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Abstract 

Quantization Table is responsible for compression / quality trade-off in 

baseline Joint Photographic Experts Group (JPEG) algorithm and 

therefore it is viewed as an optimization problem. In the literature, it 

has been found that Classical Differential Evolution (CDE) is a 

promising algorithm to generate the optimal quantization table. 

However, the searching capability of CDE could be limited due to 

generation of single trial vector in an iteration which in turn reduces 

the convergence speed. This paper studies the performance of CDE by 

employing multiple trial vectors in a single iteration. An extensive 

performance analysis has been made between CDE and CDE with 

multiple trial vectors in terms of Optimization process, accuracy, 

convergence speed and reliability. The analysis report reveals that CDE 

with multiple trial vectors improves the convergence speed of CDE and 

the same is confirmed using a statistical hypothesis test (t-test). 
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1. INTRODUCTION 

Joint Photographic Experts Group (JPEG) is a famous still 

image compression standard and it is dominating the other image 

file formats. According to w3tech survey [1], around 73.9% of 

images on the internet are in JPEG format. In a JPEG baseline 

algorithm [2], there are four major steps, namely (i) Dividing an 

image into 8 × 8 blocks, (ii) Applying Discrete Cosine Transform 

for each block, (iii) Performing quantization for each block and 

(iv) Applying entropy encoding for each block. Among these 

steps, quantization plays a significant role in image quality / 

compression trade-off. Quantization is performed by 8 × 8 

quantization table which is recommended by the Independent 

JPEG Group (IJG). Also, this group allows the users to customize 

the quantization table for their applications. 

Many researchers tried to optimize the quantization table 

using meta-heuristic approaches [3]-[4] such as Simulated 

Annealing [5], Genetic Algorithm [6]-[12], Chaos Evolutionary 

Programming [13], Particle Swarm Optimization [14], Firefly 

algorithm [15], Differential Evolution [16]-[17] and Quantum 

Genetic Algorithm [18]. Kumar et al. [10] has been proved that 

Classical Differential Evolution (CDE) is a promising technique 

to optimize the quantization table for the JPEG baseline 

algorithm. 

Storn and Price [19] introduced a population based 

optimization algorithm called Differential Evolution (DE). 

Initialization, Mutation, Crossover and Selection are the 

important operators in DE algorithm. There are two crossover 

strategies, namely binomial and exponential, used in the DE 

algorithm. There are many DE variants such as DE/Rand/1, 

DE/Rand/2, DE/Best/1, DE/Best/2, [19]-[20] available in the 

literature by varying the above said operators. Among these 

variants, “DE/Rand/1/bin” is identified as a Classical Differential 

Evolution in which the exploration capability is very strong and it 

is suitable for multimodal problems [21]-[22]. In CDE, only one 

trial vector will be generated which could limit the convergence 

speed. Some researchers tried to improve the convergence speed 

by employing multiple trial vectors in different DE variants [23]-

[24]. However, the employing of multiple trial vectors would 

increase the computation time for a high dimensional 

combinatorial problem such as quantization table optimization. 

Therefore, the number of trial vectors plays an important role for 

this kind of problem. Although employing of multiple trail vectors 

in the DE algorithm are available in the literature, it has been 

never used for this application. 

This paper studies whether the performance of CDE can be 

improved by employing multiple trail vectors in a single iteration. 

The performance of CDE with multiple trial vectors is analyzed 

by Average Best Unfitness value, Average Best of Generations, 

Optimization Accuracy, Probability of Convergence, Average 

number of function Evaluations and Successful Performance. The 

analysis reports prove that CDE with multiple trial vectors 

performs better than CDE and the same is confirmed by using a 

statistical hypothesis test. 

The rest of this paper is organized as follows. A brief review of 

the CDE algorithm is given in section 2. Section 3 illustrates the 

CDE with multiple trial vectors. The various performance measures 

are explained in section 4. The experiments and results are 

discussed in section 5. Final thoughts are concluded in section 6. 

2. CLASSICAL DIFFERENTIAL EVOLUTION 

(CDE) 

From the current population G, the mutant vector vi,G is 

calculated as shown in Eq.(1) by using the randomly selected 

three chromosomes xr1,G, xr2,G and xr3,G. Here the scaling factor F 

is chosen between 0 and 1 to control the evolution. A binomial 

uniform crossover based on crossover probability Cr is performed 

between mutant vector vi,G and target vector xi,G to form trial 

vector ui,G. It is shown in Eq.(2). A better vector is selected for 

next generation G+1 as shown in Eq.(3). The algorithm 1 shows 

the pseudo code of CDE, which is adopted from Kumar et al. [16]. 

 vi,G = xr1,G + F(xr2,G - xr3,G) (1) 
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Algorithm 1: Classical Differential Evolution-Pseudo Code 

Initialize population of vectors randomly; 

Evaluate the vectors; 

While Maximum Generation not reached do 

For all vectors do 

Select the target vector; 

Choose 3 vectors in the population randomly; 

Compute the mutant vector; 

Perform crossover between the target and mutant vectors 

to form trial vector; 

Evaluate the trial vector; 

Replace target vector by trial vector if unfitness value of 

trial vector is smaller than target vector; 

End for 

End while 

Return best vector; 

3. CDE WITH MULTIPLE TRIAL VECTORS 

The mutant vector in CDE is computed by taking the difference 

between two random vectors. But all difference vectors have a 

negative counterpart and an equal chance of being chosen [25].  
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Here, the difference between two random vectors and its 

negative counterpart is taken; accordingly two separate mutant 

vectors are obtained. The CDE with multiple trial vectors is 

represented as DE/Rand/1*/bin. The computation of mutant 

vector in the DE/Rand/1*/bin is shown in Eq.(4). In each 

generation two separate trial vectors are computed which is shown 

in Eq.(5) and Eq.(6). Both the trial vectors are evaluated by fitness 

function and the best among them is considered to compare with 

the target vector, shown in Eq.(7). 

4. PERFORMANCE MEASURES 

In order to compare the performance of CDE and CDE with 

multiple trial vectors (CDE-MTV), the measures given in Table.1 

are taken from the paper [16] [17] to validate the efficiency of 

both algorithms. 

Table.1. Performance Measures to Evaluate the algorithms 

Measure Description 
Evaluation 

Criteria 

Average Best 

Unfitness 

Value fa(k) 

Calculates the best unfitness value after 

particular computation time k, averaged 

over the total number of independent 

runs n. 

 
 
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Entire 
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process 

Average Best 

of generation 

BOG  

Calculates the best-of-generation 

unfitness over all particular computation 

time k, and over the total number of runs 

n. 
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where f (BOGrg) expresses the unfitness 

value of the best solution at generation g 

of run r (among n independent runs). 

Entire 

optimization 

process 

 

Optimization 

Accuracy Acck 

Determines the location of the best found 

solution between the lower (worst known 

solution) and upper bound (best known 

solution). It may vary from 0 (worst) to 1 

(best). 
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k
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where, fa(k) = Average best Unfitness 

value at a particular generation k. 

Mins = Worst known solution, Maxs= 

Best known solution 

Accuracy 

 

Probability of 

Convergence, 

P 

Calculates the number of successful 

trials (s) in the total number of 

independent runs (n) 

s
P

n
  

It may vary from 0 (worst) to 1 (best). 

Reliability 

Average 

number of 

Function 

Evaluations, 

AFES 

Calculates the average number of 

evaluations required to reach the vicinity 

of the best known value in each 

successful trial. A lower value is 

preferred. 

1

1 s

i

i

AFES EVAL
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where, EVALi = number of function 

evaluation in the successful run i 

Convergence 

speed 

 

Successful 

Performance, 

SP 

Calculates the ratio of average number of 

function evaluations to the probability of 

convergence 

Convergence 

speed 
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 AFES
SP

P
  

A lower value is preferred. 

and 

Reliability 

 

5. EXPERIMENTAL RESULTS AND 

DISCUSSIONS 

The focus of this paper is to optimize the quantization table 

using CDE by employing multiple trial vectors. Here every 

Quantization table which is an 8×8 vector which has 64 elements. 

An unfitness function used in this study to evaluate the 

quantization table is shown in Eq.(8). 

 ξ = a (8/Br - λ)2 + ε (8) 

where, a =10, Br = Bit rate, λ = desired compression ratio = 

8/(target bits per pixel), 𝜀 =Mean squared error.  

For a basic understanding of CDE with multiple trial vectors, 

a simple example is shown in Table.2. In this example the initial 

population is 4, scaling factor F is a 0.3 and crossover probability 

is 0.8. The unfitness values of the initial population are {164.34, 

476.45, 157.49, 193.48}.  

For each generation the CDE with multiple trial vectors 

generates two trial vectors. The unfitness values of these trial 

vectors are compared with target vector and the one with least 

unfitness value is selected for next population. The unfitness 

values after two generations are {115.30, 146.98, 157.49, 

136.79}. 

The Algorithms are implemented in Matlab R2008b and Dell 

workstation of Intel® Xenon® CPU E3-1240 V3 @ 3.40 GHz 

processor with 16 GB of RAM. CDE and CDE with multiple trial 

vectors have been run for the standard benchmark images shown 

in Fig.1. All the images are grey scale with size of 256 × 256. The 

parameter settings for both the algorithms are shown in Table.3.  

The programs executed 20 times for each image against each 

of the target bits/pixel: 0.75 and 1.0 and 1.5. The quality of 

quantization Table.is evaluated by employing two performance 

measures; Mean Squared Error (MSE) and Peak Signal to Noise 

Ratio (PSNR). The mean result among 20 runs for CDE-MTV 

based quantization table, CDE based quantization table and 

default JPEG quantization tables is presented in Table.4.  

From the Table.4, it is clearly shown that CDE-MTV based 

quantization table yields better results than other two with less 

MSE and high PSNR. CDE-MTV quantization tables reduces the 

MSE on an average by 15.6% and 23.14% over the CDE based 

quantization tables and default JPEG quantization tables 

respectively. 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

  

(i) (j) 

Fig.1. Standard benchmark images (a) lena (b) camera man 

(c) barbara (d) couple (e) crowd (f) bridge (g) clock (h) baboon 

(i) pattern (j) montage 

To analyze the performance of CDE and CDE with multiple 

trial vectors in detail, the measures given in Table.1 have been 

taken into consideration. These measures are calculated for ten 

different images shown in Fig.1 with three different target 

bits/pixel 0.75, 1.0 and 1.5 in 20 independent runs. The summary 

results of the performance measures are reported in Table.5-

Table.10, and measure by measure analyzation is given in the 

subsequent paragraphs. 

Table.5 shows the average best unfitness value at various 

computation times for different target bits/pixel. From the 

Table.5, it is clear that CDE with multiple trial vectors has better 

unfitness value over CDE after each particular computation time. 

In addition, CDE with multiple trial vectors achieves the better 

fa(k) than CDE in 2000 seconds where the same is achieved by 

CDE within 4000 seconds. 

Average best-of-generation for the periods 1 to 1000 seconds, 

1001 to 2000 seconds, 2001 to 3000 seconds and 3001 to 4000 

seconds are summarized in Table.6 for different target bits/pixel. 

From the Table.6, it is clearly seen that the BOG  of CDE with 

multiple trial vectors in each period is lesser than CDE, which 
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confirms that CDE with multiple trial vector is better than CDE 

for the entire optimization process. 

Table.2. An example for CDE with Multiple Trial Vectors 

progress 

First Generation Second Generation 

Initial 

Population 

Trial 

Vectors 

Selection/ 

Population for 

next generation 

Trial 

Vectors 

Selection/ 

Population for 

next generation 

164.34 
226.86 

153.22 
153.22 

115.30 

167.90 
115.30 

476.45 
363.43 

195.02 
195.02 

272.23 

146.98 
146.98 

157.49 
169.56 

259.08 
157.49 

233.52 

237.65 
157.49 

193.48 
144.33 

203.89 
144.33 

152.92 

136.79 
136.79 

Table.3. Parameter settings for CDE and CDE with multiple trial 

vectors (CDE-MTV) 

Parameter CDE CDE-MTV 

Population Size 32 32 

Scaling Factor 0.3 0.3 

Crossover Probability 0.8 0.8 

Computation time 4000 sec 4000 sec 

Table.7 summarizes the optimization accuracy value after 

1000, 2000, 3000 and 4000 seconds for different target bits/pixel. 

From the Table.7, it has been noted that the Acck of CDE with 

multiple trial vectors in 2000 seconds is same as CDE in 4000 

seconds, which shows CDE with multiple trial vectors is very 

close to an optimal solution in a lesser time. 

Table.4. Comparison of image quality measures for CDE and 

CDE with Multiple Trial vectors (CDE-MTV) 

Target Bits/Pixel 0.75 1 1.5 

Image 
Quantization 

Table 
MSE 

PSNR 

in dB 
MSE 

PSNR 

in dB 
MSE 

PSNR 

in dB 

Lena 

JPEG 51.96 31.01 34.29 32.81 19.26 35.31 

CDE 46.83 31.46 35.61 32.65 19.87 35.18 

CDE-MTV 43.58 31.77 27.39 33.79 14.69 36.5 

Camera 

Man 

JPEG 66.24 29.95 44.25 31.71 22.29 34.68 

CDE 54.73 30.78 35.34 32.68 20.06 35.15 

CDE-MTV 51.81 31.02 30.41 33.34 12.98 37.03 

Barbara 

JPEG 61.71 30.26 41.93 31.94 16.92 35.88 

CDE 51.05 31.09 33.38 32.39 16.39 36.02 

CDE-MTV 43.33 31.79 29.56 33.46 11.67 37.49 

Clock 

JPEG 24.28 34.31 14.64 36.51 7.21 39.58 

CDE 24.73 34.23 17.91 35.63 9.95 38.19 

CDE-MTV 21.97 34.75 13.56 36.84 5.93 40.43 

Bridge 

JPEG 157.67 26.19 120.02 27.37 75.77 29.37 

CDE 150.09 26.4 113.16 27.63 81.22 29.07 

CDE-MTV 145.64 26.53 98.41 28.23 62.76 30.19 

Couple 

JPEG 49.57 31.21 34.31 32.81 19.49 35.27 

CDE 48.15 31.34 36.94 32.49 22.44 35.06 

CDE-MTV 45.03 31.63 29.90 33.4 14.94 36.42 

Crowd 

JPEG 40.51 32.09 27.25 33.81 14.77 36.47 

CDE 43.95 31.74 27.59 33.75 14.98 36.41 

CDE-MTV 39.18 32.23 25.44 34.11 11.89 37.41 

Baboon 

JPEG 404.18 22.1 330.00 22.98 223.28 24.68 

CDE 372.19 22.46 314.8 13.19 191.35 25.35 

CDE-MTV 353.71 22.68 254.93 24.10 161.78 26.08 

Pattern 

JPEG 58.63 30.48 48.10 31.34 35.91 32.61 

CDE 45.05 31.63 53.64 30.86 29.07 33.53 

CDE-MTV 41.56 31.98 42.89 31.84 25.50 34.10 

Montage 

JPEG 25.20 34.15 13.55 36.85 5.51 40.76 

CDE 23.50 34.45 17.14 35.82 9.49 38.39 

CDE-MTV 20.21 35.11 11.18 37.68 4.29 41.84 

Table.5. Summary of Average Unfitness value for various 

bits/pixel 

bpp 

CDE 
CDE with Multiple Trial 

Vectors 

Computation time in seconds  Computation time in seconds 

After 

1000 

After 

2000 

After 

3000 

After 

4000 

After 

1000 

After 

2000 

After 

3000 

After 

4000 

0.75 116.99 97.68 90.88 88.22 99.07 85.66 79.97 76.90 

1 95.71 78.31 71.45 68.86 86.99 72.44 66.41 63.31 

1.5 68.53 50.74 44.16 41.80 53.36 40.81 37.06 35.40 

Avg 93.75 75.58 68.84 66.30 79.81 66.31 61.15 58.54 

Table.6. Summary of Average best-of-Generations for various 

bits/pixel 

bpp 

CDE 
CDE with Multiple Trial 

Vectors 

Computation time in 

seconds 
Computation time in seconds 

1 to 

1000 

1001 to 

2000 

2001 

to 

3000 

3001 

to 

4000 

1 to 

1000 

1001 to 

2000 

2001 

to 

3000 

3001 

to 

4000 

0.75 139.66 105.19 93.70 89.31 119.54 91.25 82.28 78.21 

1 118.50 85.22 74.25 69.98 109.27 77.60 68.85 64.67 

1.5 100.02 57.88 46.74 42.77 87.01 45.66 38.60 36.07 

Avg 119.39 82.76 71.57 67.36 105.27 71.50 63.24 59.65 
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Table.7. Summary of Optimization Accuracy for various 

bits/pixel 

bpp 

CDE 
CDE with Multiple Trial 

Vectors 

Computation time in 

seconds 
Computation time in seconds 

After 

1000  

After 

2000  

After 

3000 

After 

4000 

After 

1000 

After 

2000 

After 

3000 

After 

4000 

0.75 0.61 0.79 0.86 0.88 0.80 0.92 0.97 1.00 

1 0.68 0.85 0.92 0.94 0.78 0.91 0.97 1.00 

1.5 0.76 0.89 0.94 0.95 0.87 0.96 0.99 1.00 

Avg 0.68 0.84 0.90 0.93 0.82 0.93 0.98 1.00 

The Table.8 shows the P measure of both the algorithms for 

different target bits/pixel. The P measure value of CDE shows that 

it does not able to reach the optimal solution at all runs for all 

images within the preset maximum computation time, whereas 

CDE with multiple trial vectors is able to reach the optimal 

solution at all runs for all images. The Table.9 and Table.10 shows 

the AFES  measure and SP  measure of both the algorithms for 

different target bits/pixel. Both the measures prefer the lower 

values. From the Table.9 and Table.10, it is clear that CDE with 

multiple trial vectors is able to reach the optimal solution 

consistently within a lesser computation time. AFES and SP 

measures could not be calculated for CDE for some images 

because they do not produce any optimal solution over the preset 

maximum computation time. 

Table.8. Probability of Convergence for various bits/pixel 

Algorithm CDE 

CDE with 

Multiple Trial 

Vectors 

bpp 0.75 1 1.5 0.75 1 1.5 

Lena 1 0 0 1 1 1 

Camera man 1 1 0.8 1 1 1 

Barbara 1 1 1 1 1 1 

Clock 0.2 0 0 1 1 1 

Bridge 1 0.8 0 1 1 1 

Couple 0.8 0 0 1 1 1 

Crowd 0 0 0.2 1 1 1 

Baboon 1 1 1 1 1 1 

Pattern 1 0 1 1 1 1 

Montage 1 0 0 1 1 1 

Table.9. Average Number of Function Evaluations for various 

bits/pixel 

Algorithm CDE 

CDE with 

Multiple Trial 

Vectors 

bpp 0.75 1 1.5 0.75 1 1.5 

Lena 74 - - 62 90 98 

Camera man 73 94 122 32 84 66 

Barbara 58 66 112 50 54 72 

Clock 123 - - 58 80 132 

Bridge 72 85 - 66 68 76 

Couple 105 - - 34 96 98 

Crowd - - 129 72 132 112 

Baboon 86 61 62 66 54 46 

Pattern 45 - 60 36 108 56 

Montage 103 - - 36 106 108 

The above analysis confirms that CDE with multiple trial 

vectors performs better than CDE; however, it is necessary to 

confirm the results statistically. Hence, one tailed t-test 

(hypothesis testing) is used to compare the performance of both 

the algorithms. As a null hypothesis, H0 is assumed that there is 

no significant difference between the CDE and CDE with multiple 

trial vectors, whereas the alternative hypothesis H1 is that CDE 

with multiple trial vectors is more efficient than CDE at the 5% 

significance level. 

Table.10. Successful Performance for various bits/pixel 

Algorithm CDE 
CDE with Multiple Trial 

Vectors 

Bpp 0.75 1 1.5 0.75 1 1.5 

Lena 74 - - 62 90 98 

Camera man 73 94 152.5 32 84 66 

Barbara 58 66 112 50 54 72 

Clock 615 - - 58 80 132 

Bridge 72 106.25 - 66 68 76 

Couple 131.25 - - 34 96 98 

Crowd - - 645 72 132 112 

Baboon 86 61 62 66 54 46 

Pattern 45 - 60 36 108 56 

Montage 103 - - 36 106 108 

Table.11. One tailed t-test results for different performance 

Measures 

Measures 

P value in t test 

Significance 

Level 
After 

1000 

sec 

After 

2000 

sec 

After 

3000 

sec 

After 

4000 

sec 

Average Best 

Unfitness Value 
0.018 0.017 0.023 0.024 

0.05 
Average Best of 

Generations 
0.023 0.013 0.020 0.023 

Optimization 

Accuracy 
0.021 0.029 0.036 0.036 

The statistical test is performed only for Average Best 

Unfitness value, Average Best of Generations, Optimization 

Accuracy, because for other measures CDE could not able to 

reach the vicinity of optimal solutions. One tailed t-test is 

performed on above said measures with 0.05 as the level of 
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significance (α) and their p-values are shown in Table.11. The null 

hypothesis is rejected, when the obtained p-value is less than α, 

otherwise it is not rejected. From the Table.11, it is observed that 

p-value of all performance measures is less than 0.05 which 

indicates the rejection of the null hypothesis H0. Therefore, the 

statistical results confirm that CDE with multiple trial vectors is 

more efficient than CDE with a confidence level of 95%. 

6. CONCLUSIONS 

In this paper, a Classical Differential Evolution with multiple 

trial vectors has been proposed to search the optimal quantization 

table for the JPEG baseline algorithm. CDE with multiple trial 

vectors based quantization tables reduces the MSE on an average 

by 15.6% and 23.14% over the CDE based quantization tables and 

default JPEG quantization tables respectively. Employing 

multiple trial vectors in a single iteration accelerate the search 

which in turn improves the convergence speed. Also an extensive 

comparative analysis has been made between CDE and CDE with 

multiple trial vectors in terms of their optimization process, 

accuracy, convergence speed and reliability. The analysis report 

shows that CDE with multiple trial vectors guarantees an optimal 

solution in a lesser time. Also the empirical results have been 

confirmed by statistical hypothesis test (t-test). Possible direction 

for the future work includes the employing of different multiple 

trial vector generation strategies for this application by 

considering the time taken for computation. 
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