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Abstract

Many problems in science and engineering can be represented by Systems of
Linear Algebraic Equations (SLAEs). Numerical methods such as direct or
iterative ones are used to solve these kind of systems. Depending on the size
and other factors that characterize these systems they can be sometimes
very difficult to solve even for iterative methods, requiring long time and
large amounts of computational resources. In these cases a preconditioning
approach should be applied.

Preconditioning is a technique used to transform a SLAE into a equiva-
lent but simpler system which requires less time and effort to be solved. The
matrix which performs such transformation is called the preconditioner [7].
There are preconditioners for both direct and iterative methods but they
are more commonly used among the later ones.

In the general case a preconditioned system will require less effort to
be solved than the original one. For example, when an iterative method is
being used, less iterations will be required or each iteration will require less
time, depending on the quality and the efficiency of the preconditioner.

There are different classes of preconditioners but we will focused only on
those that are based on the SParse Approximate Inverse (SPAI) approach.
These algorithms are based on the fact that the approximate inverse of a
given SLAE matrix can be used to approximate its result or to reduce its
complexity.

Monte Carlo methods are probabilistic methods, that use random num-
bers to either simulate a stochastic behaviour or to estimate the solution of
a problem. They are good candidates for parallelization due to the fact that
many independent samples are used to estimate the solution. These sam-
ples can be calculated in parallel, thereby speeding up the solution finding
process [27].

In the past there has been a lot of research around the use of Monte
Carlo methods to calculate SPAI preconditioners [1] [27] [10]. In this work
we present the implementation of a SPAI preconditioner that is based on a
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Monte Carlo method. This algorithm calculates the matrix inverse by sam-
pling a random variable which approximates the Neumann Series expansion.
Using the Neumman series it is possible to calculate the matrix inverse of
a system A by performing consecutive additions of the powers of a matrix
expressed by the series expansion of (I −A)−1.

Given the stochastic approach of the Monte Carlo algorithm, the com-
putational effort required to find an element of the inverse matrix is inde-
pendent from the size of the matrix. This allows to target systems that, due
to their size, can be prohibitive for common deterministic approaches [27].

Great part of this work is focused on the enhancement of this algorithm.
First, the current errors of the implementation were fixed, making the al-
gorithm able to target larger systems. Then multiple optimizations were
applied at different stages of the implementation making a better use of the
resources and improving the performance of the algorithm.

Four optimizations, with consistently improvements have been performed:

1. An inefficient implementation of the realloc function within the MPI
library was provoking the application to rapidly run out of memory.
This function was replaced by the malloc function and some slight
modifications to estimate the size of matrix A.

2. A coordinate format (COO) was introduced within the algorithm’s
core to make a more efficient use of the memory, avoiding several
unnecessary memory accesses.

3. A method to produce an intermediate matrix P was shown to produce
similar results to the default one and with matrix P being reduced to a
single vector, thus requiring less data. Given that this was a broadcast
data a diminishing on it, translated into a reduction of the broadcast
time.

4. Four individual procedures which accessed the whole initial matrix
memory, were merged into two processes, reducing this way the num-
ber of memory accesses.

For each optimization applied, a comparison was performed to show the
particular improvements achieved. A set of different matrices, representing
different SLAEs, was used to show the consistency of these improvements.

In order to provide with insights about the scalability issues of the al-
gorithm, other approaches are presented to show the particularities of the
algorithm’s scalability:
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1. Given that the original version of this algorithm was designed for a
cluster of single-core machines, an hybrid approach of MPI + openMP
was proposed to target the nowadays multi-core architectures. Sur-
prisingly this new approach did not show any improvement but it was
useful to show a scalability problem related to the random pattern
used to access the memory.

2. Having that common MPI implementations of the broadcast operation
do not take into account the different latencies between inter-node and
intra-node communications [25]. Therefore, we decided to implement
the broadcast in two steps. First by reaching a single process in each
of the compute nodes and then using those processes to perform a
local broadcast within their compute nodes. Results on this approach
showed that this method could lead to improvements when very big
systems are used.

Finally a comparison is carried out between the optimized version of the
Monte Carlo algorithm and the state of the art Modified SPAI (MSPAI).
Four metrics are used to compare these approaches:

1. The amount of time needed for the preconditioner construction.

2. The time needed by the solver to calculate the solution of the precon-
ditioned system.

3. The addition of the previous metrics, which gives a overview of the
quality and efficiency of the preconditioner.

4. The number of cores used in the preconditioner construction. This
gives an idea of the energy efficiency of the algorithm.

Results from previous comparison showed that Monte Carlo algorithm
can deal with both symmetric and nonsymmetric matrices while MSPAI
only performs well with the nonsymetric ones. Furthermore the time for
Monte Carlo’s algorithm is always faster for the preconditioner construction
and most of the times also for the solver calculation. This means that Monte
Carlo produces preconditioners of better or same quality than MSPAI. Fi-
nally, the number of cores used in the Monte Carlo approach is always equal
or smaller than in the case of MSPAI.
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Chapter 1

Introduction, motivation and
goals.

1.1 Introduction.

Many problems in science and engineering are represented by Systems of
Linear Algebraic Equations (SLAEs). Numerical methods are used to solve
this kind of systems and they are categorized, usually, as two types: direct
and iterative methods.

In the general case, direct methods produce more precise results than
iterative ones, at the cost of requiring larger amounts of time. Iterative
methods are able to produce results with different precision by varying the
number of iterations performed. The larger the number of the iterations,
the more accurate the result and the larger the time needed.

The time and computational effort required, to find the solution of a
given SLAE, depend on the size of the system as well as on other factors
(characteristics) such as the system being diagonally dominant, the sym-
metry or the condition number of the system. this factors influence the
convergence rate of a given method, therefore they must be taken into ac-
count to decide the best method to be applied. For example, a system with
a higher condition number (ill-conditioned) is likely to require more time
to be solved than other with similar characteristics and a lower condition
number.

It is well known that modern science deals with a vast variety of prob-
lems that require great amounts of calculation. Despite the abundance of
processing power of nowadays systems, some classes of scientific problems
are able to exhaust those tools [27]. An example of this kind of systems are
clusters of computers and supercomputers.
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1.1. Introduction. 9

Given the parallel nature of the above mentioned systems, the benefits
obtained by their use are tightly related to the parallel capabilities of the
applications (i.e. only parallel application can benefit from the use of parallel
systems). Furthermore the percentage of parallelism in a given application
will define the potential speedup obtained by its parallel execution [18].

Preconditioners are used to reduce the time required, for a given method,
to solve a SLAE. There exist a wide variety of preconditioners but we will
focus only on those that use a SParse Approximate Inverse of the system
(SPAI). SPAI preconditioners work under the assumption that it is possible
to use the inverse of a system’s matrix to find its solution.

In the past, it has been demonstrated that Monte Carlo methods can
be used to efficiently tackle Linear Algebra problems [3] [10] . Given the
stochastic approach of these methods, the computational effort required to
find an element in the inverse matrix of a given SLAE, is independent from
the size of the matrix. This allows to target systems that, due to their size,
can be prohibitive for common deterministic approaches. [27]

Generic Monte Carlo algorithms posses certain properties that make
them suitable for highly parallel architectures. They present an efficient
distribution of the compute data and a minimum synchronization is re-
quired while computing. This two properties naturally lead to scalable al-
gorithms [27].

Recently research has been focussed to show the advantages of these
methods for solving Linear Algebra problems such as the calculation of a
matrix inverse; results demonstrate that Monte Carlo algorithms are a good
choice for SPAI preconditioning for general matrices but also implies, that
further research into their scalability behaviour, is required [3] [4]

A variety of parallel Monte Carlo methods have been developed within
the past 20 years. A comprehensive compendium of the Monte Carlo func-
tions can be found in [29] [27] [10]. Various parallelization strategies and
approaches were investigated since then [10] [27].

In this work we present an enhanced version of a SPAI preconditioner
that is based on a Monte Carlo method. This new optimized version is
compared against the previous one, as well as the state-of-the-art MSPAI,
which is the main accepted deterministic algorithm for SPAI precondition-
ing. Our results show that Monte Carlo-based algorithm can be used instead
of MSPAI to reduce the computation time and resource usage while produc-
ing results with similar or better quality.

Also a scalability analysis is carried out, showing that the random pat-

Chapter 1. Introduction, motivation and goals.



1.2. Motivation. 10

terns in the memory access have a strong influence in the performance of
the algorithm. further research, to solve this issues, is proposed within the
context of quasi-Monte Carlo Methods.

1.2 Motivation.

The use of preconditioners is very common nowadays and much research
effort has been applied on this subject, given that linear systems, composed
by millions of equations, are now commonly found in many applications.

Also “the solution of large sparse linear systems is central to many nu-
merical simulations and is often the most time-consuming part of a compu-
tation” [8].

Design and optimization of preconditioners which are able to take advan-
tage of parallel architectures are necessary to exploit current computational
power such as HPC systems.

Given the stochastic nature of Monte Carlo-based algorithms, they are
good candidates to tackle these kind of problems in an efficient way. These
methods have the particular property of their computational complexity
growing linearly with the size of the system and being highly parallelizable.

Efficient implementation of preconditioners will allow solving large SLAEs
which may be of vital importance for the science in general. Also these im-
plementations can be directly translated into savings of execution time for
current problems.

1.3 Goals.

The general objective of this work is to enhance the current implementation
of the Monte Carlo algorithm by: making it more stable and improve further
its performance and scalability. Specific goals are listed below:

1. Eliminate errors. Stability in the application will be achieved by
solving the know issues and applying general testing to find possible
hidden errors within the implementation.

2. Improve the performance. Find the bottlenecks that affect the per-
formance of the application, propose and implement efficient solutions
to cancel or mitigate their effects.

3. Analyse the scalability An hybrid approach of MPI + OpenMP
for an hybrid parallel architecture will be carried out to investigate
whether it can provide improvements in the scalability and the perfor-
mance.

Chapter 1. Introduction, motivation and goals.



1.3. Goals. 11

4. Compare with the state-of-the-art. A performance comparison
will be performed against the state-of-the-art MSPAI algorithm.

5. Code refactoring. Make the code more maintainable in order to
make it easier for further optimizations.

Chapter 1. Introduction, motivation and goals.



Chapter 2

State-of-the-art.

2.1 Preconditioners.

Preconditioning is known as the transformation of a System of Linear
Algebraic Equations (SLAE) into an equivalent one which requires less time
to be solved. The matrix used for this transformation is called the precon-
ditioner [7]. When carried out efficiently, the preconditioned system would
be solved faster than the original one.

Solving Systems of Linear Algebraic Equations (SLAEs) is of great im-
portance in many areas of study in science and engineering. Numerical
methods are used to find the solution of these systems.“The solution of large
sparse linear systems is central to many numerical simulations and is often
the most time-consuming part of a computation” [8].

There are two main categories of numerical methods: Direct and iterative
ones. The main differences between them are the number of steps required
for their execution and the precision of the calculated solution. When deal-
ing with dense matrices, the complexity of direct methods, like Gaussian
Elimination is O(n3) and for the iterative ones like Jacobi is O(kn2) [15].

When an precise solution is required direct methods are the preferred op-
tion. They are reliable, robust and due to their deterministic nature, they
require a finite number of steps, for this reason they tend to require a pre-
dictable amount of resources (time, memory, storage, etc). The drawback is
that most of them are difficult to parallelize and many of them do not scale
well.

In the other hand iterative methods which are easier to parallelize and
are a faster option [16]. The accuracy of these type of methods can be
parametrized as it depends on the number of steps (or iterations) executed.

12



2.1. Preconditioners. 13

They are a good choice when an approximate solution is required.

It is well known that most of the direct methods have a poor scalabil-
ity [8] (the time and resources needed grows exponentially with the size of
the problem). Given that the majority of problems are only worth to solve
within a limited time, iterative methods are sometimes the only available
choice to solve large systems. Still when dealing with very large systems,
iterative methods might fail to obtain a good enough approximate solution
within a reasonable amount of time. It is in these cases where precondition-
ing becomes a necessity.

It should be noted that “systems with several millions of unknowns are
now routinely encountered in many applications” [8]”

The general idea of preconditioning, within the context of iterative meth-
ods, is to modify the input (ill-conditioned) system in such a way that the
iterative method converges faster. In general, a good preconditioner should
be easy to compute (in terms of computational effort), to calculate and ap-
ply, (i.e. the time saved due to preconditioning must be larger than the time
invested in the preconditioner construction). Although, resources constraints
could be also a good reason to apply a preconditioning regardless of the time.

A good balance between quality and time of construction is the key for
a good preconditioner. Notice that, when parallel systems are used to build
a preconditioner, the parallel efficiency of the construction algorithm will
play a very important role in this trade-off.

The use of preconditioners is very common nowadays and much research
effort has been applied on this subject.

“Nothing will be more central to computational science in the next century
than the art of transforming a problem that appears intractable into

another whose solution can be approximated rapidly. For Krylov subspace
matrix iterations, this is preconditioning” [28].

Several kinds of preconditioning methods can be found In the litera-
ture [8], In our research we will be focussed on SParse Approximate In-
verse(SPAI) preconditioners.

2.1.1 SPAI preconditioners.

It is well know that some numerical methods are more adequate for matri-
ces that feature certain properties. Preconditioning is designed to enhance
these properties, for this reason preconditioners and numerical methods are
commonly bonded together (i.e. preconditioners are designed on base of

Chapter 2. State-of-the-art.



2.1. Preconditioners. 14

numerical methods).

“ An optimal general-purpose preconditioner is unlikely to exist” [8].

In this sense, there are many different types of preconditioners. This
work is only focused in the SParse Approximate Inverse (SPAI) type.

As the name implies, SPAI preconditioning uses the approximate inverse
of system as preconditioner. This is, given the SLAE (2.1) in wich A rep-
resents the matrix of coefficients, x is the unknown solution vector and b is
the right-hand side vector. One could use the inverse of A (A−1) in both
sides of the system (2.1) to obtain (2.2). Then given the matrix properties
AA−1 = A−1A = I and Ix = x the expression in (2.3) can be obtained,
which gives the solution for x.

Ax = b (2.1)

A−1Ax = A−1b (2.2)

Ix = A−1b (2.3)

Calculating the inverse of a SLAE could be as complex as finding its
solution, this is the reason why SPAI precoditioners use an approximation.
Then instead of having (2.2) we will have (2.4) and thus (2.5) instead of
(2.3) (the symbol “ ˆ ” denotes an approximation). Even when (2.5) is not
a solution to the system it is an equivalent and less complex expression of it,
meaning that a given numerical method will require less time to calculate
the solution for this new system than for the original one.

Â−1Ax = Â−1b (2.4)

Îx = Â−1b (2.5)

Roughly speaking, SPAI preconditioners work in this way, the main dif-
ference between one method or another is the technique used to calculate
the approximate inverse.

Chapter 2. State-of-the-art.



2.1. Preconditioners. 15

Minimination of the Frobenius norm.

A common approach, in SPAI deterministic methods is to calculate an ap-
proximate inverse based on the Frobenius norm (2.6) minimization [17].

min
M
‖AM − I‖2F (2.6)

The idea is to minimize the difference between de identity matrix (I)
and the result of multiplying the preconditioner M by the initial system A.
Notice that If M = A−1 the difference in (2.7) will be zero.

As we have said before, calculating M = A−1 will require as much effort
as calculating the solution of A. For this reason an approximation of A−1

(Â−1) is used instead.

When the preconditioner matrix M is very similar to matrix A−1, AM
will be also very similar to I and the preconditioned system will be simpler.

AM − I (2.7)

Notice that the problem of minimizing the Frobenius norm, can be de-
composed into n minimization problems. In this case n will represent the
number of columns in the preconditioner matrix M . In this way each column
of M can be calculated separately making the problem easy to parallelize.

This technique for calculating the inverse matrix is used by the algorithm
MSPAI [21] which is further described in section (2.1.2).

Neumman series expansion approach

Another approach to approximate an inverse matrix is the use of Neumann
series expansion. This states that the inverse of a matrix can be calculated
with (2.8). For this to be true, the condition (2.9) must be satisfied.

(I − C)−1 =
∞∑
k=0

Ck (2.8)

‖C‖p < 1 (2.9)

For simplicity we will always consider (2.9) with the infinity norm (p =
∞) but in practice this condition applies for every norm.

Chapter 2. State-of-the-art.



2.1. Preconditioners. 16

For this approach it is necessary to find a Matrix C such that A = (I−C)
and the condition (2.9) is met.

It can be probed that if A is a diagonally dominant matrix (2.10), an
equivalent matrix A′ (2.11) can be used to find a matrix C = (I−A′) which
meets the condition (2.9).

|ai,i| >
n∑
j 6=i
|ai,j | ∀i (2.10)

a′i,j =
ai,j
ai,i

∀i, j (2.11)

The parallelization of this technique is not as straightforward as in the
previous case. This approach is used in the algorithm described in section
2.2 and it is used in combination with a Monte Carlo method on which the
parallelism relies.

Regardless of the method used to calculate the approximate inverse it
is important to maintain a high sparsity of the preconditioner. A well con-
ditioned system may reduce the number of iterations needed, but when the
resulting system is dense, iterative methods tend to spend more time per
iteration. A good balance between the quality of the inverse and its sparsity
must be always considered and maintained.

2.1.2 MSPAI.

Given the inherent parallelism of SPAI preconditioners, in the past there
have been different approaches of parallel implementations of this kind of
preconditioners. Recently a class of Frobenius norm minimizations that has
been used in the original SPAI implementation [17] was modified and pro-
vided in a parallel software package.

This approach was carried out by the original authors of the SPAI imple-
mentation and it is called Modified SParse Approximate Inverse (MSPAI) [21].
The word “Modified” comes from the inclusion of certain properties of a fam-
ily of preconditioners known as “Modified preconditioners” such as Modified
ILU, Modified Cholesky, etc.

The main contribution to the SPAI implementation is the probing ap-
proach. This way MSPAI combines the advantages of classical probing,

Chapter 2. State-of-the-art.



2.2. Monte Carlo-based algorithm. 17

application of modified preconditioners and the Frobenius norm minimiza-
tion.

Further, this package also provides implementation improvements such
as the use of a dictionary to avoid redundant calculations, and a dynamic
load balancing which allows for a better workload distribution among the
parallel resources.

2.2 Monte Carlo-based algorithm.

This section describes an algorithm that constructs a SPAI preconditioner
based on Neumann series expansion. The algorithm is a Monte Carlo
Markov Chain based one, which is used to reduce the density as well as
the computational effort needed to produce the matrix inverse, thus calcu-
lating an sparse approximation of it.

This work is focused on the optimization of this algorithm’s implemen-
tation which is presented later in this section.

2.2.1 Monte Carlo methods

Monte Carlo methods are probabilistic methods, that use random numbers
to either simulate a stochastic behaviour or to estimate the solution of a
problem. They are good candidates for parallelization due to the fact that
many independent samples are used to estimate the solution. These sam-
ples can be calculated in parallel, thereby speeding up the solution finding
process. [27]

2.2.2 The algorithm

The algorithm can be roughly explained within the following 5 phases. No-
tice that phases 1 and 5 are only necessary when the initial matrix is not
diagonally dominant.

1. The initial matrix is transformed into a diagonally dominant matrix.

2. A transformation is carried out in order to make the diagonally dom-
inant matrix suitable for the Neumann series expansion.

3. A Monte Carlo method is applied on top of Neumann series expansion
to calculate a sparse approximation of the inverse matrix.

4. Given the transformation carried out in 2, it is necessary to calcu-
late the inverse of the diagonally dominant matrix parting from the
resulting matrix of 3.

Chapter 2. State-of-the-art.



2.2. Monte Carlo-based algorithm. 18

5. Similar to previous step, a recovery process is applied to make up for
the transformation in 1.

Algorithms 1 and 2 [10] are presented below. Algorithm 2 is based upon
algorithm 1 and it is used when the initial matrix is not diagonally domi-
nant. In the other hand, Algorithm 1 can be used directly when the input
matrix is diagonally dominant

Further explanation about the algorithm’s details are explained later in
this section.

Chapter 2. State-of-the-art.



2.2. Monte Carlo-based algorithm. 19

Algorithm 1 Monte Carlo Algorithm for Inverting Diagonally Dominant
Matrices [10]

Step 1. Read in matrix B

1: Input matrix B, parameters ε and δ

Step 2. Calculate intermediate matrix (B1)

1: Calculate B1 = diag(B)

Step 3. Calculate matrix C, A and ‖A‖∞

1: Compute the matrix C = B−11 B and A = (I − C)

2: Compute ‖A‖∞ and the Markov chains N =

(
0.6745

ε(1−|A‖∞)

)2

Step 4. Calculate matrix P

1: Compute the probability matrix, P .

Step 5. Calculate matrix C−1, by MC on A and P

1: For i = 1 to n:

1.1: For j = 1 to N
Markov Chain Monte Carlo Computation.

1.1.1: Set W0 = 1, point = i and SUM [k] =

{
1 if i = k
0 if i 6= k

1.1.2: Select a nextpoint, based on the transition probabili-
ties in P , such that A[point][nexpoint] 6= 0

1.1.3: Compute Wj = Wj−1
A[point][nextpoint
P [point][nextpoint]

1.1.4: Set SUM [nexpoint] = SUM [nexpoint] +Wj

1.1.5: if |Wj | ≥ δ set point = nextpoint and goto 1.1.2

1.2: Then c−1ik = SUM [k]
N for k = 1, 2, ..., n

Step 6. Calculate B−1

1: Compute the Monte Carlo inverse B−1 = B−11 C−1

Chapter 2. State-of-the-art.



2.2. Monte Carlo-based algorithm. 20

Algorithm 2 Monte Carlo Algorithm for Inverting General Matrices

Step 1. Read in matrix B

1: Input matrix B, parameters ε, δ and α

Step 2. Calculate diagonal dominant matrix B̂.

1: Calculate ‖B‖∞

2: Calculate B̂ such that ˆbi,j =

{
bi,j if i 6= j
bi,i + α‖B‖∞ if i = j

Step 3. Apply Algorithm 1 with B = B̂ to obtain B̂−1

Step 4. Recovery of B−1 from B̂−1

1: Compute S = B̂ −B
1:1 Let Si for i = 1, 2, . . . , n where each Si has just one of

the non-zero elements of the matrix S

1:2 Set B−1n = B̂−1

1:3 Apply B−1i−1 = B−1i +
B−1

i SiB
−1
i

1−trace(B−1
i Si)

for i = n, n−1, . . . , 1

2: Then B−1 = B−10

Phase 1. Ensuring diagonal dominance

In 2.1.1 we talked about the relation between the restriction in the Neu-
mann series expansion and the diagonal dominance of the matrix. Knowing
that, we want to force this property in the initial matrix B by applying the
following transformation:

ˆbi,j =

{
bi,j if i 6= j
bi,i + α‖B‖∞ if i = j

This is, the off-diagonal elements of B̂ are the same as those of B and the
diagonal elements of B̂ are defined as bi,i + α‖B‖∞ where α is an arbitrary
input parameter with a value > 1 and recommended to be ≤ 2.

‖B‖∞ = max
1≤i≤n

n∑
j=1

|bi,j | (2.12)
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Notice that the diagonal dominance of the matrix ensures the conver-
gence of the Neumann series expansion in the system but a further trans-
formation is needed to strictly comply with (2.13), such transformation is
performed in the next phase.

Phase 2. Make the matrix suitable for Neumann series

From the Neumann Series expansion approach described in 2.1.1 we know
we want to find a matrix M such that B̂ = I −M . This way we will have

ˆB−1 =
∞∑
k=0

Mk due the Neumann series (2.8).

Taking into account the condition (2.9) and that fact that M = I − B̂,
we need (2.13) to be true. Knowing that B̂ can have any arbitrary value,
we need to perform a transformation that guarantees that this condition is
always met.

‖I − B̂‖p < 1 (2.13)

Given the diagonal dominance of B̂, we know that adding the absolute
values of all the non-diagonal elements, in any given row, will be less than
the absolute value of the diagonal element in that row (2.10). Then if we
multiply all the elements in a row by the reciprocal of the diagonal element
of that row (i.e. all elements in the row are divided by the diagonal ele-
ment), we will end up having a 1 in the diagonal and the addition of all
non-diagonal elements will be less than 1.

The above means that performing (2.14) will make (2.13) to be met. Of

course we will have to change B̂ in (2.13) by
ˆ̂
B.

ˆ̂
B = (diag(B̂))−1 ∗ B̂ (2.14)

Now we can calculate a matrix A = (I − ˆ̂
B) and

ˆ̂
B = (I −A) such that

ˆ̂
B−1 =

∞∑
k=0

Ak

Phase 3. Monte Carlo and Markov chains.

Until this point we have a matrix A that meets the Neumann series condi-

tion. And the matrix
ˆ̂
B = (I − A). For simplicity, from now and then we

Chapter 2. State-of-the-art.



2.2. Monte Carlo-based algorithm. 22

will call matrix
ˆ̂
B matrix C, ( i.e. C =

ˆ̂
B)

In this step the operation (2.15) is carried out. We know that for the
inverse matrix to be accurate we need k >> 1, this would imply k matrix-
matrix multiplications which are known to be expensive operations. Also
this would lead us to calculate a very dense inverse matrix.

C−1 =
∞∑
k=0

Ak (2.15)

This is where the Monte Carlo method plays its role. Using a random
variable whose mathematical expectation is the desired solution (2.15), a
sampling is performed and results are used to construct the inverse ma-
trix (C−1). Applying stochastic sampling instead of computing complete k
matrix-matrix multiplications leads to a sparse matrix obtained with much
less operations rather than a dense one requiring much more operations.

The Monte Carlo process can be expressed as (2.16) and the random
variable as (2.17) [2].

c−1r,r′ ≈
1

N

N∑
s=1

[ ∑
(j|sj=r′)

Wj

]
(2.16)

Wj =
ar,s1as1,s2 ... asj−1,sj

pr,s1ps1,s2 ... psj−1,sj

(2.17)

In (2.16) (j|sj = r′) means that Wj is only summed when sj = r′ being
r′ the column index in C−1 and sj a certain state in the Markov chain.
Notice that all the values of a row can be calculated using the same Markov
Chain if different r′ are used to store the different results (in Algorithm 1,
the SUM variable is used for this end).

A Markov chain is based on a random variable sampling. A pair of
states, within the chain, represent a specific element in matrices A and P .
Consider the following Markov chain:

S = S0 → S1 ... Sj → ...
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with:

j ∈ {1, 2, ..., n}

Exemplified by:

S = 1→ 5→ 7→ 1→ 2 ...

The first state(S0 = 1) identifies the row we are calculating, it is vari-
able (r) in (2.16) and (2.17). By the second state (S1 = 5) we know the first
element chosen is (a1,5), the next element would be (a5,7) and so on. The
variable (r’) would be (5) and (7) for the last two elements respectively, this
means that the value of Wj obtained by those states using (2.17), would be
accountable only for elements (c−11,5) and (c−11,7) respectively.

The Markov Chain is constructed based on a probability matrix P .
There are two different approaches used to build this matrix, the first and
simplest one is based on a Uniform distribution and is called Uniform Monte
Carlo(UM), the second one is called Monte Carlo Almost Optimal(MAO)
and, theoretically, leads to more accurate results [5] but, when implemented,
it requires significantly more computational resources, not only for its con-
struction but for its use. See section 4.3.3 for more details.

The number of different states that could be found at any chain is equal
to the matrix size. The size of the chain (i.e. the number of states in the
chain) is bounded by the input parameter δ. The Markov chain is stopped
(cut) when Wj becomes smaller than δ.

The number of chains (N in (2.16)), used to calculate an entire row, is
calculated using the input parameter ε and the infinity norm of matrix A
within the formula 2.18 [10].

N =

(
0.6745

ε(1− |A‖∞)

)2

(2.18)

Notice that the complexity of this method is O(nNL). This is linear to
the matrix size (n) given that the process to calculate an entire row is not
bounded by (n) but by N an L. Here (N) is the number of chains and (L) is
the size of the Markov Chain.

Phase 4. Calculate the inverse of the diagonally dominant matrix.

In phase 2, we calculated matrix
ˆ̂
B from matrix B̂ and called C, for the sake

of simplicity. Then, in phase 3 we calculated the inverse of that matrix. Now

we want to calculate B̂−1 from
ˆ̂
B−1.
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Having (2.14), we know we can multiply diag(B̂) in both sides of the
equation and obtain (2.19), then we can invert all the terms in the equation
and get (2.20).

diag(B̂) ∗ ˆ̂
B = B̂ (2.19)

(diag(B̂))−1 ∗ ˆ̂
B−1 = B̂−1 (2.20)

Notice that only a matrix-vector multiplication is necessary to obtain

B̂−1 from
ˆ̂
B−1

Phase 5. Calculate the inverse of the initial system

Due to the transformation carried out in Phase 1, a recovery process needs
to be performed in order to calculate the inverse B−1 of the original input
matrix B parting from B̂−1. Remember that phase 1 and 5 are only neces-
sary when the input matrix is not diagonally dominant.

In [10] the following iterative process is described for that purpose:

B−1k = B−1k+1 +
B−1k+1Sk+1B

−1
k+1

1− trace(B−1k+1Sk+1)
(2.21)

Where k goes from n-1 to 0 (k = n− 1, n− 2, ..., 0), having that B−1n =
ˆB−1. Si is all zero except for the {ii}th component, which is from the matrix

S = B̂ −B.

In [10] it is claimed that the complexity of this algorithm is lower than
it seems at first glance, due to the simplicity of matrix S. Even though, it is
easy to notice that the complexity of the process grows polynomially, with
the main term requiring O(n4) operations.

This process can be very costly when big matrices are being used. It is
also difficult to parallelize. Good results still can be obtained if this phase
is skipped.
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2.2.3 Implementation details (Original code).

For this chapter a minimal knowledge about parallel programming models
is required. If the reader is not familiarized with terms like HPC, Dis-
tributed memory, Shared memory, Single-core, Multi-core and MPI it is
recommended to read chapter 2.3 first.

This algorithm was originally designed for a HPC cluster composed of
single-core compute nodes. It is written in C and uses the MPI library. It
also makes use of the Bebop sparse matrix converter [20] to translate the
input matrix format into a CSR format.

2.2.4 Parallelization details.

The first two phases described in section 2.2.2, are executed sequentially by
the MPI Master process (rank 0).

Matrices A, B1 and P are calculated during those phases. Notice that
A = (I − C) and B1 = diag(B̂))

Then a procedure is called by all the processes in which the partitioning
of the matrix A is carried out. The distribution of the work is done evenly
when the number of rows is divisible by the number of processes. In the
opposite case, the remaining rows are distributed among the smaller MPI
processes (without including the Master process).

After that, matrices A, B1 and P are broadcast using MPI Broadcast(),
so that all the remaining processes can have a copy of them. Then the Monte
Carlo process (phase 3) is started in parallel by all MPI processes.

During the Monte Carlo phase, each MPI process will calculate a piece of
the inverse matrix of C (C−1), using matrix A; remember that C = (I−A).
Each resulting row will be then multiplied by matrix B−11 , to get their re-
spective part of B̂−1 (phase 4).

After finishing the Monte Carlo process and phase 4, each process will
send its part of the matrix (B̂−1) to the master process by calling MPI Send().
The master process will perform a corresponding MPI Receive() and will
merge the received parts with its own.

Given a concatenation issue due to the CSR format (explained in the
following subsection), the Send-Receive process has to be ordered, having
to receive first the data from process 1, then process 2 and so on.
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Finally the last phase (5) is optionally executed by the master processes
on matrix (B̂−1) to calculate B−1. A flag called RECOVER is set/unset in
the makefile to indicate whether to execute this process or not.

In the past, an unsuccessful attempt to parallelize this process has been
carried out. Its iterative nature made that difficult to achieve; iterations
cannot be executed in parallel given that each of them depends on the pre-
vious one. On the other hand, using an approach in which each iteration is
executed in parallel, would imply a high increment in the communications
given that, a synchronization would be required at each iteration.

2.2.5 CSR format details.

The CSR format is well known to be a very efficient option when dealing
with sparse matrices, given that only non-zero values are stored. This allows
the use of big sparse matrix within a reduced amount of memory.

The bad thing about using CSR format is that the size of any given
matrix varies when operations are performed on it. This way many matrix
operations become more complex when this format is used. A simple sparse
matrix-matrix addition, for example, is very likely to result in a matrix
which is bigger that its operands, this would not allow to reuse one of the
operands matrices to store the result.

The following example shows a matrix-matrix addition performed in a
CSR format, notice how the vectors val and col in the resulting matrix are
bigger than those in the operands.

 1 0 5
0 0 4
0 8 0

+

 0 4 0
0 1 0
0 0 3

 =

 1 4 5
0 1 4
0 8 3



val = [1, 5, 4, 8] val = [4, 1, 3] val = [1, 4, 5, 1, 4, 8, 3]
col = [1, 3, 3, 2] col = [2, 2, 3] col = [1, 2, 3, 2, 3, 2, 3]
row = [1, 3, 4, 5] row = [1, 2, 3, 4] row = [1, 4, 6, 8]

An example of this within the implementation of the algorithm can be
found in the matrix-matrix addition carried out in the phase 5. See (2.21).
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Furthermore, when a CSR matrix is being constructed, and the number
of total non-zero values is unknown a priori. If an estimate is not able to
be calculated, several memory reallocations must be carried out to store the
values; in the worse case(when memory is a constraint) a memory realloca-
tion will be carried out for each new element.

This worse case-approach was used in the original implementation for the
construction of matrix A and other intermediate matrices.

Similarly for a concatenation to be performed, if the number of non-zero
values of each of the sub-matrices remains unknown, the operation must be
carried out in order; otherwise the position within the final memory struc-
ture, of any given matrix, could not be calculated.

The above affects the algorithm execution in the sense that, after the
Monte Carlo phase, if a process has finished with anticipation, it has to wait
for all previous processes to finish to be able to communicate its results to
the master process. The communication cannot be carried out in advance
and the process would transition to an idle state.

2.3 Parallel programming models

Within the HPC context, the objective of parallel computing is to increase
the performance of applications. This is achieved by the explicit division
of application’s workload among the available resources within a parallel
environment, all this with the aim of diminishing the execution time.

This explicit division is carried out through the use of parallel program-
ming models. There exist several of these models which target different
architectures. The underlying architecture in which a application is thought
to be executed is, therefore, the main aspect to consider when choosing a
parallel programming model.

Depending on the communication model parallel architectures can be
roughly categorized in 3 groups:

1. Distributed memory : In this type of architecture, several machines
(called compute nodes) are connected through a network, memory
is kept private for each machine (distributed) and the only way to
read/write other’s machine memory is through the network. MPI is the
most common programming model used for these type of architectures.

2. Shared memory : In this architecture the main memory can be directly
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accessed by all the processors/cores in the system. The most repre-
sentative model for this approach is called OpenMP.

3. Accelerators: Also referred as many-core architectures, in this ap-
proach is an external device, containing “many cores”, communicates
with the CPU commonly through the PCIe port.

It can also be considered a shared memory approach given that all
the cores, within the device, have access to a common memory. This
memory is local to the device and should not be confused with the
system’s main memory. The most popular programming model of this
kind is CUDA.

Nowadays HPC systems are built using a combinations of all these 3 par-
allel architectures. A common example it is a cluster of computers connected
via a high performance network, each computer has two or more processors
which in turn has two or more cores, all these cores within a single ma-
chine, share the system’s main memory, but this memory is kept private
from other’s machines within the cluster. Finally some of these nodes have
an accelerator in addition.

The above description corresponds to an hybrid parallel architecture.
In order to take full advantage of these kind of architectures a mixture of
parallel programming models has to be used. A very common hybrid model
is the one which includes MPI and OpenMP.

Further details on programming models as well as a performance an a
qualitative survey can be found in [23].

2.3.1 MPI.

The Message Passing Interface is the main programming model used for dis-
tributed memory. In the general case it works as follows.

When an MPI application is launched several processes are created and
they all execute the exact same application. The number of processes is
specified by the user at the moment of the execution.

Within the application, MPI routines are used to control the flow of each
one of the processes. One of the most important ones is MPI Comm rank()
which gives a unique numerical identifier for each of the processes. This
identifier is called rank and is used to distinguish among the different pro-
cesses.

There exist several MPI routines used to communicate data from one
process to another, called point-to-point and others which involve more than
2 processes, called collectives.
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The MPI Send() function is an example of a ponit-to-point communica-
tion, at the name implies it is used to send data from one process to another,
the size and type of the data, as well as the receiving process identifier must
be specified within the call. Its counterpart MPI Recv() is used to receive
the data in the other extreme, similarly the size and type of data, as well as
the sending identifier must be specified.

Within the algorithm, these functions are used to send/receive the pieces of the

inverse matrix from each process to the master process.

An example of a collective operation is the MPI Broadcast() function,
this function is used when data is needed to send to all or a certain group of
processes. The call must be performed by all the processes involved in the
operation, the group identifier (called communicator) must be provided.

This function is called by all the processes in order to get a copy (from the

master) of the matrices needed within the Monte Carlo proccess.

Collective functions are used together with communicators which can
be seen as logical groups of MPI processes. At the beginning only one
communicator exist and it encompasses all the processes, it is identified by
the macro MPI COMM WORLD. User can define further communicators
accordingly to the needs of the application, this way collective operations
can be performed on a sub-set of MPI processes.

2.3.2 OpenMP.

Open Multi-Processing is a set of compiler directives, environment variables
and callable runtime library routines used to express shared-memory paral-
lelism [13].

The work unit for this model is the thread which is an execution instance
of a given parallel section of the code. Variables within a thread can be
defined to be private or shared with all the other threads.

The number of threads is automatically set to the number of cores in the
system and can be overwritten by the environment variable OMP NUM THREADS.

Programmers uses compiler directives(pragmas) to wrap portions of code
that have a parallel connotation.

A simple example of the use of OpenMP can be observed with the use
of the following directive: #pragma omp parallel{}

This directive specifies that all the code within the curly brackets is exe-
cuted by all the available threads. A call to the function omp get thread num()
will return a unique identifier for each of the threads. This id can be used
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to control the execution flow of each thread independently.

This directive is used in section 4.4.1 to execute the Monte Carlo process in

parallel.

Other directives like #pragma omp parallel for are used to distribute the
iterations of a given loop among the available threads.

When using this kind of models, programmers must be very careful to
avoid unwanted behaviours. Examples of this are race conditions and false
sharing.

A race condition happens when a variable end up with different values
in different executions under the same conditions, due to the variable inter-
leaving of the threads accesses to the given variable.

false sharing occurs when two private variables from different threads
are tight together within the same cache line (the minimal memory transfer
unit), for this reason every time a thread modifies its variable, a synchro-
nization is carried out to keep the cache line coherent for both threads. This
synchronization is logically unneeded and subtracts performance execution.

Together with the above, other important drawback of this approach is
the overhead implicated in the thread creation and all the synchronization
needed to maintain the memory coherence among the threads.

2.3.3 Hybrid approach(MPI + openMP).

Nowadays it is very common to find HPC applications that use more than
one parallel programming model. One of the most common combinations is
the use of MPI and OpenMP to target a cluster environment of Multi-core
machines.

The common approach is to create one MPI instance on each machine
and then one OpenMP thread for each of the available cores in the machine.
This is the naive way to exploit the “best of two worlds” but in practice,
different combinations of number of MPI processes and number of threads
are tested to find the best combination which is application dependent.

Actually there are some applications which perform better when only
MPI (unified MPI) processes are used in both, the distributed and the shared
environment. [11]
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2.3.4 MPI for shared memory.

Even though MPI is designed for Distributed memory architectures, it is
also possible to use it within a shared memory environment. In this case
memory is kept private to each MPI process and communications are not
carried out through the network but directly as memory operations (Ex.
Sending a given value from process 1 to process 2 is carried out by copying
the value from the private memory of process 1 into the private memory of
process 2).

In [24] it is demonstrated that it is difficult to obtain significant and
consistent improvements when using OpenMP intead of MPI within shared
memory architectures.

An example of the above can be those applications with a random mem-
ory access pattern. One very important benefit of using OpenMP, comes
from the memory bandwidth increment given the shared memory approach.
This benefit vanishes when memory is randomly accessed (data fetched by
one thread is not likely to be used by other threads.)

In [22] it is explained why random accesses to memory decrease the mem-
ory bandwidth.
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Methodology.

Having that the current implementation present some execution errors, the
first thing to do is to find and fix those error in order to have a stable and
comparable version of the software.
Then we will define a baseline to be able to compare and measure the per-
formance of different versions of the code.
After that a general analysis of the fixed implementation will be carried out,
and different approaches, to improve the Monte Carlo-based algorithm, are
going to be performed in an iterative fashion.

Each new optimization approach will be implemented and validated. In
the case of successful implementations, a comparison with the previous ver-
sion will be performed to show the particular improvements of the approach.

Finally, the fastest achieved version will be compared with the state-
of-the-art MSPAI. Different aspects, such as the time to compute the pre-
conditioner, the time needed to compute the solution of the preconditioned
system and the resource usage will be measured and presented.

Experiments will be carried out in Marenostrum III supercomputer at
Barcelona Supercomputing Center (BSC). It currently consists of 3056 com-
pute nodes equipped with 2 Intel Xeon 8-core processors and 64GB of RAM
interconnected via InfiniBand FDR-10.

The Monte Carlo-based algorithm is written in C and it uses the open
MPI-1.8.01 implementation of MPI. The intel-13.0.1 OpenMP will be used
for an hybrid approach implemented later as a part of this work. The solver
used to measure the time needed to calculate the solution for the precondi-
tioned system, is the paralution-1.1.02 implementation of GMRES.

1www.open-mpi.org/
2www.paralution.com/
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Below a more detailed and structured methodology is described.

1. Find and fix errors. Minimal modifications will be carried out to
avoid the current crashes of the system.

1.1. A set of small matrices is going to be used to find the patterns
related to the application errors.

1.2. A Comparison of the current implementation and the mathemat-
ical description will be performed to find possible silent errors.
“Testing do not guarantee the absence of errors”.

1.3. Step-by-step execution using a system with a known solution will
be analysed.

2. Define a baseline. Together with the fixed version (obtained in the
previous step), a set of matrices and a process to measure the quality
of the preconditioner, will be proposed to conform to the baseline that
will be used to compare the new implementations.

2.1. Select a representative set of matrices with different sizes and
characteristics to be used to compare different executions.

2.2. Define a process that will be used to quantify the quality and
efficiency of the preconditioners.

3. Improve the Monte Carlo-based algorithm.

3.1. Use BSC tools to locate bottlenecks and analyse the behaviour
of the existing code and further versions.

3.2. Analyse the algorithm description to find new sources of paral-
lelism and room for improvement.

3.3. Implement new proposals following common good practices of
software development.

3.4. Validate the new implementations using the baseline described
before.

4. Compare with MSPAI. Speedup and scalability analysis will be
performed.

4.1. Use the baseline from step 2 to compare Monte Carlo-based and
MSPAI algorithms in terms of quality, efficiency and time re-
quired to build the preconditioner.
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Development of the work.

4.1 Finding and fixing errors.

Using a set of small matrices, the original code was tested to find implemen-
tation errors. Two important errors were found during this process:

1. A validation was carried out, after reading the initial matrix, to ensure
the number on non-zero elements was equal or smaller than the size of
the matrix (Ex. nz <= dimension2). This process did not take into
account that, when large systems are used, the operation (dimension2)
can reach a value greater than the maximum value held by an integer
variable, causing an overflow and the program’s execution to stop.
This and other validations were removed. Now it is assumed the initial
matrix is correct from the beginning.

2. The execution of a process, called ”Recover”, that was not affecting
the preconditioner construction, was causing execution crashes so it
was disabled.

After these issues were fixed, the original program was able to execute all
the matrices defined within the baseline. See 4.2.

Once the initial testing was done it was proceeded to a deeper analysis
of the implementation taking the mathematical description of the algorithm
as a guide. Two things were noted within the algorithm:

1. The last element in the last row of the initial matrix was never used,
it was trimmed from the memory structure.

2. There is a part within the Monte Carlo process, where each of the pre-
conditioner’s rows is being calculated. There was a case when a pointer
was randomly set to an empty row causing the algorithm to behave
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wrongly and the number of elements in the final matrix (the precondi-
tioner) to be smaller than it should be. There is no description, within
the algorithm, about what has to be done when this happens so it was
decided the algorithm should pick, randomly, a different not empty
row.

4.2 Defining a Baseline.

We have selected a matrix set from 3 different sources: The Matrix Market
[9], The University of Florida Sparse Matrix Collection [14] and some real-
life problems from our collaborators.

The following set is composed by matrices of different sizes, sparsity and
symmetry.
In all the cases matrices are non-diagonally dominant (4.1).

|aii| <=
∑
j 6=i
|aij | ∀i (4.1)

Matrix Dimension Non-zeros Sparsity Symmetry

Appu 14, 000× 14, 000 1,853,104 0.95% non-symmetric
Na5 5, 832× 5, 832 305,630 0.46% symmetric

Nonsym r5 a11 329, 473× 329, 473 10,439,197 0.01% non-symmetric
Rdb2048 2, 048× 2, 048 12,032 0.29% non-symmetric

Sym r3 a11 20, 928× 20, 928 588,601 0.13% symmetric
Sym r4 a11 82, 817× 82, 817 2,598,173 0.04% symmetric

Table 4.1: Matrix set.

The next step was to generate a process to quantify the quality of the
resulting preconditioner when applied to each of the matrices in the set.
This is done by multiplying the approximate inverse (i.e the preconditioner)

( ˆA−1) in both sides (4.3) of the original system (4.2) in order to generate
an equivalent but simpler system (4.4), then solving this new system using
a solver and use the resulting vector, which is an approximation of x (x̂),
back in the original system to measure its fit (4.5).

Ax = b (4.2)

ˆA−1Ax = ˆA−1b (4.3)

Îx = ˆA−1b (4.4)

Chapter 4. Development of the work.



4.3. Improving the Monte Carlo-based algorithm. 36

Error =
1

n

n∑
i=0

|Aix̂| − |bi| (4.5)

4.3 Improving the Monte Carlo-based algorithm.

In this chapter all the optimizations applied to the Monte Carlo-based al-
gorithm, are described.

4.3.1 Broadcast slowdown.

The main problem reported by the users of the current program was the
non-sufficient scalability of it, thus this was the first problem analysed.

Using the original version of the code (with minimal modifications to
avoid crashes) and different number of cores configuration, all the matrices
in the set were executed and the algorithm’s behaviour analysed.

Some of these scalability results are shown in Figures 4.1 and 4.2. In all
cases an inflexion point can be observed when going from 16 to 32 cores,
this could be due to the overhead introduced by MPI when going from 1
compute node (16 cores) to more than one (32 cores).

BSC performance tools Extrae [12] and Paraver [26] were used to test
the last hypothesis. Results are shown in Figures 4.3 and 4.4. Note how the
broadcast operation gets highly increased, going from 0.45% to 62.24% of
the total execution time.

Figure 4.1: Scalability test in matrix Appu: Time to calculate the precon-
ditioner for different number of cores (16 - 512).

Chapter 4. Development of the work.



4.3. Improving the Monte Carlo-based algorithm. 37

Figure 4.2: Scalability test in matrix Appu: Time to calculate the precon-
ditioner for different number of cores (16 - 512).

Even when an increased overhead, when using more than 1 compute
node, is common in parallel applications, the increment seems bigger than
what one would expect. A deeper analysis was done in order to find other
issues related to this behaviour.

Figure 4.3: Percentage of used by MPI operations in the execution of Appu
matrix within 1 compute node (16 cores).

Figure 4.4: Percentage of time used by MPI operations in the execution of
Appu matrix within 2 compute nodes (32 cores).

By analysing paraver’s traces (Figures 4.5 and 4.6) we can note how the
broadcast operation is actually divided in several parts, look at the green
flags on the top of the trace, they mark the beginning of each MPI operation
(in this case the different broadcast).In the case of the 32-cores execution,
the first broadcast is taking way longer that the remaining ones, while in
the 16-cores case, the first broadcast takes a shorter time compared with the
consecutive ones. Yellow zones represent the broadcast operations, while the
blue ones represent the computation not related to MPI.
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Figure 4.5: Broadcast operations in the execution of Appu matrix within 1
compute node (16 cores).

Figure 4.6: Broadcast operations in the execution of Appu matrix within 2
compute nodes (32 cores).

This observation enabled us to identify that the increment in time was
not related to the piece of data being broadcasting but to the moment in
which this operation takes place. This hypothesis was easily proved by
switching the positions of the first and second broadcast operations within
the code, and observing the exact same behaviour (The first operation was
always the longer one).

A further analysis of the code showed that the slowdown in the broad-
cast operation was related to several memory reallocations (i.e. calls to the
realloc function). This problem is discussed in [6], stating that when using
the OpenMPI library ,the OS apply a ”lazy” policy regarding to the release
of not-used memory after a memory reallocation. This makes the system
running out of memory and force it to use swap memory which is known to
be very slow.

Replacing the realloc() calls was not a trivial task, given that in some
processes the resulting size of a memory structure remains unknown until
you actually require that memory (See section 2.2.5). What has been done
is to make an estimation of the memory required, adding an extra margin,
and make just one memory allocation.

The evaluation of this modification can be found in 5.1.

4.3.2 Memory usage.

It is well known that “application runtimes today are increasingly domi-
nated by memory operations” [30] and it is not only about the quantity
of those operations but also because they are know to be expensive in terms
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of execution time. In order for a program to be efficient, programmers must
minimize the number of memory access. A major change applied within the
Monte Carlo process was carried out within this context.

In the original code when a row, for the final preconditioner matrix, its
being calculated the algorithm first allocate memory for an empty row that
is as big as the matrix’s size. Then this row is randomly populated with
only few values (<< matrix size). Finally the row is accessed item by item
to locate non-zero values which will be used, along with their respective
indexes, in the next procedure.

Accessing the whole row, knowing that we are looking only for few items
its an inefficient approach. In the new version an extra memory structure is
created, this way we are able to save both the random value and its index.
This values are stored in a consecutive order (like in a COO format). Then
the algorithm will have to access the memory structure only as many times
as items it has.

Notice that during the row population, more than 1 random value can
end up within the same row position in which case they must be summed,
This represented a problem in the new version, given that each value has a
separated slot. To solve this new problem a further procedure is used ensure
that values within the same column index are summed.

To exemplify the memory access reduction let’s analyse the case of ex-
ecuting the Monte Carlo-based algorithm with the matrix Appu. This ma-
trix’s size is 14000 ∗ 14000 and if we look at the resulting preconditioner
obtained using default parameters (ε = 1× 10−1 and δ = 1× 10−1) we will
see that the number of non-zero elements is ≈ 46500, this give us a spar-
sity of 0.023% (4.6). This means that each row has a average of 3 elements
(3 ≈ 14000 ∗ 0.00023)) so instead of performing 14000 memory accesses
(original version) the new version will only do 6 (3 values and 3 indexes).

sparsity = 100 ∗ (non− zero elements/size2) (4.6)

This approach is evaluated in section 5.2, results and speedup metrics
can be found there.

4.3.3 Reducing the broadcast data

There are two methods, described in the algorithm, to produce the proba-
bilistic matrix P which is used during the construction of the Markov Chain:
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1. Almost Optimal (MAO). In which the probability to select each of the
non-zero values in the matrix A, is relative to the size of its value.
This is: the bigger the value, the more chances it has to be selected.
See (4.7).

2. Uniform (UM). In this case the probability of all non-zero values in A
is the same. See (4.8).

pij =
|aij |
n∑
j=0
|aij |

∀aij 6= 0 (4.7)

pij =
1

n∑
j=0
|aij |

∀aij 6= 0 (4.8)

Experiments carried out in [5], shows that ”UM needs about 6-10 times
more chains to reach the same precision of MAO” but our experiments, car-
ried out in section 5.3, have shown that there is not a significant difference,
while using one method or the other when rough precision is used to calcu-
late the estimators (ε ≥ 1× 10−1 and δ ≥ 1× 10−1).

Using the Uniform distribution (UM) has the advantage that the P ma-
trix can be drastically reduced. It goes from a size of nxn to only n given
that when using the MAO approach a probability value must be stored per
each non-zero value in the matrix A while, in the case of UM, only 1 proba-
bility element is needed for each row (the probability on all the values within
the same row is the same).

The reduction of matrix P impacts directly the overall performance given
that this matrix is included within the broadcast data and the broadcast pro-
cess is one of the most time-consuming procedures (See figures 4.7 and 4.8).

Results on the application of this approach can be found in section 5.3.

4.3.4 Merging sequential functions

In the initialization phase of the algorithm there were 4 procedures which
needed to access the whole initial matrix B, to calculate matrices A, P , B1

and other intermediate values. A brief description of those procedures is
listed below:

1. calculate norm: Calculates the norm of the initial Matrix.
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2. calculate bhat: Calculates intermediate matrices B1 and B2.

3. calculate A: Calculates matrix A.

4. calculate P: Calculates matrix P .

Given the simplification of the matrix P , after applying the modification
described in section 4.3.3, and a code analysis carried out, these procedures
were able to be merged into 2 larger functions which reuse the memory ac-
cesses pattern.

This optimization calculate matrix A directly from B and B1, making
matrix B2 not longer necessary.
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After the code merge this is how the work, carried out in the removed
functions, was re-assigned:

1. calculate norm: Calculates the norm of the initial Matrix and part of
matrix B1.

2. calculate bhat: Calculates the remaining part of B1 together with ma-
trices A and P .

After this modification, this sequential stage is not longer worth to par-
allelize given that overhead induced (broadcasting the initial matrix and
merging the results back) would be higher than the time needed for the se-
quential execution.

The improvements of this approach are shown in section 5.4

4.4 Scalability analysis

The communication overhead induced by MPI plays a very important role in
this algorithm, it accounts for a big part of the total execution time, specially
the broadcast operation which prevents the algorithm to scale beyond 16
cores (i.e. 1 compute node). Even after the modifications described in
sections 4.3.1 and 4.3.3.
The time spent within this operation is very significant and it grows with
the number of compute nodes used. (See figures 4.7 and 4.8).

Figure 4.7: Execution time breakdown in a 16 cores execution.

One may think that the reduction in the time for the preconditioner given
the parallelism, makes the effect of an increase in time for the broadcast
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Figure 4.8: Execution time breakdown in a 256 cores execution.

Figure 4.9: Execution time breakdown in a 256 cores execution.

operation, but this is not the case as it can be observed in figure 4.9, where
the actual time of the broadcast is shown.

The following approaches are presented as part of the scalability analysis
carried out. It is important to mention that they do not provide consistent
improvements, reason why are not included in the final implementation.

First, an interesting hybrid(MPI + OpenMP) approach is described and
the unexpected performance is explained.
Then a latency-aware broadcast is proposed and its benefits are shown for
a specific large case.
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Broadcast

External MPI merge

Master MPI 
process

Worker MPI 
process
( 4 processes per node)

Figure 4.10: Original MPI aproach

4.4.1 An hybrid approach (MPI + OpenMP)

Considering the great overhead induced by the broadcast operation, an hy-
brid approach (section 2.3.3) of MPI + OpenMP makes a lot of sense. This
way the algorithm could only broadcast data to 1 MPI process per node and
within the node all the cores will share this data.

Broadcast

Work partition among 
openMP threads

Internal OpenMP merge

External MPI merge

Master MPI 
process

Worker MPI 
process
( 1 process per node)

OpenMP 
thread 
(4 threads per node)

Figure 4.11: Hybrid approach MPI + OpenMP

Notice that in both cases (figures 4.10 and 4.11) the number of cores used
remains the same, the difference relies on the number of workers involved
in the broadcast operation (less workers are involved, within the broadcast
operation, in the hybrid version).

The implementation is based into a outside to inside approach in which
the initial workload is divided among the MPI processes, then each MPI
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process creates its own set of threads and further divide its assigned part of
the workload among them. Each of these threads will perform the Monte
Carlo process on its workload independently. When all the threads are done
with their work they will merge their results into a shared memory struc-
ture which will be sent back to the master MPI process. Finally this master
process will merge all the results into the final matrix. See (Figure (4.11).

The evaluation of this implementation has shown that the execution time
is longer than in the previous version (only MPI) meaning that the overhead
(section 2.3.2) implied is greater than the broadcast savings. For this reason
we have decided not to continue on this path.

In section 2.3.4, it was mentioned that memory accesses performed in
a random way could prevent an algorithm to obtain the common benefits
from a shared memory model. This seem to be the case for our Monte Carlo
algorithm (its random nature is likely to produce this kind of behaviour).

In figures 4.12, 4.13 and 4.14 we can observe the miss ratio (number of
cache misses for each 1000 instrucctions) in the L3 cache (which is shared
among the different cores) for the Monte Carlo process within three different
configurations:

1. 1 MPI process + 1 OpenMP thread: This is a sequential execution
(only 1 core is used) this set the baseline for the following cases.
Miss ratio: (0.38 - 0.56).

2. 1 MPI process + 2 OpenMP threads: Here we can see a great incre-
ment in the miss ratio when 2 cores are used within a shared memory
context.
Miss ratio: (1.03 - 1.18).

3. 2 MPI process + 1 OpenMP thread: We can see that using 2 cores,
like in the previous case, within a distributed memory context, keeps
the miss ratio in the same level as in the sequential case.
Miss ratio: (0.37 - 0.56).

There has been noted that the great increment observed in the miss
ratio, within the shared memory context, provoke an IPC degradation in
such a way that adding more threads to the execution does not adds any
improvement in the application’s performance.

Based on the observations of [22] and the previous experiment, we be-
lieve that avoiding the random pattern in the memory accesses can help to
boost the performance of this algorithm.

Chapter 4. Development of the work.



4.4. Scalability analysis 46

Figure 4.12: L3 cache miss ratio within the Monte Carlo process for 1 MPI
process and 1 OpenMP thread. (Miss ratio: (0.38 - 0.56)).

Figure 4.13: L3 cache miss ratio within the Monte Carlo process for 1 MPI
process and 2 OpenMP threads.(Miss ratio: (1.03 - 1.18)).

4.4.2 Two-step broadcast

There are several broadcast algorithms that can be implemented by MPI
(basic linear, chain, pipeline, split binary tree, binary tree and binomial
tree). “A runtime decision module can be used to select the best algorithm
and tuning parameters, according to message size, communicator size, and
other input variables”. Unfortunately these collective operations have been
designed to fit single-processor cluster [25]. This means that they do not
take into consideration the intra-node and inter-node communication differ-
ent latencies, which play an important role in the broadcast performance.

During the experimental phase it has been observed that when reducing
the number of MPI processes while keeping the same number of compute
nodes i.e. having less processes per node, the broadcast time is reduced.

Taking into consideration the observations of the last two paragraphs, a
new implementation of the broadcast operation has been designed. Instead
of having a unique broadcast, this operation is now carried out in two steps:

• First step. The master node broadcast the initial data only to 1 process in
each node.

• Second step. The process receiving the data in the previous step will further
broadcast this date to the remaining processes within its node. This is ac-
tually a memory copy operation given that all processes are located in the
same compute node.
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Figure 4.14: L3 cache miss ratio within the Monte Carlo process for 2 MPI
process and 1 OpenMP thread. (Miss ratio: (0.37 - 0.56)).

In order to perform different broadcast operations involving different
groups of workers, two extra MPI communicators must be created.

1. Head communicator. It groups all the representative workers within
each of the nodes. It includes 1 worker per compute node. Only one
communicator of this type is created, its size is equal to the number
of compute nodes involved in the execution.

2. Local communicator. Includes all the workers which belong to a same
compute node. There will be as many local communicators as compute
nodes. The size of a local communicator is equal to the number of
workers per node.

These communicators are created at the beginning of the execution. The
broadcast operation is then executed first by those processes belonging to
the head communicator. After that, all processes execute the broadcast
operation using local communicators.

In Figures 4.15 and 4.16 we can see how this approach is performing
better for large number of cores, but consistently worse in the optimal cases
(the shortest time).
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Figure 4.15: Scalability comparison for the two-step broadcast(v10.0) in the
appu matrix.

In Figure 4.17 we have used a matrix which does not belong to the ma-
trix set (Table 4.1) only to observe the behaviour in large cases. In this case
the fastest time is achieved by the two-step broadcast.

This approach was discarded given that, for the optimal case, within the
defined matrix set(Table 4.1), it does not provide a consistent improvement.

Nevertheless, we think this algorithm could be useful if used with a
matrix set of large matrices.
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Figure 4.16: Scalability comparison for the two-step broadcast(v10.0) in the
nonsym5 r5 a11 matrix.

Figure 4.17: Scalability comparison for the two-step broadcast(v10.0) in a
very big matrix (3.5M x 3.5M)
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Results and evaluation of the
work.

In this chapter we will show the results obtained during the experimental
phase. The objective is to demonstrate the improvement evolution of the
code after applying the modifications previously described.

It is important to mention that the improvements are shown in a con-
secutive fashion (i.e. each new version is compared with the previous one.
This way the reader could appreciate the particular improvements of each
modification applied. In section 5.5 a comparison between the best version
and the original code is presented. In section 5.6 a comparison between the
best Monte Carlo version and the MSPAI application is carried out.

In order to get comparable executions between different versions of the
Monte Carlo algorithm, the random generation is configured in such a way
that Markov Chains (section 2.2.2) are unique for different matrices but
not for different executions of the same matrix. Also the following input
parameters have been used in all the executions, but the one compared with
MSPAI.

ε = 1× 10−1 δ = 1× 10−1 α = 5× 101.

The time presented always corresponds to the algorithm execution and
the communications. The time needed to read the initial matrix as well as
the time for writing the preconditioner into a file, are never included in the
results.
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5.1 Broadcast slowdown evaluation.

In section 4.3.1 a problem within the broadcast operation and its relation to
the realloc() function is described. Here a comparison between an execution,
before and after the realloc() calls removal is done to show the impact of
this approach within the broadcast time and the total execution time.

An important aspect noted during the evaluation of this approach, was
the fact that single-node executions were also affected by this problem. By
comparing figures 5.1 and 5.2 it can be noted the improvement, due to this
modification, in a single node execution.
Notice that both figures have the same time scale. This means that the exe-
cution in figure 5.2 finishes within 3/4 of the time required by the execution
depicted in figure 5.1. (See marker 2 in figure 5.2).

The main reduction in time in this case is observed during the initial
stage, when the intermediate matrices are being created and the calls to the
realloc function take place. (See marker 1 in figures 5.1 and 5.2).

Figure 5.1: Single node(16 cores) execution of appu matrix before the
optimization. Only the master and the first worker process are shown.

Figure 5.2: Single node(16 cores) execution of appu matrix after the op-
timization. Only the master and the first worker process are shown
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When going beyond 16 cores, meaning that more than 1 compute node
is involved, we can notice how the problem gets magnified. See Figures 5.3
and 5.4. Notice that both figures have the same time scale. In this case
the main difference is observed in the broadcast operation. See marker 1 in
figures 5.3 and 5.4.

Figure 5.3: Execution of appu matrix in 2 compute nodes(32 cores) before
the optimization. Only the master and the first worker process are shown.

Figure 5.4: Execution of appu matrix in 2 compute nodes(32 cores) after
the optimization. Only the master and the first worker process are shown.
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Finally in Figure 5.5 the improvements for all the matrices in the set are
shown. Our experiments show an average speedup of 7.8x with the previous
version.

Figure 5.5: Execution time in 16 cores before / after removing realloc calls
(MC original / MC V2.0).

5.2 Memory usage evaluation.

In this section, time improvements resulting from the memory usage modifi-
cation applied to the code, are demonstrated. This modification is described
in detail in section 4.3.2.

Figure 5.6 shows the reduction in time for the new implemented ver-
sion (v6.0). But also, cases without improvements are observed (matrices
rdb2048 and Na5).

At the end of section 4.3.2 we talked about the overhead induced by
this new implementation. We think that this is the reason for the results
obtained on matrix Na5 and rdb2048. Also it has been observed that ma-
trix rdb2048 is the one which produces the densest preconditioner. Dense
preconditioners are bad for this new approach which is based on the low
sparsity observed in the resulting preconditioner.

An important aspect to observe in figure 5.6 is how the improvement
grows with the size of the matrix, regardless of (sym r3 a11), we can notice
how the smallest case (rdb2048) has a significant negative speedup, then the
next case (Na5) present a smaller negative speedup, but from that point all
the following cases present an incremental improvement.
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Figure 5.6: Execution time in 16 cores, before / after applying the memory
usage modification (MC V2.0 / MC V6.0) .

At the end an average speedup of 4.12x was achieved with this new
version in comparison with the one at the previous section.

5.3 Reducing the broadcast data evaluation.

The broadcast data at the beginning of the execution has a big influence in
the total execution time. In section 4.3.3 we have discussed an approach to
reduce the amount of broadcast data.

This new approach relies on the fact that using any of the two differ-
ent distributions (Uniform and Almost Optimal), in order to generate the
random behaviour in the Monte Carlo process, has little impact on the algo-
rithm’s number of computations needed, precision attained and ultimately
results, but it has a big impact on the amount of data to be broadcast.
Figure 5.7 shows the difference, in terms of the error(4.5), of using one dis-
tribution or the other.

Given the logarithmic scale used, it can be observed that the difference
between using one distribution or the other is very small. The largest dif-
ference happens with matrix sym r4 a11 and it is only about 1.8× 10−4.

With the last observation done, it has been proposed to set the Uniform
distribution as the default one, thus allowing a significant reduction in the
broadcast data. This reduction will influence directly the total execution
time.
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Figure 5.7: Error calculation when using Uniform and Almost Optimal dis-
tributions in MC V6.0 with 16 cores.
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Figure 5.8 shows a consistent improvement in the new version when the
reduction in the broadcast data is applied, getting an average improvement
of 1.14x over the previous one.

Figure 5.8: Execution time in 16 cores before / after the broadcast reduction
( MC V6.0 / MC V9.0), both using an Uniform distribution.
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5.4 Merging sequential functions evaluation

This section presents the results of applying the optimization described in
section 4.3.4.

The improvements in time observed in figure 5.9 are the result of merging
some of the initialization functions with the objective of reducing the amount
of memory accesses.

Figure 5.9: Execution time in 16 cores before / after merging sequential
functions (MC V9.0 / MC V9.2) .

With this modification in the algorithm, a consistent average improve-
ment of 1.15x has been obtained.

5.5 Total improvement

In previous sections the improvement of each of the modifications applied
to the algorithm has been shown separately, comparisons have been carried
out for consecutive versions and now it is time to present how these accu-
mulative improvements are compared with the original version of the code.

In Figure 5.10 it can be observed the total improvement achieved by all
the optimizations applied to the implementation.

An average of 25x improvement is achieved. It can be noted that the
improvement grows with the size of the matrix, having an impressive 70x
improvement for the biggest matrix (nonsym r5 a11 ) in the set. (See table
4.1).It is important to emphasize that both versions run under the exact
same conditions and use the same amount of computational resources, the
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Figure 5.10: Execution time comparison of the original MC and version 9.2
using 16 cores.

differences are only in the algorithm implementation.

The numerical results presented in this section can be found in table 7.1
at the Annex 1.
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5.6 MSPAI comparison

In this section the optimized Monte Carlo algorithm, is compared with the
latest version of the MSPAI application. (section 2.1.2).

Parameters of the Monte Carlo implementation have been adjusted ac-
cordingly (ε = 7× 10−1 δ = 1× 10−1 α = 5.) to produce comparable
results with those obtained with MSPAI’s default configuration.

5.6.1 Scalability comparison.

Scalability plots (Figures 5.11 to 5.16) are presented to show the behaviour
of both algorithms when the number of cores is scaled. In all these plots a
metric called MC nocomm is shown to provide an insight of the scalability
of the Monte Carlo process itself (regardless the communication overhead
and the initialization time ).

Figure 5.11: Scalability comparison MSPAI and MC for matrix appu.
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Figure 5.12: Scalability comparison MSPAI and MC for matrix Na5.

Figure 5.13: Scalability comparison MSPAI and MC for matrix non-
sym r5 a11.

It is quite obvious that the Monte Carlo algorithm performs several times
faster than MSPAI, despite the communication hampering the scalability,
which is mainly affected by the 3 following aspects:

1. The communication overhead, (discussed in sections 4.4.1 and 5.3).

2. The optimizations applied, reduce the computational effort needed,
leaving less room for scalability.

3. The reduction in the number of iterations, to target a sparse and ef-
ficient preconditioner, diminishes the computation needed, producing
the same effect that the previous point.
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Figure 5.14: Scalability comparison MSPAI and MC for matrix rdb2048.

Figure 5.15: Scalability comparison MSPAI and MC for matrix sym r3 a11.

In the case of MSPAI, scalability issues regarding to small matrices (fig-
ure 5.14 and 5.12) can be also found. This together with that, discussed
above, are clear examples of Amdahl’s law.

“Even when the fraction of serial work in a given problem is small, say, s,
the maximum speedup obtainable from even an infinite number of parallel

processors is only l/s. [18]”
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Figure 5.16: Scalability comparison MSPAI and MC for matrix sym r4 a11.

Besides the large difference in performance, for the symmetric matrices,
it can be observed that MSPAI does not converges when more than 16 cores
are used.

Figure 5.17 summarizes the scalability plots by showing the shortest time
achieved, for the preconditioner calculation, by each of the algorithms. The
number of cores used to obtain this shortest time is used later as a metric
in figure 5.20.

The numerical results presented in this section can be found in table 7.2
at the Annex 1.
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5.6.2 Quality and efficiency comparison.

Recalling section 2.1, “A good balance between quality and time of construc-
tion is the key for a good preconditioner”.

We have already measured the time of construction, now we will evaluate
the quality of the preconditioner.

Figure 5.17: Shortest execution time achieved during the preconditioner
calculation.

A metric must be selected to measure the quality of the preconditioner
but also its efficiency. A good choice of such a metric is the time needed by
the solver to find the solution for the preconditioned system, such metric is
shown in figure 5.18.

Other metrics like the number of iterations required by the solver to
calculate the solution of the preconditioned system, reflect the quality but
not the efficiency. In that sense it has been observed that in many cases
the number of iterations required by Monte Carlo preconditioned systems is
smaller than in the case of those preconditioned by MSPAI.
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Figure 5.18: Time required by the solver to find the solution for the precon-
ditioned system.

To provide a view of the overall time, we provide figure 5.19 in which
the times of the preconditioner construction and the time needed by the
solver (figures 5.17 and 5.18) are added. Here we can see that sometimes
the time invested in the quality of the preconditioner can be compensated
with a reduction in the solver execution. An example of this is the case of
matrix nonsym r5 a11 which takes longer for the construction but in the
overall it is faster.

Figure 5.19: Total time = Preconditioner construction time + Solver exe-
cution time.
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Observe that MSPAI only performs better in the case of a non-symmetric
matrix and Monte Carlo performs much better than MSPAI for the sym-
metric matrices as well as in most cases for non-symmetric matrices too.
Furthermore the errors obtained by MSPAI for the symmetric matrices are
3 orders of magnitude larger than the common values which are always
smaller than 6× 10−4.

Finally an observation is done in terms of resource usage that directly
translates into energy efficiency.

Taking the fastest executions for the preconditiner construction (figure
5.17) we show the number of cores used for such executions. Notice that
the largest difference is of 32 times more cores, this means that MSPAI is
using 512 cores (32 compute nodes) while Monte Carlo uses only 16 cores
(1 compute node).

Figure 5.20: Number of cores used for the fastest execution.

After observing the previous analysis, we can say that the Monte Carlo
algorithm is a great candidate for calculating SPAI preconditioners given
the following considerations:

• It can deal with diverse matrices (symmetric and non-symmetric).

• Produces reliable results.

• Take considerable short time, even for large matrices.

• It is energy efficient.

The numerical results presented in this section can be found in tables
7.3 and 7.4 at the Annex 1.

Chapter 5. Results and evaluation of the work.



Chapter 6

Conclusions

The research carried out in this Msc. Dissertation has achieved the stated
goals as well as the major objectives outlined in section 1.3. In more details:

• An improved and enhanced Monte Carlo algorithm that produces a
SParse Approximate Inverse-based preconditioner has been presented
and described with great detail. This fulfils the overall objective of
the dissertation.

• The implementation, of this method, has been optimized by a factor
of 25x in average, and 70x in the best case. These gains in performance
were obtained directly by improvements within the algorithm. It is
important to highlight that the exact same conditions (computational
resources) were used to compare the original and the enhanced version.
This achievement fulfils the second goal of this work (Improve the
performance).

• Known issues as well as other silent errors, were found, corrected and
described in detail. This meets the first goal (Eliminate errors).

• The approach of an hybrid version of MPI + OpenMP was developed
in order to adapt the code to contemporaneous architectures. Results
of the evaluation of this version made evident the need for further
research in quasi-Monte Carlo methods like [1] which could be used
to boost the performance by improving the memory access patterns.

• Scalability issues related to the broadcast operation were analysed
using a two-step approach. The usability of this method was demon-
strated for cases in which very large matrices are used. This together
with the previous point, accomplish the third goal of this work (Anal-
yse the scalability).

• A detailed comparison was carried out between the Monte Carlo al-
gorithm and the state-of-the-art MSPAI one known as the main ac-
cepted SPAI deterministic preconditioner. Results have shown that in
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general the parallel Monte Carlo algorithm outperforms the MSPAI
approach. This meets the fourth goal (objective) (Compare with the
state-of-the-art)

• Comparison between different approaches was carried out with preci-
sion given the methodology proposed to quantify the error for a given
solution.

• Functions within the code are now used to identify the different stages
of the algorithm, making the program easier to understand and modify.
Finally this complies with the last goal of this work (Code refactoring).

Chapter 6. Conclusions



Chapter 7

Future work

The communication overhead, observed within the Monte Carlo algorithm,
needs to be mitigated. Further analysis of the merge stage of the algorithm
is needed and a more sophisticated implementation such as [25] or [19] can
be applied within the broadcast stage.

Further investigation on quasi-Monte Carlo methods [1] and other tech-
niques to reduce the effect of random patterns within the memory access,
are necessaries to make the algorithm able to benefit from shared memory
models.

The application of other programming models like OmpSs or CUDA are
also encouraged, always having in mind the random memory access nature
of the algorithm.

Finally, the recover mechanism (2.21) need to be modified to make it (if
possible) more suitable for parallelization.
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Glossary

BSC Barcelona Supercomputing Center.

COO Coordinate Format.

CUDA Compute Unified Device Architecture.

GMRES Generalized Minimal Residual.

HPC High Performance Computing.

IPC Instructions Per Cycle.

MI Matrix Inverse.

MIMD Multiple Instruction Multiple Data.

MM Matrix Market Format.

MPI Message Passing Interface.

OmpSs An extension to OpenMP developed at BSC.

OPENMP Open Multi-Processing.

SIMD Single Instruction Multiple Data.

SIMT Single Instruction Multiple Thread.

SPAI SParse Approximate Inverse Matrix.

SPMD Single Program Multiple Data.
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Annex 1

Matrix MC original MC V9.2 Speedup
appu 1.7519 0.0866 20.2318
Na5 0.1159 0.0117 9.8939
nonsym r5 a11 49.8880 0.6937 71.9111
rdb2048 0.0227 0.0025 9.1301
sym r3 a11 0.6690 0.0431 15.5150
sym r4 a11 4.4287 0.1712 25.8675

Average speedup 25.42

Table 7.1: Speedup analysis between MC (original version) and MC (version
9.2). Parameters = epsilon: 1e-1, delta: 1e-1 and alpha= 5
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Matrix Program 16 32 64 128 256 512
appu MSPAI 140.94376 64.37142 43.32118 29.99135 19.09491 12.26772
appu MC v9.2 0.05055 0.07774 0.11099 0.15488 0.12078 0.18272
appu MC nocomm 0.00169 0.00091 0.00046 0.00025 0.00015 0.00010

Na5 MSPAI 0.75103 0.47326 0.34128 0.26775 0.31033 0.44103
Na5 MC v9.2 0.00710 0.02962 0.03987 0.07690 0.05995 0.20181
Na5 MC nocomm 0.00014 0.00009 0.00005 0.00004 0.00003 0.00002

nonsym r5 MSPAI 59.23146 31.96763 17.72123 10.09388 5.97983 3.73357
nonsym r5 MC v9.2 0.29207 0.34284 0.43543 0.47438 0.50910 0.59549
nonsym r5 MC nocomm 0.00993 0.00485 0.00250 0.00128 0.00066 0.00039

rdb2048 MSPAI 0.06037 0.11456 0.10437 0.14382 0.20245 0.25051
rdb2048 MC v9.2 0.00104 0.02020 0.01580 0.01596 0.02943 0.02965
rdb2048 MC nocomm 0.00003 0.00002 0.00001 0.00001 0.00001 0.00001

sym r3 MSPAI 2.77443 - - - - -
sym r3 MC v9.2 0.01887 0.04361 0.06849 0.09903 0.08731 0.09151
sym r3 MC nocomm 0.00062 0.00033 0.00018 0.00010 0.00007 0.00005

sym r4 MSPAI 22.56154 - - - - -
sym r4 MC v9.2 0.08899 0.10398 0.14710 0.17396 0.16548 0.21878
sym r4 MC nocomm 0.00252 0.00129 0.00065 0.00036 0.00019 0.00012

Table 7.2: Preconditioner construction scalability times (seconds) for:
MSPAI (using default parameters), MC (epsilon: 7e-1, delta: 1e-1 and al-
pha: 5) and MC nocomm( MC without communications)
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Matrix Min prec. Solver Total Error Cores
appu 0.0506 0.0987 0.1493 9.82E-05 16
Na5 0.0071 0.0062 0.0133 1.03E-06 16
nonsym r5 0.2921 274.6150 274.9071 2.26E-04 16
rdb2048 0.0010 0.0851 0.0861 8.09E-07 16
sym r3 0.0189 2.0528 2.0717 1.15E-04 16
sym r4 0.0890 27.3321 27.4211 5.17E-04 16

Table 7.3: Shortest time (seconds) of MC (epsilon: 7e-1, delta: 1e-1 and
alpha: 5)

Matrix Min prec. Solver Total Error Cores
appu 12.2677 1.0521 13.3198 4.48E-07 512
Na5 0.2678 0.0077 0.2754 8.96E-07 128
nonsym r5 3.7336 84.4349 88.1685 1.00E-06 512
rdb2048 0.0604 120.7250 120.7854 1.79E-06 16
sym r3 2.7744 329.9780 332.7524 7.96E-01 16
sym r4 22.5615 544.1050 566.6665 8.79E-01 16

Table 7.4: Shortest time (seconds) of MSPAI (default parameters)
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