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Community dwelling older individuals from the North Florida region were examined for
health status and a comprehensive neuropsychological battery, including the Montreal
Cognitive Assessment (MoCA), was performed on each participant. A subpopulation (58
females and 39 males) met the criteria for age (60–89) and no evidence of mild cognitive
impairment, with a MoCA score ≥23. Despite the stringent criteria for participation,
MoCA scores were negatively correlated within the limited age range. Extracellular
microvesicles were isolated from the plasma and samples were found to be positive
for the exosome marker CD63, with an enrichment of particles within the size range
for exosomes. miRNA was extracted and examined using next generation sequencing
with a stringent criterion (average of ≥10 counts per million reads) resulting in 117
miRNA for subsequent analysis. Characterization of expression confirmed pervious
work concerning the relative abundance and overall pattern of expression of miRNA
in plasma. Correlation analysis indicated that most of the miRNAs (74 miRNAs)
were positively correlated with age (p <0.01). Multiple regression was employed to
identify the relationship of miRNA expression and MoCA score, accounting for age.
MoCA scores were negatively correlated with 13 miRNAs. The pattern of expression
for cognition-related miRNA did not match that previously described for Alzheimer’s
disease. Enrichment analysis was employed to identify miRNA–gene interactions to
reveal possible links to brain function.

Keywords: exosome, microRNA, biomarker, normal aging, Alzheimer’s disease

INTRODUCTION

Normal aging in humans and animal models is associated with changes in specific cognitive
processes. Impaired memory, executive function, and processing speed have been well-
characterized with advancing age (Alexander et al., 2012; Woods et al., 2013; Febo and Foster, 2016;
O’Shea et al., 2016; Nissim et al., 2017; Porges et al., 2017). However, age-related cognitive decline
is not uniform, environmental and biological factors including genes, exercise, diet, inflammation,
and stress, which are thought to influence the age of onset and the trajectory of cognitive decline
(Foster, 2006; Barrientos et al., 2010; Craft et al., 2012; Kumar et al., 2012; Speisman et al., 2013;
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Cai et al., 2014; Fan et al., 2017). Further complicating the field
is the ability to distinguish age-related cognitive decline from
diseases that influence cognition (Foster, 2006; Foster et al.,
2016).

Neuroimaging, genetics, and circulating biomarkers are being
developed to differentiate normal aging from diseases that affect
cognition. While genetic markers may suggest susceptibility
to disease, these gene markers are not diagnostic. Similarly,
more accurate techniques for identifying pathology, such as
positron emission computed tomography, are expensive and
may miss early diagnosis, which is critical for treatment. Due
to the relative ease of collecting blood, blood based biomarkers
could provide a simple and relatively inexpensive means for
tracking the progression of cognitive decline and effectiveness
of treatments, as well as providing information on mechanism
for cognitive impairment. Previous work has examined the
relationship between cognition and blood biomarkers, based on
theories concerning a role for lipids and cholesterol, oxidative
stress, hormones, and inflammation in promoting disease and
senescent physiology (Foster, 2006). Recent research suggests
that non-coding RNAs found in the circulation can act as
biomarkers for diseases of aging including cancer, cardiovascular
and neurodegenerative disease (Sheinerman and Umansky, 2013;
Schwarzenbach et al., 2014; Mushtaq et al., 2016; Schulte et al.,
2016).

MicroRNAs (miRNAs) are small, phylogenetically conserved,
18–25 base pair sections of RNA that influences biological
processes through the post-transcriptional regulation of RNA.
miRNA acts as a template for target mRNA, binding to the
3′ untranslated region (UTR) of mRNA to silence genes by
inhibiting translation and initiating mRNA degradation of the
target mRNA. Some miRNAs are ubiquitously expressed in order
to regulate fundamental metabolic pathways and variability in
expression is influenced by ongoing physiology, including aging.
In other cases, miRNAs are preferentially expressed in specific
tissues or during different times of development and maturation
(Landgraf et al., 2007; Shao et al., 2010; Fehlmann et al., 2016).
Finally, examination of the brain suggests that intracellular
miRNA signaling influences neural circuits, including those
associated with psychiatric diseases (Impey et al., 2010; Serafini
et al., 2014; Jovasevic et al., 2015; Rajman et al., 2017).

Within the circulation, miRNAs can be found attached to
proteins or in extracellular vesicles, small (50 nm to 1 µm)
vesicles of endocytic origin that are released from cells into
the extracellular environment. Some (e.g., exosomes) are able
to cross membranes (e.g., blood–brain barrier) and can be
detected in bodily fluids including serum, urine, and saliva. In
this way, microvesicles can provide intercellular and inter-organ
communication by delivery of miRNAs to influence transcription
and altering genetic processes. Indeed, studies suggest that
circulating levels of miRNAs in plasma (Kumar et al., 2013)
or in exosomes (Cheng et al., 2015; Lugli et al., 2015) may be
able to identify Alzheimer’s disease. The current study employs
the datasets from previous studies examining the relationship of
brain structural and cognitive function in older adults (O’Shea
et al., 2016; Nissim et al., 2017). We now include additional
analysis of the expression of miRNAs, isolated from plasma

enriched for microvesicles, and relate the expression to cognition
in advanced age.

MATERIALS AND METHODS

Participants
The study was approved by the Ethics Review Committee on
Human Research of the University of Florida (Gainesville, FL,
United States) and written informed consent was obtained from
all participants. The participants were selected from previous
studies (O’Shea et al., 2016; Nissim et al., 2017) in which
healthy community dwelling older individuals were recruited
from Gainesville and the North Florida region. A thorough
medical history questionnaire for each participant provided
detailed information on health status, medication status, and
a comprehensive neuropsychological battery was performed on
each participant (O’Shea et al., 2016; Nissim et al., 2017). No
participants in this sample were clinically indicated to have
mild cognitive impairment (MCI) or other age-related brain
disorders. The Montreal Cognitive Assessment (MoCA) was
given to assess general cognitive ability as well as rule out possible
MCI (Nasreddine et al., 2005). From this group, we selected those
between the ages of 60–89, with a MoCA≥23. The 97 participants
met the criteria for inclusion in this study, with 58 females and
39 males.

Sample Collection and Microvesicle
Characterization
The plasma samples were collected into EDTA Tubes- Plasma
(Cat# 367863). The tubes were inverted five times, stored on
ice and processed within 30 min of blood draw. The samples
were centrifuged at 1600 × g for 15 min at 4◦C and the isolated
plasma samples were stored at −80◦C until RNA isolation.
The plasma was filtered (0.22 µm filter; Millipore, Billicera,
MA, United States) to remove cellular material, including
thrombocyte fragments. Microvesicles were isolated using the
exoEasy Maxi and exoRNeasy kit (Qiagen).

For a subset of samples, the size distribution and
concentration of the microvesicles were determined by
University of Florida Interdisciplinary Center for Biotechnology
Research using the NanoSight 300 Instrument (Malvern
Instruments), according to the manufacture instruction. In
addition, morphological assessment of microvesicles was
determined by University of Florida Interdisciplinary Center
for Biotechnology Research using the transmission electron
Microscopy (TEM). A glow discharged carbon coated Formvar
copper 400 mesh grid, was floated onto 10 microliter aliquots of
re-suspended microvesicle pellet and incubated for 5 min. Excess
solution was drawn off with filter paper and the grids were floated
on 1% aqueous uranyl acetate for 30 s. Stain was removed with
filter paper, air dried and examined using FEI Tecnai G2 Spirit
Twin TEM (FEI Corp., Hillsboro, OR, United States) and digital
images were acquired with Gatan UltraScan 2k × 2k camera
and Digital Micrograph software (Gatan Inc., Pleasanton, CA,
United States).
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FIGURE 1 | Histograms of the distribution of (A) ages and (B) Montreal Cognitive Assessment (MoCA) scores overlaid with a normal distribution curve based on the
mean and SD. (C) A correlation was observed between age and MoCA score, such that the MoCA score decreased with increasing age.

RNA Isolation
RNA was isolated using exoRNeasy Serum/Plasma Maxi
kit (Cat# 77064, Qiagen) according to the manufacturer’s
instructions with the final elution volume of 12 µl. The quantity
and quality of the RNA were determined by University of
Florida Interdisciplinary Center for Biotechnology Research
using the Agilent RNA 6000 Pico Kit to determine the
concentration of total RNA, and a Small RNA Kit Chip
was used to measure the concentration of exosomal micro
RNA (miRNA) on the Agilent Bioanalyzer instrument (Agilent
Technologies). Total RNA samples contained a range of 49–90%
miRNA.

Small RNA Library Preparation
Sequencing libraries were constructed using ∼2 ng of total
exosomal RNA with the library preparation kit Ion Total
RNA-Seq kit v2 (Thermo Fisher, Cat# 4475936). Each library
was barcoded with Ion Xpress RNA Seq-Barcode 01-16 Kit
(Thermo Fisher, Cat# 4475485) to enable multiplex sequencing.
The concentration of the libraries was quantified by the
Qubit dsDNA HS Assay (Thermo Fisher, Cat# Q32851).
In addition, the size distribution and molar concentration
was determined with the High Sensitivity D1000 Screen
Tape Kit (5067–5584) on 2200 TapeStation system (Agilent
Technologies, Cat# G2964A) according to the manufacture’s
protocol.

Sequencing, Data Acquisition, and
Bioinformatics
Templates were prepared with 25 µl of the pooled libraries
at a final concentration of 50 pM using Ion Chef instrument
(Thermo Fisher) and then sequenced in the Ion Proton System
(Thermo Fisher). FASTQ files were extracted from Ion Torrent
server and uploaded to the Partek Flow (Partek Inc., St. Louis,
MO, United States) servers for bioinformatics analysis. On
average, each sample contained 13.8 million reads of 32 base
pair (bp) length. Reads were trimmed based on size such that
reads below 15 bp and reads above 35 bp were discarded.
Following trimming, reads were aligned using Bowtie (version
1.0.0) against the human genome reference (hg38) followed by
a post-alignment quality check to assess the performance of the
alignment. Gene annotation was completed with the miRBase
mature miRNAs model (release version 21) and normalization
was performed on total counts. In order to consider genes that
are not present in miRBase, gene annotation was also done
using hg38-Ensembl Transcripts (release version 85) followed by
total count normalization. (Gene Expression Omnibus accession
number: The data for this study has been uploaded to the Gene
Expression Omnibus under the accession number GSE97644.

To study functionally related genes and their relationship,
a biological interpretation was performed by gene ontology
(GO) enrichment analysis using DIANA tool web-based software
using mirPath (v.3) for miRNA pathway analysis and TarBase
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FIGURE 2 | Transmission electron microscopy of (A) extracellular
microvesicles isolated from plasma and negatively stained with 1% uranyl
acetate. (B) Enhanced magnification of microvesicles shown in lower right
corner of (A).

(v7.0) (Vlachos et al., 2015) was employed to identify miRNA–
gene interactions. The statistical cutoff for GO analysis was
based on corrected p-values with the Benjamini–Hochberg’s False
Discovery Rate (FDR) p < 0.05.

Statistical Analysis
For statistical analysis, miRNA counts were first log-transformed.
Differences associated with sex were determined using analyses
of variance (ANOVAs). Pearson’s regression analysis was used to
examine correlations associated with age and miRNA expression.
Due to the correspondence of age and cognitive function,
multiple regression was employed to determine correlation of
miRNA with MoCA score after adjusting for age.

RESULTS

Cognitive testing and plasma were collected from a total of 134
participants, age range 44–102 years. From this population, five
were removed due to a history suggesting possible brain disorders
due to stroke, concussion, or epilepsy, 22 were removed due to
a MoCA score less than 23 (MoCA score range 18–22), and 10
were outside the specified age range of 60–89 years, with one
person age 92 and 9 individuals 44–59 years. The remaining
97 participants that met the criteria for inclusion in this study
included 58 females and 39 males. The distribution of ages
and MoCA scores was approximately normal (Figure 1). No
age difference was observed between females (75.4 ± 1.0 years
mean ± SEM) and males (mean 73.0 ± 1.0 years). While we
cannot rule out that some participants may have been pre-
symptomatic for MCI or Alzheimer’s disease, the MoCA scores
were negatively correlated with age (R2

= 0.08, p < 0.005)
(Figure 1C), suggesting that this population exhibited an age-
related cognitive decline.

Extracellular Microvesicle
Characterization
Characterization of extracellular microvesicle markers was
performed for five samples. Elisa assays indicated that all
samples were positive for the exosome marker CD63 (OD450

4.08−1
± 0.24, mean ± SD) (Peterson et al., 2015). NanoSight

analysis indicated an average vesicle size of 188.82 ± 22.9 nm
(mean± SD), average mode 152.18± 34.7 (mean± SD), and the
percent of particles that were <200 nm averaged 65%. Electron
microscopy confirmed the recovery of small vesicles with an
expected size range from 50 to 200 nm (Figure 2).

miRNA
For expression of miRNA, a cut-off was set such that expression
had to average at least 10 across the 97 participants. This
filtering resulted in data for 117 miRNAs for analysis. Similar to
previous reports (Hunter et al., 2008; Mooney et al., 2015), we
observed that mir-223-3p exhibited the highest level expression
and relatively high level expression (>300 average counts) was
observed for mir-191-5p, mir-126-3p, mir-126-5p, mir-484, and
mir-26a-5p (Table 1).

An examination of differential expression between the males
and females indicated no difference in miRNA expression.
Previous work suggests expression of circulating miRNAs
increases with increasing age (Freedman et al., 2016). Therefore,
Pearson’s regression analysis with a cut-off of r = ±0.263
(p < 0.01) was employed to examine correlations of miRNA
expression with age. The results revealed 74 miRNAs that
were positively correlated with age (Table 2), confirming
that most plasma miRNA that changes with age, exhibit
increased expression with advancing age (Freedman et al., 2016).
Interestingly, several miRNA that are consistently reported to
decrease in blood, plasma, and serum of Alzheimer’s patients
(hsa-let-7g-5p, hsa-let-7e-5p, and hsa-miR-103a-3p) (Kumar
et al., 2013; Leidinger et al., 2013; Tan et al., 2014; Satoh et al.,
2015; Nagaraj et al., 2017), were positively correlated with age.

Due to the correspondence of age with miRNA expression
and cognitive function, multiple regression was performed to

TABLE 1 | Highly expressed miRNA.

miRNA Average expression

hsa-miR-223-3p 8760.771

hsa-miR-451a 2372.06

hsa-miR-191-5p 1548.376

hsa-miR-126-3p 1174.333

hsa-miR-126-5p 1021.754

hsa-miR-103a-3p 824.9511

hsa-miR-23a-3p 804.3156

hsa-miR-26a-5p 796.5815

hsa-miR-19b-3p 717.237

hsa-miR-150-5p 697.2409

hsa-miR-484 654.5321

hsa-let-7a-5p 557.691

hsa-miR-185-5p 436.1216

hsa-miR-320a 361.9573

hsa-miR-22-3p 349.7947

hsa-let-7b-5p 325.3197

hsa-let-7g-5p 302.027

For all tables, expression represents averaged counts.
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TABLE 2 | miRNA correlated with age.

miRNA r-Value Average
expression

miRNA r-Value Average
expression

hsa-miR-423-5p 0.40 192.63 hsa-miR-126-5p 0.30 1021.75

hsa-miR-145-5p 0.37 80.97 hsa-miR-134-5p 0.30 19.46

hsa-miR-425-5p 0.37 240.80 hsa-miR-19a-3p 0.30 179.28

hsa-miR-22-5p 0.36 10.33 hsa-miR-339-3p 0.30 13.74

hsa-miR-140-5p 0.35 11.19 hsa-miR-29a-3p 0.30 67.12

hsa-miR-376a-3p 0.35 25.80 hsa-miR-199a-5p 0.30 57.71

hsa-miR-185-5p 0.34 436.12 hsa-miR-425-3p 0.30 14.47

hsa-miR-23b-5p 0.34 66.37 hsa-miR-424-5p 0.30 16.52

hsa-miR-23a-3p 0.34 804.32 hsa-miR-660-5p 0.30 10.43

hsa-miR-652-3p 0.34 22.15 hsa-miR-15a-5p 0.30 116.76

hsa-miR-25-3p 0.33 35.00 hsa-miR-339-5p 0.29 37.97

hsa-miR-128-3p 0.33 25.74 hsa-miR-99b-5p 0.29 47.06

hsa-miR-30d-5p 0.33 119.15 hsa-miR-136-5p 0.29 11.01

hsa-miR-485-3p 0.33 27.98 hsa-miR-27a-3p 0.29 105.93

hsa-miR-22-3p 0.33 325.32 hsa-miR-19b-3p 0.29 697.24

hsa-miR-221-3p 0.33 129.56 hsa-miR-625-3p 0.29 26.04

hsa-miR-382-5p 0.33 19.56 hsa-miR-106b-5p 0.29 29.31

hsa-miR-484 0.33 654.53 hsa-miR-103a-3p 0.29 824.95

hsa-miR-29c-3p 0.32 26.14 hsa-miR-199a-3p 0.29 78.57

hsa-miR-21-5p 0.32 190.64 hsa-miR-18a-5p 0.29 258.39

hsa-miR-92a-3p 0.32 203.81 hsa-miR-17-3p 0.29 20.08

hsa-miR-33a-5p 0.32 25.59 hsa-miR-186-5p 0.29 11.36

hsa-miR-421 0.32 11.50 hsa-miR-148a-3p 0.29 16.18

hsa-miR-146a-5p 0.32 152.48 hsa-miR-29b-3p 0.29 30.96

hsa-miR-376c-3p 0.32 227.40 hsa-miR-197-3p 0.29 123.44

hsa-let-7d-3p 0.32 32.72 hsa-let-7e-5p 0.29 34.63

hsa-miR-24-3p 0.31 246.04 hsa-miR-20a-5p 0.29 125.10

hsa-miR-664a-3p 0.31 10.75 hsa-miR-423-3p 0.28 255.35

hsa-miR-28-3p 0.31 20.59 hsa-miR-27b-3p 0.28 29.59

hsa-miR-766-3p 0.31 44.77 hsa-miR-199b-3p 0.28 39.08

hsa-miR-28-5p 0.31 20.26 hsa-miR-223-3p 0.28 8760.77

hsa-miR-590-5p 0.31 78.01 hsa-miR-378a-3p 0.28 22.60

hsa-miR-324-5p 0.31 18.93 hsa-let-7i-5p 0.28 94.64

hsa-miR-584-5p 0.31 69.43 hsa-miR-15b-3p 0.27 11.55

hsa-miR-1307-3p 0.30 10.92 hsa-miR-186-5p 0.27 11.36

hsa-miR-93-5p 0.30 141.86 hsa-miR-574-3p 0.27 39.23

hsa-miR-361-5p 0.30 27.69 hsa-let-7g-5p 0.26 302.03

examine the relationship of miRNA expression to MoCA scores,
accounting for the influence of age. The analysis indicated
that 13 miRNA exhibited a significant correlation with MoCA
scores (Table 3) and 16 exhibited a trend (p > 0.05 < 0.1).
In all cases, the correlations were negative such that increased
miRNA expression was associated with decreased MoCA scores.
Interestingly, three of the cognition related miRNA from Table 3
exhibit relatively selective expression in the brain (hsa-miR-342-
3p, hsa-miR-125b-5p, hsa-miR-125a-5p) (Hinske et al., 2014).
Moreover, hsa-miR-342-3p and hsa-miR-125b-5p exhibited the
strongest correlation with MoCA scores (Table 3). These three
miRNAs exhibited relatively poor correlation with age (Figure 3).
Figure 4 illustrates the age and MoCA score correlations for has-
miR-451a-3p, which exhibited the highest expression (Table 3),

was correlated with cognition, and did not exhibit a correlation
with age.

To study functionally related genes and their relationship,
a biological interpretation was performed by GO enrichment
analysis using DIANA tool web-based software to identify
miRNA–gene interactions. To understand possible mechanisms
through which miRNA could influence the brain, miRNA that
correlated with MoCA scores were submitted to DIANA for
miRNA pathway analysis. Combining the three brain selective
miRNA (hsa-miR-342-3p, hsa-miR-125b-5p, hsa-miR-125a-5p)
cluster enrichment indicated the top three pathways were
associated with fatty acid biosynthesis (3 genes, p = 1.9−16),
hippo signaling (38 genes, p = 1.8−9), and protein processing in
the endoplasmic reticulum (43 genes, p = 7.5−6). Brain specific
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TABLE 3 | MoCA score multiple regression analysis.

Coefficients

miRNA miRNA Age R2 Expression

hsa-miR-342-3p −1.26∗∗ −0.069∗ 0.15 149.03

hsa-miR-125b-5p −1.42∗ −0.063∗ 0.14 21.73

hsa-miR-10a-5p −1.39∗ −0.065∗ 0.14 79.04

hsa-miR-140-3p −1.74∗ −0.065∗ 0.14 14.23

hsa-miR-451a −1.14∗ −0.074∗∗ 0.13 2372.06

hsa-miR-99a-5p −1.03∗ −0.067∗ 0.13 52.26

hsa-miR-23b-3p −1.37∗ −0.066∗ 0.13 64.87

hsa-miR-10b-5p −1∗ −0.069∗ 0.13 84.84

hsa-miR-125a-5p −1.41∗ −0.064∗ 0.13 114.18

hsa-miR-186-5p −1.28∗ −0.063∗ 0.13 11.59

hsa-miR-378a-3p −1.74∗ −0.063∗ 0.13 22.60

hsa-miR-26b-5p −1.14∗ −0.065∗ 0.13 49.22

hsa-miR-30c-5p −1.01∗ −0.065∗ 0.12 15.67

Asterisks indicate a significant contribution ∗p < 0.05, ∗∗p < 0.01.

pathways included neurotrophin signaling (27 genes, p = 0.016).
For the highest expressing miRNA, hsa-miR-451a (Table 3),
DIANA analysis indicated brain related cluster enrichment for
Parkinson’s disease (2 genes, p = 1.0−5) and glioma (3 genes,
p = 0.02), and clusters for signaling pathways related to aging,
including mTOR signaling (6 genes, p = 0.002) and AMPK
signaling (6 genes, p = 0.027). When all 13 miRNAs that
correlated with MoCA scores were loaded into DIANA, the
results indicate several pathways associated with brain function
including prion disease (20 genes, 11 miRNA, p= 1.0−6), glioma
(44 genes, 13 miRNA, p = 2.9−6), Huntington’s disease (102
genes, 11 miRNA, p = 0.015), and axon guidance (71 genes, 12
miRNA, p= 0.019).

DISCUSSION

The results provide evidence that miRNA, from extracellular
microvesicle enriched plasma samples, correlates with cognitive
function in healthy elderly individuals. In discussing these
results, there are several caveats that need to be considered.
Exosomes have the potential to cross the blood–brain barrier
and could provide a marker of brain health (Alvarez-Erviti
et al., 2011). Alternatively, exosomes in the plasma could
cross into the brain to deliver their cargo and influence brain
function. Thus, it is important to consider the enrichment
of exosomes. Elisa assays indicated that the samples were
positive for the exosome marker CD63 indicating that the
samples are enriched in exosomes. The enrichment of exosomes
was supported by examination of microvesicle size, with
∼65% of particles in the range of exosomes. Exosomes are
classically defined as 50–150 nm in diameter, although larger
extracellular vesicles (>200 nm) have been described (Kowal
et al., 2016). The 150 nm limit may represent a bias due
to isolation techniques, and ignores the possible functional
impact of increased volume of larger vesicles that have been
described (van der Pol et al., 2012; Kowal et al., 2016).

Regardless, it appears that the samples were enriched in
exosomes.

A second consideration concerns the stringent criteria for
the population of participants. Participants were screened in
an attempt to exclude those with dementia or Alzheimer’s
disease. Interestingly, hsa-let-7g-5p, which is commonly found to
decrease in plasma, serum, and blood from Alzheimer’s patients
(Kumar et al., 2013; Tan et al., 2014; Satoh et al., 2015), was
observed to increase with age in our plasma samples and in
previous studies using a wider age range (Freedman et al., 2016).
Other miRNAs that were increased with age in our study and the
Freedman study, and yet have been reported to decrease in blood
or plasma from Alzheimer’s patients, include hsa-let-7e-5p and
hsa-miR-103a-3p (Kumar et al., 2013; Leidinger et al., 2013; Satoh
et al., 2015; Nagaraj et al., 2017). In all cases, multiple regression
indicated no correlation of these miRNA with the MoCA score
when age was taken into consideration. The stringent criteria and
the absence of suspected miRNA markers of Alzheimer’s disease
increases the confidence that these individuals did not have a
neurodegenerative disease; although it is possible that they were
pre-symptomatic. On the other hand, our results indicating that
these miRNAs increase with age, emphasizing the importance
of considering age when investigating biomarkers of disease. It
has been suggested that the inability to reproduce expression
differences may result from age differences across cohorts (Satoh
et al., 2015; Cosin-Tomas et al., 2017; Nagaraj et al., 2017), and
for studies that found decreased miRNA expression associated
with Alzheimer’s disease, the disease and control groups were
age-matched.

Mild cognitive impairment is considered a transitional state
between normal aging and Alzheimer’s disease and previous
research suggests a threshold cutoff MoCA score of 19–23 for
designating MCI (Luis et al., 2009; Dong et al., 2012; Larner,
2012; Freitas et al., 2013). Previous studies have reported that
specific miRNAs increase in plasma or serum in MCI patients
(Sheinerman et al., 2013; Dong et al., 2015). In many cases,
the previously reported miRNA exhibited expression levels
below our cutoff and were not considered. The stringency for
expression reduces the likelihood of type I error and increases
the confidence in those miRNA that were correlated with age
or MoCA scores. However, the stringency makes it likely that
we missed low expressing miRNA that correlate with cognitive
function. Indeed, considering that all cognition-related miRNAs
exhibited increased expression associated with a decline in MoCA
score, it is likely that we missed miRNA that exhibited low
expression, particularly in cognitively intact individuals. In the
case of miRNA that did satisfy our stringent cutoff, and have
been reported to increase in MCI patients, expression of hsa-
miR-128-3p, hsa-miR-134-5p, hsa-miR-382-5p, hsa-miR-146a-
5p, and hsa-miR-93-5p was observed to increase with age and
was not correlated with the MoCA score. We cannot rule out
that individuals were pre-symptomatic for MCI. Thus, it will be
important for future studies to track cognitive changes as well as
miRNA markers over time to determine if miRNA are predictive
of decline associated with normal aging and disease.

In comparing the pattern of miRNA expression to previous
work, it is important to recognize that much of the previous
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FIGURE 3 | Correlation of hsa-miR-342-3p (top), hsa-miR-125b-5p (middle), and hsa-miR-125a-5p (bottom) expression with age (left) or MoCA scores (right).
The R2 and p-values for the simple regressions are provided.

FIGURE 4 | Correlation of hsa-miR-451a with age (left) or MoCA scores (right).

work has examined miRNA directly from plasma or serum, which
includes exosomal and protein-bound miRNAs. It is expected
that miRNA expression of plasma and exosomal enriched
samples will be similar for many miRNAs; however, expression
of some miRNAs may differ (Freedman et al., 2016). Our results
confirm a high level of expression for mir-223-3p, mir-451a,
mir-191-5p, mir-126-3p, mir-126-5p, mir-484, and mir-26a-5p,
which are enriched in plasma exosomes (Hunter et al., 2008;
Pritchard et al., 2012; Cheng et al., 2014; Mooney et al., 2015).

Second, previous work indicates that chronological age provides
a strong influence on expression of plasma miRNA. Indeed, we
found over half the exosomal miRNAs examined at p < 0.01,
exhibited increased expression with age (false discovery rate
p < 0.016). The robustness of these 74 age-related miRNAs is
emphasized by the fact that a well powered study reported 51
of these miRNAs increased in plasma across a broader age range
(Freedman et al., 2016). Together, the results indicate that miRNA
provide a good marker for chronological age. Together, the
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results emphasize that age is a major risk factor for Alzheimer’s
disease and MCI. Thus, it should not be surprising that biological
markers of chronological age provide good predictors of diseases.
As such, age should be taken into account when attempting to
link biological markers to age-related diseases.

Due to the correlation of age with measures of cognitive
function and miRNA expression, multiple regressions were
employed to examine the relationship between MoCA scores
and miRNA expression, in order to account for age effects. Our
analysis point to several miRNAs that may be good predictors
of cognitive function in elderly individuals. Exosomes have the
potential to cross the blood–brain barrier (Alvarez-Erviti et al.,
2011). Thus, highly expressed miRNAs coming from white (mir-
223-3p, mir-191-5p, mir-150-5p, mir-26a-5p, mir-19b-3p) or red
(mir-451a) red blood cells (RBCs) (Hunter et al., 2008; Pritchard
et al., 2012) could influence brain function. In the current study,
we observed an increase in hsa-mir-19b-3p with age; however,
this miRNA was not correlated with cognition. In contrast,
MoCA scores were correlated with hsa-mir-451a. One possible
confound is that hemolysis can increase the level of RBC enriched
miRNA, hsa-mir-451a and hsa-mir-16-5p, in plasma and serum
(Blondal et al., 2013; Kirschner et al., 2013), which could have
contaminated our microvesicle enriched samples. A number
of factors can influence the fragility of RBCs. However, it is
important to note that the fragility of RBCs declines over the
course of aging (Penha-Silva et al., 2007; de Freitas et al., 2014).
Furthermore, when variability in cognition associated with age
was taken into account, expression of hsa-mir-451a, but not hsa-
mir-16-5p, was correlated with the MoCA scores. On the other
hand, RBCs are not the only source of hsa-mir-451a and an
increase in release of hsa-mir-451a containing microvesicles is
associated with disease in other cell types as well as senescence
of platelets (Ji et al., 2014; Dickman et al., 2017; Pienimaeki-
Roemer et al., 2017; Takikawa et al., 2017). The manner in which
hsa-mir-451a could influence cognition is unknown; however,
an increase in plasma hsa-mir-451a has been reported to be
associated with vascular dementia (Prabhakar et al., 2017) and
increased expression in the brain may alter synaptic function
(Mor et al., 2015).

The MoCA scores were also correlated with several miRNAs
that are enriched in the brain (Hinske et al., 2014). An increase in
brain specific miRNA in the plasma could result from increased
leakiness of the blood–brain barrier, increased expression of
specific miRNA, increased release of brain derived microvesicless
or a combination. If an increase in plasma levels was due to

increased leakiness of the blood–brain barrier, we might expect to
have seen a whole host of brain specific miRNAs increase in the
plasma of impaired individuals. This does not seem to be the case
since other brain selective miRNAs (e.g., hsa-miR-320b, hsa-miR-
328-3p, hsa-miR-744-5p) passed our expression criterion and did
not correlate with MoCA score. On the other hand, an increase
in brain selective miRNAs in the plasma may represent increased
release of specific miRNA due to aberrant neural activity, damage,
or disease (Lachenal et al., 2011; van der Vos et al., 2011; Wang
et al., 2011; Serafini et al., 2014; Harrison et al., 2016).

CONCLUSION

In the current study, we describe miRNAs associated with
extracellular microvesicles from plasma as possible biomarkers of
cognitive decline during aging. A decrease in MoCA score was
associated with increased expression of several miRNAs. The rise
in expression of brain selective miRNA could signify conditions
in the brain, such as aberrant neural activity, damage, or disease,
that result in increased synthesis or release from the brain and
a decline in function. In addition, it is possible that highly
expressed miRNA are delivered to the brain from the circulation,
to influence brain function. The miRNA biomarkers from plasma
microvesicle exhibited an expression profile, which was different
from that previously described for Alzheimer’s disease, suggesting
that these biomarkers may be specific to cognitive decline in
normal aging. Alternatively, these miRNAs may be related to a
pre-symptomatic stage of disease.
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