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Abstract—This article presents the ALOJA project and its analytics tools, which leverages machine learning to interpret Big Data
benchmark performance data and tuning. ALOJA is part of a long-term collaboration between BSC and Microsoft to automate the
characterization of cost-effectiveness on Big Data deployments, currently focusing on Hadoop. Hadoop presents a complex run-time
environment, where costs and performance depend on a large number of configuration choices. The ALOJA project has created an
open, vendor-neutral repository, featuring over 40,000 Hadoop job executions and their performance details. The repository is
accompanied by a test-bed and tools to deploy and evaluate the cost-effectiveness of different hardware configurations, parameters
and Cloud services. Despite early success within ALOJA, a comprehensive study requires automation of modeling procedures to allow
an analysis of large and resource-constrained search spaces. The predictive analytics extension, ALOJA-ML, provides an automated
system allowing knowledge discovery by modeling environments from observed executions. The resulting models can forecast
execution behaviors, predicting execution times for new configurations and hardware choices. That also enables model-based anomaly
detection or efficient benchmark guidance by prioritizing executions. In addition, the community can benefit from ALOJA data-sets and
framework to improve the design and deployment of Big Data applications.

Index Terms—Data-Center Management, Hadoop, Benchmarks, Modeling and Prediction, Machine Learning, Execution Experiences.
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1 INTRODUCTION

DURING the last years Hadoop has emerged as the main
framework for Big Data processing, and its adoption

continues at a compound annual growth rate of 58% [12].
But despite this rapid growth and its expected trend, the
Hadoop distributed run-time environment and the large
number of deployment choices makes extremely difficult
to manage it in a way near to optimal. Hardware compo-
nent choices and tunable software parameters, from both
Hadoop and the Java run-time deployments, have a high
impact on performance [9], [10]. As well as the type of job
and the chosen deployment. On-premise deployments or
cloud services, produce different behavior patterns during
the execution, adding another level of complexity [13]. Fig-
ure 1 illustrates the complexity system administrators are
faced when planning a new Big Data cluster. Therefore it
is usual that Hadoop requires manual, iterative and time
consuming benchmarking or tuning, over a huge amount of
possible configuration and deployment options. Under this
situation any a-priori information provided by an heuristic,
oracle or prediction mechanism, providing advice to the
decision making process is crucial to improve execution
times or reduce running costs.

This article presents the ALOJA framework, its goals
towards Hadoop cost-effectiveness analysis, by performing
a systematic study of Hadoop deployment variables by
benchmarking and tuning Hadoop in different architectures.
Also includes exploration tools for visualization and pre-
dictive analytics, with some cases of use for knowledge
discovery and Hadoop behavior modeling over benchmark-
ing. ALOJA is an initiative of the Barcelona Supercomput-

Fig. 1. Search space for evaluating the cost-effectiveness of a particular
set-up

ing Center (BSC) in an on-going collaborative engagement
with the Microsoft Product groups and Microsoft Research
(MSR) to explore upcoming hardware architectures and
building automated mechanism for deploying cost-effective
Hadoop clusters. The initial approach for ALOJA project
was to create a comprehensive open public and vendor-
neutral Hadoop benchmarking repository. This benchmark
repository is intended to compare software configuration
parameters, state of the art and emerging hardware like
solid-state disks or RDMA oriented networks such Infini-
Band, also different types of Cloud services. Further, the
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ALOJA project studies the cost-effectiveness for possible set-
ups along with their run-time performance, oriented to au-
tomate recommendations for configurations given specific
workloads, serving also as a reference guide for selecting
new infrastructures and designs of Hadoop clusters.

Once focused on cost-effectiveness studies, the latest
phase of the ALOJA project focuses on providing tools to
automate both the knowledge discovery process and per-
formance predictive analytics of Hadoop benchmark data.
As previously exposed, assisting decision making processes
may require manual and time-consuming benchmarking
followed by operational fine-tuning for which few organi-
zations have either the time or performance profiling exper-
tise. Finding generalizable rules of thumb for configuring
such complex systems, that also can be applied to all work-
loads (in this case Hadoop jobs), becomes extremely difficult
and it is an inherent problem on such type of complex sys-
tems. For this reason automatized modeling processes are
of great help finding, if not general, several specific models
for each environment or type of workload. Modeling and
prediction ALOJA tools provide machine learning methods
to create models from past Hadoop executions and use
them to predict the behavior of new and unseen executions
by their software or hardware configurations and given
workload, also used to recommend configurations towards
optimizing the performance of such workload. Those tools
can also be used to detect anomalous Hadoop execution
behaviors, by comparing observed executions with their
expected behaviors, using model-based outlier detection
algorithms. Further, the created models can be used to
describe how each variable influences in the job execution,
and prioritize them when choosing a software configuration
or a hardware infrastructure.

1.1 Motivation

During the past years, most of the industry efforts have
focused into building scalable data processing frameworks
like Hadoop and its derived services, but those efforts have
derived into the adoption of Hadoop by companies, the
development of Map/reduce applications, and lately into
tuning the performance of such deployments and the man-
agement of their data. Studies show that Hadoop execution
performance can improve up to three times at least from the
default configuration for most deployments [8].

Hadoop is currently dominated by several vendors, each
one offering their customized distribution with patches and
changes on the default Apache distribution, thanks to the
fact of Hadoop itself being open-source. Such changes are
rarely pushed into the main distribution, maintaining its
condition of standard and default, so running without speed-
ups or performance tweaks [8]. There is also evidence that
Hadoop performance is quite poor on new or scale-up
hardware [5], also scaling out in number of servers tends
to improve performance but paying extra running costs like
power, also storage space [5]. These situations make a case
to reconsider how to scale hardware and services from both
research and industry perspectives.

Optimizing Hadoop environments requires to have run
multiple executions and examine large amount of data to
understand how each component affects the system. This

data is usually obtained from the environment and infras-
tructure description, the Hadoop configuration parameters,
the outputs from the execution and the performance logs; it
can be some times Gigabytes per execution, and examining
it manually can be just impossible. This is a challenge for
automatic modeling methods like machine learning.

Discovering which features are the most relevant and
which ones provide useless information is key to discover
which ones have the biggest impact on performance or
which ones can change without affecting the execution,
allowing users or operators to focus their attention onto the
relevant parameters or infrastructure elements, also adjust-
ing the free features to their available resources. Machine
learning techniques provide not only the ability to model a
system and predict its behavior given a set-up, but also to
explore the environment features and discover knowledge
about our system. And from here on, use this knowledge
and models as rules, heuristics or oracles to make decisions
or make recommendations based on diverse potential goals
like increase performance, reduce execution costs.

Our goal is to empower users and operators with the
ability to predict workload performance and provide them
a clear understanding of the effect of configuration or infras-
tructure choices.

1.2 Contribution

The ALOJA framework for Big Data benchmarking focuses
on providing researchers and developers a set of tools and
visualizations to characterize Hadoop configurations and
performance issues. The framework is available to all the
community to be used with own Hadoop data-set exe-
cutions, also users and researchers can implement or ex-
pand this tool-set through adding, comparing or predicting
data from observed task executions and/or by adding new
analysis or visualization tools, even new machine learning
or anomaly detection algorithms. Also, all the data-sets
collected for ALOJA are public and can be explored through
our framework or used as data-sets in other platforms.

Finally, in this work we share our experiences in ana-
lyzing Hadoop execution data-sets. We present results on
early findings using our visualization tools. Also we present
results on modeling and prediction of execution times for a
set of Hadoop deployments and the HiBench benchmarking
suite [11]. Also we present some cases of use for the predic-
tive analytics tools, like our anomalous execution detection
mechanisms, a model-based methods for recommending
configurations for benchmarking new infrastructures, and
a simplistic algorithm for ranking features.

This article is structured as follows: Section 2 presents
the preliminaries for this work and current state-of-art. Sec-
tion 3 present the ALOJA framework, the project road-map
and its early findings. Section 4 presents the machine learn-
ing methodology, the data-sets used for predictive analytics,
and modeling and prediction results. Section 5 presents
some cases of use for the prediction models, focused on
anomaly detection on Hadoop executions, recommendation
of benchmarking new infrastructures, and detecting rel-
evant features when making decisions. Finally, Section 6
summarizes the paper and provides the conclusions and
future work lines for the project.
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2 STATE OF THE ART

Here we present the background of the ALOJA project,
and the current state of the art in Hadoop and distributed
systems performance oriented prediction analytics.

2.1 Background
The work presented here focuses on the ALOJA project,
an initiative of the Barcelona Supercomputing Center (BSC)
that has developed Hadoop-related computing expertise for
more than 7 years [3]. This project is partially supported by
the Microsoft Corporation, contributing technically through
product teams, financially, and by providing resources and
infrastructure as part of its Azure4Research program. The
initial approach was to create a comprehensive vendor-
neutral open and public Hadoop benchmarking repository,
currently featuring more than 40.000 Hadoop benchmark
executions, used as the main data-set for this work. At this
time, the tool compares software configuration parameters,
emerging hardware and Cloud services, also costs for each
type of presented set-up along with the resulting perfor-
mance for each workload. We expect our growing repository
and analytic tools will benefit Hadoop community to meet
their Big Data application needs.

2.1.1 Benchmarking
Due to the large number of possible Hadoop configurations,
each one affecting the execution in a different way, we are
characterizing Hadoop through extensive benchmarking.
Hadoop distributions include jobs that can be used to bench-
mark performance, usually referred as micro benchmarks,
each one representing specific types of workloads. However,
ALOJA currently features executions from the Intel HiBench
open-source benchmark suite [11], which can be more re-
alistic and comprehensive than the supplied examples in
Hadoop distributions.

2.1.2 Current Platform and Tools
The current ALOJA platform is an open-source software and
data-sets available for the community to download, use and
expand. The goal is to achieve automated benchmarking of
Big Data deployments either on-premise or in the Cloud.
The framework counts with a set of scripts to automate clus-
ter and node definitions, taking care of describing cluster
orchestration and set-ups. Also it contains scripts to execute
selected benchmarks and gather results and related infor-
mation, importing them to the main application featured
by a specialized repository with a web interface containing
the visualization and predictive analytics tool-sets. Through
this web-based repository, the user can explore the imported
executions and their details.

Fig. 2. Workflow of the ALOJA framework

Figure 2 shows how the main components of the ALOJA
platform feed each other in a continuous loop: benchmarks
are executed and the information is collected into the on-
line repository, so users can explore and then decide which

new executions or benchmarks will follow. One of the goals
of the ALOJA project is to automate this process by using
data-mining capabilities through machine learning meth-
ods, enabling automated knowledge discovery and char-
acterization, and thus recommending which executions are
interesting to push into the workflow. The platform includes
a Vagrant virtual machine [23] with a sand-box environment
and sample executions used for development and early
experiments, for users to create their own repositories or
data analysis. In the project site [1] there is more technical
documentation for further usage and tool development,
also preliminary versions of this work and project were
presented in [25] and [13].

2.2 Related Work

As previously said, for most deployments, execution per-
formance can be improved by at least 3 times from the
default Hadoop configuration [8], and the emergence of
Hadoop in the industry has led to several attempts at
tuning towards performance optimization, new schemes for
proper data distribution or partition, and adjustments in
hardware configurations to increase scalability or reduce
running costs. Characterizing these deployments is a cru-
cial challenge towards looking for optimal configuration
choices. An option to speed-up computing systems would
be to scale-up or add new (and thus improved) hardware,
but unfortunately there is evidence that Hadoop performs
poorly in such situations, also scaling out in number of
servers improve performance but at the increased costs of
infrastructure, power and required storage [8].

Previous research works, like the Starfish Project by
H.Herodotou et al. [10], focus on the need for tuning
Hadoop configurations to match specific workload require-
ments. Their work proposed to observe Hadoop execution
behaviors, obtaining profiles and using them to recommend
configurations for similar workloads. This approach has
been a useful reference for ALOJA focusing on modeling
Hadoop behaviors from observed executions, but instead of
just collecting and comparing behavior features, we apply
machine learning methods to characterize those behaviors
across a large corpus of profiling data in our predictive
analytic tools.

The idea of using machine learning with self-configuring
purposes has been seen previously in the field of autonomic
computing. Works like J.Wildstrom [20] proposed modeling
system behaviors vs. hardware or software configurations,
focusing on hardware reconfiguration on large data-center
systems. Also other frameworks like the NIMO framework
(P.Shivam [16]) modeled computational-science applications
allowing prediction of their execution time in grid infras-
tructures. These efforts are precedents of successful appli-
cations of predictive analytics through machine learning in
distributed systems workload management. In the ALOJA
framework we are applying such methodologies to com-
plement the exploration tools, allowing the users, engineers
and operators to learn about their workloads in a distributed
Hadoop environment.
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3 THE ALOJA FRAMEWORK

The project ALOJA is born in the attempt to provide solu-
tions to an important problem for the Hadoop community,
that is the lack of understanding of which parameters, either
software or hardware, determine the performance and costs
of Hadoop workloads. Further, Hadoop deployments can be
found in a diversity of operational environments, from low-
end commodity clusters to high-end data appliances, and in-
cluding all types of Cloud-based solutions at scale, resulting
in a growing need to understand how different operational
parameters, such as VM sizes used in Cloud deployments,
affect the cost-effectiveness of Hadoop workloads.

The project is structured in three phases, aiming to 1)
create the benchmarking ALOJA platform, 2) deploy visu-
alization and analytic tools in an on-line Web application
and 3) develop performance models deriving from the col-
lected data. The information obtained from the developed
models and benchmarking information should guide users
to choose what deployment options are the most adequate
to balance the cost-effectiveness of their workloads.

3.1 Methodology and Road-Map

The road-map of the ALOJA project is structured in 3 phases
of execution:

First phase: The initial phase consists on perform a
systematic study of performance results across a range of
selected state of the art and novel hardware components,
software parameters configuring Hadoop executions, and
solution deployment patterns.

Second phase: The second phase introduces models and
methods for analytics of Hadoop executions. The ALOJA
repository is an accumulated data-set of results, allowing
us to model and predict performance features given an
input set of workload execution characteristics, hardware
components, software configurations and the deployment
characteristics. Predicting these performance and efficiency
outcomes given the execution characteristics will also let
the system to make decisions on the present and future
executions, like discarding executions tagged as anomalous,
or recommend the next batch of executions to be performed.

Visualization tools are included into the platform, to
observe the large amount of execution results in a more
comfortable and comprehensive way, allowing a better un-
derstanding of the executions. One of the checkpoints for
this phase is to be able to answer questions like which
software and hardware configuration is the best for my Hadoop
workload. All of this by having into account the budget or
user indicated hardware limitations.

Third Phase: The third phase of ALOJA focuses on
applying the predictive analytic models to automate de-
cisions like deciding which executions submit for current
or new Hadoop deployments, having into account cost-
effectiveness and user constraints on budget or hardware
availability, and validate or reject executions in case of
anomalous results or behavior.

3.2 The platform

The ALOJA platform implements the previously explained
repository and tools, available at the ALOJA web-site [1].

The relevant components of this implementation are the
benchmark managing, the data analysis and flow, the deep
instrumentation, and the testing infrastructure.

3.2.1 Benchmarking Components
The configuration management scripts are in charge of setting
up the servers (on premise or Cloud), the OS and JVM
configuration and profiling tools, the Hadoop deployment
plus benchmark launching and metrics collection, also the
environment cleanup. The parameter selection and queuing
builds the batch of workloads to run from the user op-
tions introduced through the ALOJA web-application, also
schedules them into queues. The metrics profiling captures
the system metrics for each process and execution (CPU,
memory, IO, storage), including also a log parser to match
the collected Hadoop metrics with system metrics. Finally
the benchmark suite includes the set of benchmarks to choose
from, featuring the previously cited Intel HiBench Suite
characterizing 4 categories of workload: µ-benchmarks, web
search, machine learning and HDFS. The benchmarks cur-
rently examined in ALOJA are the following:

• Terasort, sorts 1TB of data generated by the TeraGen
application (I/O and CPU intensive).

• Wordcount, counts number of word occurrences in a
large text files (CPU bound).

• Sort, sorts the input directory into an output direc-
tory (I/O intensive).

• Pagerank, crawls Wikipedia sample pages, using the
Googles Web page ranking algorithm.

• Bayes, Bayesian classification using the Mahout li-
brary, using a subset of the Wikipedia dump.

• K-means, Mahouts implementation of the k-means
algorithm.

• Enhanced DFSIO, an I/O intensive benchmark to
measure throughput in HDFS using map reduce.

3.2.2 Data Analysis and Flow
After the execution of a benchmark, the result is sent to the
repository. Performance metrics are extracted, parsed and
joined with the Hadoop metrics for each job, and finally
imported into a relational database, where each benchmark
is assigned a unique ID and related to its configuration (SW
and HW), its system metrics and Hadoop results. Once in
the database, the platform provides filtering and visualiza-
tion for the stored data, allowing to compare different runs,
parameter choices, or deployment options.

3.2.3 Deep instrumentation
ALOJA provides a mechanism to compare directly results
from different Hadoop executions in an easy way, but in
some cases it will be necessary to conduct analysis in a lower
level. For such analysis ALOJA uses low-profiling tools:

• PARAVER [21], a performance visualization tool for
execution traces developed at the BSC, and widely
used for analyzing HPC applications, but also web
applications and now for Hadoop workloads

• The Hadoop Analysis Toolkit, including the Java In-
strumentation Suite (JIS) that uses Aspect Oriented
Programming to avoid recompiling Hadoop, and
producing an execution trace file.
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• Advanced analysis tools like DBSCAN [22] to de-
tect different algorithm phases as well as regions
of different subroutines with similar behavior inside
Hadoop jobs. This method is going to be hooked to
the data flow to enhance the collected system metrics.

3.2.4 Initial Testing Infrastructure

As ALOJA aims to create a vendor-neutral repository, the
execution environment for tests is not a closed specification,
and the platform is designed to support multiple deploy-
ment environments. However, in order to test the platform,
a few initial deployments have been added and passed
through benchmarks:

1) A High-End Cluster: an on-premise cluster using
2 to 16 data-nodes per execution plus a head-node, with
two 6-core sandy-bridge Intel processors and 64GB of RAM
machines; 6 SATA2 SSD drives as RAID-0 storage (1.6GB/s
read, 1GB/s write), and local 3TB SATA HDD storage per
node; network interfaces with 4 Gigabit Ethernet and 2 FRD
InfiniBand ports per node providing a bandwidth peak up
to 56Gbps, and InfiniBand switching.

2) A Cloud IaaS: a Microsoft Azure environment, using
A7 instances using 3 to 48 data-nodes per execution plus
a head-node, with 8 cores and 56GB of RAM; mounting
up to 16 remote volumes limited to 500 IOPS. The initial
ALOJA repository includes executions with different stor-
age configurations, varying the amount of remote volumes
and exchanging remote and local volumes.

4 MODELING BENCHMARKS

In order to enhance the knowledge discovery capabilities
of ALOJA filters and visualization tools, we introduce the
predictive analytics component ALOJA-ML. As part of the
second and third phase, the ALOJA project aims to in-
clude data-mining techniques in the analysis of Hadoop
performance data. Modeling the Hadoop behavior towards
executions allows to predict such executions output values
(e.g., execution time or resource consumption) based on in-
put information like software and hardware configurations.
Also, such models can be applied in anomaly detection
methods, by comparing actual executions against predicted
outputs, also tagging as anomalous those tasks whose run-
time lies notably outside their machine-learned prediction.
Furthermore, through data-mining techniques we can find
which data from our repository has more significance,
identifying which minimal set of executions is required to
characterize a specific Hadoop deployment, and then being
able to recommend which executions should be performed
to benchmark a new or updated deployment.

While the ALOJA framework collates and analyzes data
collected from Hadoop task executions and displays it
through a range of tools, helping users understand and
interpret the executed tasks, ALOJA-ML complements this
by adding tools that learn from the data and extract hidden
(or not so obvious) information, also adding an intermediate
layer of data treatment to complement the other visualiza-
tion tools. Figure 3 shows the role of ALOJA-ML inside the
ALOJA framework.

Fig. 3. ALOJA-ML, the predictive analytics add-on component of ALOJA

4.1 Data-Sets and Workloads

The ALOJA repository provides all the data for learning
models of the Hadoop execution and environments. As indi-
cated in sections 2.1 and 3.2.1 the data-set currently contains
up to 40.000 Hadoop executions of 8 different benchmarks
from the Intel HiBench suite. Each execution is composed of
a prepare Hadoop job that generates the data and a proper
benchmark e.g., Teragen and Terasort. Although the job of
interest is generally the proper benchmark (i.e. Terasort),
prepare jobs are also valid jobs that can be also used for
training models. This leaves us with over 80.000 executions
to learn from. Each benchmark is run with different con-
figurations, including clusters and VMs, networks, storage
drives, internal algorithms and other Hadoop parameters.
Table 1 summarizes the different properties of the data-set.

Benchmarks
bayes, terasort, sort, wordcount, kmeans, pagerank

dfsioe read, dfsioe write
Hardware Configurations

Network Ethernet, Infiniband
Storage SSD, HDD, Remote Disks {1-3}
Cluster # Data nodes, VM description

Software Configurations
Maps 2 to 32
I/O Sort Factor 1 to 100
I/O File Buffer 1KB to 256KB
Replicas 1 to 3
Block Size 32MB to 256MB
Compression Algorithm None, BZIP2, ZLIB, Snappy
Hadoop Info Version

TABLE 1
Configuration parameters on the ALOJA data-set

Figure 4 shows an example of an execution entry in the
ALOJA repository. From each entry we distinguish the input
variables, those features that are defined before the execu-
tion by the user or the environment; the output variables,
those features that are result of the execution like the execu-
tion time; and other variables providing extra information
identifying the execution or added by the ALOJA users like
the validated field indicating whether a user has reviewed
or not that execution. At this time we focus our interest on
the elapsed time for a given execution, the execution time,
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id exec id cl bench exe time start time end time net disk bench type maps
2 3 terasort 472.000 2014-08-27 13:43:22 2014-08-27 13:51:14 ETH HDD HiBench 8

iosf replicas iofilebuf compression blk size # data nodes VM cores VM ram validated version
10 1 65536 None 64 9 10 128 1 1

Fig. 4. Example of a logged execution in the ALOJA repository, without its related system profiling data

as this can determine the cost of the execution and indicate
whether an execution is (not) successful. Another important
output variables include resources consumed such as CPU,
memory, bandwidth and storage consumption over time.
But, as our initial concern is to reduce the number and dura-
tion of executions required to characterize (learn) the system
behavior, at this time we center our efforts on learning and
predicting the execution time for a given benchmark and
configuration.

4.2 The Learning Process
The learning methodology is a 3-way step model involving
training, validation and testing; see Figure 5. The data-
set is split (at this time through random sample) and two
subsets are used to train a model and validate it. A se-
lected algorithm (taken from those detailed later) learns and
characterizes the system, also identifying and retaining the
’best’ parameters (testing them on the validation split) from
a list of preselected input parameters. The third subset is
used to test the best-from-parameters model. All learning
algorithms are compared through the same test subset.

Fig. 5. Data-set splitting and learning schema

At this time, the ALOJA user can choose among four
learning methods: Regression Trees, Nearest Neighbors,
Feed-Forward Artificial Neural Networks, and Polynomial
Regression. Each of these has different mechanisms of learn-
ing and has strengths and weaknesses in terms of handling
larges volume of data, being resilient to noise, and dealing
with complexity. The selected methods are explained as
follows:

Regression tree algorithm: we use the M5P [14], [18]
from the RWeka toolkit. The parameter selection (number of
instances per branch) is done automatically after comparing
iteratively the prediction error of each model on the valida-
tion split.

Nearest neighbor algorithm: we use the IBk [4], also
from the RWeka toolkit. The number of neighbors is also
chosen the same way as parameters on the regression trees.

Neural networks: we use a 1-hidden-layer FFANN from
nnet R package [17] with pre-tuned parameters as the com-
plexity of parameter tuning in neural nets require enough
error and retrial to not provide a proper usage of the rest
of tools of the framework. Improving the usage of neural
networks, including the introduction of deep learning tech-
niques, is in the road-map of this project.

Polynomial regression: a baseline method for predic-
tion, from the R core package [15]. Experiences with the cur-
rent data-sets have shown that linear regression and bino-
mial regression do not produce good results, but trinomial
approximates well. Higher degrees have been discarded
because of the required computation time, also to prevent
over-fitting.

The ALOJA-ML tools are implemented in R and are
available as a library in our on-line code repository1. The
ALOJA platform loads the library from the web and ex-
ecutes it in the deployed web server, but access can be
initiated from any R-based platform. In this way any service
or application can call our tool-set for predicting, clustering
or treating Hadoop executions. Moreover, our library can be
embedded on Microsoft Azure-ML services [24], delegating
the modeling and prediction process to the cloud, thereby
reducing the ALOJA platform code footprint and enabling
scaling the Cloud. A diagram of the ALOJA-ML library is
depicted in Figure 6.

Fig. 6. Schema of AZURE-ML on the ALOJA framework

4.3 Modeling Results

Predicting the execution time for a given benchmark and
configuration is the first application of the predictive ana-
lytics tool-set. Knowing the expected execution time for a
set of possible experiments helps decide which new tasks to
launch, their priority order, or just pre-calculate the cost of
resource leasing in case that depends on resources per time.
Figure 7 shows the learning and prediction data flow.

Fig. 7. Learning and prediction schema

1. https://github.com/Aloja/aloja-ml
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4.3.1 Comparing Modeling Algorithms

As executions cost money and time, we would like to
execute as few jobs as possible to model and predict the
rest of possible executions. This makes deciding the best
sizes for such splits a challenge, as we seek to require as few
benchmark executions as possible to train while maintaining
good prediction accuracy. This is to build an accurate model
from the minimum number of observations. Here we will
check the accuracy of predictors given different sizes of
training sets, also compare the different selected algorithms,
observe how much we can generalize the model to all
workloads, and also how ML improves prediction in front
of other rule of the thumb techniques applied in the field.

Algorithm 50/25/25 37.5/37.5/25 20/55/25
Reg. Trees 0.15669 0.16760 0.18225
N-Neighbors 0.11054 0.12507 0.16433
FFA Neural Nets 0.16335 0.15249 0.18216
Polynomial Reg. 0.25414 0.26025 0.90056

Fig. 9. Relative Absolute Error (RAE) per method on test data-set, with
different % splits for Training/Validation/Testing

As previously said, we have several prediction algo-
rithms from which to create our models, as well as different
parameters and choices on the training type. Figure 8 shows
the average errors, absolute and relative, for the validation
and the testing process for each learning algorithm, using a
generous training set (50% trainnig, 25% validation and 25%
testing). An interesting thing is to check how much we can
reduce the training set without losing too much accuracy,
as far as this is possible. Figure 9 shows the training versus
validation/test model accuracy, using the best parameters
found previously.

As seen there, using regression trees and nearest neigh-
bor techniques we can model and predict the execution
time for our Hadoop traces, spending less than a minute to
train them. We consider that, with a more dedicated tuning,
neural and deep believe networks could improve results,
despite requiring around 20 minutes to train with the given
data in a commodity computer (single processor Intel i7).
After testing, linear and polynomial regressions were set
aside as they achieve poor results when compared with
the other algorithms, and the time required to generate the
model is impractical for the amount of data being analyzed
(around an hour of training).

4.3.2 Generalization of Models

Another key concern was whether a learned model could be
generalized, using data from all the observed benchmarks,
or would each execution/benchmark type require its own
specific model. One motivation to create a single general
model was to reduce the overall number of executions and
to generate powerful understanding of all workloads. Also,
there was an expectation that our selected algorithms would
be capable of distinguishing the main differences among
them (e.g., a regression tree can branch different trees for
differently behaving benchmarks). On the other hand, we
knew that different benchmarks can behave very differently
and generalizing might compromise model accuracy.

Figure 10 shows the RAE for passing each benchmark
individually through both a general model and a model cre-
ated using only its type of observations. In almost all cases
the specific model fits similarly or better than the general
model, and the different algorithms show same trends, but
neural networks are capable to fit specific benchmarks much
better than the other methods. This can be caused because a
general neural net requires more time or examples to learn,
but with precise benchmarks is able to perform better.

Benchmark General Model Specific Model
bayes 0.12624 0.05134
dfsio read 0.21667 0.29965
dfsio write 0.19057 0.10763
k-means 0.12870 0.12842
pagerank 0.10964 0.11948
sort 0.20044 0.12823
terasort 0.12888 0.12599
wordcount 0.20579 0.09702

Fig. 10. Comparative RAE for each benchmark, predicting them using
the general vs. a fitted model with regression trees

We are concerned about avoiding over-fitting models, as
we would like to use them for predicting unseen bench-
marks similar to the ones already known in the future. Also,
the fact that there are some benchmarks with more execu-
tions conditions the general model. After seeing the general
vs specific results, we are inclined to use benchmark-specific
models in the future, but not discarding using a general one
when possible.

After the presented set of experiments and derived
ones, we conclude that we can use ML predictors for not
only predict execution times of unseen executions, but also
for complementing other techniques of our interest, as we
present in the following section. Those models provide us
more accuracy that techniques used as rules of thumb like
Least Squares or Linear Regressions (achieving LS with each
attribute an average RAE of 1.90216 and Linear Regression
a RAE of 0.70212).

4.3.3 Applications
The ALOJA framework incorporates these prediction ca-
pabilities in several tools. One of them is predicting the
performance of known benchmarks on a new computing
cluster, as far as we are able to describe this new cluster,
so the new executions for such cluster are automatically
decided. Also, having the hardware configuration of such
cluster allows us to find the best software configurations
for our benchmark executions. In case of a new benchmark
entering the system, we can attempt to check if any of the
existing models for specific benchmarks fits the new one,
and then treat the new benchmark as the known one, or
expand or train a new model for this benchmark.

Other important usage, incorporated into the ALOJA
framework, is unfolding the space of possible configurations
and fill it with predicted values for those configurations
without an observed execution. Then, observe the expected
importance of a given parameter or a given range of values
on a parameter, with reference to performance. Knowing the
expected execution time of a Hadoop workload in a given
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Algorithm MAE Valid. RAE Valid. MAE Test RAE Test Best parameters
Regression Tree 138.896 0.15303 401.775 0.14885 min instances per branch = 1
Nearest Neighbors 110.406 0.10498 248.354 0.11209 k-nearest neighbors = 3
FFA Neural Nets 135.490 0.15271 358.195 0.16335 33:300:1, it1000, TanH , η = 0.2, µ = 0
Polynomial Regression 167.982 0.23217 354.936 0.25414 degrees = 3

Fig. 8. Mean and Relative Absolute Error (MAE and RAE) per method, on best split and parameters found

cluster allows the system to schedule jobs better, improving
consolidation and de-consolidation processes [6], and re-
duce resource consumptions by maintaining any quality of
service or job deadline preservation. Or even schedule while
tuning parameters for each workload to meet deadlines
while preventing resource competition.

5 USE CASES

In this section we present some specific uses for the predict-
ing model, included in the ALOJA platform and with high
priority in the road-map of the ALOJA project. These are 1)
anomaly detection, by detecting faulty executions through
comparing their execution times against the predicted ones;
2) identification of which executions would model best a
given Hadoop scenario or benchmark, by clustering the
execution observations, and taking the resulting cluster
centers as recommended configurations; and 3) identifica-
tion of which features, for each benchmark or hardware
infrastructure, are the most relevant towards speeding up
the execution.

5.1 Anomaly Detection Mechanisms

An application of our predictive analytics tool-set is to
detect anomalous executions or executions to be revised by
an operator, and flag them automatically. Detecting auto-
matically executions susceptible of being failures, or even
executions not modeled properly, can save time to users
who must check each execution, or can require less human
intervention on setting up rules of thumb to decide which
executions to discard.

Having benchmark behaviors modeled, we can apply
model-based anomaly detection methods. After validating
a learned model, this can be considered as the ‘rule that ex-
plains the system’, and any observation that does not fit into
the model (this is, the difference between the observed value
and the predicted value is bigger than expected), is consid-
ered anomalous. Here we flag anomalous data-set entries as
warnings and outliers: 1) a warning is an observation whose
error respect to the model is n standard deviations from
the average error; 2) an outlier is a mispredicted observation
where other similar observations are well predicted, i.e. a
warning that more than a half of its neighbor observations
(those ones that differ in less than h attributes, or with
Hamming distance < h) are well predicted by the model.
Figure 11 shows the anomaly decision making schema.

5.1.1 Validation and Comparisons
First of all we can auto-analyze the ALOJA data-set, apply-
ing the anomaly detection method with the model created
from the same data-set, knowing that it can contain anoma-
lous executions. Here we perform two types of experiments,

Fig. 11. Anomaly detection schema

one testing the data of a single benchmark (i.e. Terasort,
with 7844 executions) with a model learned from all the
observations (i.e. M5P regression tree algorithm), and one
testing it against a model created from its specific type of
observations.

Applying the method using a model learned from all the
observed executions, and adjusting the parameters around
h = {0...3} and n = 3, we detected 20 executions from
∼ 7800, all of them having times not matching with what
the model would expect given their configuration. After
reviewing them manually, we detected that those execution
were valid executions, meaning that they finished correctly,
but something altered their execution, as other repetitions
finished correctly and in time. Further, when learning from
Terasort observations only, the more fitted model is able to
detect 4 more executions as anomalous, which in the general
model where accepted because of similarities with other
benchmark executions with similar times. From here on
we recommend to validate outlier executions from models
trained exclusively with similar executions.

The Hamming distance value, used to detect comparable
neighbors, depends on the dispersion of our training exam-
ples, if the example executions are very different we should
increase the h parameter, allowing comparisons with more
examples but reducing the accuracy of the decision. Also for
benchmarks or environments with high precise results, the
sigma value n can be reduced to detect outliers, but when
results are disperse we should consider acceptable errors
those between n ∼ 3.

In our tests different values of Hamming distance show
low variation, as outliers are easily spotted by neighbors
at distance h = 1 or even identical executions (h = 0),
where the error is usually high. Setting up a distance h = 0
and n = 3, where an observation only is an outlier when
there are at least two identical instances with an acceptable
time, from 24 executions are detected as anomalous, 17 are
considered warnings while 7 are considered outliers. Such
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warnings can be set to revision by a human referee to decide
whether are outliers or not. Also, we may decide to reduce
the number of directly accepted observations by lowering
n (standard deviations from the mean) from 3 to 1. In this
situation, we increase slightly the number of detections to 38
(22 warnings and 16 outliers). Figure 12 shows the compara-
tive of observed versus predicted execution times, marking
outliers and warnings. Also figure 13 shows the confusion
matrices for the automatic versus a manual outlier tagging,
automatic versus rule of thumb (semi-automatic method
where ALOJA checks if the benchmark has processed all its
data), and automatic warnings versus manual classification
as incorrect or “to check” (which is if the operator suspects
that the execution has lasted more than 2x the average of its
similar executions).

Fig. 12. Automatic outlier detection (h = 0, n = {1, 3})

automatic→
manual ↓ Outlier OK
Anomaly 12 22

Legitimate 4 7786

automatic→
semi-auto. ↓ Outlier OK

Anomaly 7 0
Legitimate 9 7786

automatic→
manual ↓ Warning OK

to check 22 0
Legitimate 0 7786

Fig. 13. Confusion matrices for different methods

Those confusion matrices show anomalies considered
legitimate by the automatic method. After human analysis
we discovered that such executions are failed executions

with a very low execution time, whose prediction error is
also low and the method does not detect them as outlier.
Discovering this let us to determine a new manual rule for
executions not exceeding a certain amount of time (i.e. a
minute), to be marked as possible failed executions.

Finally, this method can be used not only for validat-
ing new executions but also to clean our ALOJA data-
set and retrain our models without outliers, letting us to
discard outlier executions that make our algorithms have
low accuracy. In the first regression tree case, shown in
the previous subsection, by subtracting the observations
marked as outlier we are able to go from a prediction error
of 0.15303 to 0.13561 on validation, and 0.14885 to 0.14024
with the test data-set.

5.1.2 Use cases
Spotting failed executions in an automatic way saves time to
users, but also let the administrators know when elements of
the system are wrong, faulty, or have unexpectedly changed.
Further, sets of failed executions with common configura-
tion parameters indicate that it is not a proper configuration
for such benchmark; or failing when using specific hardware
shows that such hardware should be avoided for those
executions.

Also, highlighting anomalous executions make easier
to analyze data, even more when having such amount of
executions in the repository, plus the +600.000 other perfor-
mance traces associated to the repository executions. Also it
allows to use other learning models less resilient to noise.

5.2 Recommending Executions

When modeling a benchmark, a set of configurations or a
new hardware set-up, some executions must be performed
to observe its new behavior. But as these executions cost
money and time, we want to run as few of them as possible.
This means running the minimum set of executions that
define the system with enough accuracy.

From a model of our executions we can attempt to obtain
which of those executions are the most suitable to run on a
new system and use the results to model it; or we can use
the model to obtain which executions, seen or unseen in our
data-set, can be run and used to model. The ALOJA data-
set, obtained from random or serial executions, can contain
similar executions, introduce redundancy or noise. And find
which minimal set of executions are the ones that minimize
the amount of training data is a combinatorial problem on a
big data-set.

One of the methods of the ALOJA-ML tool-set to achieve
this, is to cluster our observed executions (i.e., apply the k-
means algorithm [15]), obtain for each cluster a representa-
tive observation (i.e., its centroid), and use the representa-
tives as the recommended set of executions. Determine the
number of centroids (recommendations) required to cover
most of the information is the main challenge here. At this
time we iterate through a range of k, as figure 14 displays,
reconstructing the model with those recommended obser-
vations, and testing it against our data-set or against a
reference model. From here on, we decide when the error
is low enough or when we exceed the number of desired
executions.
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Fig. 14. Finding recommended executions schema

5.2.1 Validation and Comparisons

For each iteration, looking for k clusters, we compute the
error of the resulting model against the reference data-
set or model, also we can estimate the cost of running
those executions in the clusters we tested, with an average
execution cost of 6.85 $/hour. Notice that the estimated
execution time is from the seen data-set, and applying those
configurations on new clusters or unseen components may
increase or decrease the values of such estimations, and
it should be treated as a guide more than a strict value.
Figure 15 shows the evolution of the error and the execution
cost per each k group of recommendations from our ALOJA
data-set. See that more executions implies more accuracy on
modeling and predicting, but more cost and execution time.

Fig. 15. Number of recommended executions vs. error in modeling vs.
execution cost

Further, to test the method against a new cluster addi-
tion, we prepared new a setup (on premise, 8 data nodes,
12 core, 64 RAM, 1 disk), and run some of the recommenda-
tions obtained from our current ALOJA data-set. We get 6
groups of recommendations with from k = {10...60, step =
10}, and we executed them in order (first the group of
k = 10 and so on, removing in this case the repeated just
to save experimentation time). We found that with only
those 150 recommendations we are able to learn a model
with good enough accuracy (tested with all the observed
executions of the new cluster), compared to the number of
executions needed from the ALOJA data-set to learn with
similar accuracy.

Figure 16 shows the comparative of learning a model
with n random observations picked from the ALOJA data-
set, seeing how introducing new instances to the selected
set improves the model accuracy, against picking the new
executed instances (this case in order of recommendation
groups), and see how it improves the learning rate of the

new cluster data-set. We can achieve low prediction errors
very quickly, in front of a random execution selection.

Fig. 16. Random vs. recommended executions

5.2.2 Use cases
Often executions on a computing cluster are not for free,
or the amount of possible configuration (HW and SW) to
test are huge. Finding the minimal set of executions to be
able to define the behavior of our Hadoop environment
helps to save time and/or money. Also, the operator would
like to prioritize executions, running first those that provide
more information about the system, and then run the rest in
descending order of relevance. This is useful when testing
or comparing our environment after modifications, sanity
checks or validating clone deployments.

Further, when adding new benchmarks or resources it
is usual that the new benchmark is similar in behavior to
another previously seen, or that a hardware component is
similar in behavior to another. Instead of testing it from
random executions, we could use the main executions for
the most similar seen environments to test it, and although
results can not fit well with previous models (in fact the new
environment can be different), use the new observed results
as a starting point to create a new model. The study of how
it performs well against other example selection methods
for Hadoop platforms and brand new benchmarks is in the
ALOJA road-map for near future research.

5.3 Ranking Features
Knowing how variables affect the execution is important,
and it can be retrieved from examining the learned model.
But ranking the combination of variables from fast to slow,
and detecting which variables produce such gradient can
be way practical in case the model is not easy to interpret
(like neural networks or nearest neighbors). Selecting a
subspace of configurations (due to practical reasons), we can
predict all configurations tested and not tested, and rank the
configurations from slower to faster. Then, we find which
variables produce the greatest changes in such ranking,
indicating which ones create the greatest divide, and so on
for each variable choice.

We can use several methods for ranking variables, like
the Gini factor for each variable versus the execution time.
Also we can use another method, separating the ranked
configurations in a dichotomous way (Algorithm 1), after
determining which variable separates better the slow con-
figurations from the faster ones, the algorithm fixes this
variable and repeats for each of its distinct values. We
found that both methods are useful with different results,
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so our tool-set implements both for the user to choose and
experiment.

Depicted in Figure 17 as an example, we select an on-
premise cluster formed by 3 data-nodes with 12 cores/VM
and 128GB RAM, and we want to observe the relevance of
variables disk (local SSD and HDD), network (IB and Eth),
IO file buffer (64KB and 128KB) and block size (128, 256) for
terasort, fixing the other variables (maps = 4, sort factor = 10,
no compression and 1 replica). We train a model for this
benchmark, predict all the configurations available for the
given scenario, then using the dichotomous algorithm we
get the tree of relevant variables.

Algorithm 1 Least Splits Algorithm
1: function LEAST.SPLITS(e)
2: if |e| > 1 then
3: bv ← null ; lc←∞
4: for i ∈ variables(e) do
5: c← 0
6: for j ∈ [2, |e|] do
7: if e[i, j] 6= e[i, j − 1] then
8: c← c+ 1
9: end if

10: end for
11: if c < lc then
12: 〈bv, lc〉 ← 〈i, c〉
13: end if
14: end for
15: t← empty tree()
16: for v ∈ values of(e[bv]) do
17: branch(t, ”bv = v”)← Least.Splits(e[bv = v])
18: end for
19: return t
20: else
21: return prediction(e)
22: end if
23: end function

Network Storage IO.File Buffer Predicted Execution Time (s)
ETH HDD 65536 963.471

IB HDD 65536 726.372
ETH SSD 65536 330.583

IB SSD 65536 237.817
ETH HDD 131072 963.471

IB HDD 131072 726.372
ETH SSD 131072 330.583

IB SSD 131072 237.817
Terasort, 4 maps, sort factor 10, block size 64MB, no comp,

deployed on a local cluster with HDD/SSD, ETH/IB

Disk=HDD
Net=ETH

IO.FBuf=131072|65536 -> 963 seconds
Net=IB

IO.FBuf=131072|65536 -> 726 seconds
Disk=SSD

Net=ETH
IO.FBuf=131072|65536 -> 331 seconds

Net=IB
IO.FBuf=131072|65536 -> 238 seconds

Fig. 17. Example of estimation of the selected space of search, with the
corresponding descriptive tree using the dichotomous method

6 CONCLUSION

In this article we described ALOJA-ML, a tool-set for au-
tomated modeling and prediction tasks over benchmark-
ing data repositories, part of the ALOJA project. ALOJA-
ML identifies key performance properties of the workloads
through machine learning, in this case from the Hadoop
ecosystem, to predict performance properties for a workload
execution on a given set of deployment parameters that
have not been explored before in the testing infrastructure.
The work presented includes some selected use cases of the
ALOJA-ML tool-set in the scope of the ALOJA platform.
One of the presented techniques is used to guide and select
the most representative runs of an application that needs to
be characterized in a deployment, to reduce the number of
samples needed. Another technique is to identify anomalies
on large sets of job executions, to filter automatically failed
runs. The last technique presented is ranking configuration
parameters, to decide a new deployment based on the
performance versus the available resources.

Through our experiments, we exposed and demon-
strated that using our techniques we are able to model
and predict Hadoop execution times for given configura-
tions, with a small relative error around 0.20 depending
on the executed benchmark. Further we passed out data-set
through an automated anomaly detection method, based on
our obtained models, with high accuracy respect a manual
revision. Also we deployed a new Hadoop cluster, running
the recommended executions from our method, and tested
the capability of characterizing it with little executions;
finding that we can model the new deployment with fewer
executions than by randomly selecting test configurations.

The current road-map of ALOJA-ML includes to add
new features, improving the ALOJA framework for Hadoop
data analysis and knowledge discovery. Among our main
interests are learn how to deal with big amounts of data
from Hadoop executions to improve the comprehension and
management of such platforms. Next steps include study
techniques to characterize computation clusters and bench-
marks; introduce new input and output variables looking
for new sources of information from the system; study
in detail compatibilities and relations among configuration
and hardware attributes; improve the methods to select
features, examples and learning parameters; and add new
executions to the ALOJA data-sets, with new deployments
and benchmarks, like e.g. BigBench and BigDataBench.
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