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Abstract

Scheduling problems mainly consist in finding an assignment of execution times (a schedule) to
a set of activities of a project that optimizes an objective function. There are many constraints
imposed over the activities that any schedule must satisfy. The most usual constraints establish
precedence relations between activities, or limit the amount of some resources that the activ-
ities can consume. There are many scheduling problems in the literature that have been and
are currently still being studied. A paradigmatic example is the Resource-Constraint Project
Scheduling Problem (RCPSP). It consists in finding a start time for each one of the activities of
a project, respecting pre-defined precedence relations between activities and without exceeding
the capacity of a set of resources that the activities consume. The goal is to find a schedule
with the minimum makespan (total execution time of the project). The RCPSP has many gen-
eralizations, one of which is the Multimode Resource-Constrained Project Scheduling Problem
(MRCPSP). In this variation, each activity has several available execution modes that differ in
the duration of the activity or the demand of resources. A solution for the MRCPSP determines
the start times of the activities and also an execution mode for each one. These problems are
NP-hard, and are known in the literature to be especially hard, with moderately small instances
of 50 activities that are still open.

There are many approaches to solving RCPSP and MRCPSP in the literature. They are
often tackled with metaheuristics due to their high complexity, but there are also some exact ap-
proaches, including Mixed Integer Linear Programming (MILP), Branch-and-Bound algorithms
or Boolean Satisfiability (SAT), which have shown to be competitive and in many cases even
better than metaheuristics. One of the exact methods that is growing in use in the field of con-
strained optimization is SAT Modulo Theories (SMT). This thesis is the continuation of previous
works carried out in the Logic and Programming (L∧P) group of Universitat de Girona, which
used SMT to tackle RCPSP and MRCPSP. Excluding these, there have not been any other
attempts to use SMT to solve the MRCPSP. SMT solvers (like other generic methods such as
SAT or MILP) do not know which is the problem they are dealing with. It is the work of the
modeler to provide a representation of the problem (i.e. an encoding) in the language that the
solver admits.

The main goal of this thesis is to use SMT to solve the Multimode Resource-Constraint
Project Scheduling Problem. We focus on two already existing encodings for the MRCPSP,
namely the time encoding and the task encoding. We use some existing preprocessing methods
that contribute to the formulation of time and task, and present new preprocessings. Most of
them are based on the idea of incompatibility between two activities, i.e., the impossibility that
two activities run at the same time instant. These incompatibilities let us discharge some con-
figurations of the solutions prior to encode the problem. Consequently, the use of preprocessings
helps to reduce the size of the encodings in terms of variables and clauses. Another contribution
of this work is the study of the time and task encodings and the differences that they present.
We refine these encodings to provide more compact versions. Moreover, two new versions of these
encodings are presented, which mainly differ in the codification of the constraints over the use
of resources. One of them is based on Linear Integer Arithmetic expressions, and the other one
in Pseudo-Boolean constraints and Integer Difference Logic. Another contribution of this work
is the presentation of an ad-hoc optimization algorithm based on a linear search that mainly
consists in three steps. First of all it simplifies the problem to efficiently ensure or discharge the
feasibility of the instance, then it finds a first non-optimal solution by using a quick heuristic
method, and finally it optimizes the problem making use of the knowledge acquired with the



preprocessings to boost the search. We also present an initial work on a more intrusive approach
consisting in modifying the internal heuristic of the SMT solver for the decision of literals. This
work involves the study of a state-of-the-art implementation of an SMT solver, and its modifica-
tion to include a framework to specify heuristics related with the encoding of the problem. We
give some initial results on custom heuristics for the time and task encodings of the MRCPSP.

Finally, we test our system with the benchmark sets of instances for the MRCPSP available in
the literature, and compare our performance with a state-of-the-art exact solver for the MRCPSP.
The results show that we are able to solve the major part of the benchmark sets. Moreover, we
show to be competitive with the state-of-the-art solver of Vı́lim et. al. for the MRCPSP, being
our system slower in solving the easiest benchmark instances, but outperforming the solver of
Vı́lim et. al. in solving the hardest instances.
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Chapter 1

Introduction and Motivation

Scheduling problems mainly consist in finding an assignment of execution times (a schedule) to
a set of activities of a project that optimizes an objective function. There are many constraints
imposed over the activities that any schedule must satisfy. The most usual constraints establish
precedence relations between activities, or limit the amount of some resources that the activities
can consume. Therefore, scheduling problem is a generic term that includes a whole family of
problems that fit the former definition. It has been and it is still a hot research topic, existing
very diverse recent publications on solving scheduling problems with different approaches as we
show in the state of the art in Section 4.

There are many well defined kinds of scheduling problems in the literature that have been
and are currently still being studied. A paradigmatic example is the Resource-Constraint Project
Scheduling Problem (RCPSP). It consists in finding a start time for each one of the activities of
a project, respecting pre-defined precedence relations between activities and without exceeding
the capacity of a set of resources that the activities consume. The activities are non-preemptive,
what means that once they start they cannot be paused, and will be running all their duration.
The resources are renewable, what means that they have a fixed capacity that is occupied in
some units for an activity while it is being executed, and these units are released when the
activity finishes its execution. Some examples of renewable resources are workers (an activity
requires many workers), or memory for a CPU. The goal is to find a schedule with the minimum
makespan (total execution time of the project). The RCPSP has many generalizations, one
of which is the Multimode Resource-Constrained Project Scheduling Problem (MRCPSP). In
this variation, each activity has several available execution modes. Every mode can differ in
the duration of the activity and the demand over the resources. A solution for the MRCPSP
determines the start times of the activities and also an execution mode for each one. Moreover,
there may be non-renewable resources as well as the renewable resources. A non-renewable
resource has a capacity that decreases as the activities use it, and cannot be recovered. Hence, it
is needed to ensure that the overall use of these resources during the whole project is not bigger
than their capacity. A budget or raw material are some examples of non-renewable resources.

These scheduling problems are NP-hard, and are known in the literature to be especially hard.
There are instances of problems with projects of 50 or less activities that are still open. For this
reason, there are many approaches to solving these problems in the literature. They are often
tackled with metaheuristics due to their high complexity, but these approaches do not guarantee
the optimality of the solutions that they find. Nevertheless, there are also some exact approaches,
which have shown to be competitive and are in many cases even better than metaheuristics.
Moreover, in the case of exact methods, the optimality of the solutions is mathematically proven.
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Most of them are generic solving methods that offer a language to model constraint satisfaction
and optimization problems. We can find approaches in the literature that tackle the RCPSP
and the MRCPSP with, among others, Mixed Integer Linear Programming (MILP), branch-and-
bound algorithms or Boolean satisfiability (SAT). One of the exact methods that is growing in use
in the field of constrained optimization is SAT Modulo Theories (SMT), which is a generalization
of SAT (satisfiability of Boolean propositional formulas), which allows to include expressions of
a background theory in the formulas. Some of the most common theories are Linear Arithmetic
or Uninterpreted Functions.

In this thesis we use SMT to tackle the MRCPSP problem. It has been done in collaboration
with the Logic and Programming (L ∧ P) research group of Universitat de Girona, which have
some previous work on solving scheduling problems with SMT ( [3], [37]). Excluding this, and
as far as we know, there have not been any other attempts to solve the RCPSP family of
problems using SMT. We focus on the study and refinement of two different already existing
SMT formulations of the MRCPSP, namely time and task. The contributions of this work can
be summarized as follows:

1. We introduce new preprocessings that let us know some properties of the projects to sched-
ule, and simplify the encodings by using this knowledge. By doing it, we are able to sub-
stantially reduce the sizes of the encodings, both in number of variables and number of
constraints, and also truncating the search space.

2. We provide two new alternative versions of the task and time SMT encodings, one of them
based on Linear Integer Arithmetic and the other one in Pseudo-Boolean constraints.

3. We propose algorithms to guide the optimization process by using the knowledge acquired
with the preprocessings.

4. Finally, we explore a more intrusive approach consisting on the modification of the internal
solving process of the SMT solver, concretely the heuristic of the decision of variables, to
follow a user-defined criterion related with the given encoding.

The remaining of this document is structured as follows. In the second part, II Antecedents,
we present all the basic knowledge related with this thesis. In Chapter 2, we state the formal
definition of one of the paradigmatic scheduling problems, which is the RCPSP, and we also
introduce the problem that we tackle in this thesis, which is the MRCPSP. We also present there
the different benchmark sets that are currently being used for the MRCPSP. Chapter 3 contains
an insight on Satisfiability Modulo Theories, presenting the basics on modelling language and
solving methods. In Chapter 4 we present the state of the art on solving the MRCPSP, with
special emphasis on a previous system based on SMT, whose techniques are reused in this thesis.
The third part, III Development and evaluation of the proposal, exposes all the new contributions
of this thesis and its results. First of all, and having presented the basics on scheduling problems
and SMT solving, we expose in Chapter 5 the detailed goals of the thesis. In Chapter 6 we
describe the settings of the different experiments contained in this document. In Chapter 7 we
present new preprocessings and evaluate the impact that they have in solving different instances.
Chapter 8 contains new variations for the time and task encodings for the MRCPSP. In Chapter 9
we present a generic ad-hoc optimization algorithm, and study how the use of preprocessings can
be used to provide information to the SMT solver as we get close to the optimum makespan, and
speedup this process. In Chapter 10 we present a framework to provide user-defined heuristics
for the decision of variables to the SMT solver, and use it to study the performance of time and
task encodings with several heuristics. Chapter 11 contains the time results of our system on
different benchmark sets, and the comparison with the state-of-the-art solver for the MRCPSP.
We finally present the conclusions of this thesis in Chapter 12.
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Chapter 2

Problem Definition

2.1 RCPSP

The RCPSP is defined by a tuple (V, p, E,R,B, b) where:

• V = {A0, A1, . . . , An, An+1} is a set of activities. A0 and An+1 are dummy activities
representing by convention, the starting and the finishing activities respectively. The set
of non-dummy activities is defined by A = {A1, . . . , An}.

• p ∈ Nn+2 is a vector of durations. pi denotes the duration of activity i, with p0 = pn+1 = 0
and pi > 0, ∀i ∈ {1, . . . , n}.

• E is a set of pairs representing precedence relations. Thus (Ai, Aj) ∈ E means that the
execution of activity Ai must precede that of activity Aj , i.e., activity Aj must start after
activity Ai has finished. We assume that we are given a precedence activity-on-node graph
G = (V,E) that contains no cycles; otherwise the precedence relation is inconsistent. Since
precedence is a transitive binary relation, the existence of a path in G from the node i to
node j means that activity i must precede activity j. We assume that E is such that A0

is a predecessor of all other activities and An+1 is a successor of all other activities.

• R = {R1, . . . , Rm} is a set of m renewable resources.

• B ∈ Nm is a vector of resource availabilities. Bk denotes the available amount of each
resource Rk.

• b ∈ N(n+2)×m is a matrix of demands of activities for resources. The value bi,k represents
the amount of resource Rk used during the execution of Ai. Note that b0,k = 0, bn+1,k = 0
and bi,k ≥ 0, ∀i ∈ {1, . . . , n}, ∀k ∈ {1, . . . ,m}.

A schedule is a vector S = (S0, S1, . . . , Sn, Sn+1) where Si denotes the start time of each
activity Ai ∈ V . We assume that S0 = 0. A solution to an RCPSP instance is a non-preemptive
(an activity cannot be interrupted once it is started) schedule S of minimal makespan Sn+1

subject to the precedence and resource constraints:

minimize Sn+1 (2.1)

7



subject to:

Sj − Si ≥ pi ∀(Ai, Aj) ∈ E (2.2)∑
Ai∈At

bi,k ≤ Bk ∀Bk ∈ B,∀t ∈ H (2.3)

where At = {Ai ∈ A | Si ≤ t < Si + pi} represents the set of non-dummy activities in process
at time t, the set H = {0, . . . , T} is the scheduling horizon, and T (the length of the scheduling
horizon) is an upper bound for the makespan. A schedule S is feasible if it satisfies the generalized
precedence constraints (2.2) and the resource constraints (2.3).

2.2 MRCPSP

The MRCPSP is a generalization of the RCPSP. It is defined by a tuple (V,M, p,E,R,B, b)
where :

• V = {A0, A1, . . . , An, An+1} is a set of activities. Activities A0 and An+1 are dummy
activities representing, by convention, the start and the end of the schedule, respectively.
The set of non-dummy activities is defined by A = {A1, . . . , An}.

• M ∈ Nn+2 is a vector of naturals, being Mi the number of modes that activity i can
execute, with M0 = Mn+1 = 1 and Mi ≥ 1,∀Ai ∈ A.

• p is a vector of vectors of naturals, being pi,o the duration of activity i using mode o, with
1 ≤ o ≤ Mi. For the dummy activities, p0,1 = pn+1,1 = 0, and pi,o > 0, ∀Ai ∈ A, 1 ≤ o ≤
Mi .

• E is a set of pairs of activities representing precedence relations. Concretely, (Ai, Aj) ∈ E
iff the execution of activity Ai must precede that of activity Aj , i.e., activity Aj must start
after activity Ai has finished.

We assume that we are given a precedence activity-on-node graph G = (V,E) that contains
no cycles, since otherwise the precedence relation is inconsistent. We assume that E is such
that A0 is a predecessor of all other activities and An+1 is a successor of all other activities.

• R = {R1, . . . , Rv−1, Rv, Rv+1, . . . , Rq} is a set of resources. The first v resources are re-
newable, and the last q − v resources are non-renewable.

• B ∈ Nq is a vector of naturals, being Bk the available amount of each resource Rk. The
first v resource availabilities correspond to the renewable resources, while the last q − v
ones correspond to the non-renewable resources.

• b is a matrix of naturals corresponding to the resource demands of activities per mode.
The value bi,k,o represents the amount of resource Rk used during the execution of activity
Ai in mode o. Note that b0,k,1 = 0 and bn+1,k,1 = 0, ∀k ∈ {1, . . . , q}.

A schedule is a vector of naturals S = (S0, S1, . . . , Sn, Sn+1) where Si denotes the start
time of activity Ai. We assume that S0 = 0. A schedule of modes is a vector of naturals
SM = (SM0, SM1, . . . , SMn, SMn+1) where SMi, satisfying 1 ≤ SMi ≤Mi, denotes the mode of
each activity Ai. A solution to an MRCPSP instance is a schedule of modes SM and a schedule
S of minimal makespan Sn+1. The MRCPSP can hence be formulated as

Minimize Sn+1 (2.4)

8



subject to the following precedence and resource constraints:

(SMi = o)→ (Sj − Si ≥ pi,o)

∀(Ai, Aj) ∈ E, ∀o ∈ {1, . . . ,Mi}
(2.5)

∑
Ai∈A

∑
o∈{1,...,Mi}

ite(SMi = o; bi,k,o; 0)

 ≤ Bk

∀Rk ∈ {Rv+1, . . . , Rq}

(2.6)

∑
Ai∈A

∑
o∈{1,...,Mi}

ite ((SMi = o) ∧ (Si ≤ t) ∧ (t < Si + pi,o); bi,k,o; 0)

 ≤ Bk

∀Rk ∈ {R1, . . . , Rv}, ∀t ∈ H

(2.7)

where ite(c; e1; e2) is an if-then-else expression denoting e1 if c is true and e2 otherwise, H =
{0, . . . , T} is the scheduling horizon, and T (the length of the scheduling horizon) is an upper
bound for the makespan.

We also have to force the execution mode to be correct:

SMi ≥ 1 ∀Ai ∈ A (2.8)

SMi ≤Mi ∀Ai ∈ A (2.9)

A schedule S is feasible if it satisfies the precedence constraints (2.5), the non-renewable
resource constraints (2.6), the renewable resource constraints (2.7) and the execution mode cor-
rectness constraints (2.8) and (2.9). Figure 2.1 shows an example of an MRCPSP instance and
solution that we will use as a running example to introduce some concepts.

Hence, the main differences with respect to the RCPSP are that MRCPSP include non-
renewable resources, and that each activity has several execution modes.

An MRCPSP instance has a feasible schedule if and only if the following conditions hold:

• There not exist a cycle in the precedence graph (i.e., an activity is forced to start after
itself finishes).

• There not exist any activity whose demand over a resource in all execution modes is greater
than its capacity.

• There exist a schedule of modes such that all the non-renewable resource constraints (2.6)
are satisfied.

The first two conditions are typically satisfied in the different benchmark set of instances
available in the literature because they can be easily verified and therefore instances with these
sources of infeasibility are not worth to study. This is not the case for the third condition,
which introduces a combinatorial component to the problem. For this reason, in contrast with
the RCPSP, there are benchmark sets for the MRCPSP containing infeasible instances; see
Section 2.3 for more details.
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Figure 2.1: An MRCPSP instance of 7 non-dummy activities, two renewable resources and one
non-renewable resource. The graph represents the activity precedences. Each node is an activity,
and the numbers near the node express, for each execution mode (separated by |), its duration
and the demand of the resources. Under the graph there is represented a solution, where the
Gantt diagrams show the use of the renewable resources at all times, as well as the execution
times of the activities.

2.3 Benchmark Instances of Scheduling Problems

Most of the works on MRCPSP in the literature [41, 40, 10] evaluate the performance of their
systems using the instances available of PSPLib [25]. PSPLib is a library of benchmark sets of
instances for scheduling problems which contains, among others, sets for the RCPSP and the
MRCPSP. The datasets are publicly available at its web site www.om-db.wi.tum.de/psplib/.
Regarding the MRCPSP, it contains the sets of instances described in Table 2.1.

The set j30 set will be used as a training set in this thesis, because it contains variety of
instances in what regards to their hardness (it has many soft instances and at the same time
is the only one in PSPLib with open instances), and also contains both feasible and infeasible
instances. Will treat feasible and infeasible instances independently in many cases. From now
on, we will refer to j30SAT as the subset of j30 that contains all the feasible instances, and to
j30UNSAT as the subset containing all the infeasible instances. j30SAT contains 552 instances,
and j30UNSAT contains 88 instances.

There is also MMLIB [39], a more recent repository of benchmark datasets for scheduling
problems, including MRCPSP. They are publicly available at http://www.projectmanagement.
ugent.be/research/data/RanGen. There are the following three sets:
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set instances activities modes renewable res. non-ren. res.
j10 537 10 3 2 2
j12 547 12 3 2 2
j14 551 14 3 2 2
j16 550 16 3 2 2
j18 552 18 3 2 2
j20 554 20 3 2 2
j30 640 30 3 2 2
m1 640 16 1 2 2
m2 481 16 2 2 2
m4 555 16 4 2 2
m5 558 16 5 2 2
r1 553 16 3 1 2
r3 552 16 3 3 2
r4 557 16 3 4 2
r5 546 16 3 5 2
n0 470 [10-20] 3 2 0
n1 637 16 3 2 1
n3 600 16 3 2 3
c15 551 16 3 2 2
c21 552 16 3 2 2

Table 2.1: Benchmark sets of PSPLib

MMLIB50 540 instances with 50 activities, each one with 3 execution modes. There are 2
renewable resources and 2 non-renewable resources.

MMLIB100 540 instances with 100 activities, each one with 3 execution modes. There are 2
renewable resources and 2 non-renewable resources.

MMLIB+ 3240 instances with 50 or 100 activities, each one with 3, 6 or 9 execution modes.
The number of renewable and non-renewable resources are 2 or 4.

These instances are harder than the ones in PSPLib, and they are more recent. There are still
not many works that solve them, but we can find some that use non-exact methods [20, 11].
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Chapter 3

Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) is a generalization of Boolean satisfiability. An SMT
formula is a Boolean formula in which, in addition to Boolean variables, there can also occur
predicates with predefined interpretations from background theories. The following is an example
of SMT formula that includes the theory of Linear Integer Arithmetic:

(p ∨ q) ∧ (¬p ∨ x ≤ y) ∧ (x > 3 ∨ y > 3)

where p and q are Boolean variables, and x and y are integer variables. The following is some
basic nomenclature of SMT formulas:

• An atom is a predicate of the theory. In the previous formula, there appear the atoms
x ≤ 3, x > 3 and y > 3.

• A literal is an occurrence of a Boolean variable or an atom in a formula, or an occurrence
of their negation. In our example, p, q, ¬p, x ≤ 3, x > 3 and y > 3 are literals.

• A formula is in Conjunctive Normal Form (CNF) if it is a conjunction of clauses, which
are disjunctions of literals. The previous formula is in CNF, and its clauses are (p ∨ q),
(¬p ∨ x ≤ y) and (x > 3 ∨ y > 3).

The most common theories of the predicates appearing in SMT formulas are linear real or
integer arithmetic, arrays, bit vectors, uninterpreted functions, or combinations of them. The
expressibility of this language makes SMT a very good approach to model Constraint Satisfaction
Problems. SMT is a good option as well taking into account efficiency, since current SMT solvers
have shown to be very competitive with other model-and-solve exact approaches such as SAT
or MILP. In Section 3.1 we make an overview on the basics on SAT / SMT solvers, and we
introduce in Section 3.2 the theories of Linear Integer Arithmetic and Difference Logic, which
are going to be used in this thesis.

3.1 SAT/SMT Solving

Current SMT solvers are based on the DPLL [13, 12] procedure for SAT solving. It is a procedure
that can be modelled by a transition relation over states [29]. A state is either FailState or a
pair M ∥ ϕ, where ϕ is a finite set of clauses and M is a partial assignment (in the form of a
sequence of literals). Some literals l in M will be annotated as being decision literals; these are
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the ones added to M by the Decide rule, and are written ld. The transition relation is defined
by means of rules.

The classical DPLL transition system consists of the following five rules:
UnitPropagate :

M ∥ ϕ,C ∨ l =⇒ Ml ∥ ϕ,C ∨ l if

{
M |= ¬C and

l is undefined in M .

PureLiteral :

M ∥ ϕ =⇒ Ml ∥ ϕ if


l occurs in some clause of ϕ,

¬l occurs in no clause of ϕ and

l is undefined in M .

Dedide :

M ∥ ϕ =⇒ Mld ∥ ϕ if

{
l or ¬l occurs in some clause of ϕ and

l is undefined in M .

Fail :

M ∥ ϕ,C =⇒ FailState if

{
M |= ¬C and

M contains no decision literals.

Backtrack :

MldN ∥ ϕ,C =⇒ M¬l ∥ ϕ,C if

{
MldN |= ¬C and

N contains no decision literals.

The PureLiteral rule is usually used as a preprocessing step. Then, the evolution of the
transition system follows these basic steps:

1. Apply UnitPropagate while possible.

2. If M contains all the variables, it is a complete assignment (or model) of the formula, i.e.
a solution, and the procedure halts.

3. If we can apply Fail, the formula is unsatisfiable, and the procedure halts.

4. If we can apply Backtrack, we have found a conflict. We apply the Backtrack rule and
return to step 1.

5. We apply the Decide rule, and return to step 1.

Most of modern DPLL algorithms replace the Backtrack rule by the Backjump rule and add
three new rules:

• the Learn rule which implements the so-called Conflict-Driven Clause-Learning (CDCL).
After a conflict is encountered, an explanation for it (a lemma) is learnt, in the form of a
new clause.

• the Forget rule that is used to forget learned clauses (usually for reasons of space)

• the Restart rule that restarts the procedure but remembering what has been learned

13



Backjump :

MldN ∥ ϕ,C =⇒ Ml′ ∥ ϕ,C if



MldN |= ¬C and there is

some clause C ′ ∨ l′ such that:

ϕ,C |= C ′ ∨ l′ and M |= ¬C ′,

l′ is undefined in M , and

l′ or ¬l′ occurs in ϕ or in MldN .

Learn :

M ∥ ϕ =⇒ M ∥ ϕ,C if

{
all atoms of C occur in ϕ or in M and

ϕ |= C.

Forget :
M ∥ ϕ,C =⇒ M ∥ ϕ if ϕ |= C.

Restart :
M ∥ ϕ =⇒ ∅ ∥ ϕ.

Solvers using CDCL are often referred to as CDCL solvers. The following is an example of
application of the DPLL rules on the formula (¬x1∨x2)∧(¬x3∨x4)∧(¬x5∨¬x6)∧(x6∨¬x5∨¬x2),
were we underline the clause causing the Backjump or UnitPropagation:

∅ ∥ ¬x1 ∨ x2,¬x3 ∨ x4,¬x5 ∨ ¬x6, x6 ∨ ¬x5 ∨ ¬x2 ⇒ Decide

xd
1 ∥ ¬x1 ∨ x2, ¬x3 ∨ x4,¬x5 ∨ ¬x6, x6 ∨ ¬x5 ∨ ¬x2 ⇒ UnitPropagate

xd
1 x2 ∥ ¬x1 ∨ x2,¬x3 ∨ x4,¬x5 ∨ ¬x6, x6 ∨ ¬x5 ∨ ¬x2 ⇒ Decide

xd
1 x2 xd

3 ∥ ¬x1 ∨ x2, ¬x3 ∨ x4, ¬x5 ∨ ¬x6, x6 ∨ ¬x5 ∨ ¬x2 ⇒ UnitPropagate

xd
1 x2 xd

3 x4 ∥ ¬x1 ∨ x2,¬x3 ∨ x4,¬x5 ∨ ¬x6, x6 ∨ ¬x5 ∨ ¬x2 ⇒ Decide

xd
1 x2 xd

3 x4 xd
5 ∥ ¬x1 ∨ x2,¬x3 ∨ x4, ¬x5 ∨ ¬x6, x6 ∨ ¬x5 ∨ ¬x2 ⇒ UnitPropagate

xd
1 x2 xd

3 x4 xd
5 ¬x6 ∥ ¬x1 ∨ x2,¬x3 ∨ x4,¬x5 ∨ ¬x6, x6 ∨ ¬x5 ∨ ¬x2 ⇒ Backjump & Learn

xd
1 x2 ¬x5 ∥ ¬x1 ∨ x2,¬x3 ∨ x4,¬x5 ∨ ¬x6, x6 ∨ ¬x5 ∨ ¬x2,¬x2 ∨ ¬x5 ⇒ Decide

xd
1 x2 ¬x5 xd

3 ∥ ¬x1 ∨ x2, ¬x3 ∨ x4, ¬x5 ∨ ¬x6, x6 ∨ ¬x5 ∨ ¬x2,¬x2 ∨ ¬x5 ⇒ UnitPropagate

xd
1 x2 ¬x5 xd

3 x4 ∥ ¬x1 ∨ x2,¬x3 ∨ x4,¬x5 ∨ ¬x6, x6 ∨ ¬x5 ∨ ¬x2,¬x2 ∨ ¬x5 ⇒ Decide

xd
1 x2 ¬x5 xd

3 x4 ¬xd
6 ∥ ¬x1 ∨ x2,¬x3 ∨ x4,¬x5 ∨ ¬x6, x6 ∨ ¬x5 ∨ ¬x2,¬x2 ∨ ¬x5 ⇒ SOLUTION

In [29], we can find an adaptation to SMT of the DPLL procedure, called DPLL(T), where
T stands for the parametrization on a theory. Similarly, SMT solvers using CDCL are referred
to as CDCL(T) solvers.

We will not enter in detail into CDCL(T), but basically it follows the following mechanism.
There is a previous step that converts an SMT formula to a SAT formula, introducing new
Boolean variables in substitution of the atoms. For instance, the SMT formula:

(p ∨ q) ∧ (¬p ∨ x ≤ y) ∧ (x > 3 ∨ y > 3)

would be substituted by the Boolean formula:

(p ∨ q) ∧ (¬p ∨ b1) ∧ (b2 ∨ b3)

where b1, b2 and b3 are fresh Boolean variables. Then, a mapping is constructed relating atoms
and their corresponding Boolean variables:

b1 ↔ x ≤ y
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b2 ↔ x > 3

b3 ↔ y > 3

In order to solve this system, a modified version of the DPLL procedure is applied to solve
the Boolean formula, while interacting with a T-solver (theory solver), which is a module that
handles the theory expressions, and is able to check the consistency of Boolean assignments with
respect to the theory, detect conflicts, and produce corresponding explanations. We refer the
reader to [29] for further details of the CDCL(T) procedure.

The Decide rule is flexible in the sense that it does not require any particular literal to be
decided, the only condition is that it is not in the partial assignment. State-of-the-art SAT /
SMT solvers use the Variable State Independent Decay (VSID) heuristic to choose the literal
to decide [28]), which was engineered for conflict driven solvers. In Chapter 10 we enter in
more detail in the decision of literals, and study the behaviour of alternative heuristics for the
MRCPSP.

3.2 Linear Integer Arithmetic

The theory of Linear Integer Arithmetic (LIA) includes expressions of the form:

a1 · x1 + · · ·+ an · xn#b

where x1, . . . , xn are integer variables, a1, . . . , an are their coefficients, b is a constant term,
and # ∈ {<,≤,=, >,≥}. The interpretations of these expressions follow the arithmetic rules.
This theory suits very well to our problem, as we can see in the time and task formulations
of Section 4.3. Current theory solvers handling this theory are based on the Simplex method,
concretely on the solver introduced in [19].

There is a specialization of LIA called Difference Logic (DL). In DL, the expressions are
restricted to have the form:

x− y ≤ c

where x and y are variables (integer variables in Integer DL), and c is a constant. Most of
SMT solvers offer specific theory solvers for DL, based on the Bellman-Ford algorithm or the
Floyd-Warshall algorithm, which are often more efficient than the Simplex method of general
LIA theory solvers.
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Chapter 4

State of the Art

The RCPSP and its variants have been widely studied in the literature. An insight to the prob-
lems, their characteristics, and different solving methods can be found in [4]. These problems are
usually tackled with meta-heuristics due to their hardness. For the MRCPSP, many approaches
have been proposed, including simulated annealing [8, 36], genetic algorithms [21, 2, 42], biased
random sampling approaches [16], or neighbourhood search [20]. Nevertheless, exact approaches
have shown to be also competitive for scheduling problems. There are many works for the RCPSP
based on Constraint Programming (CP) [27, 6], Boolean satisfiability(SAT) [22], Satisfiability
Modulo Theories (SMT) [3], Mixed Integer Linear Programming [26], branch and bound algo-
rithms [15] and Lazy Clause Generation [33, 32]. Also there have been recent exact approaches
to solve the MRCPSP, based on MILP [10], SMT [37], and branch an bound [40]. The lat-
ter has shown to be the state-of-the art in exact solving for the MRCPSP, by implementing a
conflict-driven branching heuristic that resembles the one used by SAT/SMT solvers.

In this thesis we specially revisit, reuse and extend some of the work that has been published
in [37, 7]. The following sections in this chapter expose the already existing techniques in the
literature which this thesis builds upon. Section 4.1 contains a set of preprocessing techniques
for the MRCPSP. Section 4.2 introduces a heuristic quick method to find initial solutions that
is going to be used to set an upper bound of the makespan. Section 4.3 exposes the mentioned
time and task encodings for this problem. Section 4.5 briefly describes what are Pseudo-Boolean
constraints and BDDs, which are going to be used in this thesis.

4.1 Preprocessings

There are some classical preprocessing steps that are used by most of the solvers for scheduling
problems. A good insight on these techniques can be found in [4]. We introduce the ones that
we are going to use in Sections 4.1.1, 4.1.2, 4.1.3 and 4.1.4. In Section 4.1.5 we explain a new
preprocessing technique that was firstly introduced in [37].

4.1.1 Extended Precedence Set

Since a precedence is a transitive relation, we can compute a lower bound on the time between
each pair of activities in E. For this calculation it can be used the Floyd-Warshall algorithm
on the graph defined by the precedence relation E, where each arc (Ai, Aj) is labelled with the
duration mino∈{1,...,Mi}(pi,o). This extended precedence set is named E∗ and contains, for each
pair of activities Ai and Aj such that Ai precedes Aj , a tuple of the form (Ai, Aj , li,j) where li,j
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is the length of the longest path from Ai to Aj . Note that this longest path length is minimal
with respect to the different activity modes. Note also that, if (Ai, Ai, li,i) ∈ E∗ for some Ai and
li,i > 0, then there is a cycle in the precedence relation and therefore the problem instance is
inconsistent.

4.1.2 Lower Bound

A lower bound LB for the makespan is a lower bound for the start time of activity An+1. The
critical path (i.e. the maximum length path) between the initial activity A0 and the final activity
An+1 in the graph gives such a lower bound. Note that we can easily know the length of this
path if we have already computed the extended precedence set, since it corresponds to the value
l0,n+1 in the tuple (A0, An+1, l0,n+1) ∈ E∗.

For instance, in the example of Figure 2.1 the critical path is [A0, A1, A3, A6, A7, A8] with
modes 1, 1, 2, 2, 2, 1, respectively, and its length is 6. Hence, we have LB = 6.

4.1.3 Upper Bound

An upper bound UB for the makespan is an upper bound for the start time of activity An+1.
There is a trivial upper bound equal to the sum of the maximum duration of all activities:

UB =
∑
Ai∈A

max
o∈{1,...,Mi}

(pi,o)

In the example of Figure 2.1 this upper bound is 20.

4.1.4 Time Windows

We can reduce the domain of each variable Si (start time of activity Ai), which initially is
{0 ..UB −mino∈{1,...,Mi}(pi,o)}, by computing its time window. The time window of activity Ai

will be [ESi, LSi], being ESi its earliest start time and LSi its latest start time. To compute
the time window we use the lower and upper bound and the extended precedence set, as follows.
For activities Ai, 0 ≤ i ≤ n,

ESi = l0,i if (A0, Ai, l0,i) ∈ E∗

LSi = UB − li,n+1 if (Ai, An+1, li,n+1) ∈ E∗

and, for activity An+1,
ESn+1 = LB LSn+1 = UB

Notice that the size of the time windows depends on a given UB . For instance, in the example
of Figure 2.1, activity A4 has time window [1, 16] with the trivial UB = 20.

Based on the time window, we can define for an activity Ai its earliest completion time and
its latest completion time, which consider the minimum and maximum durations respectively
among the different execution modes:

ECi = ESi + min
1≤o≤Mi

pi,o ∀Ai ∈ V

LCi = LSi + max
1≤o≤Mi

pi,o ∀Ai ∈ V
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4.1.5 Non-Renewable Resource Demand Reduction

This preprocessing step consists in reducing the demand of non-renewable resources in a sound
way. As we will see, this will allow us to save SMT literals in the constraints related to those
kind of resources.

Let us introduce it through an example. In the example of Figure 2.1, the non-renewable
resource R3 has 8 units available and activity A6 has two modes: mode 1 requires 1 unit of
resource R3, while mode 2 requires 2 units of the same resource. This problem can be transformed
into an equivalent one, where the availability of resource R3 is 7, and activity A6 has a demand
of 0 units of resource R3 in mode 1, and of 1 unit in mode 2. Since in mode 1 the demand
is of 0 units, it is not necessary to add any literal considering this mode in the constraints on
non-renewable resources. Roughly, following the example, what could be done is to subtract
from the availability of resource R3, and from the different demands of activity A6 for resource
R3 in each mode, the minimum amount of resource R3 that activity A6 needs. However, one
could go one step further and, instead of subtracting the minimum demand value, subtract the
demand value which most frequently occurs. This of course will lead to negative availabilities
and demands. But, interestingly, this allows reducing the size of the constraints even more (since
more demands become zero), while keeping soundness. Details are given below.

For this preprocessing, we construct a new vector B′ of resource availabilities and a new
matrix b′ of resource demands, where:

• B′
k = Bk and b′i,k,o = bi,k,o, ∀k ∈ {1, . . . , v}, ∀Ai ∈ V, ∀o ∈ {1, . . . ,Mi}.

• For each non-renewable resource Rk and activity Ai, let maxk,i denote the demand value
for resource Rk with more occurrences in the different modes of activity Ai (and, in case
of a tie, the smallest one). Then we state:

b′i,k,o = bi,k,o −maxk,i ∀Ai ∈ A,∀o ∈ {1, . . . ,Mi}

B′
k = Bk −

∑
Ai∈A

maxk,i ∀Rk ∈ {Rv+1, . . . , Rq}

Note that, as said, vector B′ and matrix b′ range now over integers instead of over naturals,
i.e., they can contain some negative values. The zero b′i,k,o values (whose number is maximal
thanks to the fact that we subtract the demand value with most occurrences) allow us to simplify
the constraints on non-renewable constraints (see Equation 4.10 below).

4.2 PSS Heuristic

In [3], the authors proposed to use a fast heuristic method to find a schedule for the RCPSP,
whose makespan serve as an upper bound for the optimum makespan. This upper bound will be
in most of the cases better than the trivial upper bound. This heuristic is the parallel scheduling
generation scheme (PSS) proposed in [23] and described in [24].

Given a project of n activities, this method requires at most n stages to find an schedule,
and at each stage a subset of the activities are scheduled. Each stage s has associated a schedule
time ts (where ts′ ≤ ts, for s

′ ≤ s). There are three activity sets:

• Complete set C: activities already scheduled and completed up to the schedule time ts.

• Active set A: activities already scheduled, but still active at the schedule time ts.
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• Decision set D: activities not yet scheduled which are available for scheduling with start
time ts, w.r.t. precedence and resource constraints.

Each stage consists of two steps:

• Determining the new ts: the earliest completion time of activities in the active set A. The
activities with a finish time equal to the new ts are removed from A and put into C. This
may place new activities into D.

• One activity from D is selected with a priority rule (in [3] the activity with the smallest
number) and scheduled to start at ts, being removed from D and added to A. Then the
set D is recomputed. This step is repeated until D becomes empty.

The method terminates when all activities are scheduled.
This procedure is not suitable for the MRCPSP, since it does not deal with the selection

of execution modes, neither with constraints over non-renewable resources. However it has the
advantage of being very fast, and serves very well to the purpose of finding a first upper bound.
In Section 9.2 we will see how this method can be used for this purpose in the MRCPSP.

4.3 Encodings

In [3], two different SMT encodings for the RCPSP were presented, namely the time encoding
and the task encoding. They are similar to the time formulation of [31] and [26] and to the task
formulation of [30] and [32], but conveniently adapted to SMT.

In [37] the time and task encodings were adapted to the MRCPSP. The authors use the
theory of Linear Integer Arithmetic, which allow to easily encode MRCPSP instances as logical
combinations of arithmetic constraints. With SMT, Boolean variables and integer variables
can occur together in the resulting formula, which is very interesting in terms of modeling.
Some refinements were introduced considering the preprocessing steps described in Section 4.1
(extended precedences, time windows, etc.)

The set of integer variables {S0, S1, . . . , Sn, Sn+1} denote the start time of each activity, and
S′ is defined as the set {S1, . . . , Sn}. The schedule of modes with the set of Boolean variables
{smi,o | 0 ≤ i ≤ n + 1, 1 ≤ o ≤ Mi}, being smi,o true if and only if activity Ai is executed in
mode o.

The objective function is always (2.4), and there are the following constraints in both encod-
ings:

S0 = 0 (4.1)

Si ≥ ESi ∀Ai∈{A1, . . . , An+1} (4.2)

Si ≤ LSi ∀Ai∈{A1, . . . , An+1} (4.3)

smi,o → Sj − Si ≥ pi,o ∀(Ai, Aj) ∈ E, ∀o ∈ {1, . . . ,Mi} (4.4)

Sj − Si ≥ li,j ∀(Ai, Aj , li,j) ∈ E∗ (4.5)

sm0,1 = true (4.6)

smn+1,1 = true (4.7)∨
1≤o≤Mi

smi,o ∀Ai∈A (4.8)

¬smi,o ∨ ¬smi,o′ ∀Ai∈ A, 1 ≤ o ≤Mi, o < o′ ≤Mi (4.9)
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where (4.2) and (4.3) encode the time windows, (4.4) encodes the precedences, (4.5) encodes the
extended precedences and (4.6), (4.7), (4.8) and (4.9) ensure that each activity runs in exactly
one mode.

For non-renewable resources, the following constraints replace (2.6), which use the values
resulting from the non-renewable resource demand reduction preprocessing step:

∑
Ai∈A

∑
o ∈ {1, . . . ,Mi}

b′i,k,o ̸= 0

ite
(
smi,o; b

′
i,k,o; 0

)
 ≤ B′

k ∀Rk ∈ {Rv+1, . . . , Rq} (4.10)

Notice that the ite expression is removed in the cases where b′i,k,o = 0.
Constraints (2.7) on renewable resources are reformulated differently in each of the two en-

codings, as described below.

4.3.1 Time Formulation

This is the most obvious formulation. It basically consists in stating, for every time unit t and
renewable resource Rk, that the sum of demands for this resource from the different activities
cannot exceed the availability of the resource.

smi,o → (yi,t ↔ (Si ≤ t) ∧ (t < Si + pi,o))

∀Ai ∈ A,∀o ∈ {1, . . . ,Mi}, ∀t ∈ {ESi, . . . , LSi + pi,o}
(4.11)

( ∑
Ai∈A

∑
o ∈ {1, . . . ,Mi}

ESi ≤ t ≤ LSi + pi,o − 1
b′i,k,o ̸= 0

ite
(
smi,o ∧ yi,t; b

′
i,k,o; 0

))
≤ B′

k

∀Rk ∈ {R1, . . . , Rv},∀t ∈ {0, . . . , UB} (4.12)

Constraints (4.11) give value to the Boolean variables yi,t, which are true if and only if
activity Ai is running at time t. Constraints (4.12) replace the (2.7) of the problem definition.
The number of theses constraints is proportional to UB + 1, and the size of the sums is directly
related to the size of the time windows (which are also dependent on UB). Therefore, the size
of this encoding is highly dependent on the value of UB.

4.3.2 Task Formulation

This formulation uses variables indexed by activity number, and not by time. The key idea is
that, in the non-preemptive case, checking only that there is no overload at the beginning (or
end) of each activity is sufficient to ensure that there is no overload at every time unit. Hence,
in this formulation the number of variables and constraints is independent of the length of the
scheduling horizon.

Boolean variables z1i,j denote whether activityAi does not start after activityAj does, Boolean

variables z2i,j to denote whether activity Aj starts before the end of activity Ai. The conjunction
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z1i,j ∧ z2i,j denotes whether activity Ai is running when activity Aj starts. The constraints are
the following:

z1i,j ↔ true ∀(Ai, Aj , li,j) ∈ E∗ (4.13)

z1j,i ↔ false ∀(Ai, Aj , li,j) ∈ E∗ (4.14)

z1i,j ↔ Si ≤ Sj ∀Ai, Aj ∈ A, i ̸= j (4.15)

z2i,j ↔ false ∀(Ai, Aj , li,j) ∈ E∗ (4.16)

z2j,i ↔ true ∀(Ai, Aj , li,j) ∈ E∗ (4.17)

smi,o → (z2i,j ↔ Sj < Si + pi,o) ∀Ai, Aj ∈ A,

i ̸= j, ∀o ∈ {1, . . . ,Mi}
(4.18)

smj,o′ →


∑

Ai∈A\{Aj}

∑
o ∈ {1, . . . ,Mi}

b′i,k,o ̸= 0

ite(smi,o ∧ z1i,j ∧ z2i,j ; b
′
i,k,o; 0)

 ≤ B′
k − b′j,k,o′

∀Aj ∈ A,∀o′ ∈ {1, . . . ,Mj}, ∀Rk ∈ {R1, . . . , Rv} (4.19)

The last constraints (4.19) state, for each activity Aj , mode o′ and renewable resource Rk,
that the sum of resource demands for Rk at the start time of Aj must not exceed the capacity
B′

k of Rk.

4.4 Optimization of the Makespan

SMT has its roots in the field of hardware and software verification, typically dealing with
decision problems. For this reason, in the early uses of SMT in the field of constrained problems
optimization, many ad-hoc procedures were defined to deal with optimization. One of the basic
approaches consists in successively bounding the value of the objective function, until the lower
bound coincides with the lower bound and therefore the optimum is found. Nowadays, there are
many SMT solvers that support optimization, as is the case of Z3 [14] or OptiMathSAT [35].
The usual behaviour is to combine the computation of Boolean satisfiable models with the
optimization of the theory expressions.

Nevertheless, one of the purposes of this thesis is to study the relation of the encoding sizes
and computation times as UB evolves. For this reason we will focus on ad-hoc optimization
procedures which make independent satisfiability checks to the SMT solver and that let us guide
the search of the optimum makespan. Concretely, we will use a linear search optimization scheme
(see Algorithm 1), which starts from a feasible UB for the makespan (if any), and reduces it
until the instance becomes infeasible.
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Algorithm 1 Linear search optimization schema

Input: An MRCPSP instance INS
Output: Optimum makespan, or INFEASIBLE
UB ← get upper bound(INS)
LB ← get upper bound(INS)
smt assert encoding(ENC)
SAT ← smt check()
if not SAT then

return INFEASIBLE
end if
UB ← UB − 1
while SAT and UB ≥ LB do

smt update upper bound(UB)
SAT ← smt check()
if SAT then
MODEL← smt get model()
MAKESPAN ← smt get makespan(MODEL)
UB ←MAKESPAN − 1

end if
end while
if SAT then

return UB
else

return UB + 1
end if
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Figure 4.1: BDD for 2x1 + 3x2 + 4x3 ≤ 7.

4.5 Pseudo-Boolean Constraints

As defined in [1], a Pseudo-Boolean constraint has the form:

a1x1 + · · ·+ anxn#K

where the ai andK are integer coefficients, the xi are Boolean variables, and the relation operator
# belongs to {<,>,≤,≥,=}. A typical data structure to represent Boolean functions is a Binary
Decision Diagrams (BDD) [9]. A BDD is a rooted, directed, acyclic graph, where each non-
terminal (decision) node corresponds to a Boolean variable x and has two child nodes with edges
representing a true and a false assignment to x. There are two terminal nodes that are the
0-terminal and the 1-terminal, representing the truth value of the formula for the assignment
leading to them. A BDD is called ordered if the variables appear in the same order on all paths
from the root. A BDD is said to be reduced if the following two rules have been applied to its
graph until a fix point:

• Merge any isomorphic subgraphs

• Eliminate any node whose two children are isomorphic.

A Reduced Ordered Decision Diagram (ROBDD) is canonical (unique) for a particular function
and variable order. As an example, we have in Figure 4.1 a BDD that represents the Pseudo-
Boolean constraint 2x1+3x2+4x3 ≤ 7, and Figure 4.2 illustrates the canonical ROBDD for the
same constraint with the order x1 ≺ x2 ≺ x3.

In [7], the L ∧ P group implemented a framework based on the ideas presented in [1] that,
given a Pseudo-Boolean Constraint, generates a SAT encoding using ROBDDs. We will use this
framework in this thesis.
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Chapter 5

Goals of the Thesis

The main goal of this thesis is to investigate in depth the time and task SMT encodings for the
MRCPSP. In order to do it, we will focus on the following specific goals:

• Design preprocessings that help us to anticipate properties of the possible schedules for an
instance (Chapter 7). It means that prior to calling an SMT solver, we can anticipate the
value of some variables, and therefore reduce the size of the encodings regarding number of
variables, number of constraints and size of the constraints. We want to evaluate how the
preprocessings help to solve each kind of instance (depending on its hardness), and also
the differences presented between both encodings.

• Propose new alternatives of formulations for time and task (Chapter 8), to try to improve
the performance of the state-of-the-art formulations presented in Section 4.3. We will use
Linear Integer Arithmetic as theory, and we will also use Pseudo-Boolean constraints to
formulate some expressions.

• Study the use of the preprocessed information, obtained either with the new preprocessings
or the ones already existing in the literature, in ad-hoc optimization procedures (Chapter 9).
The aim is to simplify the problem and to reduce the size of the encoding as we get close
to the optimum makespan.

• Explore an approach more intrusive to the SMT solver by tuning its internal implementation
(Chapter 10). This is a large field to explore, but in this thesis we have as a goal to make
an initial work, consisting on the implementation of new heuristics for the selection of the
variables to use in the decide operations of the SAT/SMT CDCL solving algorithm. We
want to study the behaviour of the solver for different heuristics for both formulations.
This will require a study of an state-of-the-art implementation of an SMT solver, and an
extension of its functionality by adding the possibility of defining new heuristics.

Finally, in order to determine if the goals of the thesis have been achieved, all the new
techniques will be collected and used to evaluate the performance of solving benchmark sets of
instances, and will be compared with the performance of the state-of-the-art exact solver of the
MRCPSP [40].
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Chapter 6

Working Environment

In this chapter we present the working environment and experimental settings used in the thesis.
Section 6.1 explains which SMT solver has been used and justifies the decision. Section 6.2
contains the experiment global settings. Finally, Section 6.3 describes the running environment
that has been used.

6.1 SMT Solver

The first step prior to designing and evaluating the different proposals that appear in this work
has been to decide which SMT solver is going to be used. It has been decided to use Yices
2.4.2 [18] for many reasons:

• It is an state-of-the-art SMT solver.

• The previous work of the L∧P research group in the field of scheduling problems has shown
that the results obtained with this solver are competitive.

• The source code of the version 2 is, for research purposes, freely available and modification
permissions are granted.

• After a first study of the code, it has been shown to be very well commented, self-
documented, compact and with an intuitive structure.

The Z3 solver [14] was also considered, since it is also a state-of-the-art SMT solver and
the source code is also available, but the previous work on Yices and the higher complexity
of Z3’s architecture lead to opt for Yices. The ease of modifying the implementation had an
important weight on the decision since an important part of this thesis focuses on implementing
and studying modifications on the heuristic of decision of variables.

Yices, as most of the SMT solvers, supports the SMT-LIB 2 standard for the interface of
solving methods. However, since the modifications that are introduced to the solver affect the
core components of the solver, in this thesis we work with Yices’ own API.

6.2 Experimental Settings

The timeout for the experiments has been set to 3600 seconds to be able to evaluate the per-
formance of the techniques in the hardest instances. In Chapters 7, 8, 9 and 10, we have used
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as a training set of examples the j30 set from PSPLib, because it contains variety of instances
in what regards to their hardness (it has many soft instances and at the same time is the only
one in PSPLib with open instances), and also contains both feasible and infeasible instances. In
fact, we will use the distinction of j30SAT and j30UNSAT made at Section 2.3.

Finally, in Chapter 11 we collect the best of our techniques, and obtain performance results
for a larger collection of benchmark sets, not only limited to j30, and compare our system with
the state-of-the-art solver on MRCPSP [40].

6.3 Running Environment

All the experiments contained in this thesis have been executed in an 8GB Intel R⃝ Xeon R⃝ E3-
1220v2 machine at 3.10 GHz. All the chapters except for Chapter 11 focus on evaluating the
impact of several proposals and their relative efficiency compared to other proposals. In order to
save experimentation time and take advantage of the available resources, the experiments shown
in these chapters do not use the whole capacity of the machine but run many different jobs at
a time in the machine (always in different threads), and distribute the memory evenly between
them. Obviously, all the experiments whose performance are compared will be assigned the same
machine settings.

Limiting the capacity of the machines worsens the time performance, and at Chapter 11 we
want to provide the status of our proposals with our available resources, and compare them with
solvers of other authors without limiting the advantage that they may take of multiple threading
(this is not the case for Yices, which does not use parallelism). For this reason, the experiments
in Chapter 11 have been run with only one job at a time in each machine.
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Chapter 7

Preprocessings

In Section 4.1 we presented some preprocessings that were used in previous work for solving
the MRCPSP with SMT, and which will be employed in this thesis as well. In Section 7.1
we are going to introduce new preprocessings that will let us further refine the constraints and
reduce the size of our encodings. Since the new preprocessings do not have the same impact
on all the instances, we analyse in Section 7.2 the amount of information discovered for each
preprocessing depending on the hardness of the instances. We include time improvements due
to the preprocessings in Chapter 8, once we have explained how the encodings are modified to
introduce these new preprocessings.

7.1 New Preprocessings

7.1.1 Extended Precedence Set: Energy Precedences

We have seen in Section 4.1.1 how to compute the extended precedence set E∗. Next we will
show that the demands on renewable resources let us go one step further. Note that any activity
Ak such that (Ai, Ak, li,k) ∈ E∗ ∧ (Ak, Aj , lk,j) ∈ E∗, will be completely executed in the time
interval [Si + min

o∈{1,...,Mi}
(pi,o), Sj ]. We can compute the set of such activities Ak for any pair of

activities Ai, Aj such that (Ai, Aj , li,j) ∈ E∗. Let us define this set as ABi,j , the set of activities
between Ai and Aj :

ABi,j = {Ak | (Ai, Ak, li,k) ∈ E∗, (Ak, Aj , lk,j) ∈ E∗}

Returning to the running example of Figure 2.1, AB1,7 = {A3, A5, A6}. Note that the time
interval between the end of A1 and the start of A7 must be wide enough to run all Ak ∈ AB1,7

without exceeding the availability of any renewable resource. Looking at the Gantt diagram of
the solution for resource R2, we can see that it is needed 6 units of time using the whole capacity
of R2 to run all the activities in AB1,7, which are making the minimum demand on R2 among
their execution modes.

This necessity of having wide enough time intervals gives, for every resource r ∈ {1, . . . , v},
a lower bound (RLBi,j,r) of the time difference between the end of Ai and the start of Aj :

RLBi,j,r = ⌈ 1

Br
·

∑
Ak∈ABi,j

min
o∈{1,...,Mk}

(pk,o · bk,r,o)⌉
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RLBi,j,r is the minimum time difference between Ai and Aj so that the activities in ABi,j

will not surpass the capacity of resource r at any instant. This clearly establishes a precedence
relation between Ai and Aj , so we can update every time lag li,j of the extended precedence set
as:

l′i,j = max(li,j , min
o∈{1,...,Mi}

(pi,o) + max
r∈{1,...,v}

(RLBi,j,r)) ∀(Ai, Aj , li,j) ∈ E∗

where l′i,j is the new value for the time lag and li,j is the previous value. In the example of
Figure 2.1, the original value of l1,7 was 5, and it can be updated with this mechanism to 8.

Note that an increase of a single extended precedence can be propagated to other extended
precedences in E∗ for transitivity. This preprocessing resembles the energy-based reasoning used
by some constraint propagators (see [4]). For this reason, we will refer to these new precedences
as energy precedences.

As a particular case, it is worth noting that l0,n+1, i.e., the minimum time lag between the
starting activity and the finishing activity, might be increased thanks to the energy precedences,
and hence giving a better lower bound LB for the optimum makespan.

7.1.2 Start Time Window Incompatibilities

Time windows can provide information regarding precedences between activities, even if there is
not an (extended) precedence between them. For instance, if LCi ≤ ESj , for some Ai and Aj , we
know for sure that Aj will start after the completion of Ai, even if (Ai, Aj , li,j /∈ E∗. As exposed in
Section 4.3.2, the task encoding checks if an activity Ai is running when activity Aj starts. That
encoding gives constant values to variables z1i,j and z2i,j if there exists an extended precedence
between Ai and Aj . We can discard still more overlaps by computing an incompatibility Boolean
matrix STI as:

STIi,j ⇐⇒ ESj ≥ LCi ∨ LSj < ESi ∀Ai, Aj ∈ A, i ̸= j

where STIi,j equal to true means that we can ensure that activity Ai will never be running
when activity Aj starts in any schedule. Notice that this matrix is not necessarily symmetric.
Also, the number of start time window incompatibilities found depends on the size of the time
windows, and therefore of the value of B. Looking at Figure 2.1, there is not any start time
window incompatibility if we take into account the trivial UB = 20. However, if we consider the
UB of the solution, which is 10, we have that ES7 = 5, and LS1 = 4, so STI1,7 = true.

7.1.3 Resource Incompatibilities

In instances with activities that have a high demand of renewable resources, it may be the case
that there are pairs of activities (Ai, Aj) whose added minimum demand on a renewable resource
is higher than its capacity. If that is the case, we know for sure that these activities will never be
running at a same time in a feasible schedule. In this situation we will say that they are resource
incompatible. We define the symmetric Boolean matrix RI as:

RIi,j ⇐⇒
∨

1≤r≤v

min
1≤o≤Mi

bi,r,o + min
1≤o≤Mj

bj,r,o > Br ∀Ai, Aj ∈ A, i ̸= j

where RIi,j equal to true means that activities Ai and Aj are resource incompatible. In the
example of Figure 2.1, RI3,5 = true, because activities A3 and A5 can never run at the same
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time because they both have a minimum demand of 2 on R2, and the capacity B2 = 2 would be
exceeded.

7.1.4 Disjoint Use of Renewable Resources

Remember that task encoding checks, for every renewable resource r, that at the start time of
every activity Aj , the capacity of r is not exceeded. It does it not by checking which activities
are running at a time t but which ones overlap with Aj at its start. Note that, therefore, if
two activities never use the same renewable resource regardless the execution modes, we do not
need to care about whether they run at a same time. We will say that the pairs of activities
that satisfy this property are resource disjoint. This fact will let us omit some constraints and
variables z1i,j and z2i,j related with the overlapping of resource disjoint activities. We compute
the Boolean matrix of resource disjunctions D as:

Di,j ⇐⇒ {r | 1 ≤ r ≤ v,
∨

1≤o≤Mi

bi,r,o > 0} ∩ {r | 1 ≤ r ≤ v,
∨

1≤o≤Mj

bj,r,o > 0} = ∅

where Di,j equal to true means that Ai and Aj are resource disjoint. In Figure 2.1, D4,6 =
true, because A4 do not demand R2 in any mode and A6 do not demand R1 in any mode.

7.2 Impacts of the Preprocessings

Now we are presenting results that show how each preprocessing serves to discover information of
the instances. We show in a scatter plot for each new preprocessing the amount of information
discovered for each instance in the j30SAT set. In the plots, each point corresponds to an
instance. Axis y contains a different measure for each preprocessing:

• Figure 7.1 shows the number of extended precedences that have been increased in E∗ due to
energy precedences. We count both the extended precedences that have been replaced by an
energy precedence, and the extended precedences that have been increased by transitivity
due to a new energy precedence.

• In Figure 7.2 we show the number of start time window incompatibilities detected. The
time window incompatibilities depend on the time windows, and therefore on the UB of
the encoding. We are counting them in the encoding for the optimum makespan (or the
best known makespan) of each instance.

• Figure 7.3 shows the number of resource incompatibilities found, breaking the symmetries
RIi,j = RIj,i.

• Figure 7.4 shows the number of resource disjunctions found, breaking the symmetriesDi,j =
Dj,i.

Axis x, which is in logarithmic scale, represents the computation time required to solve the
instances with the time encoding presented in Section 4.3.1 with a linear search optimization
algorithm. We use this computation time as an estimation of the hardness of the instance. On the
one hand, identifying the hardness ranges where the preprocessings have the greatest influence
will serve us to better understand the reason of the computation time improvements in any
case in Section 8.5.1. On the other hand, the amount of information obtained with a particular
preprocessing is a metric that could serve as an indicator of the hardness of the instances.
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Figure 7.1: For each instance in j30SAT, number of extended precedences added or modified in
the extended precedence set due to energy precedences (axis y), compared to the solving time
of the instance (axis x). We count both the energy precedences and the precedences increased
due to transitivity from an energy precedence. The points in the right vertical edge of the plot
correspond to instances that have been not solved within the timeout of 3600 seconds.

The results show that:

• Resource incompatibilities and energy precedences are more present in hardest instances.
This is specially the case for energy precedences, detected only in instances with solving
time higher than 20, and detected almost in all instances of computation time higher than
500. Notice that the energy precedences are prone to occur in instances with high demands
on renewable resources and narrow precedences graph.

• Resource disjunctions and start time window incompatibilities tend to appear less when
the instance is harder, having zero resource disjunctions in instances with solving time
greater than approximately 20. Contrarily to the energy precedences, resource disjunctions
are prone to occur in instances with low demands on renewable resources and start time
window incompatibilities are prone to occur in instances with wide precedences graph.
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Figure 7.2: For each instance in j30SAT, number of start time window incompatibilities detected
(axis y), denoted |STI| in the plot, compared to the solving time of the instance (axis x).
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Figure 7.3: For each instance in j30SAT, number of resource incompatibilities detected (axis y),
denoted |RI| in the plot, compared to the solving time of the instance (axis x). The points in
the right vertical edge of the plot correspond to instances that have been not solved within the
timeout of 3600 seconds.
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Figure 7.4: For each instance in j30SAT, number of pairs of resource disjoint activities detected
(axis y), denoted |D| in the plot, compared to the solving time of the instance (axis x).
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Chapter 8

Encoding Study and Refinement

In this chapter we are going study and refine the time and task encodings for the MRCPSP that
we have seen in Section 4.3. In Section 8.1 we analyse the properties of these encodings, making
special emphasis on their dependence on the UB . The following sections incrementally introduce
refinements on the original encodings: Section 8.2 explains how the new preprocessings can be
used to modify the formulations of the MRCPSP, in Section 8.3 we comment how to reformulate
the encodings in CNF formulas, and in Section 8.4 we formulate three different versions of time
and task. Finally, Section 8.5 shows the improvements gained with each refinement.

8.1 Study of the Encodings

The main difference that the time and task encodings present is that the former encodes the
constraints over the renewable resources for every time instant from 0 to a time horizon, and
the later checks that these constraints are satisfied at the beginning of every activity. The
former depends on an upper bound UB for the makespan, and introduces O((v + nMmax)UB)
constraints, O(n(Mmax +UB)) Boolean variables and O(nMmaxUBv) integer variables1, where
Mmax = maxAi∈A (Mi). On the other hand, task encoding depends on the number of activities
of the project, introducing O(nMmax(n+v)) constraints, O(n(Mmax+n) Boolean variables and
O(n2Mmaxv) integer variables.

Therefore, the size of the encoding is proportional to UB in time and independent of it in
task, in terms of number of constraints, number of Boolean variables and number of integer
variables. Nevertheless, the domains of the integer variables {S1, . . . , Sn} are proportional to the
time windows, which at their turn are proportional to UB . For this reason, stating whether the
performance of the task encoding is totally independent on the UB needs a deeper analysis.

We have run two experiments which show that task is indeed independent on the UB , and
also serve to have an insight of the impacts that the dependency on UB has for the time encoding.
The first one consists in, given an MRCPSP instance, multiply the durations of all the activities
in all modes by a same constant factor c. Notice than the optimum makespan will increase by the
same constant factor c. Then, we encode the instance as described in Section 4.3, but enforcing
UB = LB = optimum makespan, i.e. we do not search the optimum makespan, but having it as
an input we compute a schedule for this makespan. We then make a single call to the SMT solver
to compute an optimum solution, and record the computation time. Notice that in some sense

1In the formulation presented in 4.3, there only explicitly appear n + 2 integer variables, that are
{S0, . . . , Sn+1}. Nevertheless, each ite expression introduces one fresh integer variable implicitly.
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Figure 8.1: Each point corresponds to the computation of an optimum schedule for the j3022 5
instance. Axis y contains the computation time, and axis x the factor multiplying the durations
of the activities. This result is shown for both task and time encodings.

we are not modifying the nature of the instances. We could for example multiply the durations
by 60, and think of it as expressing the time units in seconds instead of minutes. For this reason,
the changes on the performance will mainly be due to the impact of the UB in the encoding. We
do it for both time and task encodings, and multiplying the durations by the constant factors
in the range {1, 2, . . . , 20}. We have performed this experiment with many instances, and all
the results go in the line of what Figure 8.1 illustrates for the instance j3022 5. We can see
that indeed the task encoding has always approximately the same performance regardless the
coefficient, while the time encoding gives increasing computation times.

Our second experiment analyses the evolution of the computation time as UB decreases in
a linear search optimization. We have encoded the same example instance as before for all
the values of UB in the range [OPT, . . . , 1.5 · UBT ], and for each UB we have called the SMT
solver. UBT denotes the trivial upper bound for the makespan, and OPT denotes the optimum
makespan for this instance. The results can be seen in Figure 8.2. In this case UBT = 252.
Notice that if the instance is feasible we can find a schedule that fits the trivial upper bound
such that:

• it runs only one activity at a time, respecting the precedence constraints, and therefore the
constraints over renewable resources are satisfied (assuming that there are not infeasible
modes1).

• its schedule of modes has to respect the non-renewable resource constraints.

Moreover, any such a schedule would fit for any upper bound greater than the trivial. So, the
intuition says that it should be equally easy to construct a schedule for any UB ≥ UBT , but the
plot shows that the time encoding suffers from having its encoding size depending on the upper
bound. Contrarily, the computation time required by task is always the same for these trivial

1A mode o of an activity Ai is said to be infeasible if the demand bi,k,o on some resource k is greater than its
capacity Bk. Notice that there is not any feasible solution in which an activity has assigned an infeasible mode.
We can search for infeasible modes and remove them in polynomial time.
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Figure 8.2: Computation time of the satisfiability check of the SMT solver for each value of UB
in a range, for the instance j3022 5. Axis y is in log scale.

schedules. On the other hand, this example shows that having the performance depending on
the UB can also be good, because the time encoding outperforms task in the final iterations,
which are the ones with smallest UB . Finally, Figure 8.3 shows the normalized accumulated
time through the evolution of a linear search optimization, from the trivial UB to the optimum
makespan. It can be seen that the time encoding suffers from having to compute the easiest
schedules due to the size of the encoding, whereas this is not the case for the task encoding.

8.2 Application of the New Preprocessings

The new preprocessings presented in Chapter 7 will serve us to reduce the size of the encodings.
Although they do not have any impact on the formal definition of the time encoding, the energy
precedences let us compress the time windows, and therefore the size of the constraints and the
number of variables yi,t is reduced

1.
On the other hand, we have the new incompatibility matrices STI , RI and D that, applied

to the task formulation, let us discharge overlaps between activities and hence reduce the size of
the encoding. Let us define the Boolean function incomp(i, j) as:

incomp(i, j) = STIi,j ∨RIi,j ∨Di,j ∨ (Ai, Aj , li,j) ∈ E∗ ∨ (Aj , Ai, lj,i) ∈ E∗ (8.1)

which is true only if there exists no feasible schedule in which Ai is active when activity Aj

starts, or Ai and Aj never consume the same renewable resource. The constraints for the task
encoding are reformulated as:

1Recall that the variables yi,t denote whether Ai is running at time t, and are only defined for the possible
time instances according to the time windows.
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Figure 8.3: Normalized accumulated computation time of a linear search optimization for the
instance j3022 5.

z1i,j ↔ Si ≤ Sj ∀Ai, Aj ∈ A,¬incomp(i, j), i ̸= j (8.2)

smi,o → (z2i,j ↔ Sj < Si + pi,o) ∀Ai, Aj ∈ A,¬incomp(i, j),

i ̸= j,∀o ∈ {1, . . . ,Mi}
(8.3)

(smi,o ∧ smj,o′)→ (Sj ≥ Si + pi,o ∨ Si ≥ Sj + pj,o′) ∀Ai, Aj ∈ A,

RIi,j = true,

STIi,j = false,

∀o ∈ {1, . . . ,Mi},
∀o′ ∈ {1, . . . ,Mj}

(8.4)

smj,o′ →


∑

Ai ∈ A \ {Aj}
¬incomp(i, j)

∑
o ∈ {1, . . . ,Mi}

b′i,k,o ̸= 0

ite(smi,o ∧ z1i,j ∧ z2i,j ; b
′
i,k,o; 0)

 ≤ B′
k − b′j,k,o′

∀Aj ∈ A,∀o′ ∈ {1, . . . ,Mj}, ∀Rk ∈ {R1, . . . , Rv}
(8.5)
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First of all, notice that in (8.2) the variable z1i,j is defined to be equivalent to an atom.

Therefore, the atom can be directly used in replacement of z1i,j . We keep z1i,j as an alias in
the formulation for simplicity and for the sake of resemblance to the original task encoding,
but it will be replaced by the corresponding atom when passed to the solver. Then, the use
of the notion of incompatibility defined by incomp let us omit some variables and constraints:
constraints (4.13), (4.14), (4.15), (4.17), (4.16) and (4.18) have been replaced by (8.2) and (8.3),
and constraints (4.19) have been replaced by (8.5). Finally, there are the new constraints (8.4)
which enforce that resource incompatibilities are respected1.

8.3 CNF Conversion

As we have seen in Section 3, SAT (SMT) expressions are basically propositional (modulo the-
ories) formulas expressed in Conjunctive Normal Form. Nevertheless, most SMT solvers allow
specifying any generic Boolean formula, not restricted to be a conjunction of disjunctions. Nei-
ther the time formulation presented in Section 4.3 nor the task formulation refined and presented
in Section 8.2 are in CNF. For instance, recall the formulation for constraints (4.11) of the time
formulation, which is not in CNF:

smi,o → (yi,t ↔ (Si ≤ t ∧ t < Si + pi,o)) (4.11 revisited)

Any propositional Boolean formula can be converted into an equivalent formula that is in
CNF, by applying Boolean algebra transformations. This process may lead to an exponential
growth of the size of the formula. For this reason, one normally uses the Tseytin transforma-
tion [38] or variations to obtain, given a Boolean formula F , an equisatisfiable2 formula F ′,
which only requires a linear growth, but introduces a linear number of new auxiliary Boolean
variables. However, in our case we can reformulate our constraints applying Boolean algebra to
provide CNF formulas, and avoiding the solver the internal transformation to CNF that uses new
auxiliary Boolean variables. Basically, we decompose double implications to sets of implications,
and transform implications to disjunctions. As an example, the expression in (4.11):

smi,o → (yi,t ↔ (Si ≤ t) ∧ (t < Si + pi,o))

is transformed into:

{¬smi,o ∨ ¬yi,t ∨ Si ≤ t}

{¬smi,o ∨ ¬yi,t ∨ t < Si + pi,o}

{¬smi,o ∨ yi,t ∨ ¬(Si ≤ t) ∨ ¬(t < Si + pi,o)}

Although these transformations are trivial, in Section 8.5.2 we show that they have an impact
on the size of the encoding and the time performance.

1Start time window incompatibilities are enforced by the time window definitions. The disjunctions of re-
newable resource usages are intrinsic of the instance, and do not need to be constrained. However, the resource
incompatibilities must be enforced if we remove the incompatible pairs from the constraints (8.5).

2Two Boolean formulas F and F ′ are equivalent if any model of F is a model of F ′, and any model of F ′ is a
model of F . The equisatisfiability guarantees that F ′ is satisfiable if and only if F is satisfiable. Moreover, with
the Tseytin transformation we can obtain a model for F from a model for F ′.
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8.4 Three Versions of the Encodings

In this section we are going to collect the refinements presented in Sections 8.2 and 8.3 to express
the new time and task formulations. We firstly skip the constraints over resource demands (both
renewable and non-renewable), and afterwards we propose three different encodings for these
constraints, each one adaptable both to time and task formulations. The first one (Section 8.4.1)
is the formulation that we have seen so far, which uses if-then-else expressions. In Section 8.4.2
we use 0/1 integer variables to model the sum of demands on a resource as a LIA expression. In
Section 8.4.3 we replace the 0/1 integer variables by Boolean variables and express the constraints
using Pseudo-Boolean functions.

The following constraints, which are common in both time and task are preserved from the
previous formulation:

S0 = 0 (4.1 revisited)

Si ≥ ESi ∀Ai∈{A1, . . . , An+1} (4.2 revisited)

Si ≤ LSi ∀Ai∈{A1, . . . , An+1} (4.3 revisited)

Sj − Si ≥ li,j ∀(Ai, Aj , li,j) ∈ E∗ (4.5 revisited)

sm0,1 = true (4.6 revisited)

smn+1,1 = true (4.7 revisited)

∨
1≤o≤Mi

smi,o ∀Ai ∈ A (4.8 revisited)

¬smi,o ∨ ¬smi,o′ ∀Ai∈ A, 1 ≤ o ≤Mi, 1 ≤ o′ ≤Mi, o ̸= o′ (4.9 revisited)

Constraints (4.4) are reformulated as disjunctive clauses:

¬smi,o ∨ Sj − Si ≥ pi,o ∀(Ai, Aj) ∈ E,∀o ∈ {1, . . . ,Mi} (8.6)

Constraints for the time Formulation

The following constraints substitute (4.11), and give a value to the variables yi,t, which is true
if an only if Ai is running at time t:

¬smi,o ∨ ¬yi,t ∨ Si ≤ t

∧
¬smi,o ∨ ¬yi,t ∨ t < Si + pi,o

∧
¬smi,o ∨ yi,t ∨ ¬(Si ≤ t) ∨ ¬(t < Si + pi,o)

∀Ai ∈ A,∀o ∈ {1, . . . ,Mi}, ∀t ∈ {ESi, . . . , LSi + pi,o}

(8.7)
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Constraints for the task Formulation

The definition of z1i,j remains the same, and is true if and only if activity Ai does not start after
activity Aj does. Remember that we treat it as an alias (i.e. we don’t create the variables nor
the following constraints):

z1i,j ↔ Si ≤ Sj ∀Ai, Aj ∈ A,¬incomp(i, j), i ̸= j (8.2 revisited)

The following constraints substitute (8.3) in the same definition of z2i,j : it denotes whether
activity Aj starts before the end of activity Ai.

¬smi,o ∨ ¬z2i,j ∨ Sj < Si + pi,o

∧
¬smi,o ∨ ¬(Sj < Si + pi,o) ∨ z2i,j

∀Ai, Aj ∈ A,¬incomp(i, j), i ̸= j, ∀o ∈ {1, . . . ,Mi}

(8.8)

Finally, the following constraints substitute (8.4) and enforce that two activities Ai and Aj

that are incompatible due to resource demands (i.e. RI i,j = true) never overlap:

¬smi,o ∨ ¬smj,o′ ∨ Sj ≥ Si + pi,o ∨ Si ≥ Sj + pj,o′ ∀Ai, Aj ∈ A,

RIi,j = true,

STIi,j = false,

∀o ∈ {1, . . . ,Mi},
∀o′ ∈ {1, . . . ,Mj}

(8.9)

8.4.1 Ite: Use of if-then-else Expressions

Here we consider the definition of the constraints over resources (both renewable and non-
renewable) that we have seen so far. From now on, we will denote it as the ite encoding, and we
will have both the time ite and the task ite encodings.

The constraint over non-renewable resources is the same for both time and task :


∑
Ai∈A

∑
o ∈ {1, . . . ,Mi}

b′i,k,o ̸= 0

ite
(
smi,o; b

′
i,k,o; 0

)
 ≤ B′

k ∀Rk ∈ {Rv+1, . . . , Rq} (8.10)

As before, the differences arise in the encoding of the constraints over renewable resources.

Time ite Encoding

The following constraints enforce that the capacities of renewable resources are not exceeded at
any time:
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( ∑
Ai∈A

∑
o ∈ {1, . . . ,Mi}

ESi ≤ t ≤ LSi + pi,o − 1
b′i,k,o ̸= 0

ite
(
smi,o ∧ yi,t; b

′
i,k,o; 0

))
≤ B′

k

∀Rk ∈ {R1, . . . , Rv},∀t ∈ {0, . . . , UB} (8.11)

Task ite Encoding

The equivalent for task ensures that the capacities of renewable resources are not exceeded at
the start time of any activity:

¬smj,o′ ∨


∑

Ai ∈ A \ {Aj}
¬incomp(i, j)

∑
o ∈ {1, . . . ,Mi}

b′i,k,o ̸= 0

ite(smi,o ∧ z1i,j ∧ z2i,j ; b
′
i,k,o; 0)

 ≤ B′
k − b′j,k,o′

∀Aj ∈ A,∀o′ ∈ {1, . . . ,Mj},∀Rk ∈ {R1, . . . , Rv}
(8.12)

8.4.2 Mult : Use of 0/1 Integer Variables

This formulation expresses the constraints over resources using Linear Integer Arithmetic ex-
pressions. The resulting encodings are in CNF, so they avoid the internal transformations of the
SMT solvers (cf. ite ). From now on we will denote it as the mult encoding. We introduce a new
0/1 integer variable mi,o that takes value 1 if Ai runs in mode o, and 0 otherwise. The following
constraints define its value:

(mi,o ≥ 0) ∧ (mi,o ≤ 1) ∧ (¬(mi,o ≥ 1) ∨ smi,o) ∧ (mi,o ≥ 1 ∨ ¬smi,o)

∀Ai ∈ A,∀o ∈ {1, . . . ,Mi}
(8.13)

The constraints over the non-renewable resources are defined as:


∑
Ai∈A

∑
o ∈ {1, . . . ,Mi}

b′i,k,o ̸= 0

mi,o · b′i,k,o

 ≤ B′
k ∀Rk ∈ {Rv+1, . . . , Rq} (8.14)

Time mult Formulation

We introduce a new 0/1 integer variable xi,o,t that takes value 1 if Ai runs in mode o at time t,
and 0 otherwise:

42



(xi,o,t ≥ 0) ∧ (xi,o,t ≤ 1)

∧
(¬(xi,o,t ≥ 1) ∨ smi,o) ∧ (¬(xi,o,t ≥ 1) ∨ yi,t) ∧ (xi,o,t ≥ 1 ∨ ¬smi,o ∨ ¬yi,t)

∀Ai ∈ A,∀o ∈ {1, . . . ,Mi}

(8.15)

The constraint over the renewable resources is:

( ∑
Ai∈A

∑
o ∈ {1, . . . ,Mi}

ESi ≤ t ≤ LSi + pi,o − 1
b′i,k,o ̸= 0

xi,o,t · b′i,k,o)

)
≤ B′

k

∀Rk ∈ {R1, . . . , Rv},∀t ∈ {0, . . . , UB} (8.16)

Task mult Formulation

We introduce a new 0/1 integer variable zi,o,j that takes value 1 if Ai is running in mode o when
Aj starts, and 0 otherwise:

zi,o,j ≥ 0 ∧ zi,o,j ≤ 1

∧
¬(zi,o,j ≥ 1) ∨ smi,o

∧
¬(zi,o,j ≥ 1) ∨ z1i,j

∧
¬(zi,o,j ≥ 1) ∨ z2i,j

∧
zi,o,j ≥ 1 ∨ ¬smi,o ∨ ¬z1i,j ∨ ¬z2i,j

∀Ai, Aj ∈ A, i ̸= j,¬incomp(i, j), ∀o ∈ {1, . . . ,Mi}

(8.17)

The constraint over the renewable resources is:

¬smj,o′ ∨


∑

Ai ∈ A \ {Aj}
¬incomp(i, j)

∑
o ∈ {1, . . . ,Mi}

b′i,k,o ̸= 0

zi,o,j · b′i,k,o)

 ≤ B′
k − b′j,k,o′

∀Aj ∈ A,∀o′ ∈ {1, . . . ,Mj}, ∀Rk ∈ {R1, . . . , Rv}

(8.18)
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8.4.3 BDD: Pseudo-Boolean Constraints

This formulation expresses the constraints over resources using Pseudo-Boolean constraints. As
we have seen in Section 4.5, a Pseudo-Boolean constraint has the form:

a1x1 + · · ·+ anxn#K

where the ai andK are integer coefficients, the xi are Boolean variables, and the relation operator
# belongs to {<,>,≤,≥,=}. Our definitions of the constraints over resources perfectly fit this
template, and therefore can be modeled with Pseudo-Boolean constraints. We can define the
constraints over non-renewable resources as:


∑
Ai∈A

∑
o ∈ {1, . . . ,Mi}

b′i,k,o ̸= 0

smi,o · b′i,k,o

 ≤ B′
k ∀Rk ∈ {Rv+1, . . . , Rq} (8.19)

Notice that there is a difference with respect to the mult encoding (8.14), that is that we do
not introduce new integer 0/1 variables mi,o but we directly use the Boolean variables smi,o.
Hence, constraints (8.14) contain LIA expressions that are handled by the LIA theory solver,
whereas this is not the case for constraints (8.19). The latter is in fact a formal definition of
the constraints, but we need to use some implementation of Pseudo-Boolean constraints that
translates them into Boolean formulas. For this purpose, we are going to use Binary Decision
Diagrams (BDDs), concretely the framework developed in [7] that we mentioned in Section 4.5.

Encoding the constraints over resources with Pseudo-Boolean constraints has an impact in the
whole encoding nature, because all the remaining constraints containing theory (LIA) expressions
are (with trivial arithmetic transformations) Difference Logic expressions. As we have seen in
Section 3.2, some SMT solvers (Yices included) use specialized theory solvers for Difference Logic.

Time BDD Formulation

To encode the constraints over renewable resources, we are going to define a Boolean variable
that has the same meaning that the integer 0/1 variable xi,o,t from the time mult encoding. It
is x′

i,o,t:

¬x′
i,o,t ∨ smi,o

∧
¬x′

i,o,t ∨ yi,t

∧
x′
i,o,t ∨ ¬smi,o ∨ ¬yi,t

∀t ∈ {ES i, . . . ,LS i + pi,o − 1}

(8.20)

The constraint over the renewable resources is:
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( ∑
Ai∈A

∑
o ∈ {1, . . . ,Mi}

ESi ≤ t ≤ LSi + pi,o − 1
b′i,k,o ̸= 0

x′
i,o,t · b′i,k,o)

)
≤ B′

k

∀Rk ∈ {R1, . . . , Rv},∀t ∈ {0, . . . , UB} (8.21)

Task Formulation

Similarly to the case of the time BDD encoding, we are defining a Boolean variable z′i,o,j in
substitution of the integer 0/1 variable zi,o,j :

¬z′i,o,j ∨ smi,o

∧
¬z′i,o,j ∨ z1i,j

∧
¬z′i,o,j ∨ z2i,j

∧
z′i,o,j ∨ ¬smi,o ∨ ¬z1i,j ∨ ¬z2i,j

∀Ai, Aj ∈ A, i ̸= j,¬incomp(i, j), ∀o ∈ {1, . . . ,Mi}

(8.22)

The constraint over the renewable resources is:

¬smj,o′ ∨


∑

Ai ∈ A \ {Aj}
¬incomp(i, j)

∑
o ∈ {1, . . . ,Mi}

b′i,k,o ̸= 0

z′i,o,j · b′i,k,o)

 ≤ B′
k − b′j,k,o′

∀Aj ∈ A,∀o′ ∈ {1, . . . ,Mj}, ∀Rk ∈ {R1, . . . , Rv}

(8.23)

8.5 Results

In this section we are going to evaluate the impact on the encoding size and the time per-
formance of the encoding refinements presented in Sections 8.2, 8.3 and 8.4. We evaluate each
improvement progressively: first the impact of the preprocessings, then the improvement achieved
by expressing the constraints of the ite encoding in CNF, and finally the performance comparison
of the ite, mult and BDD encodings.

45



8.5.1 Application of the New Preprocessings

We present in this section the impact of the preprocessings in reducing the size of the encodings,
and the improvement that they suppose on the time performance. Figures 8.4 and 8.5 show,
for every instance in j30SAT, the percentage of reduction of the number of Boolean variables
in the time and task encodings respectively. Each point corresponds to an instance. A point
with a percentage value of 5% (axis y), means that there is an instance whose encoding using
the new preprocessings has decreased a 5% in number of Boolean variables with respect to the
encoding for the same instance without using the new preprocessings. In axis x, we put again
the solving time for the time encoding of Section 4.3.1, to make this results complementary to
the results of Section 7.2. The same results on the number of clauses and the number of atoms
have shown to be proportional to the reduction of Boolean variables, so we do not include the
plots to avoid redundancy. On the other hand, Figure 8.6 compares the performance of the time
encoding without using the new preprocessings and using them, and Figure 8.7 shows the same
result for task1.

We can see that the time encoding only reduces its size in some of the hardest instances,
which are the ones that let us discover some energy precedences (recall Figure 7.1), and less
than a 7% in all cases. We cannot conclude that this preprocessing clearly benefits the time
encoding, although the hardest instances experienced an improvement. On the other hand,
the task encoding has the most important reduction of the size of the encoding in the easiest
instances, thanks to the start time window incompatibilities and the resource disjunctions (recall
Figures 7.2 and 7.4). However, the results on the easiest instances do not suggest that the SMT
solver is clearly benefited by this encoding reduction. This is different for the hardest instances,
which are benefited from the resource incompatibilities (recall Figure 7.3) and show generally a
time speedup.

8.5.2 CNF Conversion

Figures 8.8 and 8.9 compare the solving times with and without translating the formulas into
CNF for time and task respectively. It can be seen that for time the solving time is clearly
reduced in the easiest instances (up to 100 seconds of solving time), and this is also the case for
the majority of the hardest instances. In contrast, the translation to CNF has a very different
effect with task, since there is no clear victor between the two alternatives and the plot presents
a lot of variance. We can see in Table 8.1 that making the translation into CNF reduces the
number of Boolean variables and clauses in an important proportion, thanks to avoiding the
internal translation of the SMT solver.

1The scatter plots like the ones in Figure 8.6 or Figure 8.7 show, for each instance of a set, which is the best
of the two approaches that are being compared. That is, every point corresponds to a different instance, and each
axis means the execution time of a different approach. If a point is placed in the upper triangle of the plot, the
approach in the y axis is the one that requires most time for that instance, and the opposite happens when the
point is placed in the lower triangle. Recall that we use a timeout of 3600 seconds. An instance that only timed
out in the approach of axis x will be placed in the right vertical edge of the plot. If the timed out approach is
the one in axis y, the point will be placed in the top horizontal edge. Finally, the instances timed out in both
approaches appear in the top right corner of the plot. We will frequently use this kind of plots to compare results.
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Figure 8.4: Percentage of reduction of the number of Boolean variables in the time encoding
due to the new preprocessings. The points in the right vertical edge of the plot correspond to
instances that have been not solved within the timeout of 3600 seconds.
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Figure 8.5: Percentage of reduction of the number of Boolean variables in the task encoding
due to the new preprocessings. The points in the right vertical edge of the plot correspond to
instances that have been not solved within the timeout of 3600 seconds.

47



 0,1

 1

 10

 100

 1000

 0,1  1  10  100  1000

tim
e 

pr
ep

ro
ce

ss
in

gs

time no preprocessings

Figure 8.6: Solving times of the j30SAT set with time using the new preprocessings compared
to the solving time without using the preprocessings.
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Figure 8.7: Solving times of the j30SAT set with task using the new preprocessings compared to
the solving time without using the preprocessings.

48



 0,1

 1

 10

 100

 1000

 0,1  1  10  100  1000

tim
e 

C
N

F

time NO CNF

Figure 8.8: Comparison of the solving times of time transformed into CNF (axis y) and without
transforming into CNF (axis x).
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Figure 8.9: Comparison of the solving times of task transformed into CNF (axis y) and without
transforming into CNF (axis x).
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time task
no CNF CNF % of reduction no CNF CNF % of reduction

clauses 59741 45665 23,56 23487 18949 19,32
Boolean vars 46417 38153 17,8 13115 11841 9,72

Table 8.1: Average number of clauses and Boolean variables of the instances in j30SAT for time
and task, and percentage of the reduction, with and without making the transformation into
CNF. The sizes are counted with the first UB of the linear search.

time task
ite mult BDD ite mult BDD

solved 535 537 544 526 525 531
clauses 45665 14523 178441 18949 3857 140514
atoms 31180 7102 1648 9938 3298 1710
Boolean vars 38153 8986 140376 11841 9374 77184

Table 8.2: Number of instances solved, and average number of clauses, atoms and Boolean
variables of the instances in j30SAT. The total number of instances in j30SAT is 552. The sizes
are counted with the first UB of the linear search.

8.5.3 Ite, Mult and BDD

In this section we compare the performance of the three versions of the encodings: ite, mult and
BDD. Figures 8.10 and 8.11 compare the performance of time ite with time mult and time BDD
respectively. Figures 8.12 and 8.13 compare the performance of task ite with task mult and task
BDD respectively. Finally, Table 8.2 contains, for each encoding, the number of instances solved
without timing out, and the size in terms of number of Boolean variables, atoms and clauses.
The main results are the following:

• The time mult encoding is slower than the time ite encoding in the easiest instances. For
the hardest instances there is no a clear victor although mult solves two instances more
than ite .

• There is no a clear victor between task ite and task mult in the easiest instances, but the
tendency is that mult becomes slightly faster as the hardness of the instance increases.

• The BDD encodings are in clear disadvantage in the easiest instances. This is due to the
time required to compute the ROBDD for the Boolean implementation of the Pseudo-
Boolean constraints. However, there is a very important speedup in the hardest instances,
solving more instances than the other approaches, with 531 instances solved with task and
544 with time.

• The mult encoding is the most compact regarding the number of clauses and Boolean
variables, with a significant improvement with respect to ite also in number of atoms.
BDD is the one that has the least number of atoms, and all of them corresponding to
precedences or constraints on the domain of the variables Si, and hence belonging to the
theory of Integer Difference Logic. On the other hand, the numbers of Boolean variables
and clauses increase a lot, due to the Boolean implementation of the constraints over
resources.
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Figure 8.10: time ite compared to time mult.
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Figure 8.11: time BDD compared to time ite.
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Figure 8.12: task ite compared to task mult.
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Figure 8.13: task BDD compared to task ite.
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Chapter 9

Optimization Procedure

In this chapter we are going to introduce and study a modular optimization framework for the
MRCPSP. Firstly, in Section 9.1 we explain how to efficiently check the feasibility of an instance.
Section 9.2 shows how to find a significantly better upper bound for the makespan than the
trivial upper bound. Finally, Section 9.3 presents a generic algorithm for solving the MRCPSP
and different approaches to simplify the encodings as the optimization procedure evolves.

9.1 Detecting Infeasibility

In Section 2.2 we saw that any MRCPSP instance has a feasible schedule if and only if the
following conditions hold:

• There not exist a cycle in the precedence graph (i.e., an activity is forced to start after
itself finishes).

• There not exist any activity whose demand over a resource in all execution modes is greater
than its capacity.

• There exist a schedule of modes such that all the non-renewable resource constraints (2.6)
are satisfied.

For this reason, it is enough to check that the three of them hold to ensure that the instance is
satisfiable. The first two are easily verifiable in polynomial time. The benchmark sets normally
do not contain instances with such properties because they are not natural of real problem
instances and do not enrich the set. However, the third condition holds in many of the instances
of PSPLib, and it is by itself hard to check. Notice that this condition is independent of the
execution times of the activities. Therefore, assuming that there are not infeasible modes, we
could translate the problem of checking the feasibility of an instance of the MRCPSP as the
problem of checking whether there is a schedule of modes such that the capacity of the non-
renewable resources is never exceeded. Formally, it could be defined as the MRCPSP-SAT,
consisting in a tuple (V,M,R,B, b) where:

• A = {A1, . . . , An} is a set of activities.

• M ∈ Nn is a vector of naturals, being Mi the number of modes that activity i can execute,
with Mi ≥ 1, ∀Ai ∈ A.
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• R = {R1, . . . , Rq} is a set of q non-renewable resources.

• B ∈ Nq is a vector of naturals, being Bk the available amount of each resource Rk.

• b is a matrix of naturals corresponding to the resource demands of activities per mode.
bi,k,o represents the amount of resource Rk used during the execution of activity Ai in
mode o.

The problem consists in finding a schedule of modes SM = (SM1, . . . ,SMn) where SMi,
1 ≤ SMi ≤ Mi, denotes the mode of each activity Ai, and the following constraint has to be
satisfied:

∑
Ai∈A

∑
o∈{1,...,Mi}

ite(SMi = o; bi,k,o; 0)

 ≤ Bk ∀Rk ∈ {R1, . . . , Rq}

This new problem is equisatisfiable to the MRCPSP, but is totally independent of the start
times of the activities. Hence, it is presumably easier to check the feasibility of the MRCPSP-SAT
than of the MRCPSP.

The plot in Figure 9.1 indicates that it is indeed the case. It shows the comparison of execution
time for the unsatisfiable instances of the j30 set, when encoding the MRCPSP-SAT and when
encoding the MRCPSP in the time formulation. Figure 9.2 contains the same comparison for
the task formulation. The two encodings of the MRCPSP have been done using the trivial UB
of the instances. It can be seen that the conversion to the MRCPSP-SAT makes it much faster
to detect the infeasibility of the instances. Between the two encodings for the MRCPSP, the
time is the one that requires more time with big difference. Figure 9.3 shows these pronounced
differences between the three approaches in a box plot1. There is one order of magnitude of
improvement from the time encoding to the task encoding, and one order of magnitude from the
task encoding to the MRCPSP-SAT. Notice also that the variance of the execution varies in the
same fashion among the three approaches.

9.2 Adjusting the Upper Bound for the OptimumMakespan

In Section 4.1.3 we have seen that we can find a trivial upper bound UB for the makespan equal
to the sum of the maximum duration of each activity. This is however an UB very distant from
the optimum makespan in most of the instances. The makespan of any feasible schedule is an
upper bound for the optimum makespan, so we could try to improve the trivial UB by finding a
feasible schedule with a heuristic algorithm. The PSS algorithm presented in Section 4.2 would
suit for this purpose. This heuristic algorithm works for the RCPSP problem, i.e., it does not
deal with variable durations and resource demands depending on the execution mode. However,
the quick feasibility check for the MRCPSP-SAT that we have seen in Section 9.1 returns a
feasible schedule of modes whenever the instance is feasible. If that is the case, the MRCPSP
instance can be adapted by fixing the durations and the renewable resource demands of each
activity according to the schedule of modes. In other words, given a feasible schedule of modes,
we can reduce the problem to an RCPSP, and then the PSS algorithm applies. We can ignore

1Contrarily to the scatter plots that we have seen so far, the box plots like the one in Figure 9.3 do not provide
the information of which is the best approach for each instance, but which is the best approach for a whole set
of instances, by showing the quartiles of the running times of the set with every approach. The individual points
appearing in the boxplot are outliers.
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Figure 9.1: Time comparison of proof of infeasibility between the MRCPSP-SAT, and the
MRCPSP with time ite encoding. The time is expressed in seconds, and the plot has logarithmic
scale in both axes.
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Figure 9.2: Time comparison of proof of infeasibility between the MRCPSP-SAT, and the
MRCPSP with task ite encoding. The time is expressed in seconds, and the plot has logarithmic
scale in both axes.
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Figure 9.3: Time comparison of proof of infeasibility for the MRCPSP-SAT, and the MRCPSP
with time ite and task ite encodings. Axis y contains the execution time expressed in seconds,
and the plot has logarithmic scale in the y axis.

the constraints over the non-renewable resource usages, since we already know that the schedule
of modes satisfies them. The advantage of using this heuristic is that it requires little time to
find a solution with a makespan significantly better than the trivial UB . As seen in Section 8, it
is important for the size of the encoding and for the performance to find a good starting upper
bound. This improvement can be seen in Figure 9.4, which compares the values of the UB given
by the heuristic and the values given by the trivial UB , for all the instances in the j30SAT set.
In the first case, the mean is 76, while in the second case it is 239.

9.3 Optimizing the Makespan

The two previous sections explained how to check if an instance has feasible solutions, and if that
is the case, how to obtain a first UB for the makespan. Together with a final phase of finding
the optimum makespan, they describe the generic algorithm (see Algorithm 2) used to solve the
instances. This algorithm contains three main steps that can be implemented independently:
verify feasibility, bound the makespan, and optimize. We have already covered the two first
steps, and in this section we are going to study algorithms for the last optimization step.

As we have seen in Section 8, the size of the time encoding is highly dependent on the time
horizon, and a good refinement of it can also help to tighten the time windows. In the following
sections we study how reducing the size of the encoding and guiding the solver through the
optimization process can help to design efficient optimization methods.

Will gradually introduce different optimization approaches (Sections 9.3.1, 9.3.2, 9.3.3) while
analysing their behaviour for the time encoding, which has shown to be the highly dependent
on the encoding size. All these approaches are based on the linear search schema commented in
Section 4.4. These methods take advantage of the fact that the time windows are compressed
as the UB decreases. Although task detects more start time window incompatibilities as the
time windows are compressed, and this suppose a reduction of the size of the encoding (as
seen in Section 8.5.1), we have already seen that the hardest instances do not get benefit of this
preprocessing, and some preliminary experimentation has shown that the optimization techniques
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Figure 9.4: Values of the trivial upper bound and of the upper bound given by the PSS heuristic,
on the j30SAT set.

Algorithm 2 Generic solving algorithm for the MRCPSP

Output: Optimum makespan if feasible. Otherwise return infeasible.
INS ← read MRCPSP instance() //Contains: V,A,M, p,E,R,B, b
PREP ← preprocessing() //Contains: E∗, ES, LS, STI,RI,D,B′, b′

ENC ← encode MRCPSP SAT (INS, PREP )
(SAT,MODEL)← smt check(ENC) //Check feasibility, and give a model if any
if SAT then

LB ← l0,n+1 //Trivial lower bound
SM ← get schedule of modes(MODEL)
UB ← pss(INS, SM)
OPTIMUM ← find optimum(LB,UB, INS, PREP )
return OPTIMUM

else
return INFEASIBLE

end if
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presented below do not suppose an improvement for task. For this reason, in this section we will
focus on the time encoding.

9.3.1 Encoding Size Reduction

In Section 3 we presented how some current SMT solvers are able to deal with optimization
problems. They use optimization procedures on the theory solvers to find models with improved
objective value, and restrict the search according to these new bounds. On the other hand, there
are SMT solvers that do not deal with optimization but only with satisfiability checks, as is
also the case for classical SAT solvers. The optimization applications using this kind of solvers
usually implement custom optimization procedures based on successive satisfiability checks by
bounding the objective function. Notice that the two former approaches simply bound the
objective function as the search of the optimum proceeds, but the SMT solver ignores which
problem it is dealing with. Therefore it is unable to use problem specific knowledge to infer
partial models that are logical consequence of the formula given an upper bound of the objective
function. However, this information can be obtained as a preprocessing previous to check the
satisfiability for some bound.

Let us illustrate this idea with an example for the MRCPSP. Suppose a project in which we
have found an upper bound for the makespan equal to 20. In other words, we know that there is
a solution for this project in which the finishing activity starts at time 201. Recall the constraint
of not exceeding the capacity of renewable resources at any time, for the time formulation:( ∑

Ai∈A

∑
o ∈ {1, . . . ,Mi}

ESi ≤ t ≤ LSi + pi,o − 1

ite
(
smi,o ∧ yi,t; b

′
i,k,o; 0

))
≤ B′

k

∀Rk ∈ {R1, . . . , Rv}, ∀t ∈ {0 . . . UB}

Let us suppose that we have found by means of an SMT check a schedule with makespan 20.
Then, we could check for a better makespan by bounding it to 19 and checking again. When we
force UB to be less than or equal to 19, we gain new knowledge. On the one hand, the former
constraint is trivially satisfied for time t = 20, because no activity will be running at time 20. This
means that all the clauses and variables involved in this constraint can be removed. Moreover,
we can refine the encoding for each activity due to time window compression. Let Ai be an
activity with extended precedence to the finishing activity equal to 10, i.e. (i, n + 1, 10) ∈ E∗,
and pmaxi = max1≤o≤Mi

(pi,o) = 5. Then, we know that:

LS i = UB − li,n+1 = UB − 10

LC i = LS i + pmaxi = UB − 5

For the starting UB = 20, it was possible for activity Ai to be running at time 14, because
LCi = 15. However, if we consider UB = 19, we have that LCi = 14, or in other words, we know
for sure that activity Ai will never be running at time 14. In this case, the variable yi,14 can

1Recall that the finishing activity is dummy, it has duration 0 and is defined to be executed once all the other
activities have finished. Therefore the makespan coincides both with the starting time and the ending time of
this activity.
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be assigned to false or removed. Moreover, Si is an integer variable whose domain is defined as
{ESi, . . . , LSi}, and therefore a reduction of LS i also reduces the domain of Si.

We have seen how knowing an upper bound let us gain a-priori knowledge of the values of
some variables, and constraints. Now we analyse how this information could be used to help the
SMT solver in finding a solution. We will do it by using the API of Yices, which does not offer
optimization functionalities, to interact with the SMT solver after every satisfiability check for
a given bound and analyse some metrics.

Let us define some optimization strategies based on multiple checks to the SMT solver,
reducing the upper bound until the optimum if found. Each one makes a different use of the
knowledge obtained with the UB :

Bound makespan: It is the basic linear search schema, presented in Algorithm 3. With this
strategy the encoding is computed and passed to the SMT solver only once, with the
first known UB. Every time a new UB is found, we assert a new constraint of the form
Sn+1 ≤ UB . With this strategy, no knowledge is given to the SMT solver.

Compress time windows: It corresponds to Algorithm 4. It behaves as bound makespan,
and the time windows are compressed in each query according to the UB . It is done by
asserting new clauses that are added to the original encoding. Concretely, we assert single
atom clauses of the form (Si ≤ LSi) to truncate the domain of Si.

Assign variables: It corresponds to Algorithm 5. It behaves as compress time windows, and we
assert single variable clauses of the form (¬yi,t) in each iteration. These variables express
the (im)possibility for an activity Ai to be running at a time t. By doing this, we are
adjusting the range of time an activity can be running with the current UB .

Minimize encoding: It corresponds to Algorithm 6. This approach recomputes the encoding
every time a new UB is discovered. The encoding is adjusted to only define variables and
clauses that make sense for the given UB . This means treating each call to the SMT solver
independently, each time beginning from scratch. In terms of knowledge provided to the
solver, it is equivalent to the assign variables strategy.

The second and third strategies encode the problem only once, and achieve problem simpli-
fication by assigning Boolean variables and reducing domains of integer variables. They do it
by extending the encoding, asserting new clauses in each iteration. Since they are single atom
clauses, the atom must be satisfied to satisfy the clause. This means that the values for the
corresponding Boolean variables can be propagated at base level without any decision. These
strategies do not reduce the size of the encoding (i.e. the number of clauses and variables),
but they do not need to encode the problem each time. For this reason, the internal status of
the solver persists after each iteration. This lets us take advantage of the learning capabilities
of the CDCL(T) SMT solvers by reusing variable activities and learnt lemmas from previous
checks. These strategies require that the SMT solver support multiple satisfiability checks and
extensions of the encoding between checks. This is the case of all the SMT solvers that support
the SMT-LIB 2 standard, so these algorithms could be applied to most available SMT solvers.

On the other hand, the minimize encoding achieves problem simplification by omitting con-
straints and its associated clauses and variables. This strategy could fit to any SMT solver,
because it does not require an interactive API but it initializes the solver from scratch at every
iteration. By doing this, we can reduce the number of variables and clauses of the encoding
according to the current UB and pass a smaller problem to the SMT solver. It has the drawback
of beginning the satisfiability check from scratch every time, and hence losing the activity of
variables and the database of learnt lemmas of the previous iteration. Moreover, if it is very
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easy to find a schedule for the given UB , the time invested to provide the encoding to the solver
could significantly penalize the overall execution time of the iteration.

Algorithm 3 Bound makespan algorithm

Require: The instance is feasible.
Input: LB , UB , instance data (INS), preprocessing data (PREP ).
Output: Optimum makespan
ENC ← encode MRCPSP (LB ,UB , INS, PREP )
smt assert encoding(ENC)
SAT ← smt check()
if SAT then

MODEL← smt get model()
MAKESPAN ← smt get makespan(MODEL)
UB ←MAKESPAN − 1

end if
while SAT and UB ≥ LB do

smt assert(Sn+1 ≤ UB)
SAT ← smt check()
if SAT then
MODEL← smt get model()
MAKESPAN ← smt get makespan(MODEL)
UB ←MAKESPAN − 1

end if
end while
if SAT then

return UB
else

return UB + 1
end if

In order to evaluate the impact of the reduction of the problem size, we have run all the
algorithms for all the instances in the j30SAT set. The time performances are compared by
pairs of algorithms with scatter plots, which illustrate which of the two algorithms is better for
each problem instance. First, we compare in Figure 9.5 the bound makespan algorithm, which is
completely blind, and the compress time windows algorithm, which performs domain reduction.
We can see that there is no clear dominance between one strategy and the other. This means
that we do not provide relevant information to the SMT solver by explicitly reducing the time
windows.

Let us analyse why it happens. What we are asserting in the compress time windows algorithm
is:

Si ≤ LSi = UB − li,n+1 ∀Ai ∈ A (9.1)

Sn+1 ≤ UB (9.2)

whereas in the bound makespan algorithm we only assert (9.2). Recall the encoding of extended
precedences of variables:

Sj − Si ≥ li,j ∀(Ai, Aj , li,j) ∈ E∗
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Algorithm 4 Compress time windows algorithm

Require: The instance is feasible.
Input: LB , UB , instance data (INS), preprocessing data (PREP ).
Output: Optimum makespan
ENC ← encode MRCPSP (LB ,UB , INS, PREP )
smt assert encoding(ENC)
SAT ← smt check()
if SAT then

MODEL← smt get model()
MAKESPAN ← smt get makespan(MODEL)
UB ←MAKESPAN − 1

end if
while SAT and UB ≥ LB do

PREP ← compress time windows(UB,PREP )
smt assert(Sn+1 ≤ UB)
smt assert domain reduction(INS, PREP ) //Clauses (Si ≤ LSi)
SAT ← smt check()
if SAT then
MODEL← smt get model()
MAKESPAN ← smt get makespan(MODEL)
UB ←MAKESPAN − 1

end if
end while
if SAT then

return UB
else

return UB + 1
end if
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Figure 9.5: Comparison of time of bound makespan and compress time windows algorithms for
the j30SAT set. The time is expressed in seconds and both axes are in logarithmic scale.
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Algorithm 5 Assign variables algorithm

Require: The instance is feasible.
Input: LB , UB , instance data (INS), preprocessing data (PREP ).
Output: Optimum makespan
ENC ← encode MRCPSP (LB ,UB , INS, PREP )
smt assert encoding(ENC)
SAT ← smt check()
if SAT then

MODEL← smt get model()
MAKESPAN ← smt get makespan(MODEL)
UB ←MAKESPAN − 1

end if
while SAT and UB ≥ LB do

PREP ← compress time windows(UB,PREP )
smt assert(Sn+1 ≤ UB)
smt assert domain reduction(INS, PREP ) //Clauses (Si ≤ LSi)
smt assert trivial variables(INS, PREP ) //Clauses (¬yi,t)
SAT ← smt check()
if SAT then
MODEL← smt get model()
MAKESPAN ← smt get makespan(MODEL)
UB ←MAKESPAN − 1

end if
end while
if SAT then

return UB
else

return UB + 1
end if

62



Algorithm 6 Minimize encoding algorithm

Require: The instance is feasible.
Input: LB , UB , instance data (INS), preprocessing data (PREP ).
Output: Optimum makespan
ENC ← encode MRCPSP (LB ,UB , INS, PREP )
smt assert encoding(ENC)
SAT ← smt check()
if SAT then

MODEL← smt get model()
MAKESPAN ← smt get makespan(MODEL)
UB ←MAKESPAN − 1

end if
while SAT and UB ≥ LB do

PREP ← compress time windows(UB,PREP )
ENC ← encode MRCPSP (LB ,UB , INS, PREP )
smt assert encoding(ENC)
SAT ← smt check()
if SAT then
MODEL← smt get model()
MAKESPAN ← smt get makespan(MODEL)
UB ←MAKESPAN − 1

end if
end while
if SAT then

return UB
else

return UB + 1
end if
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Figure 9.6: Comparison of time of bound makespan and assign variables algorithms for the
j30SAT set. The time is expressed in seconds and both axes are in logarithmic scale.

Using only these constraints and (9.2), the theory solver is able to propagate the same information
that we are asserting:

Si ≤ Sn+1 − li,n+1 ≤ UB − li,n+1 ∀Ai

We get a different result when comparing the time of bound makespan and assign variables
algorithm. It can be seen in Figure 9.6 that the former requires significantly more time in almost
all the instances than the latter.

Finally, Figure 9.7 shows the comparison between the bound makespan and the minimize
encoding algorithms. For the easiest instances the latter is in clear disadvantage compared to
the former, whereas the opposite happens with the instances requiring more than 100 seconds.
This is happening because the computation of the encoding and the initialization of the SMT
solver on each iteration penalize the total execution time of the iteration. However, for the hard
instances this initialization time becomes negligible compared to the time needed to solve the
last iterations, and the minimize encoding goes much faster in those cases.

9.3.2 Mixed Strategies

The time required for the easiest instances with the minimize encoding algorithm could be
reasonable for many environments, especially if we compare it with the time needed to solve the
hardest instances. Nevertheless, there is a time penalization for trying to simplify a query to
the SMT solver that turns out to be very easy to compute. This leads to the conclusion that
it is not worth to build new simplified encodings for easy to solve instances. An alternative
that has shown good performance is to force the value of the variables as they become trivial.
A more flexible approach are mixed algorithms, which could serve to exploit the best of each
approach at each time. Let us analyse this idea. Figure 9.8 shows the computation time of the
smt check() operation in each iteration of the assign variables algorithm, for some of the hardest
instances (with a total computation time to be solved higher than 1000 seconds). The leftmost
point of each function corresponds to the starting UB , and the rightmost point to the last check
that proves optimality. Both axes have been normalized to make all the instances comparable.
Figure 9.9 contains the same results with y axis in logarithmic scale.
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Figure 9.7: Comparison of time of bound makespan and minimize encoding algorithms for the
j30SAT set. The time is expressed in seconds and both axes are in logarithmic scale.
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Figure 9.8: Execution times for the assign variables algorithm for some of the hard instances of
j30SAT set. The time is expressed in seconds and both axes are normalized
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Figure 9.9: Execution times for the assign variables algorithm for some of the hard instances of
j30SAT set. The time is expressed in seconds, both axes are normalized, and the y axis is in
logarithmic scale.

These plots show that approximately the first 80% of the iterations require small computation
time and there is almost no growth of it, which means that it is easy for the solver to find schedules
that fit the given UB . On the other hand, in the last 5% of the iterations the computation time
increases substantially. This evolution of the computation time through the iterations suggests
that we could try to anticipate when the minimization of the encoding is worth. One effective
way to do it would be recording the computation time needed for the check in every iteration,
and once it becomes significantly bigger than the encoding and initialization time, change of
strategy for the next iterations. For the easiest instances, the strategy would never be changed.
We are going to study the following mixed algorithm:

Mixed strategy: It corresponds to Algorithm 7. The search starts behaving like the assign
variables strategy. Once it estimates that it is becoming hard for the SMT solver to find a
solution for the given UB , it changes to the minimize encoding strategy. By doing this, it
avoids to encode the instance and initialize the SMT solver every time while it is not worth,
but it encodes the problem again for every UB once the time of initializing is negligible
compared to the solving time. We switch of strategy when the computation time of the
last check operation is bigger than the time required to encode the problem and initialize
the solver multiplied by a constant factor c.

The difference between this new strategy and assign variables is that the first one prioritises
the minimization of the encoding and the second one the reuse of the learning of the previous
iterations.

We have evaluated the performance of the mixed strategy on the j30 set, setting the parameter
c = 10, thus requiring an order of magnitude of difference to switch of strategy. The first result
that we can appreciate (see Figure 9.10) is that the mixed strategy effectively serves to distinguish
the hardest instances from the easiest, and hence avoiding the initialization time when it is not
worth (cf. Figure 9.7). Now, we have two different approaches, namely assign variables andmixed
strategy, that improve the performance of the optimization process by reducing the complexity
of the problem as it gets close to the optimum makespan, and work well both for easy and hard
instances. Figure 9.11 contains the comparison of times between them. Obviously they have the
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Algorithm 7 Mixed strategy

Require: The instance is feasible.
Input: LB , UB , instance data (INS), preprocessing data (PREP ), factor of difference between
encoding time and check time (c).

Output: Optimum makespan
CHANGED ← false
TENC ← Record the computation time of the following two operations
ENC ← encode MRCPSP (LB ,UB , INS, PREP )
smt assert encoding(ENC)
TCHECK ← Record the computation time of the following operation
SAT ← smt check()
if SAT then

MODEL← smt get model()
MAKESPAN ← smt get makespan(MODEL)
UB ←MAKESPAN − 1

end if
while SAT and UB ≥ LB do

PREP ← compress time windows(UB,PREP )
if CHANGED or TCHECK ≥ c · TENC then
CHANGED ← true
ENC ← encode MRCPSP (LB ,UB , INS, PREP )
smt assert encoding(ENC)

else
smt assert(Sn+1 ≤ UB)
smt assert domain reduction(INS, PREP ) //Clauses (Si ≤ LSi)
smt assert trivial atoms(INS, PREP ) //Clauses (¬yi,t)
NR ← smt get restarts()
NF ← smt get forgets()

end if
TCHECK ← Record the computation time of the following operation
SAT ← smt check(ENC)
if SAT then
MODEL← smt get model()
MAKESPAN ← smt get makespan(MODEL)
UB ←MAKESPAN − 1

end if
end while
if SAT then

return UB
else

return UB + 1
end if
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Figure 9.10: Comparison of time of bound makespan and mixed strategy algorithms for the
j30SAT set. The time is expressed in seconds and both axes are in logarithmic scale.

same performance (with small variability due to the randomness of the solver) for the easiest
instances, in which case the mixed strategy behaves exactly like assign variables. In the hardest
instances there is no clear victor, what leads to the conclusion that both the simplification by
variable assignment plus the reuse of the learning, and the minimization of the encoding, are
equally good approaches to boost the optimization of the MRCPSP.

9.3.3 Quantification of the Simplification

It is important to notice that in this chapter we are simplifying the work to the SMT solver by
using problem specific properties that the solver ignores. It does not mean that the SMT solvers
are unable to reduce the problem size as they get close to the optimum solution, nor that they
cannot discover trivial values for the variables. In fact, Yices performs clause database reduction
and assignment of trivial Boolean variables before starting a satisfiability check. Nevertheless,
it can only be done by reasoning over the clauses and the expressions of the theory, not by
being aware of the problem itself. What we have shown is that can we can exploit this problem
information to further help the SMT solver in the simplification of the problem, and save it the
work of simplifying the problem. The following results help to explain the previous time results,
by analysing how the problem size and complexity evolves for each of the studied strategies.

In Table 9.1 we can see how the problem size varies for each approach in terms of average
number number of variables and average number of clauses among all the instances in the set.
The first column contains the values for the first UB in the first iteration (that is the same in all
algorithms). The other columns contain, for each algorithm, the values of the last iteration. In
order to compute the averages with equality of conditions, we only consider the instances that
have been solved without exceeding the time-out with all the algorithms.

We can see that the sizes are much small in the minimize encoding algorithm than in the
other approaches. The mixed strategy has values similar to assign variables because the set of
hard instances in which the switch of strategy is performed is small compared to the set of easy
instances. It is also interesting to notice that the solver is able to reduce the number clauses with
all the algorithms that do not do it explicitly, specially for the assign variables algorithm. This
is not the case for the number of variables, but the results have shown that it is not a problem
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Figure 9.11: Comparison of time of assign variables and mixed strategy algorithms for the j30SAT
set. The time is expressed in seconds and both axes are in logarithmic scale.

Algorithm
Start
UB

Bound
makespan

Compress
time windows

Assign
variables

Minimize
encoding

Mixed
startegy

Bool vars 39951,76 39951,76 39951,76 39951,76 9521,26 35587,33
Clauses 78702,05 67563,65 61984,62 51849,84 17517,33 51393,56

Table 9.1: The first column contains the average number of Boolean variables and the number of
clauses of the time ite encoding for the j30SAT instances with the UB given by PSS. The other
columns contain the number of Boolean variables and number of clauses at the last optimization
step, for every optimization algorithm.
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Figure 9.12: Evolution of the number of clauses with the different algorithms through the itera-
tions for the instance j3045 5.

if we assign their value. Figure 9.12 shows the evolution through the iterations of the number of
clauses respectively for instance j3045 5.
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Chapter 10

Decision Heuristics

In the previous chapters we have presented several methods that treated the SMT solver as a black
box, i.e. we have only used the API to pass encodings to the solver and to guide the optimization
procedure. In this chapter we are going to study how to tune an SMT solver to adapt its internal
algorithms to our purpose. In particular, we want to study the effects of defining ad-hoc heuristics
in the selection of the variables of decide operations. VSID [28], the heuristic currently used by
SAT/SMT solvers, has been well studied and refined for giving a good performance to the conflict
driven solvers, and its nature is in fact to deal with the conflictive variables. This makes evident
the difficulty of finding heuristics that could outperform the VSID heuristic, but the work in this
chapter is a first step in this line that will help to better understand the behaviour of the solver
for the given encodings. Section 10.1 explains the basic implementation details of Yices 2, putting
special emphasis on the decision of variables. In Section 10.2 we present a modification of the
implementation to support user-defined heuristics for the decision of variables. In Section 10.3
we present some heuristics for the decision of variables for the MRCPSP. Finally, in Section 10.4
we expose some initial performance results and analysis of the behaviour of the solver.

10.1 Study of Yices 2 Implementation

Yices 2’s source code is free to use and modify for academic purposes. It is fully written in C
language, and uses the GNU Multiple Precision Library (GMPLib) and the GNU gperf library of
perfect hash function generators. It can be obtained at its web page (http://yices.csl.sri.
com/), together with the manual and the API reference. A first step previous to define heuristics
for the decision of variables has been to study the implementation of Yices.

As explained in the manual, the architecture of Yices 2 consists of three main modules: the
term database, the context management and the model management (see Figure 10.1). The term
database stores all the variables and expressions defined through the API, dealing with multiple
or equivalent definitions of a same term. The context management module provides and manages
contexts, which are central data structures to assert formulas and check their satisfiability. It
contains internalization mechanisms to map the terms and formulas provided by the user to
internal Boolean and theory variables, and CNF formulas, which are the data structures used by
the CDCL(T) solver also included in this module. Finally, the model management module offers
mechanisms to query the results of models obtained with satisfiability checks. The internal solver
is composed of a CDCL SAT solver and some theory solvers that support the following theories:
uninterpreted functions with equality, integer and real linear arithmetic, theory of bitvectors,
and theory of arrays (see Figure 10.2).
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Figure 10.1: Top-level Yices 2 Architecture. Figure obtained from [17].

Figure 10.2: Yices 2 solver components. Figure obtained from [17].
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Neither the manual nor the API are intended to describe the source code. Nevertheless the
code is well self-documented and the different functions and data structures are well described
in the comments. An important work during this thesis has consisted in studying and under-
standing this state-of-the-art implementation of an SMT solver. Now the most representative
characteristics are described, specially the ones closely related with the heuristic of decision of
variables.

10.1.1 SMT Core

The CDCL SAT Solver component is mainly composed by the smt core, that is a data structure
that contains all the clauses, variables and data used in the solving process. Also in the core,
there are implemented the well-known CDCL methods presented in Chapter 3. The most relevant
data contained in the smt core are:

• Sizes of the data, such as number of variables or number of problem clauses, learned clauses
and total clauses.

• Boolean values of the variables, antecedent for its propagation if that’s the case (propaga-
tion of a certain clause, explanation of the theory solver), and its decision level.

• Current decision level.

• Activity of the lemmas, to be used when choosing which lemmas to forget.

• An assignment stack for the partial model under construction.

• A priority queue for the VSID implementation of the selection of variables to decide.

Every Boolean variable is identified by an integer in the range [0,nvars − 1], where nvars is
the number of variables. Most of the data that have an entry for every Boolean variable is stored
in arrays of size nvars, that are indexed by the identifier of the corresponding variable. For
instance, the Boolean value and the decision level of the variables are stored in arrays indexed
by identifier.

For a variable x, its corresponding positive literal is identified by the integer 2x, and the
negative literal by 2x + 1. The value of a Boolean variable is represented with two bits, that
have the following meaning:

00: The variable is not assigned, and its preferred value is false.

01: The variable is not assigned, and its preferred value is true.

10: The variable is assigned to false.

11: The variable is assigned to true.

This representation of the values is intended to store the candidate value for an unassigned
variable if it is used in a decide operation.

As VSID requires, the smt core keeps track of an activity1 measure for each Boolean variable.
The activity of a variable quantifies the influence of the variable in finding conflicts, and the
variable selected to make a decide operation is always the unassigned one with greatest activity
at that moment. There is a data type used for the smt core, named var heap t, defined as follows:

1In this chapter the term activity appears many times. The activity of a variable is a key metric for the VSID
heuristic. This activity has nothing to do with the activities of an MRCPSP.
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typedef struct var_heap_s {

uint32_t size;

double *activity;

bvar_t *heap;

int32_t *heap_index;

uint32_t heap_last;

double act_increment;

double inv_act_decay;

} var_heap_t;

This data type contains all the data needed for the implementation of the VSID heuristic.
The meaning of each attribute is the following:

size: number of variables of the problem.

activity: activity for every variable in the problem, independently of whether it is contained in
heap.

heap: array implementation of a heap (priority queue).

heap index: array containing the index of every variable x in the array heap. If x is not in the
heap, heap index [i] = −1.

heap last: index of the last element in the heap. It is needed for the implementation of the
operations of the heap.

act increment: increment of the activity of the variables. Whenever a variable v appears in
the analysis of a conflict, its activity value is incremented as follows:

activity [v] = activity [v] ∗ act increment

inv act decay: inverse of the decay factor of the activity of the variables. This value is greater
or equal than 1. After a conflict, the act increment parameter is updated as follows:

act increment = act increment ∗ inv act decay

The policy to maintain the variables in the heap is the following:

• When a variable is assigned to the partial model, it is not removed from the heap.

• When a variable is needed to make a decision, the top of the heap is retrieved. While the
top variable is an already assigned variable, it is removed from the heap and the next top
is retrieved. This process will finish either obtaining the unassigned variable with greatest
activity if any, or when the heap is empty, what means that all the Boolean variables are
assigned and hence we have obtained a Boolean model. Having a Boolean model does not
necessarily mean that the problem is satisfiable: a last consistency check to the theory
solver might be needed.

• Every time a Boolean variable is deleted from the model, either by a backtracking operation
after a conflict, or by a restart, it is inserted without repetition in the heap.
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10.1.2 Internalization of the Terms

The internal data structures of the smt core are totally hidden to the user of the API. Instead
of it, the data types that the user handles are terms. The following are some kinds of terms that
can be used:

• Boolean constants (true or false) and constants of a theory (integer, real, etc.)

• Boolean variables of variables from a theory

• Boolean operations: not, and, or, implication, etc.

• Arithmetic operations between terms: sum, multiplication, etc.

• Arithmetic expressions (atoms) of the form: t1 ≤ t2, t1 = t2, etc.

• If-then-else operations: ite(t1; t2; t3)

• Other kinds of terms

Each term has a type associated. For instance, the Boolean variables and the arithmetic atoms
have Boolean type, whereas integer variables have integer type. Any Boolean term is a formula,
and the user can assert as many formulas to a context as needed before making a satisfiability
check. The whole problem formulation is the conjunction of all the asserted formulas in a context.

Once a formula is asserted, it is the turn for the internalizer to convert the Boolean formula
expressed with terms to a CNF formula. At this moment, the theory expressions are passed to
the theory solver, and all term Boolean variables and term atoms are associated with a literal
of an internal Boolean variable1. Let us put this relation between terms and internal Boolean
variables more clear with an example. Consider the atom x ≤ 4, where x is an integer variable.
This is indeed a Boolean term, and it will be associated with an internal Boolean variable, say
b. Then, Yices will make one of the two following mappings:

x ≤ 4↔ b

x ≤ 4↔ ¬b
In other words, the mapping is done with an internal Boolean variable and a polarity (i.e. with
a literal). Let us assume that the top mapping is the one performed. Then, the term ¬(x ≤ 4)
will also be mapped to the internal variable b, but to the opposite literal:

¬(x ≤ 4)↔ ¬b

Moreover, the internalization process deals with polymorphisms, so the following mappings are
also being defined:

x > 4↔ ¬b
¬(x > 4)↔ b

The relation between a Boolean term and its internal Boolean variable (if any) does not exist
until a formula containing this term is asserted. The formulas can be asserted gradually, so the
internal CNF formula is also created gradually.

Another important aspect is that it is not required that the asserted formulas are in conjunc-
tive normal form, but it can be any formula whose parsing tree has a Boolean term in the root.
For instance, the following would be a valid formula to assert:

1When we say term Boolean variable or term atom, we refer to terms corresponding to Boolean variables or
atoms. When we say internal Boolean variable, we refer to Boolean variables in the internal CNF representation
of the solver.
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(x ≤ 3 ∧ y ≥ 5z + 2)→ b ∨ (x = z)

To deal with generic formulas, a flattening process is done in which new auxiliary Boolean
variables may be created.

Although the mapping between variables and terms is hidden to the user, it persists during
the life of the context, so that the user can obtain a model after a satisfiability check of a
satisfiable formula, and query the value of each one of the terms.

10.2 An Extension to Support User-Defined Heuristics

The main goal that we are pursuing is to evaluate alternative heuristics to VSID that take into
account the meaning of the variables in the given encoding. Since we are dealing with different
encodings, and the intention is to further investigate in this area with different kind of scheduling
problems, we have designed a framework flexible enough to handle with diverse problems. The
way to define the desired decision heuristics is by means of an extension of Yices API.

10.2.1 Extension of the API

We have designed two generic heuristics that can be used to define new and more specific heuris-
tics. Namely they are the order heuristic and the decide allowed heuristics:

Order heuristic An order of the variables of the problem is given. The selected variable to
decide will be the first in the order that is unassigned. It is not imposed that all the
variables are contained in the order.

Decide allowed heuristic A set of variables that are allowed to be used to decide is given.
Inside this set, which variable to chose to decide will be determined following the VSID
heuristic, i.e., it will be the unassigned one with greatest activity. It is only allowed to
select variables from this set unless all of them have a value assigned.

We are not enforcing that all the variables are in the order for the order heuristic, nor that
all the variables are allowed to be decided in the decide allowed heuristic. Then, there is the
possibility that all the variables in the order or the decide allowed variables are assigned and the
solver still requires to make decisions. In this case, the VSID heuristic will be used to chose one
of the remaining variables.

Moreover, we provide the functionality of determining for each one of the variables which will
be the polarity when making a decision, i.e., which of the true (non negated) literal and the false
(negated) literal of the variable is added as a decision to the model. Yices provides many global
settings for choosing the polarity, which are applied to the whole set of variables. Exactly one
of the following can be selected:

• Decide always the true literal.

• Decide always the false literal.

• Decide the true literal if the variable is a pure Boolean (i.e. it does not have an atom
attached). Delegate to the theory solver otherwise.

• Decide the false literal if the variable is a pure Boolean. Delegate to the theory solver
otherwise.

• Use the last value assigned to the variable.
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• Use the last value if the variable is a pure Boolean. Delegate to the theory solver otherwise.

We extended Yices so that the user can specify one of the following behaviours independently
for each one of the variables:

• Decide always the true literal.

• Decide always the false literal.

• Use the global setting.

Finally, there is a last introduced functionality that is specifying the initial activity of a
variable. It is thought to be able to guide the VSID heuristic at the first steps of the search.

10.2.2 Implementation of the Extension

The first thing to take into account when extending the API is that it only deals with terms
and not with internal Boolean variables. Nevertheless, we know that once we have asserted
the formulas, the mapping is complete. We add new functions to the API to be called after the
formulas have been asserted, so that we can directly store in the smt core the information related
with the newly defined heuristics. The following are the newly defined functions:

// ctx: context with asserted formulas

//t: a Yices term

// sign: output parameter , polarization of the internalization (i.e. negated

literal or non -negated literal)

// if t is mapped to x, sign = true.
// if t is mapped to ¬x, sign = false.
// return identifier of the internal Boolean variable of term t.
// If t is not a Boolean term , return -2.

// If t is not internalized as Boolean variable in the context ctx return -1.

// This function is used to discover the relation with Boolean terms and

internal Boolean variables (literals)

bvar_t custom_get_boolvar_of_term(context_t *ctx , term_t t, bool * sign);

// ctx: context with asserted formulas

//x: an internal Boolean variable in ctx

//If and only if allowed = true, put x in the set of decide allowed variables

// This function is used to specify the decide allowed heuristic

void custom_bvar_set_decide_allowed(context_t *ctx , bvar_t x, bool allowed);

// ctx: context with asserted formulas

// order: list of internal Boolean variables , which order will be followed when

// deciding. The first in the list will be the first to decide , and the

// last one the last to decide

// size: number of variables in order

// This function is used to specity the order heuristic

void custom_set_decision_order(context_t *ctx , bvar_t *order , int size);

// ctx: context with asserted formulas

//x: an internal Boolean variable in ctx

// mode: DECIDE_TRUE , DECIDE_FALSE or GLOBAL_SETTING

// This function especifies which polarity will be used when variable ’x’ is

decided

void custom_bvar_set_polarity_decision_mode(context_t *ctx , bvar_t x,
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polarity_decision_mode_t mode);

// ctx: context with asserted formulas

//x: an internal Boolean variable in ctx

//a: activity value

// Set activity value of x
void custom_bvar_set_activity(context_t *ctx , bvar_t x, double a);

These methods provide the functionality to obtain the internal Boolean variable corresponding
to a term (if any), and to specify the decide allowed and order heuristics. It is also needed to
specify which heuristic is going to be used. This is done with the following already existing
function of the API of Yices:

yices_set_param(param_t *param , const char *name , const char *value);

This is the function used to specify the parameters of the solving process. We have added a
new parameter named decide-heuristic that can take as values vsid, decide-allowed and order to
specify the corresponding heuristic method.

Moreover, some modifications have been done to the smt core to implement these new func-
tionalities. Most data of the core is stored using few bits to save memory usage. Following this
same fashion, a new array indexed by variable identifier has been added, named heuristic params,
where the bits of each entry have the following meaning:

bit 0 (less weight): 1 if the variable is in decide allowed set, 0 otherwise (for decide allowed
heuristic).

bits 2-1: polarity decision mode. 00: global setting. 10: decide true. 11: decide false.

bit 3: 1 if the variable is contained in the decision order, 0 otherwise (for order heuristic).

We will say that a variable is a priority variable if it is either part of the decide allowed set,
or it is included in the order. Otherwise, we will say that it is a non-priority variable. Both in
decide allowed and order heuristics, the non priority variables will not be decided until all the
priority variables are in the model. The heap t data type of Yices is modified so that it maintains
two heaps: heap for the non priority variables, and heap priority for the priority variables.

typedef struct var_heap_s {

uint32_t size;

double *activity;

bvar_t *heap;

bvar_t *heap_priority; // New attribute

int32_t *heap_index;

uint32_t heap_last;

uint32_t heap_priority_last; // New attribute

double act_increment;

double inv_act_decay;

} var_heap_t;

Each variable will be added, retrieved or removed from its corresponding heap according to
whether it is a priority variable or not. This modification is enough to manage the decide allowed
heuristic. Regarding the order heuristic, the heap priority is also used to manage the order of
decision of the variables. This is done by initializing the activity of the variables in the order so
that the lower position in the order, the higher the activity. Then, this order is preserved by not
updating the activities of the variables in conflicts, which are frozen.

78



10.3 Heuristics for the MRCPSP

We can find in the literature a variety of heuristics for scheduling problems, both for exact meth-
ods and for meta-heuristics. There are several heuristics for branch-and-bound methods that
incrementally construct schedules (constructive heuristics). An overview of different heuristics
can be found in [4]. A recurrent strategy is to first schedule the activities with shortest critical
path from the starting activity (i.e. the ones with lower earliest start time). In [34] and [40]
conflict-driven branching approaches are proposed for the assignment of start times of the activi-
ties. The latter is in fact the current state-of-the-art solver for the MRCPSP. The authors of [34]
go a step further and propose a hybrid approach for lazy clause generation that at the beginning
uses a constructive heuristic and then turns to use a conflict-driven heuristic. We have also seen
in Section 9.1 that we can treat a component of the problem, namely the satisfaction of the
non-renewable resource constraints, independently to find feasible schedules of modes (although
they do not guarantee optimal schedules). In [5] the authors tackle another multi-mode variant
of scheduling a problem in two steps, first finding suitable modes and then dealing with the other
components of the problem. The decide operation in the SAT/SMT solvers can be seen as the
equivalent of the branching of other approaches.

What we will do in this chapter is to define several heuristics for our encodings of the MRCPSP
problem and study how the SMT solver behaves with them. Following the line of the heuristics
of the literature, we are going to define heuristics that prioritize some variables depending on
their meaning in combination of the VSID heuristic, and also evaluate constructive heuristics
prioritizing the activities with leftmost time windows. The extension of the API that we have
presented will serve us to define these heuristics, based on the decide allowed (Section 10.3.1)
and order heuristics (Section 10.3.2). Since the heuristics are defined over the variables of the
encoding, there are some heuristics that are exclusive for the time encoding and some that are
exclusive for the task encoding.

10.3.1 Decide Allowed Heuristics

We have seen the generic behaviour of this kind of heuristics in Section 10.2. To define a new
heuristic, it is only needed to define the set of decide allowed variables, from now on denoted by
W .

Assign modes

In this heuristic we will prioritize the assignment of the modes to the activities. This heuristic
can be applied both in the time and task encodings. The decide allowed set is defined as:

W = {mi,o | ∀Ai ∈ A, o ∈ {1, . . . ,Mi}}

Bound start times

This heuristic will prioritize the atoms that bound the start time of the activities, i.e., the atoms
with a form similar to (Si ≤ k) or (k < Si), being k a constant. In particular we can find such
atoms in the time formulation:
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∀Rk ∈ {R1, . . . , Rv}, ∀t ∈ {0 . . . UB}

Notice that an atom of the form (k1 < Si + k2) where k1 and k2 are constants is equivalent
to the atom (k < Si) where k = k1 − k2. Moreover, an atom of the form (k < Si) is equivalent
to ¬(Si ≤ k). Actually the internalization mechanism of Yices deals with these polymorphisms
(as seen in Section 10.1.2), so it is enough to consider atoms of the form (Si ≤ k) to capture all
the internal Boolean variables.

The decide allowed set is defined as1:

W = {Si ≤ k | ∀Ai ∈ A,ES i ≤ k ≤ LS i}

This heuristic will only apply to the time formulation, since the task formulation does not
contain any atom which assigns or bounds the values of the variables Si.

Define z1i,j

This heuristic prioritizes the decision of z1i,j variables for the task formulation. The decide allowed
set is defined as:

W = {z1i,j | ∀Ai, Aj ∈ A, i ̸= j,¬incomp(i, j)}

Define z2i,j

This heuristic prioritizes the decision of z2i,j variables for the task formulation. The decide allowed
set is defined as:

W = {z2i,j | ∀Ai, Aj ∈ A, i ̸= j,¬incomp(i, j)}

Define z1i,j and z2i,j

This heuristic is designed to prioritize the decision of both z1i,j and z2i,j variables for the task
formulation. The decide allowed set is defined as:

W = {z1i,j , z2i,j | ∀Ai, Aj ∈ A, i ̸= j,¬incomp(i, j)}
1The atom (t < Si + pi,o), which is equivalent to ¬(Si ≤ t−pi,o) can make k smaller than ESi and hence not

being included in the decide allowed set. But if that is the case, this atom becomes trivially true (by definition
Si ≥ ES i), and it is not included in the encoding.
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10.3.2 Order Heuristics

In the case of order, a heuristic will be defined by a complete order of a subset of the variables.
We will formally define it as a tuple (O, f), where O is the set of variables in the order, and f a
function such that:

• f(x, y) needs to be only defined for x ̸= y as we do not accept repetitions in O.

• f(x, y) is true if x precedes y in the order and false otherwise.

• Exactly one of f(x, y) and f(y, x) is true.

• It is transitive: f(x, y) and f(x, z) implies f(x, z)

Prioritize leftmost activities

Similarly to the bound start times heuristic, this heuristic will prioritize bounding the start times
of the variables, but in a specific order. O is defined as:

O = {Si ≤ k | ∀Ai ∈ A,ES i ≤ k ≤ LS i}

f is defined to first bound the activities with lowest ES , and for a same activity the smaller
start times will be prioritized. In case of ties, a lexicographical order will be used.

f(Si ≤ k1, Sj ≤ k2) =


true if ES i < ES j

false if ES j < ES i

i < j if ES i = ES j and i ̸= j

k1 < k2 if i = j

Prioritize leftmost times

This heuristic resembles the prioritize leftmost activities heuristic, but it prioritizes the atoms
that enforce an start time of some activity to be small. O is defined equally:

O = {Si ≤ k | ∀Ai ∈ A,ES i ≤ k ≤ LS i}

f is defined to first decide the atoms which enforce a smallest start time for some activity.
Ties are broken prioritizing the activity with lowest ES , and then following the lexicographical
order.

f(Si ≤ k1, Sj ≤ k2) =



true if k1 < k2

false if k2 < k1

true if k1 = k2 and ES i < ES j

false if k1 = k2 and ES j < ES i

i < j if k1 = k2 and ES i = ES j

81



10.4 Results

We have run a set of experiments on the set j30SAT to evaluate the performance of the previ-
ous heuristics, and obtain information of the effects of prioritizing each kind of variable in the
decisions. We have used the mult encoding, which has shown to be the one that introduces less
auxiliary variables. For each one of the previous heuristics, we have solved the benchmark set
with three different settings for the polarity of the decided literals:

default Use the default polarity selection mode of Yices on all variables, which uses the last
Boolean value assigned to the variable.

true Decide the true literal for the variables in W or O, and use Yices’ default for the remaining
variables.

false Decide the false literal for the variables in W or O, and use Yices’ default for the remaining
variables.

The results are shown in Table 10.1, which for each heuristic and polarity decision mode contains
the first quartile, the median, the third quartile and the mean solving times, and the number of
instances solved. The time of the unsolved instances has been counted as 3600. Each heuristic
has been used with the encoding for which it is suitable, and the Assign modes heuristic has
been used with both time and task. The table also contains the same results using the VSID
heuristic with default polarity.

We can see that clearly the proposed heuristics are far from beating the VSID heuristic, since
all the new heuristics solved less instances than VSID, and the quartiles are in general higher.
However, there are some interesting results that could motivate further research in the use of
heuristics specific for each encoding:

• The assign modes heuristic has significantly smaller quartiles than the other heuristics,
both for time and task. For the time encoding, the third quartile is between 2 and 4,5
seconds depending on the polarity, whereas the bound start times has values of 12,90, 40,51
and 93,53. The differences are more pronounced in the heuristics for task, which has the
third quartile smaller than 9 seconds with the assign modes heuristic and greater that 200
seconds with the remaining heuristics.

• The order heuristics behave significantly better with true polarity than with the other
polarities, i.e., deciding that the activities start as soon as they can. Notice that if the
polarity is set to false, less than the 75% of the instances are solved within the timeout of
3600 seconds with both order heuristics, whereas with true polarity the 75% of the instances
are solved with at most 35 seconds approximately. The performance is also significantly
better compared to using the default polarity selection mode. There are not significant
differences between the two order heuristics.

• The bound start times heuristic, which prioritizes over the same set of variables as the
order heuristics but without pre-establishing an order, solves more instances and has lower
quartiles than the order heuristics. As happened with the order heuristics, the false polarity
is the worst choice. In this case, the default polarity is the best to solve the hard instances
(with lower third quartile and more instances solved), but the true polarity is the fastest
to compute the easiest solutions (with lower first quartile and median).

• Between deciding over z1i,j , z
2
i,j , and both z1i,j and z2i,j , the better choice is to decide over

z2i,j . The default polarity is significantly better for the easiest instances, but the true
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heuristic polarity 25% median 75% mean n. solved
VSID time default 0,71 1,19 2,38 144,328 536
VSID task default 0,48 1,095 3,81 202,686 525

Assign modes time
default 0,67 1,14 2,83 328,662 508
true 0,60 1,025 2,32 322,996 508
false 0,76 1,28 4,26 346,103 503

Assign modes task
default 0,48 1,06 8,89 419,371 493
true 0,34 0,605 4,67 412,365 491
false 0,53 1,25 8,58 400,137 495

Leftmost activities
default 1,22 3,97 461,80 822,659 438
true 0,60 1,245 36,75 609,583 467
false 1,28 5,15 3600 1047,33 403

Leftmost times
default 1,20 3,355 354,64 802,44 439
true 0,60 1,22 34,73 620,206 465
false 1,27 4,38 3600 1044,13 403

Bound start times
default 1,09 2,555 12,90 328,705 510
true 0,66 1,42 40,51 376,786 506
false 1,21 3,735 93,53 432,864 501

Define z1
default 0,39 1,12 322,49 782,296 443
true 0,78 1,755 692,80 867,773 426
false 0,46 1,51 676,10 853,768 432

Define z2
default 0,77 2,335 301,72 784,469 443
true 4,19 16,38 284,55 743,114 453
false 2,36 26,05 3600 1187,39 383

Define z1 and z2
default 0,61 2,055 256,18 764,989 446
true 2,67 6,97 200,69 796,575 441
false 2,04 5,735 2456,37 953,061 422

Table 10.1: Comparison of the different heuristics for the MRCPSP. It contains the first quartile,
the media, the third quartile and the mean of the solving time of the instances in j30SAT, and
the number of instances solved. The total number of instances is 552.

polarity is better for the hardest instances, having a better third quartile and solving more
instances. Recall that deciding z2i,j = true means stating that activity Sj starts before Si

has ended.
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Chapter 11

Performance of the Techniques

In this chapter we evaluate the performance of our system using the best of the proposals intro-
duced in this thesis. Concretely:

• We use all the already existing and new preprocessings in the encodings in CNF.

• We use the general optimization algorithm presented in Chapter 9, consisting in detecting
infeasibility with the transformation into MRCPSP-SAT of the problem, obtaining the first
upper bound with PSS heuristic, and finally optimizing the makespan. As optimization
strategy we use the linear search, and concretely for time encoding we use the assign
variables algorithm which has shown in Chapter 9 to be the most competitive (together
with the mixed strategy).

• We do not use the new heuristics on the decision of variables, which are in an early stage
and require further investigation.

• We use the ite encoding to solve the easiest benchmarks, and BDD encoding to solve the
hardest instances.

We test our system in all the instances of PSPLib introduced in Section 2.3, and also on the set
MMLIB50 to evaluate the time performance with instances harder than the ones in PSPLib.

Table 11.3 contains a summary of the execution times for all the sets of PSPLib except the
j30 set, which are easier than j30 and MMLIB50. We show the quartiles and mean of the solving
times, and the number of instances solved. We have solved them with the ite encoding, both
for time and task, which has shown to be the most suitable for easy instances. The results show
that all the instances of all the benchmark sets have been solved both with time and task, never
exceeding 500 seconds of solving time. Excluding the m5 set, which is the hardest among all
these sets, all the instances are solved with less than 100 seconds. As a general rule, we can see
that task is faster than time for the easiest instances, with smaller values of the first, second and
third quartiles, whereas time is faster for the hardest instances, having a lower fourth quartile.

For the other benchmark sets, which are the hardest ones, we compare our system with the
state-of-the-art exact solver for the MRCPSP presented in [40]. We have run both solvers in the
same machine to make the times comparable1. Table 11.1 contains the results on j30UNSAT,
in which we use our transformation of the problem into MRCPSP-SAT. Table 11.2 shows the
results for j30SAT and MMLIB50 sets. We have used the BDD encoding, both for time and

1We are grateful to Dr. Petr Vı́lim et. al. to have shared with us the source code of their solver so that we
can compare the performance of the solvers.
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task, which has shown to be the best for the hardest instances. It can be seen that we clearly
outperform the solver of Vı́lim et. al. in detecting infeasibility of the instances, with differences
of around two orders of magnitude. For j30 and MMLIB50, we can see that Vı́lim et. al. are
much faster in solving the easiest instances, but our system scales better and we close more
instances, being the difference specially pronounced in the MMLIB50 set. Also in MMLIB50 we
can appreciate that task is in clear disadvantage in front of time, because the former encoding
has its size proportional to the square of the number of activities, and these instances contain
many of them (concretely 50).

solver 25% median 75% max mean n. solved
MRCPSP-SAT 0,11 0,195 0,52 8,83 0,571 88
Vı́lim et. al. 27,145 53,07 107,123 462,7 91,484 88

Table 11.1: Solving times in seconds and number of instances solved of the j30UNSAT set
compared with the solver presented in [40].

set solver 25% median 75% mean n. solved

j30SAT
time BDD 1,42 2,8 5,077 89,478 544
task BDD 0,69 2,52 4,325 192,2257 531
Vı́lim et. al. 0,02 0,04 0,8625 98,173 543

MMLIB50
time BDD 3,93 9,87 155,79 692,17 445
task BDD 5,205 23,345 366,39 792,27 435
Vı́lim et. al. 0,05 1,345 1028,9425 894,20 415

Table 11.2: Solving times in seconds and number of instances solved of the j30SAT and MMLIB50
sets compared with the solver presented in [40]. The unsolved instances have been counted as
3600 seconds.
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set encoding 25% median 75% max mean n. solved

j10
time 0,05 0,07 0,09 0,46 0,0872626 537
task 0,03 0,03 0,04 0,17 0,0368901 537

j12
time 0,07 0,09 0,13 0,82 0,123327 547
task 0,03 0,04 0,05 0,41 0,0512797 547

j14
time 0,10 0,13 0,21 1,96 0,192668 551
task 0,05 0,06 0,09 3,61 0,105154 551

j16
time 0,13 0,18 0,28 6,43 0,291782 550
task 0,06 0,09 0,15 9,30 0,203018 550

j18
time 0,16 0,25 0,37 10,16 0,485906 552
task 0,08 0,13 0,25 18,15 0,470598 552

j20
time 0,22 0,325 0,56 36,14 0,952256 554
task 0,12 0,2 0,39 81,80 1,38693 554

c15
time 0,13 0,17 0,29 8,85 0,319637 551
task 0,07 0,11 0,20 38,03 0,301125 551

c21
time 0,13 0,17 0,30 2,83 0,300725 552
task 0,05 0,07 0,12 2,76 0,158859 552

m1
time 0,01 0,02 0,02 0,12 0,0190625 640
task 0,01 0,01 0,02 0,18 0,0187344 640

m2
time 0,06 0,08 0,11 0,73 0,108295 481
task 0,04 0,05 0,08 1,80 0,0821622 481

m4
time 0,23 0,35 0,71 23,23 0,826793 555
task 0,09 0,15 0,29 33,20 0,521441 555

m5
time 0,34 0,595 1,67 422,29 4,1743 558
task 0,13 0,235 0,62 468,01 2,8795 558

n0
time 0,09 0,15 0,25 23,27 0,298447 470
task 0,04 0,07 0,12 48,74 0,263787 470

n1
time 0,13 0,18 0,29 15,75 0,30529 637
task 0,06 0,08 0,14 28,32 0,214772 637

n3
time 0,13 0,18 0,28 3,94 0,307033 600
task 0,06 0,08 0,15 5,70 0,212733 600

r1
time 0,08 0,10 0,14 1,71 0,140506 553
task 0,05 0,06 0,09 5,77 0,113472 553

r3
time 0,18 0,27 0,48 5,82 0,517235 557
task 0,07 0,11 0,23 10,38 0,289892 557

r4
time 0,24 0,36 0,66 16,30 0,744565 552
task 0,09 0,14 0,25 23,40 0,453768 552

r5
time 0,31 0,49 0,88 19,55 1,1307 546
task 0,10 0,16 0,35 55,73 0,706868 546

Table 11.3: Solving times in seconds and number of instances solved for all the benchmark sets
of PSPLib except j30, with time ite and task ite encodings.
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Chapter 12

Conclusions

In this thesis we have focused on the use of SMT to solve the Multimode Resource-Constrained
Project Scheduling Problem (MRCPSP). We have employed as a starting point two already
existing encodings for this problem, namely the time and the task encodings, and we have
presented a series of improvements which have helped to reduce the size of the encodings in
terms of number of variables, atoms and clauses, and in many times lead to an improvement of
the performance. Some studies have been conducted to better understand the characteristics of
these encodings. The main contributions of this thesis and the conclusions derived from them
are:

• Some new preprocessings for the MRCPSP have been introduced, concretely the energy
precedences, the start time window incompatibilities, the resource incompatibilities and the
resource disjunctions. They have clearly shown to serve to reduce the size of the encodings,
albeit not all of them suppose an important speedup for the solver. Specifically, it has
been seen that the problem instances with a lot of start time window incompatibilities
and resource disjunctions are in general easy to solve, and the use of the preprocessings
does not make an important difference. Contrarily, the resource incompatibilities and the
energy precedences appear in the hardest instances, and an improvement was observed in
the task encoding.

• We have conducted some experiments to comprehend better the dependence of time on
the UB and the independence of task on it. The results show that, with instances of very
similar complexity from the point of view of the combinatorics of the possible solutions,
but with different UB, time suffers from the increase in the size of the encoding while the
task encoding presents always the same performance.

• We have seen that using CNF expressions helps to substantially reduce the size of the
encodings, and in the case of time it also supposes a performance improvement.

• We have presented two alternative formulations for the constraints over the demands on
resources that, contrarily to the original (ite) encoding, avoid the use of any if-then-else
expression: mult which uses LIA expressions, and BDD which uses an implementation
of Pseudo-Boolean constraints based on ROBDDs. The mult encoding has shown to be
the most compact in terms of number of Boolean variables and clauses. The ite encoding
showed to be the best approach for time in solving the easiest instances. But the most
important results have been obtained with BDD both for time and task, with which al-
though requiring an initialization time that penalizes the overall performance of the easiest
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instances, it makes a noticeable improvement for the hardest instances, being able to solve
more of them in the given timeout of 3600 seconds. The number of Boolean variables in
BDD increases substantially due to the ROBDD implementation of the constraints over
resources, but thanks to it we are able to reduce the number of atoms, and to move from
the theory of LIA to IDL.

• We have proposed an ad-hoc optimization approach consisting on three main steps: deter-
mining the feasibility of the instance, find an upper bound for the makespan, and optimize
it. We propose, for the procedure of determining the feasibility, a simplification of the
problem that only needs to deal with the resources over non-renewable constraints, and
that has shown to be very quick. The use of the PSS heuristic serves to quickly find an
UB for the makespan significantly smaller than the trivial UB. Finally, we have shown,
for the time encoding, how to simplify the problem to the SMT solver as a linear search
optimization advances. Two different approaches to simplify the problem have shown an
equally good performance. On the one hand, the assign variables algorithm asserts the
value of some Boolean variables, and on the other hand, the mixed strategy (based on the
minimize encoding algorithm) encodes the problem from scratch every time. Another dif-
ference between them is that the former preserves the learning of the previous iterations,
whereas the latter discards it, and the results show that it does not make a real difference
for this problem.

• Finally we have made an initial work towards the use of encoding-specific heuristics for
the decide operations of the SMT solver. After a study of the implementation of Yices, a
state-of-the-art SMT solver, it has been modified to include a framework that lets to define
decide allowed and order based heuristics. Many heuristics for time and task have been
studied. They are still far from being comparable to VSID, but the results suggest that
there are important differences in prioritizing the use of some variables or with respect
to prioritizing some other, and it also makes an important difference which polarity we
use to decide these variables. If we prioritize the decision of a set of variables, in many
cases deciding these variables with a same polarity turns out to be better than using the
default criterion of the SMT solver. We have also seen that the order heuristics, which
are more rigorous and emulate a constructive heuristic, are generally worse than the decide
allowed heuristics which work in combination with VSID. Finally, the results show that
deciding first the decision modes is generally better than prioritizing other sets of variables,
especially for task. There is future work in this field to explore more refined heuristics and
try to outperform VSID for the MRCPSP. The framework developed in this thesis could
serve for this purpose.

The final report on the performance of our system with the currently used benchmark sets
show that we are very competitive. All the instances of all the benchmark sets in PSPLib but
j30 are solved with less than 500 seconds, and most of them with less than 50 seconds. In the
comparison with the state-of-the-art solver of [40], we are able to solve more instances. In what
regards to determining infeasibility, our system is significantly faster. Finally, it is also valuable
that our system consists in two encodings that can be used on any off-the-shelf SMT solver (not
only Yices), and that the preprocessings that we present can be used in other approaches to solve
the MRCPSP different from SMT.
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