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Abstract: Chaotic systems are widely used to detect the weak signal of the noise background. The effect of the 
noise in the detection is often ignored because of the characteristics of sensitive to certain signals and inert to 
noise. However, it's found that chaotic system has low noise immunity for some different variance of noise after 
a large number of experiments, which makes mistake for the signal to be measured. In this paper, the affection 
of noise to weak signal detection is analyzed. The method of using cross-correlation detection system to process 
the signal is proposed, which can suppress noise. Also, the cyclic algorithm is introduced to the chaotic array 
which is universal poor and difficult to achieve with the application. This method is simple to operate and the 
simulation results have high accuracy. Copyright © 2014 IFSA Publishing, S. L. 
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1. Introduction 
 

With the continuous improvement of human 
science and technology and the deep research of 
many domains such as biomedicine, physics, optics, 
quantum mechanics and chemistry, weak signal 
detection requirements to further improvement, 
especially in the vibration measurement, biomedical, 
fault diagnosis system and many other research areas. 
We often need to determine whether there is a weak 
signal. The traditional linear filtering method often 
fails to detect weak signal in the strong noise 
background [1]. So looking for a new detection 
method becomes a pressing task. 

Chaotic oscillator detection system not only 
sensitive to initial conditions and parameters, but also 
to inert to periodic signal whose frequency is largely 
different with the chaotic oscillator inherent 
frequency, which possesses huge advantage in weak 
signal acquisition [2-5]. Kurt Wiesenfeld has studied 
that period-doubling system as small-signal 
amplifiers to amplify weak signal and then detect 
it [6]. Ray Brown has proposed that it's sensitive 
dependence on initial conditions nature's sensory 
device [7]. Li Yue has risen applying a special kind 
of two coupled Duffing oscillator system to detect 
periodic signals under the background of strong 
colored noise [8]. Xie Tao has introduced a method 
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of weak signal detecting based on periodic region of 
chaotic oscillator [9]. Wei Hengdong has introduced 
that weak signal is detected by Duffing oscillator 
based on Hamiltonian [10]. Lai Zhihui proposed a 
new method of detection weak characteristic signals 
based on the scale transformation of Duffing 
oscillator and can detect harmonic signal with any 
frequency and phase [11]. Li Yifang introduced the 
combination of autocorrelation and chaotic oscillator 
phase transformation theory to detect the weak vital 
periodic signals [12]. These methods are on the 
premise of ignoring the noise impact. In fact some 
noise will affect the test results. 

The influence of noise on the chaotic oscillator 
system of weak signal detection is analyzed and the 
method that the signal detected process by cross-
correlation detecting is introduced. And the loop 
algorithm is introduced into the chaotic oscillator 
detection system. This method is easy to detect and 
have strong practicability. 

 

 

2. Principle of Duffing Detection Signal 
 

The basic model of Duffing system is: 
 

 3( ) ( ) ( ) cos ( )x t kx ax t bx t t     , (1) 

 
where k is the damping coefficient, the external force 
γcos(t); the k, b and γ are all greater than zero; a is 
less than zero (generally a=-1); the term  
ax(t)+bx3(t) is nonlinear restore force.  

In order to detect any frequency signal by the 
Duffing equation, let t  , we can get:  
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We can get from eq. (2):  
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Calculating the Melnikov function based (3), the 

threshold existing chaos is [13]: 
 

 4cosh( /2)
( ) -

3 2
R

k

 


  , (4) 

Let a=-1, b=1, fixed k (when k=0.5, the phase 
transition is obvious [14]), we can obtain γc=0.3766 
by calculating (3). When γ=0, we can have the saddle 
point (0, 0) and focal point (±1, 0) in the plane. Point 
(x, x') will stay at any of the two focuses. When γ0, 
the system will appear complex dynamics state. 
When the value of γ is small, the phase track presents 
the attractor in the meaning of Poincare mapping, the 
phase point will oscillate periodically near the two 
focuses. When γ>γc (γc can be got by (4)), with the 
increasing of γ, we can see homoclinic track (Fig. 1), 
period-doubling bifurcation (Fig. 2) and chaotic 
state (Fig. 3)). γ can variety in a large range to keep 
the system in chaotic state. If γ continues increasing, 
the system enters critical state (Fig. 4). The system 
will present big scale periodical state when  
γ>γd (Fig. 5). 
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Fig. 1. Phase plane track diagram – Homoclinic track 
(=0.38, =1rad/s). 
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Fig. 2. Phase plane track diagram – Period-doubling 
bifurcation (=0.39, =1rad/s). 

 
 

For chaotic oscillator sensitive to periodic signal 
and inserting to noise, weak signal detected is based 
on the changing of the system phase plane. There is 
an intermittent chaos state between chaotic state and 
big scale periodical state. Adjust parameters and 
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make the system into intermittent chaos state. 
Then add the signals to be measured to the chaotic 
system. If the state changes, we can see that the weak 
signal is detected. 
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Fig. 3. Phase plane track diagram – Chaotic state (=0.62, 
=1rad/s). 
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Fig. 4. Phase plane track diagram – critical state (=0.8254, 
=1rad/s). 
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Fig. 5. Phase plane track diagram – Big scale periodical 
state (=0.84, =1rad/s). 

After introduction of the strong noise and a small 
amplitude periodic signal having a little angular 
frequency difference with the inner driving force to 
disturb eq.(3) and some transformations in time scale, 
the Holmes Duffing equation is changed to: 

 
2 3( )=- ( ) [ ( ) ( )+ cos ( )
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x t kx t ax t bx t t

f t t

   


  
   

  , (5) 

 
Seeing: 
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We can get:  

 
 2 2( ) 2 cos ( )F t f t f        , (7) 
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where F(t) is the total external force initial phase  
angle Φ(t), Δω=|Ω-ω|. For f<<γ, so the effect of Φ(t) 
can be ignored. When Δω=0 and 

1 1cos cos
2 2

f f  
 

     , the system will keep 

on the chaotic state all along [15]. And the phase 
transition will  take place only  is not in this regime. 
Fix k, a, b, when the external signal frequency is 
same as reference signal, namely Ω =ω, adjust γ to γ0, 
make the system in the intermittent chaotic state. We 
can get that the amplitude of the signal to be 
measured: f=γd-γ0.  

When the external signal is not the same as 
reference signal, namely Δω0, we can get by the 
expression of the F(t): γ-f≤F(t)≤γ+f. When their 
directions tent to consistency, the resultant vector 
makes the total drive force amplitude larger than in 
some time range, the oscillator transits into the 
exterior trajectory period 1 motion and F(t) will be in 
a certain period of area greater than γd,. When their 
directions tend to deviates from each other, the 
resultant vector makes the total drive force amplitude 
smaller than in some time range, the oscillator 
degenerates into the original chaotic motion. In this 
way, the intermittent chaos (periodic motion one 
moment, chaotic motion the next) appears in the 
oscillator. When there is a small angular frequency 
difference between inside driving signal and 
disturbing signal, F(t) will move larger and smaller 
than in cycles. 

Though a large number of experiments, the 
intermittent chaotic state is able to be clearly 
identified, when Δω≤0.03 [16]. Common ratio 1.03 
geometric columns can be chosen for the array of 
natural frequency oscillator. Assuming that the 
frequency of the signal to be measured is between 
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1 rad/s and 10 rad/s, 180 oscillators can be chosen, 
ω1=1, ω2=1.03, …, ω180=10.0946. When the 
frequency of the signal to be measured is equal to a 
certain oscillator when signal is added, the oscillator 
becomes periodic motion or intermittent chaotic 
movements. When the frequency of the signal to be 
measured is not equal to any oscillator frequency, 
intermittent motion occurs only between two adjacent 
oscillators. So the frequency of the signal to be 
measured can be calculated. 

The above methods, there are two issues need to 
be considered in practical: 1) To determine the 
impact of noise on the test results, the impact can not 
be ignored for the weak signal with large noise 
background. 2) On the project, the problem is how 
the frequency of the signal to be measured is 
achieved using chaotic array detection. 
 
 
3. Improved Methods 
 
3.1. The Impact of Noise on Chaotic 

Oscillator and Cross-Correlation 
Technique 

 
Chaotic system is immune to noise of zero mean, 

so the influence of the noise on the system is 
generally ignored. However, after a large number of 
experiments, we found that some intensity noise will 
impact on the phase state of the detection system. 
When setting the amplitude of the cycle force 
γ=0.82544187, system is in the critical state. Adding 
two different noise, from Fig. 6, the noise variance 
σ2=0.0001, the system is on the critical state. 
However, when the noise variance σ2=0.001, the 
system is on the large scale periodic state. 
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Fig. 6 (a). The phase plane plot σ2=0.0001. 
 
 

Thus, the state of the system will change under 
the influence of a certain intensity noise. We may 
mistake that some useful weak signal exists in the 
signals in experiments and reduces the detection 
performance of weak signal. Add signal detected 

with different power noise background to the system. 
Then calculate the detection SNR of the system. The 
formula of SNR is: 

 
power of signals

10l g
power of noise

SNR o
 , (9) 
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Fig. 6 (b). The phase plane plot σ2=0.001. 
 
 

Thus, the state of the system will change under the 
influence of a certain intensity noise. We may 
mistake that some useful weak signal exists in the 
signals in experiments and reduces the detection 
performance of weak signal. Add signal detected 
with different power noise background to the system. 
Then calculate the detection SNR of the system. 

A large number of experiments show that, 
detection SNR is -69 dB when the noise variance is 
0.0001, while the noise variance is 0.001, the 
detection SNR is only -27 dB. Therefore, this method 
is not effective for weak signal detection under some 
noise intensity.  

The advantage of chaotic detection of weak signal 
is extraction signal ability. And the conventional 
algorithm is suppression noise technology. Cross-
correlation detection technology is using the 
characteristics of periodic signal and random noise, 
and removing the noise by the relevant operation to 
achieve and the cycle of signal is not changed. 

The input signal has following: y(t)=x(t)+n(t) 
=asint+n(t) (0≤t≤T), the reference signal is s(t)=bsint. 
The cross-correlation function is defined: 
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where Rsx(τ) is the cross-correlation function of x(t) 
and n(t); Rsn(τ) is the cross-correlation function of s(t) 
and n(t) [17]. 

Due to the noise is unrelated with the reference 
signal, so Rsx(τ)=0. But T can not be infinite length, 
so the Rsn(τ) is not zero in actual calculation. It shows 
residual noise. On the power, n'(t)<n(t), it shows that 
the noise has been restrained in a certain degree. 

The advantage of cross-correlation algorithm only 
accepts the output associating with the local signal 
and suppresses all forms of noise that not relating to 
the reference signal. But this method needs a local 
signal. That is the restrictions on detecting the 
unknown signals. 
 
 
3.2. Improving Chaotic Detection System 
 

Chaotic array method can effectively detect the 
unknown signal frequency. However, the chaotic 
array element is so numerous that it's different to 
detect and universal poor. For this situation, Loop 
algorithm method is introduced to the chaos detection 
system. The key step is determined whether into the 
intermittent chaos. The accuracy of the system is 
greatly improved by using Lyapunov exponent as 
deterministic basis of chaotic state [18-21]. 

The study show that when Δω≤0.03, the 
intermittent chaotic state could be clearly identified, 
so we get 0.06 for the cycle of step length. After 
getting the period T of intermittent chaos movement, 
we can use the formula T=2/Δω to get the 
difference of the test signal and the frequency of the 
driving force. Then calculate the frequency of the test 
signal. This method can detect any unknown signal 
frequency. Test duration is determined by the size of 
the unknown signal frequency. 

The specific steps are as follows: 
1) Adjust the value of γ based on Lyapunov 

exponent, modulate of the system in the critical 
state[22-24]. 

2) Input to-be-detected signal which is buried in 
the noise. 

3) Observe the state of system. If the state changes 
to the large scale periodic state, we can record 
the times of the system cycling. If not, add ω to 
ω+0.06 and repeat steps (2). Meanwhile, the 
times of repeating is taken notes. 

4) Detect critical state motion cycle T. 
 
 
4. Simulation Experiment 
 

This simulation model like Fig. 7. 
 
 

 
 

Fig. 7. Schematic diagram of the chaotic detection system. 

The signal to be measured is  
 

( ) cos( ) ( )g t f t n t    , 
 
where Ω=1.1 Hz, f=0.025 V, n(t) is the noise whose 
mean value is 0 and variance is 0.01. The reference 
signal is h(t)=sin(Ωt). Add g(t) to the cross-
correlation and the Fig. 8(b) is obtained. Comparing 
with the time domain waveform graph of signals 
without processing, we can get that the noise of the 
signal is restrained.  
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(a) The time domain waveform of the signal  
to be measured. 
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(b) Waveform cross-correlation after processing. 
 

Fig. 8. Cross-correlation detection of the sine signal. 
 
 

Thus, we can see that cross-correlation detection 
can well restrain noise and reduce the power and 
enhance SNR, especially suitable for the situation that 
the weak periodic signal is not related with noise.  

Let the frequency of driving force is 1.08 Hz. 
Experiments are in accordance with the steps of the 
flow chart. After the system cycling 18 times, the 
system is in intermittent chaos state. And the system 
jump out of the loop. From Fig. 9, the total time is 
1800 s and there are 6.5 intermittent periods. The 
period can be acquired: T=1500/6.5=230.769 s. So,  
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 2
1.08

230.769
1.10721Hz

      


, (11) 

 
The error only is 0.00721 Hz compared with 

actual signal frequency. The detection effect is very 
good. So this method is not only small amount of 
calculation but also high accuracy. 
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Fig. 9. Phase plane diagram of critical state  
in the circle detection. 

 
 
5. Conclusions 
 

From the perspective of noise, this article 
discussed the influence of different noise on chaotic 
system, and preprocessed signal by using cross-
correlation method. This method can strongly reduce 
the noise power, and improve SNR and the accuracy 
of the detection. Besides, the traditional chaotic array 
detection method is improved in this article. The 
simple cycle algorithm introduced can detect the 
unknown weak signal frequency easily. 

The cross-correlation detection need a reference 
signal which is similar with signal to be measured, so 
a frequency unknown signals to be measured should 
be added to the cycle chaotic array detection system. 
Calculate the frequency of the signal. Then, we can 
use this reference signal to detect the signals of other 
unknown parameters by cross-correlation detection 
calculation. This system is easy to be operated; the 
performance of the detection is well and also able to 
detect the test signals which contain a variety  
of frequency. 
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