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Abstract

A one-phase reduction of the one-dimensional two-phase supercooled Stefan
problem is developed. The standard reduction, employed by countless au-
thors, does not conserve energy and a recent energy conserving form is valid
in the limit of small ratio of solid to liquid conductivity. The present model
assumes this ratio to be large and conserves energy for physically realistic
parameter values. Results for three one-phase formulations are compared to
the two-phase model for parameter values appropriate to supercooled salol
(similar values apply to copper and gold) and water. The present model
shows excellent agreement with the full two-phase model.

Keywords:

1. Introduction1

When a solid forms from a liquid at the heterogeneous nucleation tem-2

perature the freezing process is relatively slow and the liquid molecules have3

time to rearrange into a standard crystalline configuration. However, a su-4

percooled (or undercooled) liquid is in an unstable state, ready to solidify5

rapidly as soon as the opportunity arises. The solidification process may be6

so rapid that the liquid molecules have no time to rearrange themselves into7

the usual crystal structure and instead form an unorganised or amorphous8

solid structure that is reminiscent of the liquid phase. For this reason solids9

formed from a supercooled liquid have been referred to as liquids on pause10

Preprint submitted to Int. Comm. Heat Mass Trans. June 26, 2012



[1]. The different molecular arrangement means that such solids may have11

very different properties to the normal solid phase. Amorphous metal alloys,12

formed by supercooling below the glass transition temperature can be twice13

as strong and three times more elastic than steel [1]. Numerous applications14

for materials formed from a supercooled liquid, such as in sport and electronic15

equipment, medical and aerospace, are discussed in the article of Telford [2].16

The practical importance of solids formed from a supercooled liquid mo-17

tivates the need for the theoretical understanding of the associated phase18

change process. Although the two-phase problem is well defined, it may be19

difficult to solve, given that it involves two partial differential equations on20

an a priori unknown, moving domain. The associated one-phase problem is21

a significantly less challenging prospect, particularly when dealing with com-22

plex geometries. However it has been shown that the standard one-phase23

reduction does not conserve energy [3]. In this paper we examine the one-24

phase reduction of the one-dimensional Stefan problem. It is shown that25

the energy conserving form of [3] although mathematically correct is not ap-26

propriate for physically realistic problems and so we propose an alternative27

reduction which shows excellent agreement with the full two-phase model.28

2. Mathematical models29

One of the most basic formulations of the two-phase supercooled Stefan
problem in non-dimensional form may be written

∂θ

∂t
=

k

c

∂2θ

∂x2
, 0 < x < s(t)

∂T

∂t
=

∂2T

∂x2
, s(t) < x < ∞ ,

(1)

T (s, t) = θ(s, t) = TI(t) , T |
x→∞

→ −1 , T (x, 0) = −1 , s(0) = 0 ,
(2)

[β − (1− c)st] st =

(

k
∂θ

∂x
− ∂T

∂x

)
∣

∣

∣

∣

x=s

(3)

where T, θ represent the liquid and solid temperatures, k = ks/kl the ther-30

mal conductivity ratio, c the specific heat ratio, β = Lm/(cl∆T ) the Stefan31

number, Lm the latent heat and ∆T the degree of supercooling. The above32

system describes the phase change process of a supercooled semi-infinite ma-33

terial which solidifies from the boundary x = 0. The phase change boundary34

is at x = s(t), where s(0) = 0. The variable TI(t) represents the temperature35
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at the phase change interface. If solidification occurs at the heterogeneous36

nucleation temperature we choose TI(t) = 0. With supercooling a non-linear37

relation exists between TI and st [4, 5]. For small levels of supercooling it is38

standard to choose a linear approximation TI(t) = −st. This is often referred39

to as a linear kinetic undercooling model. For simplicity we will use the linear40

approximation throughout this paper although the methodology translates41

immediately to the non-linear case. The above formulation involves the as-42

sumption that the density change between liquid and solid phases is small43

and so may be neglected compared to other physical changes, such as the44

jump in specific heat. We augment this system with the initial condition45

θ(x, 0) = θi and a boundary condition θx(0, t) = 0: for a standard one-phase46

problem these extra conditions are unnecessary but they are required when47

looking for a reduction from a two-phase model. Note, we choose the bound-48

ary condition at x = 0 to match that of [6] and also because it is appropriate49

when working in cylindrical and spherical co-ordinates, but other boundary50

conditions will work in the arguments below.51

The standard one-phase Stefan problem is retrieved from the above sys-
tem by simply ignoring the θ equation and setting k = 0 in the Stefan
condition, consequently

∂T

∂t
=

∂2T

∂x2
, s < x < ∞ (4)

T (s, t) = −st , T |
x→∞

→ −1 , T (x, 0) = −1 , s(0) = 0 (5)

[β − (1− c)st] st = −∂T

∂x

∣

∣

∣

∣

x=s

. (6)

In fact this is often further reduced by choosing c = 1. It is well-known52

that if supercooling is neglected, i.e. TI(t) = 0, and c = 1, then the well-53

known Neumann solution may be applied to (4)-(6), but this breaks down as54

β → 1+. Applying the linear kinetic undercooling temperature TI(t) = −st55

prevents this breakdown and so permits solutions for arbitrary undercooling.56

Evans and King [3] point out that the above reduction does not conserve57

energy since the limit θ → 0 involves a singular perturbation of the two-58

phase system. Physically the issue is obvious: the reduction is based on59

setting θ constant, without the undercooling term the boundary condition60

determines θ = TI ≡ 0 and so the (non-dimensional) constant is zero and61

this satisfies the heat equation and boundary condition at x = s for all time.62

With kinetic undercooling the temperature at x = s varies with time, so63
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θ(s, t) is a function of time and the assumption of constant θ is no longer64

valid.65

To determine a consistent one-phase model, Evans and King [3] inves-66

tigate the limit k → 0 which is equivalent to neglecting θ in the Stefan67

condition. The heat equation in the solid then indicates θt → 0 and so68

θ ≈ θ(x) = θi, (after imposing the initial condition). However, this con-69

tradicts the condition θ(s, t) = −st 6= θi and so indicates the need for a70

boundary layer. To analyse this boundary layer a new co-ordinate is intro-71

duced, x = s(t)− kx̂ (where k ≪ 1), which transforms (1b) to72

st
∂θ

∂x̂
+ k

∂θ

∂t
=

1

c

∂2θ

∂x̂2
. (7)

Neglecting the small term involving k allows the equation to be integrated73

and applying θ → θi as x̂ → ∞ gives74

1

c

∂θ

∂x̂
= st(θ − θi) . (8)

Noting that θx̂ = −kθx we may use (8) to replace the solid temperature75

gradient in the Stefan condition (3) and applying θ(s, t) = −st gives76

[β − st − cθi] st = −∂T

∂x
. (9)

The correct reduction of the two-phase Stefan problem in the limit k → 0 is77

therefore specified by equations (4)-(5), with the Stefan condition given by78

(9). The properties and behaviour of systems of this form, with appropriate79

modification for different physical situations have been studied for example80

in [7, 8].81

Heat conduction occurs on the microscopic scale due to the transfer of82

kinetic energy from hot, rapidly vibrating atoms or molecules to their cooler,83

more slowly vibrating neighbours. In solids the close, fixed arrangement of84

atoms means that conduction is more efficient than in fluids, which have a85

larger distance between atoms. Consequently, in general, the conductivity86

of a solid is greater than that of its corresponding liquid phase, for example87

with water and ice k = ks/kl ≈ 4, for solid and molten gold k ≈ 3. Hence88

the limit k → 0 has limited applicability and for practical Stefan problems89

it would seem more appropriate to study the large k limit.90

Now we let k → ∞ and the heat equation (1b) reduces to θxx ≈ 0,91

so to leading order θ = c0(t) + c1(t)x = −st (after applying the boundary92
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conditions). So far this seems a reasonable result, large k indicates heat93

travels rapidly through the solid (compared to the travel time in the liquid)94

which then equilibrates to the boundary temperature almost instantaneously.95

However, in the Stefan condition we have the term kθx, which is zero to96

leading order (since θ = −st(t)), but since the coefficient k is large it is97

possible that the first order term plays an important role. If we write θ =98

θ0 + (1/k)θ1 +O(1/k2) then the leading and first order heat equations are99

∂2θ0
∂x2

= 0 , c
∂θ0
∂t

=
∂2θ1
∂x2

. (10)

The appropriate temperatures are θ0 = −st and θ1 = −cstt(x
2 − s2)/2. The100

Stefan condition becomes101

[β − (1− c)st] st = k

(

∂θ0
∂x

+
1

k

∂θ1
∂x

+O(1/k2)

)
∣

∣

∣

∣

x=s

− ∂T

∂x

∣

∣

∣

∣

x=s

. (11)

Substituting for θ1 in (11) we find that the one-phase Stefan problem in the102

limit of large k is then specified by equations (4)-(5) and the Stefan condition103

csstt + [β − (1− c)st] st = − ∂T

∂x

∣

∣

∣

∣

x=s

. (12)

The inclusion of the derivative stt requires an extra initial condition. In104

the absence of supercooling, TI = 0, hence T (s, t) = TI indicates T (0, 0) = 0.105

For x > 0 we have T (x, 0) = −1, hence the temperature gradient106

Tx(x, 0)|x→0 = lim
h→0

T (h, 0)− T (0, 0)

h
= lim

h→0

(−1 − 0

h

)

= −∞ . (13)

In the one phase problem the front velocity is a function of the temperature107

gradient with the result that without kineic undercooling the above initial108

infinite gradient indicates st(0) = ∞. This may be seen, for example, in109

the well-known Neumann solution where st ∼ 1/
√
t. The singularity is an110

obvious consequence of the unphysical nature of the boundary condition:111

choosing T = −1 for all x > 0 and T = 0 at a single point x = 0 is not112

consistent with an equation based on continuum theory. Kinetic undercooling113

provides a mechanism for removing the unphysical behaviour. The only way114

to avoid the singularity is if T (0, 0) = limh→0(T (h, 0)+O(h)) = limh→0(−1+115

O(h)) = −1. In physical terms we may think of an undercooled melt at116
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temperature T = −1 everywhere when some infinitesimally small amount117

of energy is input at the boundary resulting in T (0, 0) = −1 + O(h): this118

is sufficient to set off the solidification process (and it is well-known that119

‘working with undercooled liquids is a bit like juggling mousetraps: they’re120

prone to suddenly “snap” and ruin the trick’ [1]). Since TI(0) = T (0, 0) =121

−1 we find that in the case of linear undercooling the additional boundary122

condition required to close the Stefan problem is123

st(0) = −TI(0) = 1 . (14)

This argument also helps us with the one-phase formulation of equation (9)124

which requires an initial solid temperature, θi (despite the solid phase not125

entering the one-phase problem). Since the initial ‘kick’ to start solidification126

may be infinitesimal, and for t sufficiently close to zero an infinitesimally127

small amount of latent heat has been released, the only physically sensible128

value for the solid temperature is θi = −1. These initial conditions on θi and129

st are obtained more formally through a short time asymptotic analysis in130

[9].131

3. Energy conservation132

The non-dimensional thermal energy in the two-phase system is given by133

E =

∫

s

0

c θ dx+

∫

∞

s

T dx . (15)

During the phase change the molecular rearrangement also releases (or uses)134

energy, namely the latent heat. So the rate of change of thermal energy, Et,135

must balance the rate at which energy is produced by the phase change, βst.136

Differentiating the above equation we find137

dE

dt
=

∫

s

0

c
∂θ

∂t
dx+ c θ(s, t)

ds

dt
+

∫

∞

s

∂T

∂t
dx− T (s, t)

ds

dt
. (16)

The heat equations in (1) allow the time derivatives to be replaced with138

x derivatives in the integrals, which may then be evaluated immediately.139

Noting that θ(s, t) = T (s, t) = −st then (16) becomes140

dE

dt
= k

∂θ

∂x

∣

∣

∣

∣

x=0

+

(

k
∂θ

∂x
− ∂T

∂x

)
∣

∣

∣

∣

x=s

+
∂T

∂x

∣

∣

∣

∣

x=∞

+ (1− c)

(

ds

dt

)2

. (17)
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The temperature gradients at x = s may be removed via the Stefan condition141

(3). The insulated boundary condition of the current study requires θx(0, t) =142

0, and as x → ∞ the gradient Tx → 0, so we are left with143

dE

dt
=

[

β − (1− c)
ds

dt

]

ds

dt
+ (1− c)

(

ds

dt

)2

= β
ds

dt
. (18)

So the rate of change of thermal energy balances the latent heat release and144

the two-phase formulation conserves energy. Note, the argument follows in145

the same way for different boundary conditions, for example if we choose a146

constant flux kθx(0, t) = q then the rate of change of thermal energy balances147

the latent heat release plus the heat input at the boundary.148

The energy balance for the standard one-phase problem specified by equa-149

tions (4)-(5) can be obtained from the above argument by neglecting all θ150

terms in (16) (or equivalently setting c = k = 0 in (17)) and applying the151

Stefan condition (6) to replace Tx(s, t)152

dE

dt
=

[

β − (1− c)
ds

dt

]

ds

dt
+

(

ds

dt

)2

6= β
ds

dt
. (19)

This demonstrates that energy is not conserved in this formulation. The153

equivalent expression in limit k → 0 is obtained by replacing θx(s, t) via (8)154

and applying the Stefan condition (9) to replace Tx(s, t) to equation (17) to155

obtain156

dE

dt
= c

ds

dt

(

ds

dt
+ θi

)

+

[

β − ds

dt
− cθi

]

ds

dt
+ (1− c)

(

ds

dt

)2

= β
ds

dt
. (20)

Finally the one-phase limit with k → ∞ is determined using the definition157

of θ1 to give kθx(s, t) = −csstt and Tx(s, t) comes from the Stefan condition158

(12) to give159

dE

dt
= −cs

d2s

dt2
+

(

cs
d2s

dt2
+

[

β − (1− c)
ds

dt

]

ds

dt

)

+ (1− c)

(

ds

dt

)2

= β
ds

dt
.(21)

Hence the large and small k formulations also conserve energy.160

4. Comparison of results161

We now present two sets of results for the solidification of salol and water.162

The results were computed numerically using the boundary immobilisation163
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method and Keller box finite difference technique used in [10, 11]. The164

k → 0 result was rather unexpected so the computations were verified using165

an accurate heat balance method, as described in [12, 13]. This provided166

solutions typically within 0.5% of the numerics. As discussed above, the167

k → 0 formulation requires a value for the solid temperature θi. At the end168

of §2 we demonstrated that θi = −1. We also tried θi = 0 but this did not169

improve the correspondence.170

In Figure 1 we compare the position of the phase change front for the171

three one-phase formulations against the two-phase solution using parameter172

values appropriate for salol and with two values of β. Salol was chosen173

since it was the material with the lowest value of k ≈ 1.4 for which we had174

all the necessary data, see [4]. The values of β correspond to dimensional175

temperatures of 234.8, 272.4K (the heterogeneous phase change temperature176

Tm ≈ 314.7K), the value of c = cs/cl = 0.73. The solid line in the figure177

represents the two-phase model, the dotted line the standard one-phase model178

of equations (4)-(6), this is bounded by the two limiting cases which conserve179

energy using the Stefan conditions (9) for k → 0 (dot-dash line) and (12) for180

k → ∞ (dashed line). Even in this case, where k is relatively small we find181

that the large k solution is extremely close to the two-phase model while the182

limit k → 0 shows an approximately 40% difference to the two-phase solution.183

It is also surprising that this latter energy conserving form is further from184

the two-phase solution than the form that does not conserve energy. The185

two sets of plots are for small values of β (in particular we wished to show186

results with β < 1 and β > 1). In the limit of large β the curves all coincide187

but for the k → 0 case the convergence is slow: for β = 40 the k → ∞ result188

is within 0.005% of the 2 phase result, the k → 0 solution is within 1.8%.189

In Figure 2 we show results for a water-ice system where k ≈ 4, c ≈ 0.49.190

This has a significantly lower c value than salol and a higher k value. The val-191

ues β = 0.7, 1.3 correspond to temperatures 158.9, 211.5 (where Tm ≈ 273K),192

see [14]. With the larger k value we can observe that the two-phase formula-193

tion and the large k one-phase approximation are almost indistinguishable.194

The k → 0 formulation differs by approximately 30% and again the result195

obtained by simply neglecting θ is more accurate than this latter energy196

conserving form.197

In addition to the results shown above we also carried out the same cal-198

culations for molten and solid copper, k ≈ 2.4, c ≈ 0.72 and gold k ≈ 3, c ≈199

0.79. In both cases the value of c is similar to that of salol and so the cop-200

per results were virtually identical to those of salol, whilst the gold results201
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Figure 1: Variation of s(t) for salol, k ≈ 1.4, c = 0.73 and β = 0.7, 1.3

showed a very slight decrease in the velocity st.202

5. Conclusions203

In summary, our simulations show that the one-phase reduction with
large k can provide an excellent agreement with the two-phase problem for
a wide range of physically realistic parameter values and supercooling. The
small k formulation of [3] whilst mathematically correct is highly inaccu-
rate for practical problems and surprisingly significantly less accurate than
the non-energy conserving form. Only in the limit of large Stefan number
do the solutions coincide (and in this case the supercooled formulation is
unnecessary). We therefore propose that an accurate approximation to the
two-phase one-dimensional Stefan problem is obtained by the simpler one-
phase approximation specified by equations (4)-(5) and the Stefan condition
(12). Using standard notation the dimensional form may be written

∂T

∂t
=

kl
ρlcl

∂2T

∂x2
, s(t) < x < ∞ (22)

T (s, t) = Tm − φst , T |
x→∞

→ T∞ , T (x, 0) = T∞ (23)

ρlcsφsstt+ρl [Lm − (cl − cs)φst] st = −kl
∂T

∂x

∣

∣

∣

∣

x=s

, (24)

s(0) = 0 , st(0) = 1 , (25)
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Figure 2: Variation of s(t) for water, k ≈ 4, c ≈ 0.49 and β = 0.7, 1.3

where the constant φ is the kinetic undercooling coefficient used in the linear204

relation TI(st) ≈ Tm − φst. Similar reductions can no doubt be obtained for205

related problems and a similar analysis may be easily applied to the nonlinear206

undercooling case.207
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