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Abstract 

We have introduced a new operation called the superimposition 

operation. The translucent language generated by a given 

superimposition operation and a language L is the set of words 

generated by the superimposition of any two words in L. In this paper 

we study the properties of translucent languages. We also introduce a 

variant of the operation called Superimposition under control. We 

examine the properties of languages under this operation. 
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1. INTRODUCTION 

Research on Operation on words is a vast and independent 

area of study under combinatorics on words. The catenation 

operation is studied widely in Formal Language Theory in 

connection with composition of languages and their description 

through grammars. Several generalizations of the catenation 

operation like shuffle operation, insertion and deletion operations, 

shuffle on trajectories were introduced and studied by many 

authors in [6, 8]. The shuffle operation is useful in modelling 

parallel composition of words and languages. Theoretical 

generalization to the case of infinite words was studied in detail 

by Kadrie et al. in [1]. Another notable operation is the Collage 

operation on words [4]. Motivated by different real life examples, 

we introduced a new operation called the superimposition 

operation in [2]. In this paper we study the properties of languages 

in relation to the superimposition operation. We take our 

inspiration from three different real life scenarios to introduce this 

operation. The scope of this study is to model picture composition 

in Astronomy and explore the connections between Formal 

Languages and Astronomy.  

In Astronomy, information from celestial objects is collected 

through special colour filters on telescopes. A colour picture is 

composed by overlapping multiple layers of colours using 

advanced image processing software. The output or final colour 

that we perceive is the result of the superimposition of many 

layers. 

We model this phenomenon as an operation on words and 

languages. The proposed model considers each letter of the 

alphabet as a translucent unit like a filter so that when one is 

placed on top of the other, we would be able to see through. The 

result is a different colour or word. The rules of superimposition 

specify what the resulting word would be. We can define an entire 

class of superimposition operations on a given alphabet. 

This paper is organized as follows: Section 2 gives the 

preliminaries required for the study. In section 3 we introduce the 

concept of translucent language associated with any language and 

study the properties. Iterated superimposition of a language is 

obtained by iterations of the same operation. We study the 

properties of iterated superimpositions also in this section. In 

section 4 we introduce a variation in the operation by imposing a 

control. We study control languages and superimposition under 

control in this section. The conclusion gives the relevance and 

future work.  

2. BASIC DEFINITIONS 

Let Σ be a finite alphabet and Σ* be the collection of all words 

over Σ including the empty word . Let Σ+ = Σ*-{}. For wΣ+, 

alph(w) is the elements of Σ in w. The length of a word w is |w|. A 

word is denoted by w = w1w2 …wn where each wi is in Σ. A word 

u is a factor of w if there exists x and y such that w = xuy. The 

word is a prefix or suffix of wif w = uy, w = xu respectively. If w 

= w1w2 …wn where each wi is in Σ then wR = wnwn - 1 …w1. A 

language L is a set of words or a subset of Σ*. Lc denotes the 

complement of a language. 

The shuffle operation [8], denoted by , is defined recursively 

by, 

(aubv) = a(ubv)  b(auv), and (u) = (u) = {u} 

where, u,v  * and a,b  . 

The shuffle of two languages L1 and L2 is 
1 2

1 2

,u L v L

L L u v
 

   . 

Example: (abbc) = {abbc, abcb, babc, bacb, bcab}. 

The Collage operation on words is defined in [4] as: Given a 

subset *W  of patches, the operation of Collage consists of 

producing words in ( { })*  , ( is a new symbol not in Σ), by 

starting with a word of the form m and then repeatedly replacing 

random factors of the current word with elements of W. A word 

thus obtained is called a Collage of W. Define C0(W) = * and for 

all 
10, ( ) { [ ] | ( ),

,1 | | | | 1

k kk C W w i z w C W

z W i w z

   

    
 

Example: Consider n = 11 and assume the words aba, bbbbc, 

ca, abaabcab belong to the subset W and are placed respectively 

at the positions 2, 4, 10 and 1 in that order. The resulting word is 

at the top of the following Table.1. 

Table.1. Collage of W 

a b a a b c a b - c a 

a  b a a b c a b 

                                                c    a 

                 b b b b c 

    a b a 

1 2 3 4 5 6 7 8 9 10 11 



ISSN: 2229-6956 (ONLINE)                                                                                                                              ICTACT JOURNAL ON SOFT COMPUTING, JULY 2017, VOLUME: 07, ISSUE: 04 

1493 

Position 4 is covered by the occurrences aba, bbbbc and 

abaabcab. Position 9 is covered by no occurrence and position 2 

is covered by the occurrences of aba and abaabcab. 

3. TRANSLUCENT LANGUAGES 

We introduce the concept of superimposition operation and 

translucent languages generated by a language. This language has 

some interesting properties. 

We recall the definition of superimposition operation 

introduced in [2]. 

For a,b  Σ, a  b = c where c is also in Σ is called the 

superimposition operation. This operation can be extended to Σ*. 

Definition 3.1 

Let u, v ϵ Σ+ and u = u1u2…un, v = v1v2…vm where ui, vj ϵ Σ, 

for i = 1,2,…,n, j = 1, 2,…,m. 

a) If |u| = |v|, then uv = (u1v1)(u2v2)…(unvn) 

b) If |u| > |v|, and if u = u′u″ where |u′| = |v| = m,  

then uv = (u1v1)(u2v2)…(umvm). u″. 

c) If |u| < |v|, and if v = v′v″ where |v′| = |u| = n,  

then uv = (u1v1)(u2v2)…(unvn).v″ 

d) For u ϵ Σ*, uλ = λu = u. 

Given an alphabet, it is possible to define a class of 

superimposition operations on the alphabet. If X = {a,b}, it is 

possible to specify 16 different rules. The word z generated from 

two words u and v is unique and is called a translucent word 

obtained from u and v. We use a representation of the operation 

in the form of a table.  

Example 3.1 

Let Σ = {b,w,g} and the operation  given by the following 

Table.2.  

Table.2. Superimposition rule 

  b w g 

b b b b 

w b w g 

g b g g 

Let x = (bw)5, y = (wb)5 be words in Σ* then xy = b10.  

Definition 3.2 

Let a,b,c . The operation  is  

a) associative if ( ) ( )a b c a b c     , 

b) commutative if b a a b   , 

c) Idempotent if a a a  . 

Some simple results of the operation are immediate. 

Let x, y, z be words in Σ+. Then 

a) | | max{| |,| |}x y x y  ,  

b) x y y x   if and only if  is commutative,  

c) ( ) ( )x y z x y z     if and only if  is associative 

The operation can be extended to languages.  

Definition 3.3 

Let 1 2,L L  then the superimposition of L1 and L2 is

1 2

1 2,

.
u L v L

L L u v
 

   For a given language L,  

0 1 1, , i iL L L L L L 

       . 

Then the star closure of a language is 
* 0 1 2 .....L L L L     

and the positive closure is 
1 2 .....L L L

    for a given 

superimposition operation. The superimposition of two languages 

is always a non-empty language.  

Definition 3.4 

For a given language L, the translucent language generated by 

L under the superimposition operation  is given by

( , ) { / , , }T L w w u v u v L      .  

Example 3.2 

Let { , }a b  and let the operation  be specified by Table.3. 

Table.3. Superimposition rule 

 a b 

a a b 

b b b 

Let L be the set of words having exactly one a. The translucent 

language generated is ( , ) { / 0}.nT L L b n     

The translucent language generated by a language is either 

itself or different from the language. However, there are some 

special cases where the translucent language generated is identical 

to the language from which it is generated. We give an example 

where the translucent language is the same as the language from 

which it is generated. 

Example 3.3 

For the unary alphabet Σ = {a}, if L = {an/ n > 0} then 

( , )T L L   

We give an illustration of the operation as a simulation on how 

a colour image is produced. 

Generation of a colour picture involves the use of two main 

colour spaces – RGB and CMYK. The RGB colour model related 

to the way we perceive colour with the r, g, b receptors in our 

retina. RGB uses additive colour mixing and is the basic colour 

model used in television or any other medium that projects colour 

with light. The secondary colours of RGB – cyan, magenta and 

yellow – are formed by mixing two of the primary colours and 

excluding the third colour. The four colour CMYK model used in 

printing lays down overlapping layers of transparent inks to form 

a colour picture. In the following example we generate a 

transclucent language by the superimposition of colours. 

Example 3.4 

Let Σ = {r, g, b, c, y, m, k} denote the colours  

r – red 

g – green 

b – blue 

c – cyan 
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y – yellow 

m – magenta 

k – black 

and the superimposition operation be given by Table.4.  

Let 2{( ) , , 0} {( ) ( ), , 0}p q p q qL ymy c p q mym y m p q     

then ( , ) { ( ) ), , 0}p qT L L r gb p q    .  

We note that the superimposition operation on the colours is a 

commutative and associative operation.  

Table.4. Superimposition rule on colours 

 r g b c y m k 

r r k k k r r k 

g k b k g g k k 

b k k b b k b k 

c k g b c g b k 

y r g k g y r k 

m r k b b r m k 

k k k k k k k k 

A black and white picture would look something like this. 

Example 3.5 

Let, Σ be the alphabet {   } 

where,    denote the colours black, white and gray 

respectively and the superimposition operation be given by 

Table.5.  

Let L be the language, {( )n, n > 1} 

then LLT ),( .  

Table.5. Superimposition rule on black and white colours 

    

    

    

    

Proposition 3.1 

If 
nL   is closed with respect to a superimposition  then 

( , )T L  is also closed with respect to the superimposition 

operation. 

Proof: Let w1,w2  T(L,). Since w1  T(L,), we have w1 = 

x1  y1  for some x1, y1  L. Similarly, w2 = x2  y2 for some x2,y2 

 L. Since L is closed, x1  y1 = x  L and x2  y2 = y  L. Now, 

x  y = z  T(L, ) by the definition of translucent languages. 

Hence T(L,) is closed. 

A language L is commutative [6] if for any w  L contains all 

the words obtained from w by arbitrarily permuting its letters. For 

a word u = a1a2…ak  *, k  0, we define com(u) = 

{as(1)as(2)…as(k)|s a permutation of {1,…,k}} that is, com(u) 

contains all the words obtained by arbitrarily permuting the letters 

of u. If *L   then ( ) ( )
u L

com L com u


 . L is commutative if 

and only if L = com(L). 

Proposition 3.2 

If L  + is a commutative language then T(L, ) is also a 

commutative language. 

Proof: Let w  T(L, ). Then w = x  y for some x,y  L. 

Since L is commutative, com(x),com(y)  L. This implies com(x) 

 com(y)  T(L,) for all possible permutations of  

{1,2,…,n}. Further, com(x)com(y) = com(xy) for each 

permutation.  

Proposition 3.3 

The translucent language T(n,) is always a commutative 

language. 

Proof: By definition, n is commutative and T(n,) = n. 

Note that 2( , )T L L  . 

Definition 3.5 

The iterated superimposition of two languages is given by 

1 2 1 2

0

* ( ),n

n

L L L L




   where  

0

1 2 1L L L  and 1

1 2 1 2 2( )n nL L L L L    . 

We say that a superimposition operation is neutral if  

a) The superimposition operation is given by the following 

rules: aa = ab = ba = a, bb = b, 

b) aa = a, ab = b, ba = a, bb = b. 

The neutral superimposition leaves the word unaltered or 

hides the word completely. We call the superimposition operation 

given by rule (i) as Type I neutral operation and the rule (ii) as 

Type II neutral operation. 

Proposition 3.4 

If  is a neutral operation of Type I or Type II then T(L, ) = 

L for any L  +. 

Proposition 3.5 

If  is a neutral operation then we have  

a) L1 n L2 = L1 for any L  + if the operation is of Type I 

and 

b) L1 n L2 = L2 for any L  + if the operation is of Type II. 

Proposition 3.6 

If  is a neutral operation then we have  

a) T(L1 n L2, ) = L1 for any L  + if the operation is of 

Type I and 

b) T(L1 n L2, ) = L2 for any L  + if the operation is of 

Type II. 

Proof follows from propositions 3.4 and 3.5. 

Proposition 3.7 

If  is idempotent then we have, 

a) L  T(L, ) for any L  +, 

b) L n L = L for any L  +. 

Proof: If x  L then xx = x since the operation  is 

idempotent. This implies x  T(L,). 
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4. SUPERIMPOSITION UNDER CONTROL 

In this section, we introduce a variant of this operation where 

we restrict the superimposition of two words using a control 

language. Here, we subdivide both the words into factors using 

the control language as a guide and then allow the factors to 

superimpose.  

We introduce a new alphabet V = {f, s} to define the operation. 

Let c  V* be the control word and C  V* be a control language.  

Definition 4.1 

Let x = x1,x2,…xm  * and y = y1,y2,…yn  * for xi, yi  ,  

i = 1,2,…m, j = 1,2,…n. 

Let 1 2

1 2 ... *, ,knn n

k i ic z z z V z V n    .  

If , ,
f s

c x c y c x y    , we define the 

superimposition of x and y controlled by *c V  as  

1 2

1 1

1 2 1 2 1

1 2 1 2 2 1

( ... ) ( ... ).....,

( ... ) ( ... ).....,

,

n n

c n n

x x x y y y z f

x y y y y x x x z s

otherwise

 


   



 
Each Vzi  is repeated a certain number of times in c. The 

number of repetitions is counted by the indices n1, n2, … If z1 is f 

then z2 is s. In such a case, the first n1 letters of the first word is 

superimposed on the first n2 letters of the second word. The zi 

alternate between f and s.  

Hence it is enough to check the first letter of C. The 

superimposition is repeated until all the letters of the control word 

are exhausted. The word generated is unique and is of length 

max(n1, n2) + max(n3, n4) + … max (nk-1, nk). 

Example 4.1 

Let 1 2 8... *x a a a  and 1 2 5... *x b b b  , c = f3s2f3sfsfs.  

Note that , ,
f s

c x c y c x y    . The word x is 

factorised as x = u1u2u3u4 and y = v1v2v3v4 using c as a control. 

We have,  

u1 = a1a2a3, u2 = a4a5a6, u3 = a7, u4 = a8, 

vi = b1b2, v2 = b3, v3 = b4, v4 = b5. 

Therefore, 

1 2 3 1 2 4 5 6 3 7 4 8 5( )( )( )( )cx y a a a b b a a a b a b a b       

Definition 4.2 

If c is a control language over V* then C c

c C

x y x y


   .  

If c is the empty set then x c y = .  

Also if 1 2, *L L    then 1 2 1 2{ / , }C CL L x y x L y L      . 

Intuitively, a control language gives us a guide to subdivide 

two words in a particular way and to superimpose the subwords. 

The factorization of x and y into subwords using a control word 

gives us an alternate definition of superimposition under control.  

Definition 4.3 

Let us denote the run of a letter in *c V be the number of 

consecutive occurrences of the letter in c.  

For example, if c = f 3s2 then run(f) = 3 and run(s) = 2.  

If c is a word with more than one non – consecutive occurrence 

of the letter f or s then we denote the runs as runi(f).  

If c = f 3s2f 3sfsfs then run1(f) = 3, run2(f) = 3, run3(f) = 1, 

run4(f) = 1, run1(s) = 2, run2(s) = run3(s) = run4(s) = 1.  

Then if ( )i

i

run f x and ( )j

j

run s y we factorise x = 

u1u2…, y = v1v2… where ( )i iu run f and ( )j jv run s for i, j = 

1, 2, ….. 

In such a case, if t  V denotes f or s and c = tV* we have 

1 1 2 2

1 1 2 2

( )( ).....,

( )( ).....,

,

c

u v u v t f

x y v u v u t s

otherwise

  


    



 

Example 4.2 

Let Σ = {a,b} and V = {f, s}. Let c  V14 and let x, y  7 be 

words on Σ. Let x = abaabab, y = abbbaab.  

Then, 

a) if c = f 7s7 we have x c y = x  y 

b) if c = (fs)7 we have x c y = x  y  

c) if c = f 7 we have x c y = x 

d) if c = s7 we have x c y = y  

e) if c = s7f 7 we have x c y = y  x.  

Definition 4.4 

Let C be a control set. We say that C is commutative if and 

only if the operation c is commutative, that is, x c y = y c x for 

all x,y  *.  

Let   be the family of all commutative sets of control words.  

Proposition 4.1 

If  i i I
C


is a family of control languages such that (Ci) is a 

commutative control language for all i  I then their intersection 

' i

i I

C C


 is also a commutative control language. 

Proof:  

Let u,v  * and 'Cw u v  . Then it follows that 
iCw u v 

for all i I . But, each (Ci) is commutative and hence
iCw v u 

for all i I . Therefore, 'Cw v u  . Thus, we have 

' 'C Cu v v u    which implies that ' i

i I

C C


 is also a 

commutative control language. 

Definition 4.5 

Let C be a control language. The commutative closure of C 

denoted by C  is given by
', '

'
C C C

C C
 

 .  

Corollary: For all C  {f,s}*, C is a commutative control 

language. 

Remark: C is the smallest control language that contains C. 

Definition 4.6 

A control language C is associative if and only if c is 

associative. We have x c (y c z) = (x c y) c z for all x,y,z  *. 
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Proposition 4.2 

If  i i I
C


is a family of control languages such that (Ci) is an 

associative control language for all i  I then their intersection 

'' i

i I

C C


 is also an associative control language. 

Proof: Let 
*,, zyx and let )( '''' zyxw CC  . Then it 

follows that )( zyxw
ii CC  for all Ii . But, each  iC is 

associative and hence zyxw
ii CC  )( for all Ii . 

Therefore, zyxw CC '''' )(  . Thus, we have 
'' ''( )C Cx y z 

'' ''( )C Cx y z   which implies that I
Ii

iCC


'' is also an 

associative control language. 

Definition 4.7 

 Let C be a control language. The associative closure of C 

denoted by C is 
", '

"
c C C

C C
 

 where A is the family of all 

associative control languages. 

Proposition 4.3 

The associative closure C  is also an associative control 

language. 

Proposition 4.4 

Let 1 2, *L L    be regular languages. Then 1 2L L is regular. 

Proof: We give the automata to prove that the superimposition 

of two regular languages is also regular. Let A1 and A2 be two 

finite automata accepting the languages L(A1) and L(A2). Then we 

can find an automaton A such that 1 2( ) ( ) ( )L A L A L A  . Let 

0( , , , , )i

i i iA Q q F  for i = 1, 2 be the two finite automata 

accepting languages L(A1) and L(A2). We construct the automaton 

0( , , , , )A Q q F   as 1 2

1 2 1 2 0 0 0, , ( , )Q Q Q F F F q q q     and 

1 2(( , ),( , )) (( , ), )i j k lq q a b q q c  where, 1

1( , )i kq a q  , 
2

2( , )jq b 

lq and a b c  is the rule of superimposition specified.  

The automaton A accepts an input w if and only if A1 accepts 

w1 and A2 accepts w2 where the transition rules are 
1 2

1 2(( , ),( , )) (( , ), ),( , )i j k l k lq q w w q q w q q F   for 1

1 1( , ) ,i kq w q 

kq 1F and
2

2 2 2( , ) ,j l lq w q q F   and 1 2w w w  .Then ( )L A 

1 2( ) ( )L A L A . 

Proposition 4.5 

For every language, *L   , Σ = {a,b} there exists a control 

language C such that * *cL a b  . 

Proof: Let φ be a morphism, φ(a)=f, φ(b)=s and let C = φ(L) 

then * *cL a b  . 

Theorem 4.1 

Let V = {f, s}. Let *C V  be a control language, then the 

following are equivalent:  

a) For all regular languages 1 2, *L L   , the language 

1 2cL L L  is a regular language, 

b) C is a regular language. 

Proof: To prove (i) implies (ii). Assume 1 *L f and 2 *L s

then 1 2cL L C  . Therefore, C is a regular language.  

To prove (ii) implies (i), Assume that C is a regular language. 

Let L1, L2 be two regular languages over the same alphabet Σ. Let 

0( , , , , )i

i i iA Q q F   for i = 1, 2, be finite automata such that 

L(Ai) = Li for i = 1,2. Also, let ( , , , , )c

c c c cA Q V q F be an 

automaton such that L(Ac) = C. Define an automaton 

( , , , , )oA Q Q F  such that. 1 2( ) cL A L L  The input is 

accepted by if and only if A1, A2, Ac are in accepting states. Then 

1 2cL L is a regular language. We have,  

1 2cQ Q Q Q   and ],,{ 21 c

oooo qqqQ   

where, 21 FFFF c  and
1 2

1 2 1 2( , , , , ) ( , , )q c q a b q q c  ,

1

1 1 1( , , )q f a q  ,
2

2 2( , , )q s b
2q , 

ca b c  , *c V . 

Define the transformation σ:{f,s}{f,s}* as σ(f) = s,σ(s) = f. 

Then we have the following property of superimposition under 

control. 

Proposition 4.6 

Let 1 2, *L L   and *C V be any two languages and a 

control language. Let 
1 1x L , 22 Lx   and 1 2,c c C . We have 

1 2cx x 2 1cx x  if and only if 
2 1( )c c . 

Definition 4.8 

A control language C is commutative if and only if C = σ(C). 

Proposition 4.7 

If C is a regular control language then it is decidable whether 

or not C is commutative. 

Proof: If C is a regular language then σ(C) is also regular. 

Hence the equality, C = σ(C) is decidable. 

5. CONCLUSION 

We have introduced the translucent language associated with 

a language generated by the operation and studied the properties. 

The natural extension to arrays is an obvious direction in which 

the work can proceed. Expressions involving superimpositions 

were introduced in [2]. This study can be taken further. 
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