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Early-stage apoptotic cells possess immunomodulatory properties. Proper apoptotic cell 
clearance during homeostasis has been shown to limit subsequent immune responses. 
Based on these observations, early-stage apoptotic cell infusion has been used to pre-
vent unwanted inflammatory responses in different experimental models of autoimmune 
diseases or transplantation. Moreover, this approach has been shown to be feasible 
without any toxicity in patients undergoing allogeneic hematopoietic cell transplanta-
tion to prevent graft-versus-host disease. However, whether early-stage apoptotic cell 
infusion can be used to treat ongoing inflammatory disorders has not been reported 
extensively. Recently, we have provided evidence that early-stage apoptotic cell infusion 
is able to control, at least transiently, ongoing collagen-induced arthritis. This beneficial 
therapeutic effect is associated with the modulation of antigen-presenting cell functions 
mainly of macrophages and plasmacytoid dendritic cells, as well as the induction of  
collagen-specific regulatory CD4+ T cells (Treg). Furthermore, the efficacy of this approach 
is not altered by the association with two standard treatments of rheumatoid arthritis 
(RA), methotrexate and tumor necrosis factor (TNF) inhibition. Here, in the light of these 
observations and recent data of the literature, we discuss the mechanisms of early-stage 
apoptotic cell infusion and how this therapeutic approach can be transposed to patients 
with RA.

Keywords: apoptotic cells, rheumatoid arthritis, collagen-induced arthritis, macrophages, regulatory T  cells, 
efferocytosis, cell-based therapy, biologic DMARD

iNTRODUCTiON

Apoptotic cells, at least at their early stage, possess immunomodulatory properties [please refer 
to recent reviews (1, 2)]. These cells are generated by a process called apoptosis (primarily termed 
programmed cell death), initially defined on morphological features (3). Today, apoptotic cells can 
be characterized at different levels by biochemical and genetic methods (4). Different forms of cell 
death have been identified so far (4). Early-stage apoptotic cells, as defined in this review, correspond 
to cells characterized in vitro (i.e., before in vivo administration) that express phosphatidylserine 
(PtdSer) at their cell surface and keep the ability to exclude vital dyes [propidium iodide (PI) or 
7-aminoactinomycin D (7-AAD)]. This exclusion means that these early-stage apoptotic cells con-
serve their cell membrane integrity. Exposure of PtdSer on the surface of early-stage apoptotic cells 
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allows their rapid removal by macrophages (5), thus preventing 
apoptotic cell “explosion” and the release of pro-inflammatory 
factors. At steady state, efficient apoptotic cell clearance by 
macrophages (a process called efferocytosis) has been shown to 
limit subsequent immune responses. Initially, this clearance of 
apoptotic cells by macrophages has been identified using apop-
totic thymocytes (6). This observation has been then extended by 
Savill and colleagues to the removal of apoptotic neutrophils (7). 
This seminal work serves as a basis to explain later on, the resolu-
tion of inflammation (8). These interactions of apoptotic cells 
with monocytes or macrophages are associated with a decreased 
capacity to produce pro-inflammatory cytokines together with 
the ability to produce anti-inflammatory factors. This has been 
reported at the end of the nineties (9), and this process is now 
called macrophage reprogramming. For timelines of the history 
of apoptosis in inflammation, readers can refer to two recent 
reviews (10, 11). In contrast, altered efferocytosis has been associ-
ated with autoimmune diseases. For instance, a deficiency in the 
last step of efferocytosis, namely the digestion of apoptotic cell 
materials by macrophages (i.e., a defect in intracellular DNase II),  
has been shown to be responsible for a polyarthritis syndrome 
similar to rheumatoid arthritis (RA) (12). Based on their immu-
nomodulatory properties, early-stage apoptotic cells have been 
used to prevent unwanted inflammatory responses in different 
experimental models of autoimmune diseases or transplantation 
[for a recent review, please refer to Ref. (2)]. Hence, preven-
tion of arthritis by early-stage apoptotic cell injection has been 
reported in different mouse and rat models (13–15). Moreover, 
this approach of apoptotic cell infusion has been shown to be 
feasible without any toxicity in patients undergoing allogeneic 
hematopoietic cell transplantation (16). However, whether early-
stage apoptotic cell infusion can be used to treat ongoing inflam-
matory disorders has not been reported extensively. Xenogeneic 
human apoptotic cell administration 3 days after sepsis initiation 
in mouse models stimulates the resolution of acute inflammation 
(17). This therapeutic effect of apoptotic cell infusion in sepsis has 
been confirmed in lipopolysaccharide-induced endotoxic shock 
as well as in cecal ligation and puncture sepsis (18). Furthermore, 
donor apoptotic cell infusion can interfere with acute graft rejec-
tion in a mouse model of allogeneic cardiac transplantation (19). 
Recently, we have provided evidence that apoptotic cell infusion 
is able to control, at least transiently, ongoing collagen-induced 
arthritis (CIA) (20). Interestingly, the efficacy of this approach is 
not altered by the association with two standard treatments of RA, 
methotrexate (MTX) and tumor necrosis factor (TNF) inhibition 
(20). Here, in the light of these observations and recent data of 
the literature, we discuss the mechanisms of this therapeutic 
approach and how it can be transposed to patients with RA.

CURReNT KNOwLeDGe iN RA 
PATHOPHYSiOLOGY AND THeRAPeUTiC 
APPROACHeS

Rheumatoid arthritis is an autoimmune disorder characterized 
by a chronic inflammation of the synovial joints leading to the 
destruction of cartilage, bone, and ligaments (21). However, RA is 

a heterogeneous syndrome as attested by genetic studies (22, 23).  
The pathophysiology of RA implicates several immune cell sub-
sets belonging to both innate (e.g., neutrophils, macrophages) 
and adaptive immunity (i.e., T and B cells). At the inflammatory 
site, the synovial lining becomes thickened due to an infiltra-
tion of macrophages and the proliferation of resident synovial 
fibroblasts (also called fibroblast-like synoviocytes). At the end of 
the eighties, massive infiltration of neutrophils and macrophages 
was reported in the joints of patients suffering from acute sterile 
arthritis, among whom RA patients (7). These data serve as 
a basis for our current understanding of the resolution step of 
inflammation and identify neutrophils and macrophages as key 
players in RA pathogenesis. While the exact etiology of RA is still 
unknown, macrophage activation leading to local inflammatory 
cytokine secretion in the joints can be considered as one of these 
etiologies (12). Therapeutic approaches triggering these inflam-
matory cytokines (i.e., TNF-α, IL-1β, or IL-6) have been used to 
treat RA patients (24, 25). Despite recent significant advances in 
the characterization of monocyte and macrophage subsets, the 
origin of macrophages infiltrating or present in the joint remains 
to be explored in RA (26). Indeed, the origin of joint macrophages 
(tissue-resident versus derived from blood Ly6Chigh monocytes) 
depends on the considered arthritis models (26). Recently, it has 
been shown that neutrophils may participate in RA pathophysiol-
ogy through the formation of neutrophil extracellular traps (NET), 
which consist of DNA fibers associated with a large amount of 
antimicrobial peptides (e.g., LL37) and nuclear proteins (e.g., high 
mobility group box-1). This has been reported in RA, as well as 
in experimental models such as CIA (27–29). Formation of NET 
by neutrophils during arthritis provides a pro-inflammatory loop 
via the secretion of pro-inflammatory cytokines (28). Dendritic 
cells (DC)—both conventional DC (cDC) and plasmacytoid DC 
(pDC)—may also play a role in RA pathophysiology. For instance, 
pDC are present in the synovial fluid of RA patients (30–32). Pro-
inflammatory pDC aggravates ongoing CIA (33). Activation of 
cDC by NET may be also involved in arthritis pathogenesis (29). 
Pathogenic CD4+ helper T (Th) and cytotoxic CD8+ T cells have 
been also implicated in RA, while the exact target of these cells 
has not been fully characterized. However, autoreactive CD4+ 
T cells specific to citrullinated epitopes with a memory and/or 
effector phenotype have been identified in some RA patients (34). 
Concerning CD8+ T  cells, Epstein–Barr virus (EBV)-derived 
antigens can be targeted antigens in RA since high expression of  
EBV markers is present in RA synovium (35). These cytotoxic 
T cells can mediate joint damage, but in all cases, inflammatory 
CD4+ Th cells are required. Both interferon-γ (IFN-γ)-secreting 
Th1 and IL-17-producing Th17  cells (36) are involved in RA 
pathogenesis. They are driven mainly by macrophage cytokines 
consisting of TNF and IL-12 versus IL-23 for Th1 and Th17 cell 
polarization, respectively (26). These two Th cell polarization 
pathways occur in the absence of adequate immune regulation, 
since an altered regulatory CD4+ T cell (Treg) response is another 
feature of RA (37). Finally, concerning B cell responses, a high 
frequency of circulating polyspecific B cell clones has been found 
in RA patients (23). However, it is unclear how such B cells con-
tribute to RA disease. The reversion of anergic autoreactive B cells 
under inflammatory conditions has been suggested to participate 
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in RA pathogenesis (23). Nevertheless, the implication of auto-
antibodies in RA pathophysiology is highlighted by the two major 
biological tests performed for RA diagnosis: rheumatoid factor 
(RF) and anti-citrullinated protein antibody (ACPA) detection 
(35). RF is involved in the formation of immune complex (IC) 
that induces complement activation responsible for its consump-
tion and generates non-resolving inflammation observed in RA 
(35, 38). Non-resolving inflammation significantly contributes 
to RA pathogenesis (38). Citrullinated proteins result from 
arginine-containing proteins modified by deimination mediated 
by intracellular enzymes, called peptidyl-arginine deiminases. 
NET produced by neutrophils can be an additional source of 
citrullinated autoantigens (28, 39). These resultant citrullinated 
proteins could be the antigenic component of IC driving RF pro-
duction (35) and become the targets of autoantibody responses 
(35), as well as autoreactive CD4+ T  cells (34). Furthermore, 
ACPA are T cell-dependent immunoglobulin G auto-antibodies, 
and thus, follicular helper T cells may help B cell activation in 
ACPA-positive RA (34). Thus, several immune mechanisms 
and immune cell subsets participate in RA pathophysiology and 
represent targets for therapeutic strategies, such as apoptotic cell 
infusion.

Today, no causal treatment of RA is available, since RA is 
still a chronic inflammatory disorder of unknown cause. Hence, 
there is currently no curative treatment for RA and treatment 
has to be initiated for prolonged periods of time if not for life 
(40). The European League Against Rheumatism organization 
recommends that patient starts treatment with conventional syn-
thetic disease-modifying anti-rheumatic drugs (csDMARD) in 
combination with corticosteroids, followed by biologic DMARD 
(bDMARD) in the case of a non-response to the initial regimen 
and the presence of poor prognosis markers (41). Treatment of 
RA aims to limit disease symptoms, delay or prevent future joint 
destruction, and target low disease activity (LDA) or remission. 
According to a recent review (40), LDA is a state in which the 
progression of joint damage is minimal and physical function, 
quality of life and work capacity are preserved. Low-dose MTX is 
the traditional csDMARD administered weekly either alone, or in 
combination with corticosteroid or bDMARD. While the precise 
molecular mechanism of MTX remains to be determined, MTX 
alone has been proven safe and efficient in RA (42). However, 
nearly a quarter of patients treated with MTX have to discontinue 
their treatment because of inadequate responses, adverse effects 
(e.g., hepatic, gastrointestinal, hematological, renal, or pulmonary 
toxicity), or both (43, 44). Biologic agents targeting inflammatory 
cytokines, such as anti-TNF therapy, combined with MTX have 
significantly improved the treatment of RA (24, 40). However, 
again, some RA patients are refractory or have contraindications 
to receive these agents (44, 45). The proportion of patients who do 
not respond favorably to TNF inhibitors is estimated between 30 
and 40% (24). Only few RA patients achieve complete remission 
after such treatment (24). Moreover, adherence to treatment with 
biologic agents is moderate with only around 60% of RA patients 
respecting treatment regimens over a 1- or 2-year period (46). 
This requires frequently a switch to another form of treatment 
(40, 46). Biologic agents targeting different modes of action have 
been developed, and are now available in RA. This consists in 

TNF blocking agents, IL-6 or IL-1 inhibitors, T-cell costimulatory 
modulators, or B-cell depletion therapies (25). However, despite 
this multitude of treatments, treatment failure occurs and RA 
patients are still in need of new treatment modalities (25). Finally, 
it should be mentioned that combinations of bDMARD acting 
on different therapeutic targets (i.e., TNF, IL-6, or B cells) usually 
do not increase efficacy, but are more toxic (47). Overall, new 
therapeutic strategies are needed in RA among which cell-based 
therapies could be proposed, such as apoptotic cell infusion.

THe DiSeASe-MODiFYiNG  
ANTi-RHeUMATiC POTeNTiAL  
OF APOPTOTiC CeLL iNFUSiON

In this section, we will describe the mechanisms by which early-
stage apoptotic cell infusion may treat ongoing arthritis. Based on 
our recent data (20), we will focus on the resolution of inflamma-
tion, antigen-presenting cells (APC), including DC subsets and 
macrophages, as well as CD4+ T cell polarization. Data obtained 
using apoptotic cell infusion as prevention of arthritis (13–15, 48) 
will be also considered to shed light on these mechanisms.

Lessons from Preclinical Arthritis Models
Early-stage apoptotic cells have been injected in arthritis experi-
mental models before the disease is fully established or at time 
of immunization with the autoantigen (13–15, 48). This is not 
relevant to the clinical situation, and contrasts with our recent 
study in which early-stage apoptotic cells are infused when CIA 
reaches a clinical score of 8 out of 16 (20). Therefore, one may 
distinguish the prophylactic versus the therapeutic effect of 
apoptotic cell infusion (Table 1). To date, one limitation is that 
only one experimental model has been tested for the therapeutic 
effect (20). For the prophylactic effect, several experimental 
models have been used (13–15). These models recapitulate dif-
ferently RA pathophysiology. An absence of prevention has been 
reported in the serum transfer-induced arthritis (STIA) (13) in 
which arthritis is induced by the intraperitoneal (i.p.) injection of 
K/BxN serum in C57BL/6 mice (49) (Table 1). This STIA model 
recapitulates the effector phase of human RA, but is independent of 
the adaptive immune response (49, 50). Thus, this suggests that the 
prophylactic effect of apoptotic cell infusion modulates rather the  
adaptive immune response, such as CD4+ T  cell polarization. 
The model consisting in injecting streptococcal cell wall (SCW) in 
Lewis rats is induced by a single i.p. injection of SCW fragments 
(51). This results in a first T cell-independent phase followed by a 
chronic inflammatory phase that is T cell-dependent and associ-
ated with the production of high levels of inflammatory cytokines 
(51). This results in erosive cartilage damage in the joints (51). In 
the prophylactic approach using early-stage apoptotic cell infu-
sion, both phases were significantly reduced but the effect was 
more impressive or pronounced on the chronic phase (14). This is 
consistent with an impact of apoptotic cell infusion on inflamma-
tory cytokine secretion by macrophages affecting the first phase 
and on Treg increase modulating the second chronic phase (14) 
(Table 1). Methylated bovine serum albumin (mBSA)-induced 
arthritis in C57BL/6 mice belongs to antigen-induced arthritis. 
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TAbLe 1 | Effects (therapeutic versus prophylactic) of early-stage apoptotic cell infusion in arthritis models.

experimental 
models

effects on 
disease

Administration 
route

Characteristics of infused apoptotic 
cells

immune mechanisms Reference

CIA (DBA/1) Therapeutic i.v. Syngeneic thymocytes, 5 or 15 × 106, 
early-stage apoptotic cells (70–85% 
AxV+/7-AAD− and <10% 7-AAD+)

Pro-Treg splenic macrophages; splenic cDC and pDC 
resistant to TLR ligand stimulation—pro-Treg splenic pDC; 
induction of auto-Ag-specific Treg in the DLN; reduction of 
pathogenic anti-collagen auto-Abs; depend on TGF-β

Bonnefoy 
et al. (20)

CIA (DBA/1) Prophylactic i.v. or i.p. Syngeneic thymocytes, 2 × 107 (total 3 
consecutive days), early-stage apoptotic 
cells (mean: 43% of AxV+ and <5% PI+)

IL-10-producing splenic and PLN CD4+ T cells; reduction 
of IFN-γ secreting CD4+ T cells; IL-10-producing MZB cells; 
reduction of pathogenic anti-collagen auto-Abs

Gray  
et al. (13)

STIA 
(C57BL/6)

No effect i.v. or i.p. Same as above No prophylactic effect but T cell-independent model (50) Gray  
et al. (13)

SCW (Lewis 
rats)

Prophylactic i.p. Mouse thymocytes, 2 × 108, early-stage 
apoptotic cells (90–95% AxV+/7-AAD−)

Decrease of peritoneal macrophage pro-inflammatory 
response (tumor necrosis factor); increase of blood and DLN 
Treg; depend on TGF-β

Perruche 
et al. (14)

mBSA 
(C57BL/6)

Prophylactic i.v. Syngeneic thymocytes, 3 × 107, 3 
consecutive days, early-stage apoptotic 
cells (60–80% AxV+/PI−)

Decrease of DLN Th17, but not Th1 cells; increase of DLN 
IL-10-producing T cells; IL-10-producing MZB cells; depend 
on natural IgM

Notley 
et al., 2011 
(15)

mBSA 
(C57BL/6)

Prophylactic i.v. Syngeneic DC, 2 × 107, 3 consecutive 
days, early-stage apoptotic cells (60–75% 
AxV+/PI− and 8–11% PI+)

Activated apoptotic cells induce IL-6 and prevent TGF-β-
mediated prevention of arthritis

Notley 
et al., 2015 
(48)

7-AAD, 7-aminoactinomycin D; Ab, antibody; Auto-Ag, autoantigen; AxV, annexin-V; cDC, conventional DC; CIA, collagen-induced arthritis; DC, dendritic cell; DLN, inguinal draining 
lymph node; i.p., intraperitoneal; i.v., intravenous; mBSA, methylated bovine serum albumin; MZB, marginal B cells; pDC, plasmacytoid DC; PI, propidium iodide; PLN, peripheral 
lymph node; SCW, streptococcal cell wall; STIA, serum transfer-induced arthritis (i.e., intraperitoneal injection of K/BxN serum in C57BL/6 mice) (49); TLR, toll like receptor;  
Treg, regulatory CD4+ T cells.
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apoptotic cell uptake and stimulate the resolution of inflamma-
tion with a decrease of pro-inflammatory cytokines (Figure 1). 
Macrophage reprogramming following efferocytosis stimulates 
anti-inflammatory factors (e.g., TGF-β or IL-10) and reduces the 
pro-inflammatory ones (e.g., TNF or IL-1β) (9). The importance 
of anti-inflammatory cytokines, such as TGF-β (14, 20, 48) 
and IL-10 (13, 15), was shown in the prevention or treatment 
of experimental arthritis (Table  1). In addition, reduction of 
TNF after apoptotic cell infusion in the SCW model has been 
also reported (14) (Table 1). In the therapeutic approach using 
intravenous (i.v.) apoptotic cell infusion, macrophages sorted 
from the spleen [i.e., the main site where blood-borne apoptotic 
cells are eliminated (53, 54)] induce the polarization of naive 
CD4+ T cells toward a Treg phenotype. Altogether, this sustains 
our initial hypothesis.

Now, we want to discuss the implications of macrophages 
in the beneficial effects of apoptotic cell infusion in the light of 
recent data from the literature. The critical macrophage subset 
for this beneficial effect can be: (i) splenic macrophages, as 
identified after i.v. apoptotic cell infusion (20), (ii) peritoneal 
macrophages, as shown after i.p. apoptotic cell infusion (14), or 
perhaps (iii) macrophages present in the joint (Figure 1). This 
may concern tissue-resident macrophages or monocyte-derived 
macrophages (26) (Figure 1).

Splenic Macrophages
Professional circulating phagocytes, and in particular monocyte-
derived macrophages, are guided by “find-me” signals released 
by dying cells in order to remove apoptotic cells (55). But here, 
in the case of apoptotic cell infusion to prevent or treat arthritis, 
injections have been performed, not in the joint, but at distant 

In this model, arthritis results from IC-mediated inflammation 
followed by articular T  cell-mediated responses. However, this 
model does not recapitulate the endogenous breach of tolerance 
that is typical of RA pathogenesis. This represents a limitation 
in applicability to RA (50). The prophylactic effect of apoptotic 
cell infusion has been observed in this model (15, 48) (Table 1). 
This effect is dependent on natural IgM and IL-10 secretion (15). 
Finally, the CIA model in DBA/1 mice has been used to evaluate 
the prophylactic and therapeutic effect of apoptotic cell infusion 
(13, 20) (Table  1). This mouse model shares with human RA 
several clinical (i.e., erythema and edema), histopathological 
(i.e., synovitis, pannus formation, cartilage, and bone erosion), 
as well as immunological features (51). These features consist 
in the breach of tolerance with the implication of pathogenic 
T cells associated with the production of inflammatory cytokines  
(e.g., TNF), as well as the production of auto-antibodies against 
self-antigens and collagen (50). Some drawbacks have been evoked 
for this CIA model. The main drawback is that CIA constitutes only 
an acute model in contrast to the SCW model (52). Nevertheless, 
all these models are relevant to some features of RA (49–51), 
and most of them have been used to test drugs now in clinical 
development for RA (51). Now, we will highlight some immune 
mechanisms (Figures 1A–C) and propose future investigations.

effects on Macrophages and Resolution  
of inflammation
One of our hypotheses concerning the use of early-stage apop-
totic cell infusion to treat ongoing arthritis was that reintroducing 
apoptotic cells in a context of non-resolving inflammation—a key 
feature in RA (38)—may force macrophage reprogramming after 
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FiGURe 1 | Continued

sites, either i.v. (13, 15, 20) or i.p. (13, 14) (Figure 1). The spleen 
is the main blood filter (53, 54), and marginal zone macrophages 
of the spleen are specialized in the uptake of blood-borne 
apoptotic leukocytes (56). Thus, how can splenic macrophages 
act on the inflamed joint? First, it can occur by the release of 

anti-inflammatory cytokines that exert a systemic effect affecting 
inflamed joints (Figure 1A). Alternatively, immune cells gener-
ated in the spleen (e.g., Treg) may migrate to the inflamed joints 
and limit/control inflammation (Figure 1A). Second, the spleen 
is a site of immune tolerance induction and can be alerted—or 
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FiGURe 1 | Continued  
Potential immune mechanisms induced by early-stage apoptotic cell infusion in arthritis. Apoptotic cells are infused by two routes: the intravenous (i.v.) and the 
intraperitoneal (i.p.) routes. (A) Apoptotic cells infused intravenously are certainly eliminated by the spleen, and more specifically marginal zone (MZ) macrophages 
(MZMφ). Splenic Mφ plays a critical role in the effect of i.v. apoptotic cell infusion. These cells may act on inflamed joint by soluble factors (e.g., IL-10 or TGF-β), the 
generation of peripheral regulatory CD4+ T cells (pTreg) that migrate to the inflamed joints. Alternatively, the immunosuppressive mechanisms identified in the spleen 
(pro-Treg pDC, anti-inflammatory Mφ or pTreg) can reflect the transfer of tolerance generated in the joints by apoptotic cells to the spleen. Apoptotic materials, such 
as apoptotic-derived microvesicles (Apo-MVS) have been proposed to mediate this transfer of tolerance from peripheral tissues to the spleen. Finally, splenic Mφ 
may imprint local joint phagocytes via the release of insulin-like growth factor (IGF)-1 and macrophage-derived microvesicles (Mφ-MVS). (b) Apoptotic cells injected 
intraperitoneally can be eliminated by peritoneal Mφ. These cells may migrate to lymph nodes, including mesenteric lymph nodes, and maybe, inguinal draining 
lymph nodes to stimulate the generation of pTreg. This migration may be guided by the CXCR4/CXCL12 axis. Peripheral Treg generated in the draining lymph nodes 
are able to reach inflamed joints. (C) Infused apoptotic cells may reach the inflamed joints, and be eliminated by local joint Mφ. These Mφ can be either tissue-
resident Mφ (TR-Mφ) that have colonized the joints during embryogenesis or blood monocyte-derived Mφ (Mono-Mφ) that have migrated in response to 
inflammatory signals. The uptake of apoptotic cells by these joint Mφ may be responsible for Mφ reprogramming, that corresponds to the capacity to produce 
anti-inflammatory factors (e.g., IL-10, TGF-β, or pro-resolving lipid mediators) and lose their ability to secrete pro-inflammatory cytokines [i.e., tumor necrosis factor 
(TNF), IL-1β or IL-6]. Non-professional phagocytes, such as osteoclasts (ost.) or synovial fibroblasts (S.F.) may also remove apoptotic cells. Deleterious effectors 
(TNF, Mφ, osteoclasts, synovial fibroblasts, Th1, or Th17 cells) of arthritis present in the inflamed joints are written in red font, while factors or effectors triggered by 
apoptotic cell infusion are written in green font. Dotted arrows correspond to hypotheses, whereas solid arrows represent data obtained in experimental arthritis 
models. For references, see the text.
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affected—via apoptotic “remnants” (including apoptotic cells, or 
apoptotic materials, such as apoptotic bodies or microvesicles) 
(54) released by distant tissues during normal cell turn-over (54). 
This transfer of tolerance from peripheral tissues to the spleen 
exists also under chronic inflammatory conditions (54). When 
the functions of splenic macrophages were assessed ex vivo after 
i.v. infusion of apoptotic cells in the setting of arthritis models 
(20), it is possible that we measured the consequence (i.e., the 
transfer of tolerance from the joint to the spleen) and not the 
cause of clinical improvement. Third, based on data obtained 
in the lungs (57, 58), splenic macrophages phagocyting infused 
apoptotic cells may release insulin-like growth factor-1 (IGF-1) 
and macrophage-derived microvesicle (Mφ-MVS) (57) targeting 
joint-infiltrating immune cells. Extracellular vesicles emitted by 
macrophages have been shown to export an anti-inflammatory 
signal to distant cells (58). It remains to be determined which 
one of these three hypotheses (Figure 1A) is responsible for the 
beneficial effect in arthritis models.

Peritoneal Macrophages
Peritoneal macrophages are affected by i.p. infusion of early-stage 
apoptotic cells in the SCW (14) or the CIA (13) model (Table 1). 
Recently, it has been reported that macrophages phagocyting 
apoptotic cells acquire CXCR4 expression and the capacity to 
migrate in response to CXCL12 (59). This may explain the migra-
tion of the so-called “satiated” macrophages to draining lymph 
nodes after efferocytosis (60). This corresponds to an additional 
mechanism to export the anti-inflammatory response from tissues 
where cells die to draining lymph nodes and to participate to the 
maintenance of tolerance. It remains to be determined whether 
peritoneal macrophages migrate to draining lymph nodes in the 
setting of arthritis treatment by apoptotic cell infusion, and if they 
are then responsible for the modulation of T cell subsets in these 
lymph nodes. In support of this hypothesis, several modifications 
of T  cell subsets in inguinal draining lymph nodes have been 
reported in arthritis models (13–15, 20) (Table 1; Figure 1B).

Joint Macrophages
In steady state, tissue-resident macrophages are the predominant 
phagocyting cells in the different tissues analyzed (i.e., the bone 

marrow, spleen, intestine, liver, and the interstitial space of the 
lungs) (61). This may be related to the expression of an enzyme 
called, 12/15-Lipoxygenase (12/15-LOX), expressed by tissue-
resident macrophages that confines apoptotic cell removal by 
these resident macrophages and blocks apoptotic cell uptake 
by inflammatory Ly6Chigh monocyte-derived macrophages (62). 
This mechanism may be responsible for the non-immunogenic 
removal of apoptotic cell-derived antigens in steady state (62). 
The anti-inflammatory phenotype imprinted by apoptotic cell 
phagocytosis in resident macrophages is only partially preserved 
across the different tissues analyzed (61). Thus, based on this 
elegant study (61), it is not possible to predict the consequences 
for joint-infiltrating or joint-resident macrophages under 
inflammatory conditions. The origin of macrophages present in 
inflamed joint (tissue-resident versus derived from monocytes) 
has not been deciphered to date (26). Whatever the origin of 
joint macrophages contributing to apoptotic cell clearance in 
the therapeutic effect of early-stage apoptotic cells (Figure 1C), 
one may imagine that some mechanisms described for splenic 
or peritoneal macrophages (Figures 1A,B) may occur. Although 
the anti-inflammatory response imprinted by apoptotic cell 
phagocytosis in macrophages in steady state is partially preserved 
across the different tissues analyzed (61), one may postulate that 
certain mechanisms may be conserved, such as macrophage 
reprogramming associated with cytokine secretion. Indeed, the 
downregulation of Il1b transcripts in phagocyting macrophages 
has been found in all tissues analyzed so far (61). Nevertheless, 
this remains to be determined specifically in the inflamed joints.

The implication of 12/15-LOX in joint macrophages after 
apoptotic cell infusion is relevant in arthritis. Indeed, the expres-
sion of 12/15-LOX is not always confined to tissue-resident 
macrophages (63). While this observation is true during steady 
state, other macrophage subsets, in particular monocyte-derived 
macrophages, may acquire 12/15-LOX expression in response to 
cytokines (63) or after interactions with apoptotic cells (60, 63, 64).  
This is the case of the so-called “alternatively activated” M2 mac-
rophages that express 12/15-LOX in response to the triggering 
of the IL-4 receptor-α signaling pathway, common to both IL-4 
and IL-13 (63). An increase in Alox15 (i.e., the gene encoding 
12/15-LOX) mRNA expression in macrophages during the 
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resolution phase of inflammation has been reported in zymosan-
induced peritonitis (65). Furthermore, CD11blow “satiated”  
(i.e., apoptotic cell ingesting) macrophages derived from mono-
cytes have been also shown to express high levels of 12/15-LOX 
and to possibly promote efferocytosis by the production of pro- 
resolving lipid mediators, such as resolvin D1 (RvD1) (60). 
Interestingly, the induction of Alox15 mRNA has been detected 
in the synovial tissue of inflamed joints of arthritic mice both in 
STIA (66) and CIA (67) models. The study of the kinetics of Alox15 
mRNA expression in the inflamed limbs is highly interesting, 
since Alox15 mRNA transcripts increase during the CIA induc-
tion phase, returns to basal levels during the inflammatory phase, 
and then increase again during the resolution phase (67). This 
supports an acquisition of 12/15-LOX by macrophages during 
the resolution phase of inflammation (65), possibly after effero-
cytosis (60, 64). Moreover, increased LOX-15 mRNA expression 
was found in synovial tissues of RA patients (68). The enzyme 
12/15-LOX is the murine ortholog of human 15-LOX (63). These 
enzymes—human 15-LOX and mouse 12–15/LOX—mediate the 
oxidation of unsaturated fatty acids. Depending on its substrate 
(e.g., arachidonic, docosahexaenoic, or linoleic acid), 12/15-LOX 
generates different key lipid products with anti-inflammatory and 
pro-resolution properties, such as resolvins, protectins, or lipoxins 
(63, 69). Lipoxin A4 (LXA4) plays a major role in the resolution of 
inflammation mediated by 12/15-LOX in experimental arthritis 
(66, 67). Overall, this suggests that 12/15-LOX is expressed in 
inflamed joints during arthritis and that this enzyme present in 
joint macrophages may exert an anti-inflammatory role via the 
synthesis of pro-resolving lipid mediators (e.g., RvD1 or LXA4). 
One can hypothesize that this mechanism may participate in the 
local therapeutic effect after apoptotic cell infusion.

Non-Professional Phagocytes
Apoptotic cells can be eliminated by several subsets of phago-
cyting cells, including professional, but also non-professional 
phagocytes (70). The involvement of these phagocytes appears 
again to be tissue-dependent. For instance, five different profes-
sional phagocyte subsets (i.e., macrophages and DC subsets) have 
been recently identified in the intestine (71). Each professional 
phagocyte subset is dedicated to a specific task (71). Macrophage 
subsets phagocyting apoptotic intestinal epithelial cells exert 
an anti-inflammatory response, while CD103+ cDC are rather 
dedicated to drive peripheral Treg (pTreg) in the draining mesen-
teric lymph nodes (71). However, non-professional phagocytes, 
mainly epithelial cells, are also important to control apoptotic 
cell-induced inflammatory responses in the intestine (72) or in 
the airway (57). In this latter site, non-professional phagocytes 
(i.e., airway epithelial cells) are controlled by factors released by 
alveolar macrophages, including IGF-1 and Mφ-MVS (57). Thus, 
an interaction exists between different phagocytes, and thus, 
macrophages may affect non-professional phagocytes present in 
the joint when arthritic animals are treated by early-stage apop-
totic cell infusion. Among the potential non-professional phago-
cytes present in the joint (Figure  1C), synovial fibroblasts can 
be considered as a candidate since fibroblasts are able to uptake 
apoptotic cells (73) and rabbit synovial fibroblasts have been 
reported to ingest latex beads in culture (74) or uptake soluble 

antigen when infused intravenously at high concentrations (75). 
Osteoclasts are another possibility of non-professional phago-
cytes for several reasons: (i) elevated osteaclast activities have been 
observed in RA patients (76); (ii) dead cells are found engulfed 
by osteoclasts in vivo (77); and (iii) osteoclasts are well capable of 
ingesting apoptotic thymocytes in vitro (78) (Figure 1C).

The immune consequences of apoptotic cell removal by non-
professional phagocytes depend on the phagocytes considered. 
Apoptotic cell removal by non-professional phagocytes is usually 
slower than removal by professional phagocytes, and particularly 
macrophages. It requires apoptotic cells at a more advanced stage 
than early-stage apoptotic cells, and may be limited to subcellular 
fragments rather than the whole dying cell (73). In certain set-
tings, pro-inflammatory chemokines (e.g., MCP-1) are released 
by these non-professional phagocytes, leading to inflammatory 
monocyte recruitment (73). In contrast, in other tissues, neigh-
bor non-professional phagocytes participate efficiently in the 
control of inflammation after apoptotic removal (57, 72). Thus, 
the role of synovial fibroblasts and/or osteoclasts in the beneficial 
effect of apoptotic cell infusion has to be studied in the setting of 
experimental arthritis models.

Genetic manipulation of non-professional phagocytes (i.e., epi-
thelial cells) (72) attenuates inflammation in vivo at least in the 
intestine. This was performed in a non T cell-dependent disease, 
namely dextran sodium sulfate-induced colitis (72). Even if 
genetic manipulation is not easily transposable from experimen-
tal models to patients, this approach (72) does not appear to be 
appropriate since data obtained in STIA—a T cell-independent 
disease (50)—show that apoptotic cell infusion is inefficient to 
prevent this disease.

effects on DC
Here, the interactions of apoptotic cells with cDC and pDC in the 
settings of arthritis will be discussed. The implication of pDC after 
i.v. apoptotic cell infusion has been initially shown in the bone 
marrow transplantation (BMT) model (79), and found again in 
the CIA model with the capacity of ex vivo sorted splenic pDC 
(20) to generate pTreg (Table 1; Figure 1A). Data on the interac-
tions of early-stage apoptotic cells and pDC are certainly easier to 
interpret than data on cDC. cDC represent different heterogene-
ous cDC subsets (80), and tools used so far to analyze the impact of 
apoptotic cell infusion on cDC functions do not allow researchers 
to separate each subset. For instance, in CD11c/diphtheria toxin 
(DT) receptor (DTR) transgenic mice, all CD11chigh cells are 
depleted after DT infusion (81). These CD11chigh cells consist 
of cDC (81), but also of other APC subsets having the ability to 
eliminate apoptotic cells, such as marginal zone and metallophilic 
macrophages in the spleen (82), sinusoidal macrophages in the 
lymph node (82), or alveolar macrophages (83). In contrast, pDC 
have been shown to be spared by depletion after DT administra-
tion in CD11c/DTR mice (79). It is known that depending on the 
considered cDC subsets, the response against apoptotic cells can 
be the opposite, with splenic lymphoid-resident cDC implicated in 
tolerance induction (73) while a particular subset of cDC localized 
at barrier surfaces (e.g., the intestine, the lungs, and the skin) boosts 
inflammatory responses via a PtdSer receptor CD300a (84). Thus, 
the role of cDC in the therapeutic effect of apoptotic cell infusion 
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in the setting of arthritis has to be further explored. Nevertheless, 
in the therapeutic approach using the CIA model, we observed 
that the addition of anti-TNF therapy to apoptotic cell infusion is 
able to generate ex vivo sorted splenic CD11c+ cDC stimulating 
the polarization of Treg (20). The activation of draining lymph 
node cDC by NET exacerbated Th1-, but not Th17-, mediated 
autoimmune responses in CIA (29). This was confirmed in vitro by 
the maturation of human monocyte-derived DC or mouse bone 
marrow-derived DC in response to NET isolated from CIA mice 
or RA patients, respectively (29). Interestingly, it was reported that 
apoptotic cell clearance by neutrophils reduced NET formation 
(85). Apoptotic cell infusion may, therefore, limit cDC activation 
and subsequent Th1 responses by limiting NET formation.

effects on CD4+ T Cell Polarization
One of the salient consequences following apoptotic cell clear-
ance is the induction of pTreg. This has been demonstrated 
after i.v. apoptotic cell infusion (86) or local apoptotic death of 
epithelial cells (87). The increase of Treg in the spleen follow-
ing i.v. apoptotic cell infusion has been shown to require TGF-β  
(79, 86), splenic macrophages, and donor pDC in the setting 
of BMT (79). TGF-β is also required for Treg polarization after 
intestinal epithelial cell apoptosis (87). In arthritis models, the 
induction of pTreg after apoptotic cell infusion is also TGF-β-
dependent (14, 20) (Table 1; Figures 1A,B). In the therapeutic 
CIA model, we took advantage of the presence of an infectious 
antigen, Mycobacterium tuberculosis (MBT), mixed with col-
lagen in the complete Freund’s adjuvant used for the induction 
of arthritis, to analyze T cell responses against another antigen 
than the autoantigen (i.e., bovine type II collagen). In contrast 
to the response observed with collagen, a similar cell prolifera-
tion against MBT antigen is found between cells from apoptotic 
cell-treated and untreated CIA mice. Moreover, the suppressive 
activity of Treg sorted from apoptotic cell-treated arthritis mice is 
restricted to collagen and not extended to MBT (20). This strongly 
demonstrated that the infusion of apoptotic cells allows the induc-
tion of pTreg in vivo with an antigenic specificity restricted to the 
collagen autoantigen. The same effect (i.e., induction of autoan-
tigen-specific pTreg but not infectious antigen-specific Treg) has 
previously been reported in a similar therapeutic approach based 
on to the in vivo generation of apoptosis (88). Further works are 
necessary to explain why apoptotic cell infusion favors the induc-
tion of autoantigen-specific Treg. Nevertheless, other teams have 
reported the induction of IL-10-dependent Treg (13, 15) after 
the prophylactic infusion of apoptotic cells in arthritis models. 
Thus, this confirms the induction of pTreg after apoptotic cell 
infusion and may explain the anti-inflammatory effect in the joint 
whatever the administration route since the generated pTreg may 
migrate to inflamed joints.

Concerning safety reasons, one has to evoke the high plasticity 
of CD4+ T cells, and in particular, pTreg that have in common 
with pro-inflammatory Th17  cells the requirement of TGF-β  
(36, 89). Apoptotic cell-induced pTreg polarization can be 
influenced by a simultaneous microbial infection providing IL-6 
necessary for Th17 differentiation. The coincident production of 
IL-6 and TGF-β in response to bacteria and apoptotic epithelial 
cell death, during orogastric bacterial infection, leads to the 

generation of both bacteria-specific and autoreactive Th17 cells 
(87, 90). Similarly, the production of IL-6 together with TGF-β 
has been shown when “activated” apoptotic cells or apoptotic cells 
containing high amounts of demethylated DNA have been infused 
in mBSA arthritis model instead of “resting” apoptotic cells rather 
containing methylated DNA (48, 91). In the same model, the 
infusion of “resting” apoptotic thymocytes decreases Th17 cells in 
the inguinal draining lymph nodes (15). This dichotomy between 
anti-inflammatory pTreg and pro-inflammatory Th17  cells is 
not so simple, since different Th17  cell subsets have been now 
described including pro-inflammatory and anti-inflammatory 
Th17 cells (89). To date, these subsets have not been studied in 
the settings of apoptotic cell infusion.

Perspectives and Considerations for 
Therapeutic Apoptotic Cell infusion
Here, we will evoke the clinical perspectives of apoptotic cell 
infusion. This is based on the preclinical data (Table  1), but 
also on data obtained in the field of cancer research. There is 
an extensive literature on the immunomodulation by dead and 
dying cells in the setting of cancer (92). We propose to discuss 
the critical points to achieve a beneficial therapeutic effect (73). 
These are the following: (i) peripheral blood leukocytes are the 
easiest and major source of apoptotic cells to consider in human 
settings, while apoptotic cells used in the preclinical studies were 
other apoptotic leukocytes [i.e., thymocytes (13–15, 20) or DC 
(48), Table 1] from a practical point of view. In RA patients, cyta-
pheresis has to be considered to achieve a sufficient number of 
apoptotic cells as it has been done in the clinical trial in the setting 
of hematopoietic cell transplantation (16). The highest number of 
apoptotic leukocytes planned to be infused is 210 million of cells 
per kilogram. This will require to pool two sequential cytapher-
eses. Donor-derived apoptotic cells (i.e., allogeneic cells) will not 
be considered in the first instance for ethical/regulatory purposes; 
patient (i.e., syngeneic) apoptotic leukocytes are considered as 
a cell-based product by the French regulatory agency, while 
apoptotic cells from healthy volunteers correspond to advanced 
therapy medicinal products. Nevertheless in experimental mod-
els, prevention of arthritis is observed independently of the apop-
totic cell origin (i.e., syngeneic, allogeneic, or even xenogeneic) 
(2); (ii) a tolerogenic signal inducing early-stage apoptotic cells, 
that is, leukocytes stained by annexin-V but little or no staining 
with PI or 7-AAD dyes (Table 1). These stimuli correspond to 
γ- or ultraviolet B (UVB)-irradiation (73, 93). Stimuli inducing 
apoptotic cell death have been particularly studied in the field 
of cancer research in order to generate immunogenic dying 
tumor cells to favor tumor rejection. A recent study performed 
in vivo using melanoma cells is particularly informative on these 
stimuli (93). The authors have compared three different apoptotic 
signals and have confirmed that UVB-irradiation generates non- 
immunogenic apoptotic cells. Furthermore, the authors have 
identified that the production of IL-27 and IL-1α by bone  
marrow-derived macrophages after in  vitro incubation with 
apoptotic tumor cells predicts immunogenicity. In addi-
tion, this work shows that primary necrotic cells induced by 
tuberculosis-necrotizing toxin in vivo are also non-immunogenic 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


9

Saas et al. Apoptotic Cells in RA Treatment

Frontiers in Immunology | www.frontiersin.org October 2017 | Volume 8 | Article 1191

(93). This confirms that necrotic cells induced by a repeated 
freeze/thaw procedure or obtained by incubating apoptotic cells 
for 24 h before infusion are very poor inducers of CD8+ T cell 
responses in  vivo (94). The immunogenicity of necrotic cells 
remains, however, a matter of debate (92) that we do not want 
to comment further here; (iii) one infusion appears sufficient 
whereas multiple infusions may expose to a risk of immunization 
against apoptotic cell-derived antigens (95), as discussed in Ref. 
(92). The question arises as to how long the therapeutic effect 
will last. In the CIA model, the therapeutic effect of early-stage 
apoptotic cell infusion is transient but prolonged when associ-
ated with anti-TNF therapy (20). Only clinical studies will allow 
to answer to this question; and (iv) a systemic administration 
route can be considered while local administration is also pos-
sible. In experimental arthritis models, two distinct systemic 
routes of administration [i.e., i.p. (13, 14) versus i.v. (13, 15,  
20, 48)] have been tested with a similar efficacy (Table 1). However, 
no local administration has been evaluated so far. Another lesson 
coming from cancer research on dying/dead cells is the ability 
of apoptotic tumor cells to stimulate the proliferation of nearby 
viable tumor cells (96, 97). This apoptotic cell-mediated prolifera-
tion is not restricted to tumor cells (98). Relevant to the present 
review, primary human synovial fibroblasts isolated from knee 
joints of RA patients are also able to proliferate in vitro when these 
fibroblasts are in close contact with apoptotic tumor cells (97). 
Considering the therapeutic use of apoptotic cell infusion, it is, 
however, reassuring to see that when the number of apoptotic 
tumor cells is increased, the proliferative effect is limited (97). The 
percentage of infused early-stage apoptotic cells planned to be 
infused to RA patients is higher than 50%. However, one has to be 
cautious on this apoptosis-induced proliferative effect, since it is 
mainly mediated by a soluble factor, the nucleoside inosine (97).

Finally, one has to remain cautious, since a different effect 
can be obtained depending on the infusion of “resting” versus 
“activated” apoptotic CD11c+ cDC (48). This may be related to 
the methylation status of DNA from apoptotic cells (91). This 
work found that, as apoptotic cDC, apoptotic CD4+ T cells from 
RA patients exhibit a DNA demethylated status, suggesting 
a pro-inflammatory effect after infusion associated with IL-6 
secretion (91). Whether this may impact on the therapeutic 
efficacy of apoptotic cell infusion remains to be determined.  
We used apoptotic splenic cells from arthritic mice (i.e., con-
taining multiple activated leukocytes) in the therapeutic CIA 
model, and we observed the same effects as apoptotic thymocytes 
(Bonnefoy F., Perruche S., unpublished results). An additional 
security can be also provided by the addition of csDMARD, such 
as low-dose MTX or bDMARD, such as TNF inhibitors. Indeed, 
these treatments do not inhibit the beneficial therapeutic effects of 
apoptotic cell infusion (20). MTX (at high-dose) has been also 
used as prophylaxis of graft-versus-host disease in the clinical trial 
testing the effects of donor early-stage apoptotic cell infusion (16). 
This confirms our experimental data in CIA: MTX does not affect 
the therapeutic effect of apoptotic cell infusion, and allows to pre-
serve its beneficial effect on collagen (autoantigen)-specific Treg 
(20). In addition, the capacity of splenic pDC and macrophages 
to induce ex vivo pTreg polarization is not inhibited by MTX (20). 
Thus, MTX can be continued if an apoptotic cell-based therapy 

has to be proposed to patients. Compared with MTX, anti-TNF 
therapy has the advantage to synergize with apoptotic cell infusion 
to control ongoing arthritis (20). However, the exact mechanism 
responsible for this synergy has not been identified (20). In the 
future, IL-6 inhibitors, such as tocilizumab, can be also envisaged 
to be associated with apoptotic cell infusion in order to prevent the 
antagonistic effect of IL-6, previously reported in mBSA-induced 
arthritis (48, 91). This can be a way to neutralize the effects of the 
methylation status of DNA from apoptotic T cells obtained from 
RA patients (91).

Apoptotic cell infusion can potentially be associated with 
corticosteroids without any risk. Indeed, corticosteroids enhance 
apoptotic cell removal by inducing the expression of the PtdSer- 
binding protein, milk fat globule-EGF factor 8 (MFG-E8) selec-
tively in human and mouse monocytes and macrophages (what-
ever their differentiation profile, M1 or M2) (99).

CONCLUSiON/CONCLUDiNG ReMARKS

Apoptotic cell infusion represents an additional potential 
bDMARD in RA, and more particularly a cell-based bDMARD. 
We plan to initiate a phase I/II clinical trial (ClinicalTrials.gov 
Identifier: NCT02903212) to achieve LDA in patients with RA 
who did not respond adequately to one previous bDMARD. 
Concerning the potential toxicity of this approach, one may 
build on the experience gained by the clinical trial performed 
in the setting of hematopoietic cell transplantation (16), but also 
those using extracorporeal photopheresis (ECP) in RA patients 
(100, 101). Even if ECP does not necessarily generate “proper/
pure” early-stage apoptotic cells (102), this treatment introduces 
high amounts of dead cells in patients and no specific toxicity has 
been reported (100, 101). The efferocytosis capacity of monocyte-
derived macrophages from 14 RA patients has been shown to be 
similar to those of healthy volunteers (103). A careful selection 
of patients should be done in order to avoid genetic alterations 
of molecules involved in efferocytosis (e.g., MFG-E8), as well as 
apoptotic cells carrying demethylated DNA (91). One advantage 
of cell-based therapies could be the adherence to treatment since 
we propose only one infusion in our clinical trial. This study is an 
opportunity to analyze in human the immune mechanisms trig-
gered by infused apoptotic cells. Furthermore, association with 
biologic agents acting on different therapeutic targets (e.g., TNF)  
appears feasible to increase efficacy without the toxicity.
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