consider how to pack the
data in less space in order to enhance communication speeds and performance
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on the cloud. However, what they propose is very much tailored for the task at
hand (i.e. Hamming distance), and for the needs of homomorphic encryption:
they are not attempting to use repetitions in the data to spare some size, but
rather combine different information in each encrypted polynomial involved in the
computation. Therefore, it seems quite impossible that their proposal could be
relevant as a practical storing strategy for genomic information.

A quite similar problem to resolve is the question whether there is a specific
marker in a given DNA string. Both ideas are related: both are ultimately the
comparison of two strings. Cristofaro et al. ([25]) propose a solution to this new
issue. They present a secure test for the case where we know that the presence
of a given marker at a given location is a factor which increases the likelihood
of a disease. What they propose is twofold in fact: on the one hand nobody
other than the person in possession of the DNA should learn which markers were
detected, and on the other hand nobody other than the provider should know the
test being performed (i.e. which substring is searched for, and at which position).
The motivation behind protecting the test is plainly defending the interest of the
Intellectual Property (IP) of the company whose test is being executed.

Barman et al. in [26] also contemplate the need to possibly protect the IP of a
company. What they consider is the case where there are effectively two parties:
first a Data Center attempts to defend the patient’s data it holds, and second a
Medical Center executes a request to this data in order to obtain a measure for a
given patient but wants the request to remain secret. In the construction Barman
et al. propose, the Medical Center sends an array of weights: the response of the
Data Center is the scalar product of the SNPs and the weights. In this model,
both players can be the attacker or the defender. The attack of the Data Center
is merely looking which are the SNPs which are requested. In order to defend
itself against this, the Medical Center adds dummy weights. It then generates,
for each weight, what the authors call a commitment: this can be viewed as a
hash of the weight. The Data Center then selects randomly two commitments
and asks for the weights: the Data Center checks the correctness and whether the
numbers might indicate an attack of the Medical Center. Such an attack could be
either using many zero weights, meaning that the end result is equal to the value
of the only non zero-weighted SNP, or using a sequence of powers of the same
number. If the Data Center has suspicions, this step can be repeated. Ultimately,
the scalar multiplication is executed homomorphically. As the authors state, the
Data Center could deviate from the protocol and request more verification rounds,
but the Medical Center can detect this and abort the procedure. Similarly, if too
many weights appear to be non-legitimate, the Data Center can decide to stop the
query.

Up to now we have only described articles considering searches on an encrypted
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DNA sequence, or scalar products. These are not the only uses of homomorphic
encryption. For example in [27], the authors describe a method of computing
the χ2 statistic securely on the cloud. As seen before, they also argue that they
reduce the size of the encrypted data which is needed, but this procedure is once
again intended for the use in homomorphic encryption and involves the way in
which the whole data is packed in a polynomial. Interestingly enough, this paper
proposes a solution for the case of a secure ”meet in the cloud”: neither bring the
computation to the data, nor bring the data to the computation. One could argue
that the previously mentioned papers do not follow neither of these two concepts
since it is one party which sends both the encrypted data and computation to the
cloud, but Lu et al. take yet another approach. In this case, they use a secret
and a public key: every participant in the study (a repository with genomic data
either from the case or control group) encrypts his data with the public key and
sends it to the cloud. The cloud then computes the result which is subsequently
decrypted by the research team using the secret key. As could be expected due to
the fact that just one party, the researchers, decides the key or key-pair which will
be used, there is a risk that they could obtain the data sent by the repositories: if
the cloud and the researchers collude, the cloud could send the encrypted inputs
to the researchers who could easily decrypt the computation using the secret key.

The χ2 statistic is commonly referenced as a go-to measure in Genome Wide
Association Studies, but there are other methods such as the Logistic Regression
method. This approach is maybe even more useful since it can accept other fac-
tors to explain a disease such as variables indicating the exposure to certain risk
elements. The authors of [28] describe a way to compute such an experiment on
the cloud, protecting the data once again with homomorphic encryption. In the
model they present, there are two parties: one party with the information about
the SNPs of a set of patients, the other party with information about the disease
status and possible grouping of each patient. The authors give gender and ances-
try as examples of grouping. As in the secure computation of the χ2 statistic in
[27], there is also the use of a key pair.

The result of such a Logistic Regression can also be used in a homomorphic
encrypted computation. A team at Microsoft released a library for the development
of homomorphically protected computations. The use of this library called SEAL
(Simple Encrypted Arithmetic Library) is described in [29], and an example which
is provided within this manual is the computation of a decision based on Logistic
Regression. This use case is quite interesting for the protection of the genomic data
of one individual. Until now, we have seen examples where the whole collection
was secured, in other words the whole data for a Genome Wide Association Study
was secured, but there was still one party who had access to all the information.
Executing an algorithm for just one patient is not at all the same approach as for
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a GWAS, but SEAL shows that there is at least one use case where homomorphic
encryption does defend the interest of one person.
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Chapter 4

LITERATURE REVIEW
THROUGH THE LENS OF
MPEG REQUIREMENTS

In the process of constructing a secure file format for genomic data, the MPEG
workgroup has defined a list of requirements that such a format should consider
[30]. These requirements concern different aspects in the use and life-cycle of the
file format and are listed in Table 4.1. Additionally, other requirements were pro-
posed in [31] and are listed in Table 4.3. Alongside the ISO/IEC MPEG initiative,
the Global Alliance for Genomics and Health (GA4GH) also works on defining
strategies to allow compatibilities across different beacons and to define standard
ways to query these beacons [32]. These goals have to be met respecting security
guarantees, which leads to the requirements defined by the Global Alliance for
Genomics and Health, which are listed in Table 4.2. Tables 4.1, 4.3 and 4.2 group
together the requirements, a short explanation, and a list of publications which
contribute to the point.

As we have seen, current research places its focus on the construction of secure
architectures and protocols for a privacy-aware usage of genomic data. This leads
to the fact that some points considered by MPEG and GA4GH, such as the need
of integrity, are not covered by present research. However, some of the points
addressed are an area of active work.

For example, both groups specify as a requirement that the individual has to
be made aware of the usage which will be made of the data. This point, which is
also strongly related to the need of authenticating the parties and controlling their
behaviour, is treated in many publications and presentations as indicated in the
tables. Shelton for example presents at the GAPP Conference 2016 at Stanford
[2] a model according to which research groups have to explain their intentions to
the individual concerned in order to obtain the user grant. This principle is also
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fundamental to the concept of Dynamic Consent (i.e. the on-demand informed
consent, in opposition to the broader and too extensive grant currently asked for).
We also give a pointer to De Cristofaro [33] who complements this aspect by his
study on the individual’s fear about the usage of his/her data.

Another point, which is less covered by the publications, is the protection of
genomic data ”on the hard disk”. Obviously the need for security is a central point
of study, but except for Hubaux [2] no study seems to consider from which file the
data is read. The main publication trends concern rather the result obtained from
the data, as we saw in section 3.2. In fact, many publications deal with differential
privacy, which does not correspond to a requirement formulated by either MPEG
or GA4GP.

On a similar note, the security requirements concerning the transport mech-
anism do not have a counterpart in current research, except for the studies on
homomorphic encryption. Although homomorphic encryption does not transmit
the file in such a way that no other party can make use of it, it nevertheless en-
sures the security of the data conveyed (see section 3.4). Besides, homomorphic
encryption is also relevant to the requirements concerning the use which is made of
the data: since the data is unreadable, no action other than the requested one can
be performed. Other relevant ideas for these requirements are the policy engines
such as those described by Dave Maher, Carl Gunter and Robert Shelton in [2].

In the requirements proposed to MPEG [31], we find more matches with the
current research directions. For example, the consideration of possible damages for
blood-relatives in the case of a leakage is dealt with in the article by Humbert et
al. ([34]) on how to include the will of the relatives when deciding what mutations
should be published. Their study takes into account the preference of the individ-
uals and of their blood relatives, the genetic information they have published, the
possible leakage regarding diseases and the utility of the information for research
in order to build an optimization problem with the constraints derived from the
previously enumerated criteria to decide which SNPs are the most interesting to
publish.

At this point we should state that against what the intuition could be, it seems
that reidentification through SNPs is not a common thing: the techniques used
for the identification of an individual through his/her DNA footprints are based
on other properties of the DNA, namely Short Tandem Repeats (short strings
which repeat frequently), which are mainly located in non-coding regions of the
overall genome. This information has multiple implications for the task at hand.
On the one hand, there might for the moment be a lack of real understanding of
how many SNPs are needed to identify a person (although, as we saw with [9],
some consider this use case). On the other hand, when addressing the issues of
leakage, access rights and identification, we cannot consider the non-coding regions
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as meaningless, quite on the contrary.
Finally, Goodrich’s publication ([35]) on an attack based on the Mastermind

board game is relevant for the different requirements concerning authentication and
information about the use of the data. In the situation described by Goodrich,
there are two parties: one party with a DNA record which should remain anony-
mous, and the other party with a pool of DNA records with their identities attached
to it. The first party wants to find the similarities between its DNA records and
each record in the pool. The author describes how to build on the database side
an attempt to recover the data, assuming that the only information being revealed
is the similarity score. This attack proves that the currently formulated require-
ments might not be sufficient: repeating a task which is in principle permitted
could eventually lead to a successful attack.
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Requirement Rationale Publications
The compression process
shall support the assess-
ment of integrity

Integrity check shall be possible by providing appropriate in-
formation.

The solution shall al-
low conveying informa-
tion enabling data pro-
tection

Ability to prevent unauthorized access shall be available. In-
formation needed for protection of data (control for access,
modification, publication, etc.) shall be conveyed.

Presentations at Stanford workshop
(Hubaux, Maher, Gunter, Shelton,
Lauter [2]); homomorphic encryp-
tion ([22, 23, 24, 25, 26, 27, 28, 29])

The solution shall al-
low conveying informa-
tion enabling account-
ability and traceability

Data access and manipulation shall be traceable together with
the identity of parties having access to data. Information on
how to verify integrity and authenticity of the data shall be
conveyed.

Presentations at Stanford workshop
(Malin, Maher, Gunter, Shelton [2])
[35]

The solution shall allow
conveying information
enabling transparency

How and for which purpose the information is used shall be
known. Usage restriction shall be applicable to the data.

Dynamic consent ([36, 37, 38, 39,
40]); presentations at Stanford work-
shop (Malin, Maher, Gunter, Shel-
ton [2]); [33]

Table 4.1: List of MPEG’s requirements [30]
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Requirement Rationale Publications
Identity management Identity of individuals and software accessing the data have

to be authenticated, but also the files themselves.
Presentations at Stanford workshop
(Hubaux, Maher, Gunter, Shelton,
Lauter [2])

Authorization manage-
ment

Mechanisms have to be built to determine whether the access
request can be granted.

Presentations at Stanford workshop
(Hubaux, Malin, Maher, Gunter,
Shelton [2])

Data Security Safeguards Only authenticated and authorized users are granted access
and they must ensure that authorization rules attached to the
data are respected in all their uses. The service provider also
has to maintain all logs needed for an audition. Finally, the
integrity and non-repudiation of the data has to be guaran-
teed.

Presentations at Stanford workshop
(Hubaux, Malin, Maher, Gunter,
Shelton [2]), dynamic consent ([36,
37, 38, 39, 40])

Cryptography The data should be protected through strong encryption,
compliant with relevant requirements.

Shelton’s Stanford presentation [2],
homomorphic encryption([22, 23,
24, 25, 26, 27, 28, 29]), [35]

Physical and Environ-
mental Security

The storage and processing, either on location or provided
by a third party, should be protected according to applicable
laws.

Presentations at Stanford workshop
(Malin, Shelton [2])

Operations Security Security and privacy practices should be made public and
available to all parties concerned.

Dynamic consent ([36, 37, 38, 39,
40]); presentations at Stanford work-
shop (Malin, Maher, Gunter, Shel-
ton [2]); [33]

Communications Secu-
rity

Each transmission of genomic and medical data should be
protected with secure communication technologies.

Presentations at Standford work-
shop (Hubaux, Maher [2]), homo-
morphic encryption ([22, 23, 24, 25,
26, 27, 28, 29])

Table 4.2: List of Global Alliance for Genomics and Health’s requirements[32]
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Requirement Rationale Publications
Integrity Ensuring the integrity of the file
Phenotype inference It should not be possible to infer phenotype traits from the

DNA records.
[9], [3], [34]

Risk for blood relatives A DNA records leakage could have consequences with possible
consequences for the victims’ offspring.

[34]

Anonymize the data Although the DNA has intrinsic identification properties, the
data should be as anonymized as possible.

Presentations at Stanford workshop
(Maher, Gunter, Shelton, Lauter [2])

Need for consent The consent should be built into the file. Presentations at Stanford workshop
(Maher, Gunter, Shelton, Lauter [2])

Data protection Protect the stored data using techniques such as encryption
or genome splitting.

homomorphic encryption ([22, 23,
24, 25, 26, 27, 28, 29])

Well-defined queries Define mechanism to accept well-defined queries to the data
stored in the file.

Homomorphic encryption ([22, 23,
24, 25, 26, 27, 28, 29]), presenta-
tions at Stanford workshop (Maher,
Gunter, Shelton, Lauter [2])

Information withdrawal The databases have to allow the withdrawal of information at
any time.

Dynamic consent ([36, 37, 38, 39,
40]), presentations at Stanford work-
shop (Maher, Gunter, Shelton [2])

Participant-centred The file format should be compatible to the use in participant-
centred studies.

Dynamic consent ([36, 37, 38, 39,
40]), presentations at Stanford work-
shop (Maher, Gunter, Shelton [2])

Table 4.3: List of requirements proposed to MPEG [31]
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Chapter 5

ONE POSSIBLE SOLUTION

As we have seen, genomic data can be used in different applications. The problem is
that the non-legitimate uses of this information can seriously harm the biological
owner of the information. By saying biological owner we try to establish that
sometimes the legal owner of the data might be the research group or similar
which sequenced the data. Despite the fact that they also have claims to make
over the data, it is just correct to restrict their access to what they really need for
the research and what the patient is willing to provide as data.

We are trying to define a format which allows to share genetic information, and
we have just concluded that we might have the need to hide certain portions of it to
the unauthorized reader. This responds directly to the second point stated in the
requirements proposed to MPEG [31] (protection against phenotype inference),
the third point (taking into account the risk of leakage), and finally the fourth
(building the need for consent). We could either simply erase some portions of the
file, or we could encrypt those portions. In the second case, some chapters of the
file would be intelligible, while others would look like jibber-jabber to the reader.
Both have advantages depending on the situation.

Reading current research we have seen that the cloud is expected to be a key
platform in the use of genomic data. A file developed to hold DNA records should
perform equally well in a cloud usage as in a local use case. However, if we think
about the life length that such a file could have (being useful at the very least as
long as the person is alive) and for how long nowadays individuals are able to store
a file until it is lost due to lack of backups and similar, we are tempted to conceive
the usage of such a file, from the point of view of the user, as being cloud-based.

On the basis of this idea and seeing what Private Access (Robert Shelton’s pre-
sentation at Stanford [2]) proposes, we have to expect strong interaction through
handheld devices when granting read requests for certain sections. Therefore we
will strive to simplify as much as possible the information to be stored and trans-
mitted in order to grant access to new portions.
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In the case of a Direct To Consumer service where for some reason sending
the data homomorphically encrypted is not feasible (for example the circuit which
needs to be executed is too deep), we could generate a stripped-down file with just
those portions which are needed. In such cases, it does not make sense to send the
encrypted portions. In all formats we have seen (i.e. SAM/BAM and CRAM),
this is no major problem : we have only to erase certain records. In the case of
SAM/BAM it means erasing the lines of the readings we do not want to send, in
CRAM we erase the blocks, or at lest the slices, which should remain secret.

Encrypting portions, however, does make sense in the case of an on-line repos-
itory such as a beacon. If it might be faster to send the key to decrypt a specific
portion rather than sending the whole chapter, we would have spared some effort
by including the unintelligible portions. The negative point is that it means that
we need to be able to contact the sequenced person when a new request arrives.

The user story behind our proposition is as follows. The DNA of a person is
sequenced by a medical laboratory. The sequenced person obtains his or her file
and decides which portions should be readable and which not. Based on his/her
decision s/he encrypts the secret portions and then sends the modified file to an
online repository, beacon or other cloud infrastructure using DNA information.
The services provided on the chosen platform might need to be given access to
more portions of the file. In that case, the beacon will forward the grant request
to the individual who might accept and reply with the information needed to have
access to the portions in question. This workflow is summarized in Figure 5.1.

Subdividing the genome in meaningful semantic blocks is a practical path which
has already been taken (e.g. the service provided by Private Access). The advan-
tages are obvious: the patient can grant access to some of these blocks, and for
others he denies the access. The genome provides us already with such distinct
blocks in the form of genes. Now, two distinct challenges arise.

The first challenge is whether it should be possible to grant access to just a set
of persons. From the most privacy-cautious point view, the answer is that such a
rule would be the same as granting access to everybody. Once the read access has
been given to one individual, there is always a way for this person to share the
respective information without the grantor’s consent or even knowledge. Even if
borrowing DRM-technologies to multimedia, there is no guarantee that the grantee
will not simply copy by hand and then recreate a new file with this information.

The second challenge is how to preserve the confidentiality of the non-disclosed
blocks: as we have seen, statistical inference permits to deduce hidden alleles on
the basis of the ones we have access to. We can employ two strategies for this: the
usual opt-in and opt-out.

• Opt-in: we consider ’private’ as the default state. In that case we will grant
access on a per-block basis and inform the sequenced person deciding the
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Figure 5.1: Workflow for publishing privacy-enhanced DNA. The DNA is published
on a repository, taking into account the will of the patient regarding which regions
are readable and which are not. If a group asks for information about regions
which are encrypted, the repository will forward the request to the patient who
can decide to give the key for that portion, thus enabling the read.

rules when, based on the knowledge we have, we assume that the privacy
of some block(s) might be endangered. Then it is his/her decision whether
utility or privacy should prevail.

• Opt-out: we consider ’readable’ as the default state. The user will then add
privacy rules denying access to some specific block. However, as we saw with
the case of James Watson, the effects of these rules need to encompass more
semantic units. Once again the user who generates the rules should be made
aware of these conditions.

Using the idea of opt-in we might, however, find a middle ground which allows
sharing genetic information with a subset of entities. We could construct multiple
opt-in files which are then distributed according to the requests. In order to achieve
this, we need to keep track of the different versions of the files which exist. The
idea is to ensure that the crossings, i.e. portions which are in clear in two or
more files, never allow parties to collude and recover enough information for a
re-identification. In order to decide what enables an identification, we could use
a kind of measure of identification potential. How this measure would be defined
is still unclear, but as research in forensics starts using more measures based on
SNPs and similar, this issue will be better understood. The overall idea of how
to split the DNA into various coexisting files is summarized graphically in Figure
5.2.
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Figure 5.2: Theoretical example of DNA record split into 7 blocks, over 4 possible
files. We grant each block an identification potential (id potential). In this example
there are 4 files: each group of nodes connected through solid lines represents a
file: blocks 1 and 2; blocks 3 and 4; block 5; blocks 6 and 7. For this example we
fix the threshold for identification potential arbitrarily at 50, therefore the sum
of id. potential of all files must be below this number. A case of special interest
would be the question whether linkage disequilibrium (represented by the dashed
line) allows to combine the id. potential of two files.
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In any case, all of these methods require state-of-the-art knowledge about allele
correlations and the gene functions. This might seem a challenge, but the attacker
will be facing the same situation. Therefore we can assume that both parties will
have access to the same information, allowing the defendant to correctly assert the
risk that will be encountered.

Another challenge is how to define meaningful blocks of data. As we have
said, genes seem a logical choice. In table 2.1, we have listed the different codons
and what decisions they trigger. Some of them encrypt a STOP action, in other
words we expect them to have the end of a protein recipe. The beginning of the
coding region of a protein is, however, less clear: the role of the codon coding
methionine is key (many proteins start with methionine), but other factors play
a role in order for the cell to know where to start the synthesis. Furthermore,
our understanding of the DNA might well evolve, leading to discoveries of new
meaningful subdivisions in the DNA. Therefore, and although genes appear to be
a sound choice, we need some other approach, since we are not ready yet to use a
block subdivision entirely based on intrinsic properties.

On the other hand, we already know the positions of many different genes,
and it would certainly be a waste not to use this information. Therefore the best
solution might simply be to let both worlds coexist: if we develop a file structure
allowing different lengths, then it is no problem to let both strategies exist side-
by-side. For the uncharted regions, we will use either a default length or a default
length improved with some heuristic (for example ending the block after a STOP
codon), and for those regions where we have already an understanding, we use the
current state-of-the-art. These different options are summarized in Figure 5.3.

5.1 Encrypting certain portions

We have a strategy to split the DNA into different blocks with which we can start
implementing the selective protection. Let us begin with an easy file format based
on either the FastA or FastQ format. In order to simplify it conceptually, we will
first forget about the positioning information of the reads: we might just think
that the reads are padded at the beginning and the end, letting us position them
easily in front of the region they are aligned to. Furthermore, let us consider that
the reads have the same length as the block they belong to (this means that we
do not consider insertions or deletions but rather only modifications). We define
now a key ki for the block i, and an encryption function E(d, k, s), where d stands
for the data being encrypted, k for the previously defined key, and s for read
identifier. The length of the output of E should be equal to the length of d. The
counterpart of E(d, k, s) is the decryption function D(c, k, s) where c stands for
the cyphertext. At this point, we expect the function E to be able to adapt to
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Figure 5.3: Possible block division of DNA: in this theoretical portion of DNA we
have one STOP codon, one known gene, and uncharted material. The three rows
depict possible subdivisions. The first row uses fixed length blocks. The second
tries to use some heuristic: e.g. blocks span until STOP codons, known genes are
used as blocks, and the unallocated information is put in extra blocks. The third
row is based on the second, but limits the size of blocks of uncharted nucleotides
by using a maximum fixed size.

content of any length. This would resolve the problem of having blocks of different
lengths. In figure 5.6 we summarize these different points in a visual manner.

Our objective is to encrypt just certain blocks: this step is now easily achieved
by encrypting each of the reads of a secured block with the corresponding key
ki and its read identifier (i.e. the read id s). Using some solution to encrypt
differently each subdivision is a commonly known necessity in order to avoid the
so-called Electronic Code Book where one can readily see which blocks are the
same without even having to decrypt the file. We avoid this problem by using
the read id s as source for the differences. If we are now asked to grant the read
permission for a given block, we just need to send the key ki and possibly s.

In other words, if we want to encrypt a block i, we replace each of its reads
with the cypher obtained after encrypting them with function E.

5.2 Decrypting a portion partially

Let us introduce a new requirement for our security mechanism. We now wish
to be able to decrypt some portion of the block. In other words, we would not
receive a grant request for a whole unit of DNA, but for the region in between
reference nucleotides i and j. Introducing this possibility could have important
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benefits: more fine-grained read requests would be less frightening for individuals,
and it would allow us to correct division mistakes made while creating the file.
Let us imagine for example that after having generated the document a new gene
is discovered which is within one block. By granting access to the whole block we
grant access to more information than needed, whereas this new requirement helps
us keep one additional fraction private.

Our encryption function needs, however, to be adapted to this new use. The
Advanced Encryption Standard (AES), currently an extremely common encryption
scheme, uses permutation steps and similar which would not allow us to simply
decrypt one part of the cypher. What we need in order to achieve this goal is
the use of something more similar to the one-time pad. This encryption strategy
works on a bit level, the key is as long as the plaintext and consists of random bit
values. In order to encrypt and decrypt we xor together the plaintext and the key.
If we give a portion of the one-time pad and the location for which it is intended,
the encryption/decryption still works. In other words, the encryption of each bit
is independent of that of the others.

The main drawback of the one-time pad scheme is the need to provide a random
key as long as the actual content. In order to amend this, we can use functions
which generate random-like output such as the AES scheme. The tweak resides in
the fact that we do not use the plaintext as input of some sort for the encryption
function any more: only the key and some other parameter are involved in the
generation of what is ultimately the one-time pad.

There are two methods of using a block cypher in such a one-time pad gen-
eration framework: the Output FeedBack (OFB) and the CounTeR mode (CTR)
(which can be seen in Figures 5.4 and 5.5 respectively). Let us first think about
what we have to expect for the reads. In the case of no mutation whatsoever,
the read will be a copy of the reference (in the case it includes quality metrics,
it is less of a copy, but it is still very predictable). If there are mutations, they
will probably be due to ancestry, and in that case the content of the read is very
much predictable. Even in case there are less common frequencies, the context or
published statistics might also help to figure out what the plaintext might have
been. In other words, we have to consider that this encryption is under a very
severe risk of known plaintext attack. A plaintext attack is the attempt to recover
the key and other parameters of an encryption function given a set of known pairs
of cyphertext and plaintext encrypted using those parameters. The resilience of
an encryption function against such a threat is a well-known criterion for the suit-
ability of that function. When choosing the actual function E, we therefore need
to take into account the current knowledge in order to reach an informed decision.

If access is granted to the whole block, the previously described methodology
still works: we share the key and either the initialization vector or the counter
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Figure 5.4: Output feedback construction

Figure 5.5: Counter construction

generation method as required. In the case of sharing a specific subset of a block,
however, the grantor generates the required portions of the one-time pad and sends
them to the grantee, who can then decrypt those portions. The drawback of such
a method is that we possibly need to send far more bits, which means that in order
to speed up distribution the block method should be preferred.

As we said before, someone attempting to break the security may take advan-
tage of the fact that the content is predictable. If the attacker has now even access
to the read grant, the information about the plaintext he does not dispose of is
even less extensive, which puts even more stress on the required defence mechanism
against a known plaintext attack.

5.3 Including insertions and deletions

Up to this point we have avoided the challenge of insertions and deletions. If we
take them into account, the size of the read will not match the size of the reference
block. Therefore, even without any access to the decrypted content of the file, one
might guess the presence of certain mutations. With deletions we might avoid the
problem by including a symbol for a blank space. However, such a straightforward
solution does not exist for insertions.

In cryptography, when a plaintext is too short for an encryption scheme, it is
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padded at the end with a content easy to distinguish. This increases the size of the
cypher, but without this procedure the encryption function could not be applied.

In our case, it might be useful to build upon this idea and to include a pad
of predefined extra slack to all reads. This extra space will help us make any
insertion invisible without decrypting the entire read. However, there are some
severe inconveniences attached to this procedure. It might be hard to predict the
size of the required slack since it needs to contain all possible insertions for that
block for every individual. It is not sufficient to use some value greater than the
maximal number of insertions we see for that individual, because doing that would
not protect against comparing with some other file. The second disadvantage is
that the file becomes heavier unnecessarily.

Let us suppose that based on some heuristic we have decided what the appro-
priate slack could be. We then have to decide where it is more logical to write
the information about the deletion. Let us imagine that we have the following
scenario:

reference:

TTAGATAAAGGA_TACTG

read:

ATAGATAAAGGAATACTG

We might publish the insertion as extra information at the end (indicating the
point of the insertion and the inserted nucleotide), or indicate all nucleotides in
the read sequence:

12345678901234567

reference: TTAGATAAAGGATACTG

insertions at the end: ATAGATAAAGGATACTG#12A

read sequence: ATAGATAAAGGAATACTG

With the first solution we do not introduce any indexing problems: we maintain
the original nucleotide ids from the reference, but we have introduced extra weight.
For the second solution, the problem resides in the fact that if someone queried for
any index after the insertions, he would see a change in the nucleotides whereas
in fact the reads are just shifted in respect to the reference.

Trying to resolve the indexing issue might in turn bring other complications.
We have two clear options. The first one is to add a protected metadata which
explains how to convert from the reference index to the read index. The motivation
for protecting the metadata is that this information allows to see readily whether
there is an insertion or not, even if the reads are encrypted. The inconvenience
implied is that the form of the indexation is a very important aspect of making
the file — or at least the sections which should be accessible to everyone — useful.
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All in all, it might be easier to include the insertions at the end, and consider
that the default access method should apply to the whole block.

However, this solution focuses on just one kind of mutations: those involving
just one nucleotide at a time. In some cases mutations affect whole regions: whole
sections are entirely deleted, inserted, duplicated or simply shifted. When a section
is entirely deleted, it might be easier to rely on a symbol which indicates the
absence of that location, as we have seen previously. In the case of such insertions,
however, the indication at the end of the read is not adapted any more. On one
hand, we would have to store all its nucleotides as insertions into the previous
block, losing thus the bounded location on the reference genome. On the other
hand, the proposed notation would be extremely heavy, since we would have to
include the position for each inserted nucleotide.

5.4 Implementation of contact information

The possibility to contact the individual should be a key feature. In the solutions
overviewed in Chapter 2.3, there is already the idea that the genomic records
are linked to one profile/person. Robert Shelton claimed in his presentation at
Stanford ([2]) that the contact information was just another portion which could
be made public or not. This could also apply to the file format we might propose,
but we could rather be interested in allowing the recipient of the information to
contact the sequenced person without being able to know who s/he is, mainly
because it is the ground stone for any future grant request.

A first approach could be to have a trusted party which generates random
but unique identifiers for each file. This identifier would be integrated to the
header sections as in either SAM/BAM or CRAM, as just one more field. When
a read request needs to be sent, the research group would contact the trusted
party and ask it to forward the request to the persons behind those identifiers.
As mentioned before, one individual could generate files with different splits of
his/her DNA record, therefore one contact information could be linked to more
than one identifier.

However, this solution allows collusion among parties, making the reidentifica-
tion and the obtention of far completer DNA files trivial. One way to avoid this
might be using the trusted third party as a simple mail box: the person creates
anonymously an address for grant requests. With such a solution the inference is
less evident, but there might still be methods to infer that the same mail boxes
are owned by the same individuals, for example through the analysis of Internet
addresses.

This type of issue is faced in other projects, and we might simply use one of
the existing solutions such as the blockchain. The blockchain was developed for
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the digital currency Bitcoin, and acts as a distributed and public ledger. The
synchronization among parties is achieved when one of the parties is able to find
a solution to a computationally hard problem which validates the previously seen
transactions. There are already use cases of variants of the blockchain: for exam-
ple, for the Twister project [41], a distributed twitter equivalent aiming at maximal
security, the blockchain is used to register the public key of new accounts. This
could be an idea for guaranteeing the kind of anonymity we are striving for: we
generate randomly an id, and publish a public key related to it; then the grant
requests are published on a public and well-known whiteboard, and everybody
who wishes to grant that read just needs to send the information required signing
it with the secret key. Obviously such a message would also be encrypted in order
to guarantee privacy.

However, this solution is not good enough. To begin with, the blockchain
relies on rewards. As we said, there are computationally intensive tasks being
executed. There would only be downsides in performing such tasks (need for
dedicated computers and electricity cost) if it were not for the rewards: in the case
of Bitcoin the reward consists in Bitcoin coins, in the case of Twister in promoted
messages (equivalent of advertising messages in Twitter). It is very unclear what
could be the reward in the case of a platform meant to guarantee anonymity.
Building on this, the other challenge is whether the security requirements could
be achieved: there is a risk if we cannot sum enough parties to participate in the
computational task. In such a case, a subset could collude and take over the whole
decision process if it adds up to more than half the computational power. If there
are no incentives, it is just too likely that not enough parties would participate,
which would lead to security problems.

The best solution might be to simply apply one of the easiest options. The
patient generates a token at some kind of Certification Authority: the identification
number is random and guaranteed to be unique, and a public key is published.
Research groups publish on well-known locations their request for grants, and if the
person is interested in providing it, s/he sends the requested information signing
it. The research group only needs to verify the authenticity and can use the newly
granted information.

5.5 Securing the SAM format

The read length will never match the length of the actual block. At the moment
we assume they do, which means that we have to introduce padding increasing
the weight of the file unnecessarily. Furthermore, we assume that our encryption
method E will adapt to the size of the content, which is usually not the case
(e.g. in SAM). In order to solve this problem we have to change the conceptual
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representation of the file. Instead of thinking about each read as a length unit for
encryption, we should rather concatenate all the reads, and encrypt that content.
This allows us to accept reads of different sizes.

In the current state of sequencing methods, the reads cannot be focused on a
given region, and the length of each read depends on the technology, not on the
intention of the technician performing the study. This could help us motivate that
there is no need in protecting the ’metadata’ of this read. Based on the previous
example of a SAM file, we now colour the regions of interest which should be
encrypted according to this reasoning.

@HD VN:1.5 SO:coordinate

@SQ SN:ref LN:45

r001 163 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *

r002 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAAGGATA *

r003 0 ref 9 30 5S6M * 0 0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;

r004 0 ref 16 30 6M14N5M * 0 0 ATAGCTTCAGC *

r003 2064 ref 29 17 6H5M * 0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;

r001 83 ref 37 30 9M = 7 -39 CAGCGGCAT * NM:i:1

On this basis we can now define the plaintext as being the concatenation of
these red blocks. After encrypting them, we divide the cyphertext such that each
chunk corresponds to the location of the original.

There are, however, two problems with this approach. First of all, by giving
access to the metadata we might in fact grant access to information regarding
possible insertions. We know to which block a read belongs. If the combination of
the position and the length of the read indicates a discrepancy with the expected
end of a block, then there are insertion mutations within that read. One solution
for this problem would be to replace the parameter of length of the read, with the
length of the alignment. It might nonetheless still be possible to statically infer
information about the length of the read through the length of the cypher.

The other problem with this procedure is that the ability to decrypt only
portions instead of the whole content is lost. The previously described strategy of
providing portions of the one-time pad would work, but it would be extremely hard
to use. For example if we want to decrypt the information related to nucleotide
9, we will have to send the one-time pad in order to render the character in green
readable:

@HD VN:1.5 SO:coordinate

@SQ SN:ref LN:45

r001 163 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *

r002 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAAGGATA *

r003 0 ref 9 30 5S6M * 0 0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;

r004 0 ref 16 30 6M14N5M * 0 0 ATAGCTTCAGC *
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r003 2064 ref 29 17 6H5M * 0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;

r001 83 ref 37 30 9M = 7 -39 CAGCGGCAT * NM:i:1

The question is how to perform a read on this partially decrypted data. Due to
the fact that the edition steps (information in the sixth column) try to reduce the
size of the data, we cannot predict at which character index the information will
be stored. Similarly, without knowing if there are any insertions or deletions, we
cannot know at which position in the tenth column the nucleotide will be given.

In order to restore the feature of partial block decryption, we would need
to undo practically all the attempts to reduce the size, in order to have some-
thing where the position of each information can be accurately computed without
decrypting everything. This would correspond to the previous model based on
FastA/FastQ.

In the end it seems that trying to allow partial decryption on a secured SAM
file is not worth the problems it involves. The easier solution seems to reside in
coarse-grained rules based on blocks only.

Up to now we have not considered the case where an original read belongs to
two or more blocks. The obvious solution to this would be to split it in multiple
and shorter reads, each belonging to only one group. In case we would need to
reconstruct the original reads in the future, we would have to add extra information
to be able to do so.

Based on this decision we can then define a format quite similar to the original
SAM. As in the unprotected version, we first need to define the reference in use.
We take the first two lines of the original format to do so. Then we iterate over
each block we have decided to generate based on our knowledge. However, as
mentioned before, the knowledge about which blocks are meaningful will evolve
over time, therefore it is far more convenient to define a system which adapts to any
decision. Such a solution could consist in adding additional lines which indicate
the beginning of a new block. In the proposed version, those lines start with the
symbol ’#’ if the information is provided as plaintext, and ’ !’ if the information is
encrypted. If the prediction that there are fewer than 20 000 genes ([42]) is correct,
then the number of blocks and therefore lines will not be extremely high compared
to the whole document. Each line could also be rather short: just indicating up to
which nucleotide index of the reference the current block covers should in theory
be sufficient. After this line we would then include either the original reads, or the
encrypted original reads.

The end result may then look like this:

@HD VN:1.5 SO:coordinate

@SQ SN:ref LN:75

#45

r001 163 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
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Figure 5.6

r002 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAAGGATA *

r003 0 ref 9 30 5S6M * 0 0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;

r004 0 ref 16 30 6M14N5M * 0 0 ATAGCTTCAGC *

r003 2064 ref 29 17 6H5M * 0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;

r001 83 ref 37 30 9M = 7 -39 CAGCGGCAT * NM:i:1

!60

UnReAdAbLe-ThIs_WoUlD_bE_eNcRyPtEd

!45

UnReAdAbLe-ThIs_WoUlD_bE_eNcRyPtEd

5.6 Securing the CRAM format

The CRAM structure is quite different from the SAM/BAM format. As shown
in Figure 2.1 there are already very clear hierarchical subdivisions. The other
difference with SAM is that evaluating the position of each value might be quite
hard since CRAM is from the beginning intended to be compressed. One might
think that it could be even harder to accept fine-grained decryption in this format
than in the case of SAM.

However, using the structure of the file to our advantage it is possible to offer
an easy coarse- or medium-grained decryption.

A CRAM file is subdivided in containers which are further divided into slices.
We can easily use CRAM’s blocks as equivalent to the semantic blocks we have
previously used, and the slices would then be subdivisions which can be decrypted
separately.
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The main element to be encrypted are the Core Data blocks. We can use any
of the usual and secure ways to encrypt the compressed reads included in these
core blocks. Nevertheless it would be a nice feature to reduce the time needed
for communication by limiting as much as possible the data to be sent in order to
allow the decryption: in the case of decrypting a whole block, it is easier to send
one key which allows the decryption of all slices, rather than a number of keys to
decrypt each slice separately.

A possible strategy could be to generate one key kc for each container. Then we
take advantage of the fact that every CRAM block has already an id to generate
a key ksId for the slice with that id. The method could be as straightforward as
ksId = E(kc, Id). Then the slice is encrypted using ksId. We would just need to
add a new type of flag in the CRAM specification to indicate that the content of
the slice is encrypted. If we then want to give a read grant for the slice, we send
its key ksId. The downside to this approach is that we are possibly facing a variant
of the known plaintext attack.

This is not entirely the case however. In a known plaintext attack, the attacker
has access to the cypher and to the plaintext and knows the encryption method
at use. Here we have the plaintext (the id of the slice) and the encryption method
to create an unknown cypher (ksId) with which to encrypt another somewhat
unknown plaintext (the slice) into a known cypher (the data at hand). It might
nevertheless be useful to apply another approach, but the change would probably
make us store more keys: with this approach we need to store fewer keys, since
there are deterministically generated.

The presented method is also advantageous when we want to grant access to an
entire container. We would have encrypted it using the kc key, adding, in this case,
an indication in the container header. Each slice would be encrypted according
to the previously described approach, leaving only the id of the slice as plaintext.
When a patient wants to grant a read access to the whole container, s/he only has
to send the key kc, and the other side will be able to decrypt all the information
in the container.
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Chapter 6

CONCLUSION

We have seen that the current evolution in genomic studies pushes us to find
a solution for storing the generated information. However, this information is
extremely private, not just for the person who has been sequenced, but also for the
blood-relatives who share part of this information. This is one of the key aspects of
DNA which makes it so different from anything else to defend. By its very nature
it is impossible to anonymize, it reveals sensitive information which might be even
unknown to the patient, and it holds great potential to foster breakthroughs in
medicine.

When making DNA records available to either a doctor, a research group, a
company offering a service or for another usage yet not devised, we must face a
privacy-utility tradeoff problem. This issue is unavoidable, but we have seen that
there are strategies to amend it. One idea is to make the individual disappear in
a crowd of peers: in order to still have the utility of a DNA record at our disposal
we aggregate its information to the one provided by the records of many more
individuals. We then just allow to query information over the combination of all
data, by resolving statistical tests over the pool. This solution is being applied but
as we have seen, special strategies have been devised to break this approach. Even
though some doubt the feasibility of such an attack, this fear has spurred different
strategies to further defend the privacy of individuals. Some of these strategies are
as counter-intuitive as adding noise to the statistical result, which rises the obvious
question whether this is truly an improvement to the privacy-utility bargain.

Other approaches rather define access rules. Depending on the person request-
ing, the intended usage, and the actual query, a policy engine filters the requests
and only grants those which are tolerated by the rules defined by the patient. This
approach certainly helps to fix fine-grained rules which allow to publish just small
portions of the DNA, ensuring thus both privacy and utility.

However, there is still no standard which integrates usage rules within its def-
inition. As MPEG starts a standardization process it is important to show that
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such privacy measures can be integrated, even in specifications which are currently
in use. We can write rules expressing what is allowed and under which conditions,
however this does not protect us against a rogue player who decides not to respect
the will expressed. The solution we propose is based on the encryption of entire
blocks of content and combines well with a grant request workflow in which the in-
dividual can grant the use of just one section by sharing the decryption information
for only that particular section.

We have also seen how multiple files of this nature could coexist, each revealing
one portion of the DNA but which cannot be recombined, if we can find a suitable
metric for the identification potential of a given DNA region.

In order to define the best blocks to encrypt, we will have to balance once
again privacy and utility, but in this case maybe also compression potential. We
face also other issues with the encryption itself: not that many documents will
have utility lifespans extending potentially over the whole life of an individual and
his descendants. This means that we will have to face potential changes in the
encryption of the file, e.g. upgrading its encryption scheme, an issue we have not
considered in this work. It might be very hard to achieve secure later changes:
if the document was encrypted with AES for example, and some years later a
discovery pushes us to move to a next generation AES2, a potential attacker could
keep his AES encrypted version to break it, and there would be no control over
this.

The standardization process on a file format for DNA will not be relevant to
genetic information only. Other studies in biology will probably take a similar
path. The ”other omics” bear a potential similar to genomic information: they
are supposed to have identification properties and one could analyse these omics
in search of marks for certain diseases, which would allow to predict individual
health risks.
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Glossary

allele Name given to one of the existing variants for a given gene. 7

amino acid The proteins produced by the cells are the concatenation of amino
acids. There are a total of 21 different amino acids. 7

BAM Compressed version of SAM. 11

beacon Database for DNA records of multiple individuals: it allows queries con-
cerning statistics over the whole body of data. 18

chromosome Structure made of one DNA molecule, which is only visible during
a division process. In a human body, the information is divided in 23 pairs
of chromosomes: in each pair, one chromosome is inherited from the father,
the other one from the mother. 6

codon In a gene, each group of three nucleotides is called a codon, its role is to
encode the next instruction for the molecule to be produced by the cell (i.e.
the next amino acid to add). 7

CRAM Compressed binary file format including multiple FASTQ information
aligned on a reference genome. 11

Deoxyribonucleic acid Long structure composed of two complementary strands
(sequence of nucleotides). 6

DNA Deoxyribonucleic acid. 6

FASTA File format including header and nucleotides sequence as read by the
sequencing hardware. 9

FASTQ File format including header and nucleotides sequence as read by the
sequencing hardware (including grading of the quality of the read). 9

gene Region of a DNA molecule which encodes a specific protein. 7
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MAF Minor allele frequency. 12

meiosis Process by which a cell divides into two sexual cells. The cells resulting
of the division receive either DNA information inherited from the father or
the mother. 6

Minor Allele Frequency Each allele occurs with a certain frequency; ’Minor
Allele Frequency’ refers to the frequency of the least common one. 12

mitosis Process by which a cell divides into two cells which have the same infor-
mation. In this process, the cell generates a copy of each DNA molecule, and
the cells resulting of the division receive either the original or the copy. 6

nucleotide Basic coding unit of the DNA. There are four different nucleotides:
adenine (A), cytosine (C), guanine (G), thymine(T). 6

SAM Human readable file format including multiple FASTQ information aligned
on a reference genome. 10

Single-Nucleotide Polymorphism Mutation involving only one nucleotide (ei-
ther an insertion, a deletion or a change). 7

SNP Single-Nucleotide Polymorphism. 7
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