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Abstract. Let A be a finite nonempty set of integers. An asymptotic estimate

of several dilates sum size was obtained by Bukh. The unique known exact

bound concerns the sum |A + k ·A|, where k is a prime and |A| is large. In its
full generality, this bound is due to Cilleruelo, Serra and the first author.

Let k be an odd prime and assume that |A| > 8kk. A corollary to our
main result states that |2 · A + k · A| ≥ (k + 2)|A| − k2 − k + 2. Notice that

|2 · P + k · P | = (k + 2)|P | − 2k, if P is an arithmetic progression.

1. Introduction

Let A, B be finite nonempty sets of real numbers. The Minkowski sum of A and

B is defined as

A+B = {a+ b : a ∈ A and b ∈ B}.

The inequality |A+B| ≥ |A|+ |B|−1 is an easy exercise, that we shall use without

any reference. For a real number r, the r-dilate of A is the set r ·A = {ra : a ∈ A}.
Lower bounds for the size of dilates sums appeared in different contexts.  Laba and

Konyagin [?] investigated the sum A+λ ·A (where λ is a transcendental number) in

connection with well-distributed planar sets distances. Dilates sums also appeared

in the proofs of sum-product results in finite fields by Garaev [?], and by Katz and

Shen [?]. The sum of two dilates appeared in the work of Nathanson, O’Bryant,

Orosz, Ruzsa and Silva on binary linear forms [?]. Also, they were used by Bukh

[?] in connection with a problem of Ruzsa.

From now on, we assume that A is a nonempty set of integers. Dilates sum of the

form A+ 3 ·A were investigated independently by Bukh [?] and by Cilleruelo, Silva

and Vinuesa [?]. More recently, the authors of [?] proved that for an odd prime k,

|A + k · A| ≥ (1 + k)|A| − (k + 1)2/4 for |A| sufficiently large. Let m1, · · · ,mj be

integers with gcd(m1, . . . ,mj) = 1, Bukh proved in [?] that

|m1 ·A+ · · ·+mj ·A| ≥ (|m1|+ · · ·+ |mj |)|A| − o (|A|) .

Bukh’s result suggests the following:

Conjecture 1.1. For a set of integers Z with gcd(Z) = 1 and for every nonempty

set of integers A, there is an absolute constant c such that∣∣∣∣∣∑
m∈Z

m ·A

∣∣∣∣∣ ≥
(∑
m∈Z

|m|

)
|A| − c.
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In the present work, we prove the above conjecture for Z = {2, k}, where k is an

odd prime. For simplicity, we will not consider negative dilates, but the reader will

certainly observe that our approach works in this case.

In section 2, we present some easy and known lemmas that we need. In section

3, we prove some intermediary results needed in our induction arguments. One of

the results of this section states that |n ·A+m ·A| ≥ 4|A| − 4, where m and n are

coprime integers. This result is a counterpart of a lemma by Nathanson [?] stating

that |A+2 ·A| ≥ 3|A|−2. Let k be an odd prime. By a k-component of a set X ⊂ Z,

we shall mean the nonempty intersection of X with some congruence class modulo

k. In section 4, we investigate the marginal set (2 ·C+k ·A)\ (2 ·C+k ·C), where C

is a k-component of A. In section 5, we prove that |2 ·A+k ·A| ≥ (k+2)|A|−4kk−1.

Assuming that 0 ∈ A, gcd(A) = 1, |A| > 8kk and that A has a k-component

containing at most k − 1 nonempty k2-component, we show that

|2 ·A+ k ·A| > (k + 2)|A|.

Readers interested in the description of sets reaching equality could quite likely use

this result, since it shows that the objective function |2 · A + k · A| achieves its

minimum on structured sets, for |A| large. Let X be a finite set of integers with

|X| > 8kk. We conclude Section 5 by an easy consequence of our main result, stating

that |2 ·X + k ·X| ≥ (k+ 2)|X| − k2− k+ 2. As an exercise, the reader could prove

that |2 ·P + k ·P | = (k+ 2)|P |− 2k, if P is an arithmetic progression. Observe that

for k = 3, our bound differs at most by 4 from the best possible one.

2. Preliminaries and terminology

In this paper, we consider sums of dilates of a finite set of integers. The next

known lemma shows that the size of a dilates sum remains invariant if we replace

A by an affine transform of it.

Lemma 2.1. [?] Let A be a finite set of integers and let r, s, u, v be non-zero

integers. Then

• |r · (A+ v) + s · (A+ v)| = |r ·A+ s ·A|,
• |r · (u ·A) + s · (u ·A)| = |r ·A+ s ·A|.

Proof. We have clearly

|r · (A+ v) + s · (A+ v)| = |r ·A+ s ·A+ (rv + sv)|

= |r ·A+ s ·A|.
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as |A+ w| = |A|. We also have

|r · (u ·A) + s · (u ·A)| = |(ru) ·A+ (su) ·A|

= |u · (r ·A) + u · (s ·A)|

= |r ·A+ s ·A|.

�

Let A be a finite set of integers. The intersection of A with a congruence class

modulo n will be called a n-component. By a decomposition modulo n, we mean

a partition of A into its n-components. The number of n-components of A will be

denoted by cn(A). We shall say that A is n-full if cn(A) = n. The set A is n-semi-full

if every n-component C of A satisfies cn2(C) = n.

Lemma 2.2. If A is n-full, then gcd(A) is coprime to n. Moreover, 1
gcd(A) · A is

n-full.

Proof. There is an u ∈ A such that u ≡ 1 (mod n). As gcd(A) divides u, then

gcd(gcd(A), n) divides both u and n, hence it divides 1. Since gcd(A) is invertible

modulo n, cn

(
1

gcd(A) ·A
)

= cn(A). �

3. Tools

Lemma 3.1. Let A and B be finite sets of integers and let m,n be coprime integers.

Let C denote the set of m-components of A. Then n ·A+m ·B =
⋃
C∈C n ·C+m ·B

is a decomposition modulo m.

Proof. Clearly n ·C+m ·B ≡ n ·C (mod m), for any C ∈ C. The result follows now

since n ·C and n ·C ′ are necessarily incongruent modulo m, for distinct components

C,C ′ ∈ C. �

The next proposition is basic in our approach.

Proposition 3.2. Let A and B be finite sets of integers and let m,n be coprime

integers. Then |n ·A+m ·B| ≥ cn(B)|A|+ cm(A)|B| − cm(A)cn(B).

Proof. Let A be the set m-components of A and let B be the set n-components of

B. We claim that if M1,M2 ∈ A and N1, N2 ∈ B such that (M1, N1) 6= (M2, N2),

then (n ·M1 +m ·N1)∩(n ·M2 +m ·N2) = ∅. Suppose the contrary and take ai ∈Mi

and bi ∈ Ni, 1 ≤ i ≤ 2 with na1 +mb1 = na2 +mb2. Thus, n(a1−a2) = m(b1− b2).

Since m is coprime to n, we have b1 − b2 ≡ 0 (mod n) and a1 − a2 ≡ 0 (mod m).

In particular, M1 = M2 and N1 = N2, a contradiction.
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Therefore, using Lemma 3.1 we have

|n ·A+m ·B| =

∣∣∣∣∣∣
⋃

M∈A; N∈B
n ·M +m ·N

∣∣∣∣∣∣ ≥
∑

M∈A; N∈B
|M |+ |N | − 1

= cn(B)|A|+ cm(A)|B| − cm(A)cn(B).

�

Corollary 3.3. Let 2 ≤ n < m be coprime integers. Let A be a finite set of integers.

Then |n ·A+m ·A| ≥ 4|A| − 4.

Proof. The result holds clearly if |A| = 1. Assume that |A| ≥ 2. Without loss of

generality, 0 ∈ A. Put B = 1
gcd(A) ·A. Put r = cm(B) and s = cn(B). Without loss

of generality we may assume that r ≥ s. Observe that 2 ≤ r ≤ |A|. By Lemma 2.1

and Proposition 3.2, we have

|n ·A+m ·A| = |n ·B +m ·B|

≥ 4|B| − 4 + (r + s− 4)|B| − rs+ 4

≥ 4|B| − 4 + (r + s− 4)r − rs+ 4

≥ 4|B| − 4 + (r − 2)2 ≥ 4|A| − 4.

�

Corollary 3.4. Let m be an odd integer. If A is a m-full finite set of integers,

then |2 · A + m · A| ≥ (m + 2)|A| − 2m. If A is m-semi-full set of integers, then

|2 ·A+m ·A| ≥ (m+ 2)|A| − 2mcm(A).

Proof. Without loss of generality we can assume that c2(A) = 2. Then, the first

part is a direct consequence of Proposition 3.2. For the second part, take the m-

decomposition of A, namely A =
⋃
i∈I Ai. Take an arbitrary element i ∈ I. Since A

is m-semi-full, Ai can be affinely transformed into an m-full subset. By the first part

of this corollary, |2 ·Ai +m ·Ai| ≥ (m+ 2)|Ai| − 2m. By Lemma 3.1, 2 ·Ai +m ·Ai
and 2 · Aj + m · Aj belong to different congruence classes modulo m for i 6= j. By

Lemma 3.1, |2 · A + m · A| ≥
∑
i∈I |2 · Ai + m · Ai| ≥

∑
i∈I(m + 2)|Ai| − 2m =

(m+ 2)|A| − 2mcm(A). �

4. Marginal sets

Let A be a finite set of integers and let C be a component of A. The C-marginal

set is defined as

MC = (2 · C + k ·A) \ (2 · C + k · C).

We start by proving a bound for marginal sets sizes in the semi-full case.

Let A be a finite set of integers and let C be the set of k-components of A. We

formulate the next lemma.
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Lemma 4.1.
∑
C∈C |MC | ≥ (|C| − 1)|C|.

Proof. For any component C ∈ C, we shall write MC
− = {x ∈ MC : x < min(2 ·

C+k ·C)} and MC
+ = {x ∈MC : x > max(2 ·C+k ·C)}. We shall denote by Γ the

directed graph of the order relation x < y defined on the set L = {min(C) : C ∈ C}.
Recall that for a given element x ∈ L, Γ−(x) = {y ∈ L : y < x}. Clearly

2 ·min(C) + k · Γ−(min(C)) ⊂M−C .

In particular, |Γ−(min(C))| ≤ |M−C |. Therefore,∑
C∈C
|M−C | ≥

∑
C∈C
|Γ−(min(C))| = (|C| − 1)|C|/2,

since
∑
C∈C |Γ−(min(C))| is the total number of arcs in the order relation, which is

obviously (|C| − 1)|C|/2. Similar arguments show that
∑
C∈C |M

+
C | ≥ (|C| − 1)|C|/2.

The lemma follows then from the relation
∑
C∈C |MC | ≥

∑
C∈C |M

−
C |+

∑
C∈C |M

+
C |.
�

We continue relating the size of MC and C. Sets with the property |MC | ≥ |C|
are satisfactory for induction proofs, as we shall see in the next section. For a subset

X of an abelian group G, we write π(X) = {x ∈ G : x + X = X}. We recall that

|π(X)| is a divisor of |X|.

Lemma 4.2. Let k be an odd prime and let A be a finite set of integers with 0 ∈ A
and gcd(A) = 1. Let C be a non-k-semi-full component of A and let C ′ 6= C be

another k-component of A. Then |MC | ≥ |C ′|. Moreover, |MC | ≥ |C| if one of the

following conditions holds:

• There is another component with size not less than |C|.
• C is non-2-full.

Proof. Let φ : Z→ Z/k2Z be the projection. Since |π(φ(C))| divides k2 and |φ(C)|
and since |φ(C)| < k, we have necessarily π(φ(C)) = {0}. Since all elements of k ·C
are equal modulo k2, if φ(2 ·C+k ·C) = φ(2 ·C+k ·C ′), we have φ(k ·C) = φ(k ·C ′),
and hence C ≡ C ′ modulo k. It follows that C = C ′, a contradiction.

Thus, MC contains 2 · C0 + k · C ′, where C0 is some k2-component of C, and

hence |MC | ≥ |C ′|. Assume now that C is non-2-full. Pick either an odd v (using

gcd(A) = 1) if C contains only even numbers or v = 0 ∈ A if C contains only odd

numbers. Clearly, 2 · C + kv is a subset of MC . �

5. Large sets of integers

The next result is our first step.
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Theorem 5.1. Let k be an odd prime. If A is a finite set of integers, then

|2 ·A+ k ·A| ≥ (k + 2)|A| − 4kk−1.

Proof. Without loss of generality, we may take 0 ∈ A and gcd(A) = 1. We shall

prove by induction that for all 2 ≤ s ≤ k, we have

|2 ·A+ k ·A| ≥ (s+ 2)|A| − 4ks−1.

For s = 2, this bound is weaker than the one obtained by Corollary 3.3.

Assume now that 2 < s ≤ k and that the result holds for s − 1. Take a k-

decomposition of A, namely A =
⋃
i∈I Ai. We shall write Mi = MAi . Put F = {i ∈

I : Ai is k − semi-full} and E = I \ F. Notice that |E|+ |F | = |I| ≤ k.
Assume first that ∑

i∈E
|Mi| ≥

∑
i∈E
|Ai|.

By Lemma 3.1, 2 ·Ai+k ·A and 2 ·Aj+k ·A belong to different congruence classes

modulo k, for i 6= j. By Corollary 3.4, for every i ∈ F , |2·Ai+k·Ai| ≥ (k+2)|Ai|−2k.

Using the last relations, the induction hypothesis applied for every i ∈ E, we have

|2 ·A+ k ·A| ≥
∑
i∈E

(|2 ·Ai + k ·Ai|+ |Mi|) +
∑
i∈F
|2 ·Ai + k ·Ai|

≥
∑
i∈E

((s+ 1)|Ai| − 4ks−2) +
∑
i∈E
|Ai|+

∑
i∈F

((k + 2)|Ai| − 2k)

≥
∑
i∈I

(s+ 2)|Ai| − 4|I|ks−2 + 2k|F |
(
2ks−3 − 1

)
≥(s+ 2)|A| − 4ks−1,

and the result holds.

Assume now that ∑
i∈E
|Mi| <

∑
i∈E
|Ai|.

In particular, we have |E| ≥ 1. We must have |E| = 1, otherwise we take a derange-

ment (permutation without fixed element) σ of E. By Lemma 4.2, |Mi| ≥ |Aσ(i)|,
for every i. We get a contradiction by summing over all i ∈ E. Put E = {e} and

take f ∈ F . Observe that there must be at least two k-components, as 0 ∈ A and

gcd(A) = 1. Applying and affine transformation to both Ae and Af we can apply

Proposition 3.2, getting |2 ·Af + k ·Ae| ≥ k|Af |+ 2|Ae| − 2k.

The idea here is to estimate the component of 2·A+k ·A containing 2·Af +k ·Af ,

using the sum 2·Af+k·Ae. By Lemma 4.2, Ae is 2-full, |Ae| > |Af | and |Me| ≥ |Af |.
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Using Lemma 3.1 and the previous considerations we have

|2 ·A+ k ·A| ≥|2 ·Ae + k ·Ae|+ |Me|+ |2 ·Af + k ·Ae|+
∑
i∈F\f

|2 ·Ai + k ·Ai|

≥(s+ 1)|Ae| − 4ks−2 + |Af |+ k|Af |+ 2|Ae| − 2k +
∑
i∈F\f

((k + 2)|Ai| − 2k)

>(s+ 2)|Ae| − 4ks−2 +
∑
i∈F

((s+ 2)|Ai| − 2k)

≥(s+ 2)|A| − 4ks−1 + 2|F |k(2ks−3 − 1)

≥(s+ 2)|A| − 4ks−1.

�

Our main result is the following one:

Theorem 5.2. Let k be an odd prime. Let A be a finite set of integers with 0 ∈ A,
gcd(A) = 1 and |A| > 8kk. If A has a k-component involving at most k− 1 distinct

k2-components, then

|2 ·A+ k ·A| > (k + 2)|A|.

Proof. Let C denote the set of k-components of A and let C be a non-k-semi-

full component of A. Take a k-component N with a maximal cardinality. Clearly

|N | > 8kk−1. Assume first that |MC | ≥ |N |. By Theorem 5.1 and Lemma 3.1,

|2 ·A+ k ·A| ≥ |2 · C + k · C|+ |MC |+ |2 · (A \ C) + k · (A \ C)|

>(k + 2)|C| − 4kk−1 + 8kk−1 + (k + 2)|A \ C| − 4kk−1

= (k + 2)|A|,

Assume now that |MC | < |N | and put c = ck(A). By Lemma 4.2, C = N and C

is 2-full. Hence C is the unique non-k-semi-full component of A. Take now a k-semi-

full component of A, say T and put A′ = A \ (C ∪ T ). By Lemma 4.2 |MC | ≥ |T |.
Applying a convenient affine transformation, by Proposition 3.2 |2 · T + k · C| ≥
k|T |+ 2|C| − 2k.

Thus using Corollary 3.4 and Lemma 3.1 we have

|2 ·A+ k ·A| ≥ |2 · C + k · C|+ |T |+ |2 · T + k · C|+ (k + 2)|A′| − 2(c− 2)k

≥(k + 2)|C| − 4kk−1 + |C|+ (k + 2)|T | − 2k + (k + 2)|A′| − 2(c− 2)k

>(k + 2)|A|+ 4kk−1 − 2k(k − 1) > (k + 2)|A|,

and the result holds. �

We can now prove the following lower bound on |2 ·A+ k ·A|:
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Corollary 5.3. Let k be an odd prime. If A is a finite set of integers with |A| > 8kk,

then

|2 ·A+ k ·A| ≥ (k + 2)|A| − k2 − k + 2.

Proof. By Lemma 2.1, we may take 0 ∈ A and gcd(A) = 1. By Corollary 3.4, the

result holds if A is k-full. Assume that A is non-k-full and let C denote the set

of k-components of A. By Theorem 5.2, we may assume that A is k-semi-full. By

Corollary 3.4, Lemma 3.1 and Lemma 4.1 we have

|2 ·A+ k ·A| =
∑
C∈C
|2 · C + k · C|+ |MC |

≥
∑
C∈C

((k + 2)|C| − 2k) + ck(A)(ck(A)− 1)

=(k + 2)|A| − ck(A)(2k − ck(A) + 1)

Therefore |2 ·A+ k ·A| ≥ (k + 2)|A| − k2 − k + 2, and the result holds. �
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