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Abstract

Determining and analyzing the spectra of graphs is an important and excit-
ing research topic in mathematics science and theoretical computer science.
The eigenvalues of the normalized Laplacian of a graph provide information
on its structural properties and also on some relevant dynamical aspects, in
particular those related to random walks. In this paper, we give the spec-
tra of the normalized Laplacian of iterated subdivisions of simple connected
graphs. As an example of application of these results we find the exact val-
ues of their multiplicative degree-Kirchhoff index, Kemeny’s constant and
number of spanning trees.
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1. Introduction

Spectral analysis of graphs has been the subject of considerable research
effort in mathematics and computer science [1, 2, 3], due to its wide appli-
cations in this area and in general [4, 5]. In the last few decades a large
body of scientific literature has established that important structural and
dynamical properties of networked systems are encoded in the eigenvalues
and eigenvectors of some matrices associated to their graph representations.
The spectra of the adjacency, Laplacian and normalized Laplacian matrices
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of a graph provide information on bounds on the diameter, maximum and
minimum degrees, possible partitions, and can be used to count the number
of paths of a given length, number of triangles, total number of links, number
of spanning trees and many more invariants. Dynamic aspects of a network,
like its synchronizability and random walks properties can be determined
from the eigenvalues of the Laplacian and normalized Laplacian matrices
which allow also the calculation of some interesting graph invariants like the
Kirchhoff index [6, 7, 8].

We notice that in the last years there has been an increasing interest in
the study of the normalized Laplacian as many measures for random walks
on a network are linked to the eigenvalues and eigenvectors of normalized
Laplacian of the associated graph, including the hitting time, mixing time
and Kemeny’s constant which can be used as a measure of efficiency of
navigation on the network, see [9, 10, 11, 12].

However, the normalized and standard Laplacian matrices of a network
behave quite differently [13], and even if the spectrum of one matrix can be
determined, it does not mean that the other can also be evaluated unless
the graph is regular. As an example, the eigenvalues of the Laplacian of
Vicsek fractals can be found analytically [14], but until now it has not been
possible to obtain the spectra of their normalized Laplacian. Thus, the spec-
tra of the standard and normalized Laplacian matrices must be considered
independently.

In this paper, we give the spectra of the normalized Laplacian of iterated
subdivisions of simple connected graphs and we use these results to find the
values of their multiplicative degree-Kirchhoff index, Kemeny’s constant and
number of spanning trees.

2. Preliminaries

Let G(V,E) be any simple connected graph with vertex set V and edge
set E. Let N0 = |V | denote the number of vertices of G and E0 = |E| its
number of edges.

Definition 2.1 The subdivision graph of G, denoted by s(G), is the graph
obtained from G by inserting an additional vertex to every edge of G.

We denote s0(G) = G. The n-th subdivision of G is obtained through the
iteration sn(G) = s(sn−1(G)) and Nn and En denote the total number of
vertices and edges of sn(G). Figure 1 illustrates the iterated subdivisions of
four-vertex complete graph K4.
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Figure 1: K4, s(K4) and s
2(K4). Black vertices denote the initial vertices of K4 while red

and green vertices are those introduced to obtain s(K4) and s
2(K4), respectively.

From the definition of the subdivision graph, it is obvious that En =
2En−1 and Nn = Nn−1 + En−1. Thus, for n > 0, we have

En = 2nE0, Nn = N0 + (2n − 1)E0. (1)

Moreover, for any vertex, once it is created, its degree remains unchanged
as n grows.

Definition 2.2 The circuit rank or cyclomatic number of G is the minimum
number r of edges that have to be removed from G to convert the graph into
a tree.

Obviously, the circuit rank of G is r = E0 −N0 + 1.

Lemma 2.3 The circuit rank of sn(G) and G are the same for n > 0.

Proof. From the definition of the subdivision graph and (1), the circuit
rank of sn(G) is r = En −Nn + 1 = E0 −N0 + 1. 2

Given the subdivision graph sn(G) we label its nodes from 1 to Nn. Let
di be the degree of vertex i, then Dn = diag(d1, d2, · · · , dNn) denotes the
diagonal degree matrix of sn(G) and An its adjacency matrix, defined as a
matrix with the (i, j)-entry equal to 1 if vertices i and j are adjacent and 0
otherwise.

We introduce now the probability transition matrix for random walks on
sn(G) or Markov matrix as Mn = D−1n An. Mn can be normalized to obtain
a symmetric matrix Pn.

Pn = D
− 1

2
n AnD

− 1
2

n = D
1
2
nMnD

− 1
2

n . (2)

The (i, j)th entry of Pn is (Pn)ij = An(i,j)√
didj

.
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Definition 2.4 The normalized Laplacian matrix of sn(G) is

Ln = I −D
1
2
nMnD

− 1
2

n = I − Pn, (3)

where I is the identity matrix with the same order as Pn.

We denote the spectrum of Ln by σn =
{
λ
(n)
1 , λ

(n)
2 , · · · , λ(n)Nn

}
. It is

known that 0 = λ
(n)
1 < λ

(n)
2 6 · · · 6 λ

(n)
Nn−1 6 λ

(n)
Nn

6 2. The spectrum of the
normalized Laplacian matrix of a graph provides us with relevant structural
information about the graph, see [7, 15].

Below, we will then relate σn to some significant invariants of sn(G).

Definition 2.5 Replacing each edge of a simple connected graph G by a
unit resistor, we obtain an electrical network G∗ corresponding to G. The
resistance distance rij between vertices i and j of G is equal to the effective
resistance between the two equivalent vertices of G∗ [16].

Definition 2.6 The multiplicative degree-Kirchhoff index of G is defined
as [17]:

Kf∗(G) =
∑
i<j

didjrij . (4)

This index is different from the classical Kirchhoff index [18], Kf(G) =∑
i<j rij , as it takes into account the degree distribution of the graph.
It has been proved [17] that Kf∗(G) can be obtained from the spectrum

σ0 = {λ1, λ2, · · · , λN0} of the normalized Laplacian matrix L0 of G:

Kf∗(G) = 2E0

N0∑
k=2

1

λk
, (5)

where 0 = λ1 < λ2 6 · · · 6 λN0 6 2.
Thus, for n > 0, we have:

Kf∗(sn(G)) = 2En

Nn∑
k=2

1

λ
(n)
k

, (6)

where 0 = λ
(n)
1 < λ

(n)
2 6 · · · 6 λ

(n)
Nn−1 6 λ

(n)
Nn

6 2 are the eigenvalues of Ln.

Definition 2.7 Given a graph G, the Kemeny’s constant K(G), also known
as average hitting time, is the expected number of steps required for the
transition from a starting vertex i to a destination vertex, which is chosen
randomly according to a stationary distribution of unbiased random walks
on G, see [19] for more details.
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It is known that K(G) is a constant as it is independent of the selection
of starting vertex i, see [12]. Moreover, the Kemeny’s constant can be com-
puted from the normalized Laplacian spectrum in a very simple way as the
sum of all reciprocal eigenvalues, except 1/λ1, see [15]. Thus, we can write,
for sn(G) and σn:

K(sn(G)) =

Nn∑
k=2

1

λ
(n)
k

. (7)

The last graph invariant considered in this paper is the number of span-
ning trees of a graph G. A spanning tree is a subgraph of G that includes
all the vertices of G and is a tree. A known result from Chung [7] allows the
calculation of this number from the normalized Laplacian spectrum and the

degrees of all the vertices, thus the number of spanning trees N
(n)
st of sn(G)

is

N
(n)
st =

Nn∏
i=1

di

Nn∏
i=2

λ
(n)
i

Nn∑
i=1

di

. (8)

In the next section we provide an analytical expression for this invariant for
any value of n > 0.

3. Normalized Laplacian spectrum of the subdivision graph sn(G)

In this section we find an analytical expression for the spectrum σn of
Ln(sn(G)), the normalized Laplacian of the subdivision graph sn(G). We
show that this spectrum can be obtained iteratively from the spectrum of
G. As Ln = I −Pn, if µ is an eigenvalue of Pn then 1−µ is an eigenvalue of
Ln with the same multiplicity. We denote the multiplicity of µ as mPn(µ).
Thus we calculate first the spectrum σ′n of Pn.

Lemma 3.1 Let µ be any nonzero eigenvalue of Pn and let R(x) = 2x2−1.
Then, R(µ) is an eigenvalue of Pn−1 with the same multiplicity as µ.

Proof. Divide the vertices of sn(G) into two groups V n
old and V n

new, where
V n
new contains all the vertices created when the edges of sn−1(G) are sub-

divided to generate sn(G) and V n
old contains the rest. Obviously, V n

old has
the same vertices as sn−1(G). Thus for convenience, in the following when
any vertex of V n

old is considered, it also refers to the corresponding vertex of
sn−1(G).
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Let ψ = (ψ1, ψ2, . . . , ψNn)> be any eigenvector associated to an eigen-
value µ of Pn. Hence

Pnψ = µψ (9)

Consider a vertex i ∈ V n
old of sn(G) and denote N the set of all its neighbors

in sn(G) and N ′ the set of all its neighbors in sn−1(G). From the definition
of subdivision graph, there exists a bijection between N and N ′. If we
rewrite Eq. (9) as

∑Nn
j=1(Pn)ijψj = µψi, we have

µψi =
∑
j∈N

1√
didj

ψj =
∑
j∈N

1√
2di

ψj . (10)

For any vertex j ∈ N , we have a similar relation

µψj =

Nn∑
k=1

(Pn)jkψk =
1√
2di

ψi +
1√
2dj′

ψj′ . (11)

where vertex j′ ∈ N ′ is the other neighbor of vertex j in sn(G) . Combining
Eq. (10) and Eq. (11) yields

µψi =
1

µ
√

2di
×
∑
j′∈N ′

(
1√
2di

ψi +
1√
2dj′

ψj′

)

=
1

µ
√

2di
×

 di√
2di

ψi +
∑
j′∈N ′

1√
2dj′

ψj′

 .

(12)

Therefore,

(2µ2 − 1)ψi =
∑
j′∈N ′

1√
didj′

ψj′ . (13)

Eq. (13) directly reflects that R(µ) = (2µ2 − 1) is an eigenvalue of Pn−1,
ψo = (ψi)

>
i∈V n

old
is one of its corresponding eigenvectors and ψ can be totally

determined by ψo by using Eq. (11). Hence mPn−1(R(µ)) > mPn(µ).
Suppose now that mPn−1(R(µ)) > mPn(µ). Then there exists an ex-

tra eigenvector ψe associated to R(µ) without an associated eigenvector in
Pn. But Eq. (11) provides ψe with its corresponding eigenvector in Pn as
µ is nonzero, in contradiction with our assumption. Thus mPn−1(R(µ)) =
mPn(µ) and the proof is completed. 2
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Lemma 3.2 Let µ be any eigenvalue of Pn−1 such that µ 6= −1 and let

f1(x) =
√

x+1
2 and f2(x) = −

√
x+1
2 . Then f1(µ) and f2(µ) are eigenvalues

of Pn. Besides, mPn(f1(µ)) = mPn(f2(µ)) = mPn−1(µ).

Proof. This lemma is a direct consequence of Lemma 3.1 2

Remark 3.3 Lemmas 3.1 and 3.2 indicate that any nonzero eigenvalues of
Pn can be obtained from the spectrum of Pn−1. Due to the simple expression
of R, f1 and f2, we easily find that each eigenvalue, except −1, of Pn−1
will generate two unique eigenvalues of Pn. Thus 2(Nn−1 − mPn−1(−1))
eigenvalues of σ′n, and consequently of σn, are determined this way.

The Perron-Frobenius theorem [20] shows that the largest absolute value
of the eigenvalues of Pn is always 1. And because of the existence of a
unique stationary distribution for random walks on sn(G), the multiplicity
of the eigenvalue 1 is always 1 for any n > 0. Since f2(1) = −1, we also
obtain mPn(−1) = 1 for any n > 1. This can be further explained from
the perspective of Markov chains. Since sn(G) is a bipartite graph [21]
containing no odd-length cycles for any n > 0, random walks on it are
periodic with period 2, which means it takes an even number of steps to
return to the starting vertex. Thus the smallest eigenvalue of the Markov
matrix of sn(G) is −1 [22]. But random walks on a general graph G can be
aperiodic [23] if the graph has an odd-length cycle. Hence the multiplicity
of the eigenvalue −1 of P0 depends on the structure of G [22].

Lemmas 3.1 and 3.2 allow us to obtain the transition between the eigen-
values of the normalized Laplacian of sn(G) at each iteration step. If µ is an
eigenvalue of Pn then λ = 1−µ is an eigenvalue of Ln. Let Q(x) = 4x−2x2,
by Lemma 3.1, Q(λ) = 1−R(1− λ) is an eigenvalue of Ln−1 if λ 6= 1. This
allows us to state the following lemma:

Lemma 3.4 Let λ be any eigenvalue of Ln−1 such that λ 6= 2 and let
g1(x) = 1 +

√
1− x

2 and g2(x) = 1 −
√

1− x
2 . Then g1(λ) and g2(λ)

are eigenvalues of Ln and mLn(g1(λ)) = mLn(g2(λ)) = mLn−1(λ).

2

Definition 3.5 Let U = {u1, u2, · · · , uk} be any finite multiset of real num-
bers where |ui| 6 1 for i ∈ [1, k]. The multisets R−1(U) and Q−1(U) are
defined as

R−1(U) = {f1(u1), f2(u1), f1(u2), f2(u2), · · · , f1(uk), f2(uk)}; (14)
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Q−1(U) = {g1(u1), g2(u1), g1(u2), g2(u2), · · · , g1(uk), g2(uk)}. (15)

Our main result in this section is the following theorem.

Lemma 3.6 The spectrum σ′n of Pn, for n > 0, is:

σ′n = R−1
(
σ′n−1 \ {−1}

)
∪ {0, · · · , 0︸ ︷︷ ︸

mPn (0)

} (16)

When n > 1, mPn(0) = r + 1. When n = 1, if G contains any odd-length
cycle then mPn(0) = r− 1, otherwise mPn(0) = r+ 1, where r is the circuit
rank of G.

Proof. Combining Lemma 3.1, Lemma 3.2 and considering Remark 3.3,
the multiplicity of the eigenvalue 0 of Pn can be determined indirectly:

mPn(0) = Nn − 2(Nn−1 −mPn−1(−1))

= E0 −N0 + 2 ·mPn−1(−1).
(17)

Based on the previous results, it is obvious that mPn−1(−1) = 0 if and
only if n = 1 and G contains an odd-length cycle, otherwise mPn−1(−1) = 1,
which completes the proof. 2

This result allows us to state the main result of this section.

Theorem 3.7 The spectra σn of Ln is obtained from σn−1 of Ln−1 as:

σn = Q−1 (σn−1 \ {2}) ∪ {1, · · · , 1︸ ︷︷ ︸
mLn (1)

} (18)

for n > 0 and where mLn(1) = mPn(0) is the multiplicity of the eigenvalue
1 of Ln.

2

Due to the particularity of the eigenvalue 1 of Ln, we call it the excep-
tional eigenvalue [24] of the family of matrices {Ln} whose spectra show
self-similar characteristics. For many other family of graphs [24, 25] with a
similar self-similar property with respect to the spectra of their Markov ma-
trices, the multiplicity of exceptional eigenvalues grows fast as n increases.
However, for the normalized Laplacian of subdivision graphs {sn(G)}, the
multiplicity of the only exceptional eigenvalue 1 is always r + 1 for n > 1.
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4. Application of the spectrum of subdivision graph

In this section we use the spectra of Ln, the normalized Laplacian of
the subdivision graph sn(G), to compute some relevant invariants related to
the structure of sn(G). Thus, we give closed formulas for the multiplicative
degree-Kirchhoff index, Kemeny’s constant and the number of spanning trees
of sn(G). These results depend only on n and some invariants of the original
graph G.

4.1. Multiplicative degree-Kirchhoff index

Theorem 4.1 The multiplicative degree-Kirchhoff indices of sn(G) and sn−1(G)
are related as follows, for any n > 0:

Kf∗(sn(G)) = 8Kf∗(sn−1(G)) + 2n(2r − 1)E0. (19)

Therefore, the general expression for Kf∗(sn(G)) is

Kf∗(sn(G)) = 8nKf∗(G) +
8n − 2n

3
(2r − 1)E0. (20)

Proof. From Eq. (6) and Corollary 3.7, the relation between Kf∗(sn(G))
and Kf∗(sn−1(G)) can be expressed as:

Kf∗(sn(G)) = 2En

 1

λ
(n)
Nn

+
mLn(0)

1− 0
+

Nn−1−1∑
k=2

(
1

g1(λ
(n−1)
k )

+
1

g2(λ
(n−1)
k )

)
= 2En

1

2
+ (r + 1) + 4

Nn−1−1∑
k=2

1

λ
(n−1)
k


= 2En

(
1

2
+ (r + 1) + 4

(
K(sn−1(G))

2En−1
− 1

2

))
= 8Kf∗(sn−1(G)) + 2n(2r − 1)E0,

(21)

provided that mLn−1(−1) = 1, where λ
(n)
k represents the eigenvalue of Ln.

When n = 1 and mLn0(−1) = 0, we obtain:

Kf∗(s(G)) = 2E1

(
1

λN1

+
mL1(0)

1− 0
+

N0∑
k=2

(
1

g1(λk)
+

1

g2(λk)

))

= 2E1

(
1

2
+ (r − 1) + 4

N0∑
k=2

1

λk

)

= 2E1

(
1

2
+ (r − 1) + 4 · K(G)

2E0

)
= 8Kf∗(G) + 2(2r − 1)E0.

(22)
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The similarity of Eq. (21) and Eq. (22) indicates that Eq. (19) holds for
any simple connected graph G for n > 0.

Transforming Eq. (19) into

Kf∗(sn(G)) +
2n(2r − 1)E0

3
= 8

(
Kf∗(sn−1(G)) +

2n−1(2r − 1)E0

3

)
(23)

yields

Kf∗(sn(G)) = 8nKf∗(G) +
8n − 2n

3
(2r − 1)E0. (24)

2

We note here that this expression has been also obtained recently by
Yang and Klein [26] by using a counting methodology not related with spec-
tral techniques. Our result confirms both their calculation and the usefulness
of the concise spectral methods described here.

4.2. Kemeny’s constant

Theorem 4.2 The Kemeny’s constant for random walks on sn(G) can be
obtained from K(sn−1(G)) through

K(sn(G)) = 4K
(
sn−1(G)

)
+ r − 1

2
. (25)

The general expression is

K(sn(G)) = 4nK(G) +
4n − 1

3

(
r − 1

2

)
. (26)

Proof. Theorem 4.2 is an obvious consequence of Theorem 4.1 considering
Eq. (7). 2

4.3. Spanning trees

Theorem 4.3 The number of spanning trees of sn(G) is, for any n > 0:

N
(n)
st = 2rN

(n−1)
st = 2rnN

(0)
st . (27)

Proof. From Eq. (8) and the properties of the subdivision of a graph:

N
(n)
st

N
(n−1)
st

= 2En−1−1 ×

Nn∏
i=2

λ
(n)
i

Nn−1∏
i=2

λ
(n−1)
i

. (28)

Here λ
(n)
i are the eigenvalues of Ln
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Then, by the same techniques used in the previous subsection, we obtain

Nn∏
i=2

λ
(n)
i = 2×

Nn−1−1∏
i=2

(
g1
(
λ
(n−1)
i

)
g2
(
λ
(n−1)
i

))

= 2×
Nn−1−1∏
i=2

λ
(n−1)
i

2

=
1

2Nn−1−2

Nn−1∏
i=2

λ
(n−1)
i

(29)

if mLn−1(−1) = 1.
When n = 1 and mL0(−1) = 1, the relation becomes

N1∏
i=2

λi = 2×
N0∏
i=2

(
g1
(
λi
)
g2
(
λi
))

= 2×
N0∏
i=2

λi
2

=
1

2N0−2

N0∏
i=2

λi

(30)

which coincides with Eq. (29).
Therefore, the equality

N
(n)
st = 2En−1−Nn−1+1 ×N (n−1)

st = 2rN
(n−1)
st = 2rnN

(0)
st (31)

holds for any n > 0 as the circuit rank r remains unchanged. 2

5. Conclusion

In this study we have focused on the analytical calculation of σn, the
spectra for the normalized Laplacian of iterated subdivisions of any simple
connected graph. This was possible through the analysis of the eigenvectors
corresponding to adjacent vertices at different iteration steps. Our methods
could be also applied to find the spectra of other graph families constructed
iteratively.

The simple relationship between the spectrum of the Markov and the
normalized Laplacian matrices of a subdivision graph facilitates the calcu-
lations to obtain the exact distribution and values of all eigenvalues. One
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particular interesting result is that the multiplicity of the exceptional eigen-
values of σn do not increase exponentially with n as in [27, 28] but is a
constant determined by the value of the circuit rank of the initial graph.

The calculation of the multiplicative degree-Kirchhoff index, Kemeny’s
constant and the number of spanning trees in section 4 is also succinct, if we
compare it to other methods, thanks to the knowledge of the full spectrum
of Pn or Ln. The expressions found can be directly used in the analysis
of subdivisions of any simple connected graph while only needing minimal
structural information from it, and this is part of the value of our study.
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Anal. 159 (1998) 537–567.

[26] Y. Yang, D. J. Klein, Resistance distance-based graph invariants of
subdivisions and triangulations of graphs, Discrete Appl. Math. 181
(2015) 260–274.

[27] P. Xie, Y. Lin, Z. Zhang, Spectrum of walk matrix for Koch network
and its application, J. Chem. Phys. 142 (2015) 224106.

[28] Z. Zhang, X. Guo, Y. Lin, Full eigenvalues of the Markov matrix for
scale-free polymer networks, Phys. Rev. E 90 (2014) 022816.

14


