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Plant species are known to respond to variations in environmental conditions. Many
plant species have the ability to alter their leaf morphology in response to such
changes. This phenomenon is termed heterophylly and is widespread among land
plants. In some cases, heterophylly is thought to be an adaptive mechanism that
allows plants to optimally respond to environmental heterogeneity. Recently, many
research studies have investigated the occurrence of heterophylly in a wide variety
of plants. Several studies have suggested that heterophylly in plants is regulated by
phytohormones. Herein, we reviewed the existing knowledge on the relationship and
role of phytohormones, especially abscisic acid, ethylene, gibberellins, and auxins (IAA),
in regulating heterophylly and attempted to elucidate the mechanisms that regulate
heterophylly.

Keywords: phenotypic plasticity, heterophylly, phytohormones, Potamogeton nodosus, Rorippa aquatica,
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INTRODUCTION; WHAT IS HETEROPHYLLY?

Plants have the ability to alter their morphology in response to environmental conditions. This
phenomenon is known as phenotypic plasticity (Alpert and Simms, 2002; Zotz et al., 2011).
Phenotypic plasticity exhibited as leaf form alteration in response to environmental conditions such
as light intensity and quality, ambient temperature, and water availability is called heterophylly
(Figures 1A,B). The original definition of heterophylly was not strictly linked to the environmental
control. However, recently, it has been often the case that heterophylly refers to leaf form alteration
in response to environmental cues (Anderson, 1978; Goliber and Feldman, 1990; Kuwabara et al.,
2003; Wanke, 2011; Sicard et al., 2014). This phenomenon differs from heteroblasty, which refers to
conspicuous morphological changes in leaves throughout the lifecycle of plants (Zotz et al., 2011).
Additionally, heterophylly differs from anisophylly, which is a special case of dorsiventral shoot
symmetry in which leaves inserted on the dorsal and ventral sides of the stem differ in size and
shape. Anisophylly is normally coupled with leaf and stem asymmetry and modified phyllotaxis
(Dengler, 1999). Therefore, heteroblasty and anisophylly do not include morphological changes
induced by environmental stimuli, whereas heterophylly is expressed as the environmentally
induced switch between two or more leaf morphologies in the same plant (Zotz et al., 2011).
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Heterophylly is exhibited by various land plants including
terrestrial and aquatic species (Wanke, 2011; Nakayama et al.,
2012). Among angiosperms, heterophylly occurs in diverse taxa.
Several studies (Goliber and Feldman, 1990; Kuwabara et al.,
2003; Iida et al., 2016) on heterophylly have indicated that
this trait has evolved multiple times during plant evolution
among various unrelated taxa. In some cases, heterophylly
is perceived to be an adaptive mechanism that allows plants
to optimally respond to environmental heterogeneity (Palacio-
Lopez et al., 2015). Adaptive plasticity hypothesis predicts that
plants capable of exhibiting heterophylly in leaf architecture
in response to heterogeneous environment are expected to
have better fitness compared to other plants. However, there is
limited information on the adaptive significance of heterophylly.
Moreover, theoretical studies indicate that the acquisition of
heterophylly may be constrained by the genetic costs and
limits of plasticity (Ernande and Dieckmann, 2004). Hence, it
is debatable whether all heterophylly evolved as an adaptive
response (Palacio-Lopez et al., 2015).

Heterophylly is the focus of many studies due to its uniqueness
(Fassett, 1930). Studies on the molecular mechanisms underlying
heterophylly have been published recently (Kuwabara et al., 2003;
Nakayama et al., 2014; Sicard et al., 2014). Interestingly, many
studies have suggested that various phytohormones are involved
in the regulation of heterophylly. Therefore, we considered it
worthwhile to review the existing knowledge on the relationships
and interactions between heterophylly and phytohormones to
gain valuable insight into this phenomenon.

HOW DOES ABA REGULATE
HETEROPHYLLY?

Potamogeton nodosus (Potamogetonaceae), an aquatic plant
native to Eurasia and North America, exhibits heterophylly in
the form of two distinct types of leaves: long narrow submerged
leaves and oblong elliptical floating leaves (Anderson, 1978).
A report published in 1978 showed that a low concentration
of exogenous abscisic acid (ABA) induced floating leaves in
P. nodosus (Figure 2) (Anderson, 1978).

Abscisic acid, a tiny molecule classified as a sesquiterpene,
is one of the well-known hormones regulating abiotic stress
responses in plants (Vishwakarma et al., 2017). ABA is thought
to be synthesized in the vasculature and in the guard cells
of the vegetative part of the plant (Boursiac et al., 2013).
Interestingly, ABA as a signaling molecule has been reported in a
phylogenetically wide range of organisms from cyanobacteria to
human (Maršálek et al., 1992; Bruzzone et al., 2007). Some studies
have suggested that the ABA pathway is conserved in the green
plant lineage (Takezawa et al., 2011). However, little is known
about why various kinds of organisms utilize and respond to ABA
(Lievens et al., 2017). ABA is involved in controlling growth and
development of plants such as leaf abscission, inhibition of fruit
ripening, and drought stress response.

Ludwigia arcuata (Onagraceae) is one of the well-
characterized aquatic plants exhibiting heterophylly. This
plant forms narrow leaves under submergence, and round leaves

under aerial growth conditions (Figure 2) (Kuwabara et al.,
2003). Analytical studies of the different developmental stages
of L. arcuata demonstrated that ABA plays an important role
during the change in leaf morphology between submergence and
aerial conditions as is also reported in P. nodosus (Anderson,
1978). In L. arcuata, application of exogenous ABA to submerged
shoots resulted in aerial leaf form even under submerged
condition (Kuwabara et al., 2003). As described above, a
notable feature of ABA synthesis is for drought stress response.
Several studies on a variety of plant species have suggested
that osmotic stress conditions induce the production of ABA,
which acts as a controller in stress response and tolerance of
plants (Yamaguchi-Shinozaki and Shinozaki, 2006; Nakashima
and Yamaguchi-Shinozaki, 2013) and the accumulated ABA
in vegetative tissues induces ABA-responsive gene expression
(Goda et al., 2008). These studies substantiate the role of ABA in
the regulation of heterophylly, especially in aquatic plants that
can sense changes in the surrounding environment, in particular,
water level and/or availability, via ABA. Indeed, in addition to
functioning as a short-distance signaling molecule, it has been
suggested that ABA is a long-distance signaling molecule that is
transported from mature leaves to developing leaves to optimize
some phenotypes such as stomatal development in response
to environmental changes (Chater et al., 2014). Hence, when
submerged L. arcuata leaves were brought in contact with air,
the endogenous levels of ABA increased and this is presumed
to initiate and induce heterophylly in L. arcuata (Kuwabara
et al., 2003). Interestingly, ABA application was sufficient for
the formation of the terrestrial leaf form in other heterophyllous
aquatic plants also (Kane and Albert, 1987; Goliber and Feldman,
1989; Hsu et al., 2001). Regulation of heterophylly by ABA in
many plants is not surprising, since the origin of ABA signaling
pathway is thought to be ancient and is conserved in the green
plant lineage (Takezawa et al., 2011). Thus, these facts indicate
that the ABA signaling pathway can be considered a hotspot in
plant evolution to acquire heterophylly, even though this trait is
suggested to have evolved multiple times in distant plant species.

HOW DOES ETHYLENE REGULATE
HETEROPHYLLY?

Ethylene has a long history as a gaseous phytohormone since its
discovery from studies initiated in the late 1800s (Fahnestock,
1858). Subsequently, researchers identified ethylene as the
active component of the illuminating gas that affects plant
growth and ethylene synthesis by plants was reported in the
early 1900s (Neljubow, 1901). Ethylene (C2H4) regulates many
aspects of plant developmental and physiological processes,
including seed germination, root initiation, flower and leaf
senescence, abscission, fruit ripening, wound response, and
defense against diseases (Schaller, 2012). Some studies have
shown the relationship between ethylene and heterophylly. In
L. arcuata, ethylene as well as ABA are known to be the key
factors regulating heterophylly; ethylene treatment induced the
formation of submerged leaves in this plant (Kuwabara et al.,
2003; Figure 2). Additionally, endogenous concentration of
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FIGURE 1 | Heterophylly in Rorippa aquatica. (A) Top view of shoots grown under each condition for a month. Left, at 20◦C; right, at 30◦C. (B) Mature leaf
morphology of the seventh leaf. Left, at 20◦C; right, at 30◦C. Bars = 3 cm in (A) and 2 cm in (B).

FIGURE 2 | Comparison of heterophylly seen in Potamogeton nodosus, Ludwigia arcuata, and Rorippa aquatica.

ethylene was higher in these plants under submergence compared
to those under terrestrial conditions (Kuwabara et al., 2003).
Developmental and anatomical studies have suggested that the
changes in cell division patterns induced by ethylene resulted
in leaf form alteration in L. arcuata (Kuwabara and Nagata,
2006). Several studies have indicated that ethylene not only
regulates cell size, often restricting cell elongation, but also
regulates cell division (Iqbal et al., 2017). Ethylene is thought
to be synthesized in almost all plant tissues and accumulates
in the plant tissues under submergence because solubility of
ethylene in water is low (Davis and McKetta, 1960) and it cannot
evaporate easily from the submerged plant parts. The increased

concentration of ethylene accumulated in the submerged parts of
L. arcuata is assumed to induce changes in cell elongation and cell
division and regulate leaf morphology. Moreover, it is known that
ethylene not only acts on ABA metabolism to reduce ABA levels,
but also negatively regulates ABA signaling during germination
in Arabidopsis thaliana (L.) Heynh. (Arabidopsis hereafter)
(Gazzarrini and McCourt, 2001). Indeed, ethylene treatment
reduced endogenous level of ABA in L. arcuata (Kuwabara
et al., 2003), suggesting that ethylene regulates heterophylly
through suppression of ABA and regulating cell division and
elongation. In addition to heterophylly, ethylene is also reported
to be involved in submergence responses in deepwater rice
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(Hattori et al., 2009). The increase in concentration of ethylene
in the submerged parts of deepwater rice triggers remarkable
elongation of internodes, which have a hollow structure to allow
gas exchange with the atmosphere. Moreover, ethylene is known
to be involved in development of aerenchyma, which is an
intercellular space that acts as a mediator of internal gas exchange
and maintains physical strength of tissues (Dengler, 1999). These
phenomena are also a type of phenotypic plasticity. These
studies indicate that utilization of the ethylene signaling pathway
under submergence by plants has evolved multiple times for the
regulation of phenotypic plasticity, including heterophylly. Thus,
it is likely that the ethylene-related pathway may be a well-used
machinery of phenotypic plasticity in aquatic plants, as is the case
with ABA.

HOW DO GIBBERELLINS REGULATE
HETEROPHYLLY?

Gibberellins (GAs or GA) were first identified in response
to the pathogenic fungus Gibberella fujikuroi, which causes
excessive elongation of the stem in Oryza sativa (rice) (Yabuta
and Sumiki, 1938). To date, more than 130 GAs have been
identified from fungi, bacteria, and plants (Yamaguchi, 2008).
GA is indispensable for various kinds of plant processes
such as seed germination, stem elongation, expansion of leaf
lamina, pollen maturation, and flowering (Sun, 2010). GA
is also involved in the regulation of heterophylly. In the
North American semi-aquatic plant Rorippa aquatica, GA is
thought to be a key factor for the regulation of heterophylly
(Nakayama et al., 2014); this plant produces deeply dissected
leaves under water and simple leaves with smooth margins under
terrestrial conditions (Figure 2). Leaf complexity of R. aquatica
is similarly affected by changes in the ambient temperature;
deeply dissected leaves develop when plants grow at 20◦C,
whereas simple leaves with entire margins develop when plants
are grown at 25◦C (Figures 1A,B). A previous study showed
that in R. aquatica, the expression level of KNOTTED1 LIKE
HOMEOBOX (KNOX1) ortholog changes in response to changes
in the ambient temperature. KNOX1 protein is known to
regulate GA levels in leaf primordia (Sakamoto et al., 2001).
GA concentration in leaf primordia changes in response to the
ambient temperature, and exogenous GA application alters the
leaf complexity in R. aquatica. Similarly, in Solanum lycopersicum
(tomato), GA promotes differentiation of leaf primordia, and
disables transient organogenetic activity in the leaf margins,
from which marginal serrations and leaflets arise; thus, GA
reduces leaf complexity in S. lycopersicum (Yanai et al., 2011).
Therefore, heterophylly in R. aquatica is thought to be regulated
by the alteration of GA concentrations in leaf primordia via
the KNOX1 gene. Developmental studies in R. aquatica have
indicated that proximal leaflet initiation in leaf primordia is an
important factor in determining final leaf form. These studies
suggest that the local GA concentration in leaf primordia is
important for the regulation of heterophylly in R. aquatica.
In addition to heterophylly, Arabidopsis mutants, which are
insensitive to the GA and defective in its biosynthesis show

a delayed appearance of the first adult leaf compared to WT
(Chien and Sussex, 1996), suggesting that GA is involved
in the heteroblasty. Therefore, GA may be utilized both of
heterophylly and heteroblasty. Interestingly, a previous study
showed that a single leaf can sense and transmit changes in
ambient temperature to newly developed leaves in R. aquatica
(Nakayama and Kimura, 2015), suggesting that a long distance
signal may be generated at a certain developmental stage of leaves.
Transmembrane transport of GA in Arabidopsis is reported to
be regulated by AtSWEET13, AtSWEET14, and AtNPF2.10/GTR
proteins (Kanno et al., 2016). R. aquatica belongs to the same
family as Arabidopsis and hence the expression pattern and
function of many genes are expected to be similar in both the
plant species. Similar orthologs may also be responsible for
cellular GA uptake in leaf primordia of R. aquatica. Although
GA can be transported through the phloem (Hoad and Bowen,
1968), the detailed molecular mechanism of the long distance
GA transport remains unclear. A better understanding on the
long distance GA transport may reveal its role in regulating
heterophylly.

HOW DO AUXINS REGULATE
HETEROPHYLLY?

Auxins play a key role in an extraordinarily wide variety
of biological processes in terrestrial plants. For example,
auxins are involved in plant growth and development such as
abscission, apical dominance, cell division and differentiation,
flowering, senescence, and tropic responses (Sauer et al., 2013).
Auxin biosynthesis is intricate and multiple pathways have
been postulated to explain auxin biosynthesis (Chandler,
2009; Normanly, 2010; Zhao, 2010). Additionally, auxin
biosynthetic pathways are differentially regulated in response
to environmental stimuli (Tao et al., 2008; Le et al., 2010). In
Arabidopsis, auxin is thought to be synthesized throughout
the shoot apical meristem (Cheng et al., 2006; Stepanova
et al., 2008) and transported with transporter proteins such
as PIN1 (Galweiler et al., 1998). Several papers and reviews
detail their mechanism of auxin transport (Adamowski and
Friml, 2015). The polarization of auxins is indispensable for the
initiation of leaf primordia and leaf lamina outgrowth during
leaf development (Byrne, 2012; Townsley and Sinha, 2012). First,
auxin maxima develop at the tip of the leaf primordia, and are
thought to lead to distal growth. The auxin is then transported
from the leaf margins and distributed on either side of the
midvein; this facilitates leaf lamina outgrowth as a downstream
target of the adaxial-abaxial polarity pathway (Scarpella et al.,
2010). Additionally, auxins are also involved in vascular
patterning in leaves (Scarpella et al., 2010), which is known
to affect leaf morphology. Several studies have demonstrated
that auxins affect leaf morphology and development (Barkoulas
et al., 2008; Koenig et al., 2009). Therefore, auxins may also
be related to heterophylly as a downstream target of some
upstream regulators including other phytohormones. Although
there is substantial evidence on the importance of auxins in leaf
development, the relationship between auxin and heterophylly
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remains unclear. Recently some studies have demonstrated that
a basic helix-loop-helix transcription factor, PHYTOCHROME-
INTERACTING FACTOR 4 (PIF4), regulates levels of auxin and
expression of genes involved in auxin biosynthesis in response to
change in ambient temperature (Franklin et al., 2011). Changes
in ambient temperature are known to affect leaf morphology
in R. aquatica (Nakayama et al., 2014). A blue light receptor
protein, Cryptochrome 1 (CRY1), is reported to interact with
the transcription factor PIF4 to regulate hypocotyl elongation in
response to blue light (Ma et al., 2016). Blue light is one of the key
environmental cues for plants under submerged conditions and is
known to induce the development of submerged leaves on plants
grown under the submergence (Kao and Lin, 2010). These results
suggest that auxin may be one regulator of heterophylly via the
transcription factors PIF4 and receptor protein CRY1, in addition
to its role as a candidate for downstream target gene expression
regulation.

WHAT IS THE SCOPE FOR FUTURE
STUDIES ON HETEROPHYLLY?

Research in the past few decades has elucidated the transport
processes and receptor mechanisms of various phytohormones
as well as their role in various developmental processes
using model plant species. These studies have demonstrated
that phytohormones mutually regulate signaling and metabolic
networks (Verma et al., 2016). Recent studies have identified
new hormones related to the regulation of plant architecture
and/or morphology (Waters et al., 2017). An interesting
observation in a recent study emphasized the role of defensin-like
secretory epidermal patterning factor (EPF) peptide hormones
in regulating stomatal development in plants (Hara et al.,
2009; Sugano et al., 2010). In many heterophyllous plants, it is
known that stomatal density is altered in response to changes
in the surrounding environment. Therefore, it is likely that
EPF peptide hormones are also involved in the regulation of
stomatal density in heterophyllous plants. These facts indicate
that there is scope to study the relationships between heterophylly
and the new phytohormones and their interactions with classic
phytohormones for a better understanding of the phenomenon
of heterophylly. Such studies will elucidate the mechanisms of
acquired phenotypic plasticity, including heterophylly, through
the modification of existing networks. Sequencing methods
that reveal transcriptomic and epigenetic changes in response
to surrounding environments have been developed during the
past decade (Buenrostro et al., 2013). Additionally, a high-
throughput system to measure endogenous concentration of

multiple hormones, including various derivative species, has
also been developed (Kojima et al., 2009). Modeling methods
to integrate different levels of large-scale data and explore
cause–effect relationships from the integrated data have been
developed (Granier and Vile, 2014). Combination of these
techniques can help to explore and understand the intricate
interaction of hormones and their interactions with mechanisms
of heterophylly.

Heterophylly has evolved multiple times independently
during plant evolution. As expected, the mechanism of
heterophylly in each plant seems to be different. For instance,
heterophylly in R. aquatica is expressed via the KNOX-GA
gene module, which regulates organogenetic activity, whereas
the ethylene related pathway, which regulates cell division
and elongation pattern, is reported to regulate heterophylly
in L. arcuata (Kuwabara et al., 2003; Nakayama et al.,
2014). In P. nodosus, the ABA-related pathway is thought to
induce heterophylly (Anderson, 1978). Hence, heterophylly is
an interesting model to study the convergent evolution of
plant species. Although debatable, the major biological question
provoked by previous studies is the implication that phenotypic
plasticity can promote divergence among populations and
occasionally lead to speciation (Pfennig et al., 2010). These facts
signify the urgent need to study heterophylly to explore the
evolution of plants as well as to understand the underlying
ecological and physiological interactions.

Thus, the answer to the question “What is the scope for
future studies on heterophylly?” would be to understand the
relationship between heterophylly and the new hormones and the
relationship between heterophylly and speciation. These studies
will yield novel insights into not only the molecular mechanisms
of phenotypic plasticity in plants but the evolution of plants.
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