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Defined as increased sensitivity to losses, loss aversion is often conceptualized as a

cognitive bias. However, findings that loss aversion has an attentional or emotional

regulation component suggest that it may instead reflect differences in information

processing. To distinguish these alternatives, we applied the drift-diffusion model (DDM)

to choice and response time (RT) data in a card gambling task with unknown risk

distributions. Loss aversion was measured separately for each participant. Dividing the

participants into terciles based on loss aversion estimates, we found that the most

loss-averse group showed a significantly lower drift rate than the other two groups,

indicating overall slower uptake of information. In contrast, neither the starting bias nor

the threshold separation (barrier) varied by group, suggesting that decision thresholds are

not affected by loss aversion. These results shed new light on the cognitive mechanisms

underlying loss aversion, consistent with an account based on information accumulation.

Keywords: loss aversion, drift-diffusion model, information processing, decision making

INTRODUCTION

Numerous studies of decision-making have found that losses hurt more than equivalent gains feel
good (Kahneman et al., 1990). Kahneman and Tversky (1979) characterized this “loss aversion” as
an overweighting of the subjective value of loss outcomes relative to gain outcomes. For example,
in risky decision-making, loss aversion typically manifests as risk aversion for mixed gambles that
have equally probable outcomes of gain and loss. That is, when people are loss averse, they generally
avoid risk by rejecting 50–50 gambles to win or lose, unless the amount to win is twice as much as
the amount to lose. This finding has been replicated repeatedly over the last 30 years (Kahneman
and Tversky, 1979; Tversky and Kahneman, 1991; Tom et al., 2007; Camerer, 2012).

For the most part, loss aversion has been discussed in descriptive terms: individual decision
makers avoid loss, and thus are loss averse. However, few researchers have formally modeled risky
decision making to explore the underlying cognitive factors that contribute to loss-averse behavior
(c.f. Usher and McClelland, 2004). Existing studies can be characterized as conceptualizing loss
aversion in one of two ways: either as a cognitive bias in avoiding losses (Kahneman et al., 1990), or
in terms of differences in information processing arising from an attentional or emotional regulation
component (Tom et al., 2007; Sokol-Hessner et al., 2009, 2015; de Martino et al., 2010). Here, we
use a model of the choice process (i.e., a drift-diffusion model or DDM) to formally assess which of
these cognitive mechanisms better account for loss aversion in risky decision making.
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Cognitive bias in the decision process may be conceptualized
as an internal decision strategy that biases the individual toward
a particular response. Using the terminology of signal detection
theory (Green and Swets, 1974; Macmillan and Creelman, 1991),
this would correspond to a response bias or criterion shift,
changing the likelihood that a decision-maker selects one option
over the other. For example, in a two-alternative forced choice
(2AFC) task, an observer is required to take one of two options
in response to a stimulus on every trial (e.g., “Accept” or “Reject”
in response to a gamble). In the absence of any bias, we would
expect the two alternatives to be chosen with equal frequency.
A cognitive bias would shift the response criterion, making the
observer favor one of the two responses. In this context, loss
aversion can be thought of as a cognitive bias against changes
that make things worse than they currently are: e.g., “a reluctance
to accept a loss on any dimension” (Kahneman et al., 1990, p.
1345). In signal detection terms, this would shift the criterion
so that the observer becomes more likely to choose one of the
responses (i.e., the alternative that makes a loss outcome less
probable) over the other. Individuals with high loss aversion
would have conservative criteria for avoiding loss and thus, have
a strong tendency to reject choices with loss. On the other hand,
individuals low on loss aversion would have liberal criteria for
avoiding loss and display less of a tendency to reject choices with
loss.

If cognitive bias fully explains loss aversion, then loss-averse
behavior would always occur in decision contexts with losses.
Yet loss-averse behavior is absent in many decision contexts
involving losses (Mellers et al., 1999; Erev et al., 2008; Yechiam
and Hochman, 2013b, 2014). For example, decisions do not
generate behavior consistent with loss aversion when they involve
money already intended to be given up for the purchase of a good
(Novemsky and Kahneman, 2005), repetitive losses and gains
(Erev et al., 2008), or multiple unit-holdings (Burson et al., 2013).
Thus, the mere existence of a threat of loss does not necessarily
mean an individual will display loss-averse behavior.

Instead, research suggests that loss aversion arises from
differences in processing of information about losses while the
decision is being made. Recent studies have indicated that
emotional responses during decision making may influence
the extent to which an individual displays loss-averse behavior
in decision contexts with loss (Sokol-Hessner et al., 2009,
2013, 2015), and that interoceptive ability, or the ability to
perceive one’s own emotions, correlates with one’s degree
of loss aversion (Sokol-Hessner et al., 2015). Other research
examining information search suggests that exploration behavior
is increased in the presence of losses, relative to gains (Lejarraga
et al., 2012; Lejarraga and Hertwig, 2017), which the authors
attribute to increased vigilance or attention when the threat
of loss is present. Collectively, these findings suggest that how
decision-relevant information is evaluated in loss contexts may
play a role in loss-averse behavior.

To investigate the extent to which loss aversion depends on
cognitive bias vs. information processing, here we employed a
computational modeling approach in conjunction with a novel
gambling task. This paradigm, based on the Columbia Card
Task (CCT; Figner et al., 2009), is characterized by consequential

repeated decisions in which decision-makers do not know the
underlying risk distribution andmust learn from the outcomes of
past choices (Barron and Erev, 2003), consistent with real-world
decision making. Additionally, this task provides a dynamic
decision environment, in which choices vary with respect to
risk (possible outcome magnitude) and outcome probability. We
combined the choice and response time (RT) data from this
task with a DDM (Ratcliff, 1978; Ratcliff and McKoon, 2008), a
prominent model of the choice process. In addition to having
been successfully used to fit data from other economic tasks
(e.g., Krajbich et al., 2010; Milosavljevic et al., 2010; Philiastides
and Ratcliff, 2013), the DDM is particularly relevant to our
question because it has separable parameters mapping onto
cognitive bias and information processing. The DDM posits that,
to make a decision, choice values are compared and evaluated
over time until a threshold is reached for a particular choice—
a process often called evidence accumulation. In the model,
evidence refers to any information that is used to compare and
evaluate alternative choices. The DDM assumes that evidence
accumulation is an inherently noisy process, an idea supported by
neural evidence (Cavanagh et al., 2011; van Maanen et al., 2011;
Mulder et al., 2012).

Specifically, the DDM uses choice and RT data to separate
out a set of parameters corresponding to different cognitive
processes: starting point bias for which one response is initially
favored over another; drift rate which indexes the strength
or quality of stimulus information; and threshold separation
(barrier) which is linked to response caution and speed/accuracy
trade-offs (Ratcliff, 1978; Ratcliff and Rouder, 2000; Ratcliff and
Tuerlinckx, 2002; Ratcliff and McKoon, 2008). The starting point
parameter reflects a priori biases present at the start of the
decision process that favor a particular choice over the other.
The drift rate parameter captures the average rate of evidence
accumulation toward one choice over the other, thus reflecting
the strength of information favoring one option over another.
The stronger the relative evidence toward one option, the faster
the average RT. Therefore, more difficult tasks have smaller drift
rate values (i.e., slower rates, less steep slopes toward one choice
over the other) and easier tasks have larger drift rate values. In
the context of value-based choice, such as, whether to choose
a risky gamble or not, the weighting and integration of choice
attributes (e.g., probability or magnitude of outcome) into a
relative preference measure is assumed to be captured by the drift
rate (Krajbich et al., 2010; Milosavljevic et al., 2010). The barrier
parameter reflects the amount of information needed to reach a
decision. In a two-choice task, the barrier is the distance between
the two alternative choice thresholds. Generally, the barrier
parameter reflects instructed trade-offs in emphasizing speed
vs. accuracy, or maximizing a reward rate for a given duration
of time. In addition to these cognitive parameters, the DDM
includes a non-decision time parameter to reflect perceptual and
mnemonic processes preceding choice, i.e., non-decision relevant
processing (Ratcliff et al., 2016).

Modeling behavioral choice and RT data using the DDM
allows us to parse out whether observed choices consistent with
loss aversion can be attributed to bias, information processing,
or response caution in risky decision making. More importantly,
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the DDM allows us to make several predictions about which
cognitive factors in risky decision making are affected by loss
aversion. If loss aversion reflects an individual’s bias in avoiding
losses, we would expect the starting point parameter to vary with
respect to the degree of loss aversion. For example, individuals
with high loss aversionmay have a greater tendency to take action
to minimize bad outcomes relative to individuals without high
loss aversion. However, if loss aversion is driven by informational
processing differences rather than a cognitive bias, we would
expect these differences to separate by drift rate parameter.
Specifically, if evaluative and attentional processes contribute to
a reduction in loss-averse behavior, then loss-averse individuals
may have greater difficulty engaging in those evaluative and
attentional processes in a decision context where losses can occur.
In the DDM, greater difficulty in the information processing of
losses would be reflected by smaller drift rates for individuals
scoring high on loss aversion compared to the drift rates of
individuals scoring low on loss aversion. Finally, loss aversion
may affect the barrier parameter. If loss aversion is a bias in
ensuring accuracy of responses, then loss aversion could affect
the speed of motor responses. For example, loss aversion may
paralyze or slow a decision-maker from making any decision
when there is a possibility of a loss. Loss aversion is typically
reduced under time pressure (Kocher et al., 2013; Saquib and
Chan, 2015), supporting the idea that the degree of loss aversion
may separate the barrier parameter.

Therefore, in this experiment we applied a DDM in order
to distinguish between these competing cognitive explanations
for loss aversion. Participants were classified as being low,
moderate, or high in loss aversion based on their responses
to an independent assessment instrument for the measurement
of risk propensity, the Dynamically Optimized Sequential
Experiments (DOSE; Wang et al., unpublished). Following
the DOSE, participants completed a computerized gambling
task, the modified CCT. To characterize basic behavioral
differences across participants, we ran a hierarchical linear
regression analysis on choice and RT data, identifying significant
variation in behavior between groups. Finally, the DDM was
used to relate these group-level behavioral differences to
computational parameters associated with specific cognitive
processes and computations, thereby enriching our fundamental
understanding of this behavioral phenomenon.

METHODS

Participants
A total of 107 healthy young adults between the ages of
18–22 (M = 19.56, SD =1.44; 45 female) were recruited from
Claremont McKenna College psychology classes. Participants
were given course credit in exchange for volunteering and the
opportunity to be placed in a lottery for a gift card based on
task performance. This study was reviewed and approved by
the Claremont McKenna College Institutional Review Board.
All participants provided informed and written consent prior
to the experiment and were debriefed following the experiment.
Three participants were removed from analysis based on the

number of missed responses (more than 10% of trials). Thus, 104
participants were entered into the reported analyses.

Procedure
First, participants completed the DOSE instrument as a measure
of risk propensity (Wang et al., unpublished). The DOSE is a
computerized bank of lottery questions from Holt and Laury
(2002) and Sokol-Hessner et al. (2009) questionnaires. For each
lottery question, participants chose either a sure amount of loss
or gain or a probability-based amount of loss or gain (e.g., a
50% chance of winning $4 or losing $2 vs. a 100% probability of
gaining $1). Using the participant’s responses to past questions,
the DOSE employs a Bayesian procedure to select future
questions to quickly calculate the utility function expressing the
participant’s subjective value of gains and losses, risk aversion
(rho), loss aversion (lambda), and choice consistency as done in
Sokol-Hessner et al. (2009). Each participant’s utility functions
are calculated separately for gains and losses, with parameters
derived for loss aversion, risk aversion, and choice consistency.
Loss aversion is indexed by the “lambda” parameter (Appendix).
If lambda is equal to one, then gains and losses are equally
valued. The use of the DOSE with its Bayesian question-
selection procedure requires only about 40 questions to assess
loss aversion, risk aversion, and choice consistency and can
be completed within 5–10min; in contrast to what would
normally be a 110-item paper-and-pencil questionnaire taking
approximately 30–40min to complete.

Next, all participants completed a computerized gambling task
(Figure 1) that was modified from the CCT (Figner et al., 2009).
The modified CCT is different from the original CCT in that the
number of cards for each gamble is fixed at one, three, or five
cards, selected by the computer, and participants choose whether
they want to accept or reject the gamble. These modifications
allow us to systematically manipulate the degree of risk and
map the paradigm onto a 2AFC task. Participants received the
following instructions: (1) they would be presented with a deck
of cards and some number of cards would be selected from the
deck for each trial or “gamble”; (2) each card had a value of either
+10 or −10; and (3) their task was to decide to accept or reject
the gamble. The amount that they would win or lose on that trial
would be sum of the values on the selected cards (e.g., for a 3-
card gamble with two positive cards (+20) and one negative card
(−10), the gamble outcome would be+10).

To provide both “win” and “loss” environments, participants
participated in two separate gambling runs, each with a different
virtual 32-card deck: the “win” deck had a 55% probability of a
positive-value card and the “loss” deck had a 45% probability of
a positive-value card. Participants were never told the outcome
probabilities for either deck. When playing with each deck,
participants received eight cards randomly selected from the deck
on each trial. Risk was manipulated by the number of cards
turned over for each gamble (gamble type): one (least risky),
three, or five (most risky). Each gamble type occurred with equal
frequency.

Gamble trials began with a jittered (2,800–3,200 ms) fixation
cross, followed by a screen indicating the number of cards to be
turned over for the gamble (e.g., “5 cards”). With the card values
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FIGURE 1 | Gambling Task. Participants accepted or rejected a gamble of cards from a 32-card deck with card values of either +10 or −10. The gambles (trials)

began with the presentation of a jittered (2,800–3,200 ms) fixation cross. Next, the number of cards to be turned over for the gamble (“X cards”) was presented. For

each gamble, eight cards from the deck are randomly selected, and then one, three or five cards could be turned over and the participant indicated their choice of

accepting or rejecting the gamble. Participants could accept or reject the gamble using one of four options to indicate the confidence in their response: Strong Yes,

Weak Yes, Weak No, and Strong No. The response was followed by a visual of the gamble and then a second jittered fixation cross. Participants then received

feedback on the outcome of the gamble and their winnings, following their response and presentation of the gamble.

unknown, participants either “accept” or “reject” the gamble; they
indicated their confidence in their “accept” or “reject” response
by pressing one of four keys: Strong Yes, Weak Yes, Weak No,
and Strong No. After giving their response, participants were
shown which cards were turned over and, following a jittered
fixation cross (2,800–3,200 ms), participants received feedback
on the gamble outcome regardless of their response. Participants
only won or lost points based on the outcome if they accepted the
gamble. After each trial, the cards were put back into the deck for
the next gamble. At the end of the experiment, participants were
asked to select the deck they would prefer if they were randomly
chosen to play one more block of gambles. Participants were
awarded with a monetary amount that equaled a weighted sum
of their earnings across both decks.

For both the win and the loss deck, each participant completed
three blocks of 24 gambles, with eight trials of each gamble type
in each block. Thus, each deck had 72 gambles and there was a
total of 144 trials. Deck-type order was counterbalanced across
participants.

Analysis Procedures
RTs were positively skewed, but modeling with a logarithmic
transform of RT did not substantively change the results.
Therefore, untransformed values of RTs were used as the
dependent variable for better interpretability. Trials with RTs
<200 ms were excluded from all analysis, as outlier RT can be
problematic for DDM fitting (Ratcliff and Tuerlinckx, 2002). A
hierarchical, or multilevel regression model, was fit to RT data
in place of a standard repeated-measures analysis of variance
(ANOVA). A drift diffusion model was fit to RT and choice data
to parcel out latent cognitive parameters underlying the time
course of the decision process.

Hierarchical Model

RT data was submitted to a hierarchical regression model to
determine any within-subject RT differences in the gambling

task. The analysis was implemented using the nlme package
in R (Pinheiro et al., 2016). Unlike standard repeated-
measures ANOVAs, this analysis avoids violating assumptions of
homogeneity of regression, independence of errors, or sphericity
(Quené and Van Den Bergh, 2004). The base model was
built to start with the most theoretically important predictor
and subsequent predictors were added in order of importance
(Raudenbush and Bryk, 2002). Predictors that did not enhance
prediction (i.e., no difference in model fit with addition of the
predictor) were dropped, unless they were components of cross-
level interactions.

Drift-Diffusion Model

To investigate the connection between loss aversion and decision
time, a hierarchical DDM was estimated. The hierarchical
Bayesian model estimates parameters for each individual
participant, but those individual estimates are governed
by group-level means and variances. DDM estimation was
performed using a freely available software package in Python
(Wiecki et al., 2013). The models were estimated using a
Bayesian hierarchical framework, with Markov chain Monte-
Carlo (MCMC) sampling methods employed to estimate a joint
posterior distribution of the model parameters. An important
benefit of hierarchical Bayesian estimation is that it outperforms
other methods for fitting DDM specifications, especially when
there are a fairly limited number of trials (Wiecki et al., 2013).
Estimation used non-informative priors: there were no a priori
assumptions and all priors were uniform distributions over large
intervals of possible parameter values. Additional details on the
likelihood function used to estimate the DDM are provided in
Wiecki et al. (2013). Using Gibbs sampling, a common MCMC
algorithm, 11,000 samples were drawn from the posterior, with
the first 1,000 discarded as burn-in.

Individual differences in loss aversion were implemented as
a group variable in the model. Participants were binned into
three groups based on tercile loss aversion scores as measured
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FIGURE 2 | LA Histogram and Model 1 posterior distributions for each parameter by loss aversion group. Model 1 was estimated using a Bayesian hierarchical

framework, with Markov chain Monte-Carlo (MCMC) sampling methods employed to estimate a joint posterior distribution (known as traces) for each of the model

parameters, starting point, barrier, and drift rate. (A) Histogram of loss aversion scores with gray lines separating each tercile group. Our participant sample was more

loss averse (M = 2.17, SD = 1.14), as measured by the DOSE using the lambda (λ) parameter than samples in the literature; although, our study had the benefit of a

larger sample size and fewer exclusions than is typical. Generally, scores on the DOSE where lambda > 1 are considered loss-averse and scores below 1 are

considered loss-seeking. (B) Posterior distribution of starting point traces estimated by Model 1. Starting point traces are separated by the loss aversion groups.

(C) Posterior distribution of barrier traces estimated by Model 1. Although barrier traces seem to somewhat separate based on loss aversion groups, the difference

between groups is not significant. (D) Posterior distribution of drift rate traces estimated by Model 1. Drift rate traces are separated by the loss aversion groups, p <

0.05.

by the DOSE: upper, middle, and low loss aversion. The upper
loss aversion group (LAU) included participants who had lambda
scores higher than 2.69 (group average = 3.53). The middle loss
aversion group (LAM) included participants who had lambda
scores between 1.39 and 2.69 (group average = 2.07). The low
loss aversion group (LAL) included participants who had lambda
scores lower than 1.39 (group average = 0.979). Approximately
25% of our entire participant population have scores below
1.0 which would classify them as loss-seeking. The low tercile
group (LAL) included these “loss-seeking” individuals as well as
those individuals with lambdas close to 1.0 (see Figure 2A). The
distribution of our sample was right skewed for loss aversion, as
is typical of loss aversion scores. Our sample was slightly more
loss-averse than others reported in the literature (M = 2.17,
SD= 1.13), but this difference may be accounted for by the large
sample size in our study.

All participants were fit simultaneously in a single hierarchical
DDM, but the model assumed three different group-level
distributions of parameters, based on the loss-aversion groups.
Specifically, the hierarchical model fit a separate drift rate (v),
starting point (z), threshold (a), and non-decision time parameter
for each subject. The choice related parameters (drift rate, starting

point, and threshold) were all allowed to vary by loss aversion
group. Bayesian hypothesis testing was then performed on the
estimated group posterior means to determine if there are any
significant differences across loss aversion groups. Model fit and
model comparison were assessed using the Deviance Information
Criterion, or DIC (Spiegelhalter et al., 2014).

RESULTS

Overall Results
Overall, participants demonstrated a bias to accept rather than
reject gambles (Percent Accept = 63.1 vs. Percent Reject = 36.9).
A one-way ANOVA on RTs with the within-subjects factor block
(1, 2, 3) showed that mean RTs decreased over blocks [F(2, 106)
= 20.45, p < 0.001, ηp

2 = 0.16]. Although we did not assess the
learning of the underlying risk distribution directly, participants
were able to infer the properties of the two decks because when
asked with which deck they would select if they were randomly
selected to play one more block, all participants chose the win
deck. This suggests that they could infer which deck had more
winning cards despite the close win/loss ratios between the decks
(45/55 vs. 55/45).
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Hierarchical Model
To investigate how risk and proportion of wining cards affected
RTs for choices in the gambling task, we conducted a two-
level hierarchical model using maximum likelihood estimation
to assess the effects of choice type (accept, reject), confidence
(confident, non-confident), deck type (win, loss), and gamble
type (1-, 3-, 5-cards) on RT. First-level units were single trials
in the gambling task, with 14,687 trial observations included
in the analysis. Second-level units were the 104 participants.
In the final reported model, trials and individual participants
were declared random-effects to assess both the variability among
trials within individuals and the variability among individuals.
All other variables were included as fixed-effect predictors. The
intraclass correlation of 0.22 indicated that approximately 22%
of the variance in RTs was due to differences between individual
participants; thus, modeling participants as a random effect was
appropriate1. The final model that provided the best fit of the data
(−2logLik = 210475, AIC = 210503, BIC = 210609) is reported
(Table 1).

Participants were generally faster for “accept” responses
compared to “reject” responses and for confident choices
compared to non-confident choices. RTs for accepting gambles
were 13 ms faster on average than RTs for rejecting gambles,
βAccept = −24.02, SE = 7.11, 95% CI = [−10.09, −37.96],
t(14,574) = −3.38, p < 0.001. Similarly, RTs for confident
choices were 116 ms faster than RTs for non-confident choices,
βConfident =−116.08, SE = 11.46, 95% CI = [−138.54, −93.61],
t(14,574) = −10.12, p < 0.0001. There was no interaction effect

1When trials were included as a random-level predictor nested in individual

participants, the intraclass correlation dropped close to zero (ICC = −0.09,)

indicating that differences between individual participants may be attributable to

differences across trials; thus, nesting trials within individuals was appropriate.

between choice type (accept vs. reject) and confidence on
RTs, βA∗C = −3.57, SE = 11.10, 95% CI = [−25.31, 18.17],
t(14,574) =−0.32, p = 0.75, indicating that confidence did not
affect RTs for accepting or rejecting gambles. RTs for the win
deck were 18 ms slower than RTs for the loss deck, βWin = 18.79,
SE= 5.09, 95% CI= [8.82, 28.76], t(14,574) = 3.69, p < 0.001.

Risky gambles produced slower overall RT, with RTs for
5-card gambles 42 ms slower than RTs for 1-card gambles,
β5Card = 42.68, SE = 8.89, 95% CI = [25.25, 60.11], t(14,574) =
4.80, p < 0.0001. However, this only held for non-confident
choices. Confident choices for the most risky, 5-card gambles
were actually faster than those for the least risky, 1-card gambles;
RTs of confident choices for 5-card gambles were 54 ms faster
on average than non-confident choices for 1-card gambles,
β5C∗C = −54.28, SE = 12.91, 95% CI = [−79.58, −28.98],
t(14,574) =−4.20, p < 0.0001. RTs for 3-card gambles were not
significantly faster than RTs for 1-card gambles and there was
no interaction with confidence, β3Card = −12.77, SE = 7.94,
95% CI= [−28.33, 2.79], t(14,574) = −1.61, p = 0.11; β3C∗C =

−9.72, SE = 13.39, 95% CI = [−35.96, 16.52], t(14,574) = −0.73,
p= 0.47.

To investigate how loss aversionmight influence RTs, a second
hierarchical model was conducted on RT data with the three loss
aversion groups as a fixed effect predictor: upper (LAU), middle
(LAM), and low (LAL). The HLM specifications and procedure
for the second model were the same as for the first model. For
all gamble types, participants in the LAU group were slower
to respond, by approximately 100 ms on average, compared to
participants in the LAL group, βInt = 880.98, SE = 27.68, 95%
CI = [826.72, 935.23]; βLAU = 99.72, SE = 38.88, 95% CI =
[175.92, 23.52], t(101) = 2.56, p < 0.05. No significant differences
were found between the LAM and LAL groups, βLAM = 54.90,
SE= 39.15, 95% CI= [131.65,−21.83], t(101) = 1.40, p= 0.16.

TABLE 1 | Summary of hierarchical model 1.

Fixed Effects Null model Random slopes model Final model

β SE β SE β SE

Intercept 878.50 16.90 931.00 16.85 925.40 16.98

Time (Trial) −1.48 0.22 −1.46 0.21

Accept −24.02** 7.11

Confidence −116.08*** 11.46

Deck 18.79** 5.09

Card 3 −12.77 7.94

Card 5 42.68*** 8.89

Accept × Confidence −3.57 11.10

Confidence × Card 3 −9.72 13.39

Confidence × Card 5 −54.28*** 12.91

Random Effects Estimate SE Estimate SE Estimate SE

Residual error 101,575 318 98,987 315 94,727 308

Intercepts 28,995 170 26,779 164 27,170 165

Slopes 3.32 1.82 3.06 1.75

*p < 0.05; **p < 0.01; ***p < 0.001.
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In summary, participants had an overall bias to accept gambles
and RTs for accepted gambles were faster than those for rejected
gambles. Additionally, confidence interacted with risky decision
times: RTs were slowest for the riskiest gambles when confidence
was low, but fastest for these gambles when confidence was high.
Finally, we found significant differences in the speed of response
for the highly loss-averse group, compared to the moderate or
low loss aversion groups, indicating that participants’ degree of
loss aversion plays a role in the decision process in the task.

Although these results provide initial support for differences
in decision behavior linked to loss aversion, the hierarchical
model approach is blind to the nature of the mental operations
driving these behavioral differences between groups. Therefore,
we further evaluated choice and RT data together in terms of
group loss aversion differences with a hierarchical drift diffusion
model to map choice and RT differences onto specific underlying
cognitive factors.

DDM
To investigate the cognitive mechanisms underlying loss
aversion, we fit a DDM to the joint distribution of choice and
RT data for participants, using the three loss-aversion groups
to dictate group-level parameters. We estimated four separate
parameters: the starting point, drift rate, barrier, and the non-
decision time. The starting point parameter indicates bias toward
one choice over the other at the start of a trial. Therefore, if loss
aversion is driven by a cognitive bias, starting point may vary
with respect to the loss aversion groups. If loss aversion affects
the weighing and processing of information, then the drift rate
parameter may reflect group differences in loss aversion. Finally,
if loss aversion reflects differences in the amount of information
needed to initiate a response for one choice over the other,
then different loss aversion groups may exhibit differences in the
barrier parameter.

DDM Specification Comparisons

We ran three different models to determine the most
parsimonious model that best fit the data: (1) a null model;
(2) a simple model with parameters split by loss aversion groups
only; and (3) a model with the drift rate parameters split by both
loss aversion groups and deck type.

The deviance information criterion (DIC) is an appropriate
measure for assessing model fit and model comparison for
hierarchical Bayesian models (see Wiecki et al., 2013). Across the
three models, the lowest DIC was found for model 3, indicating
the best fit when drift rate was split by both loss aversion and
deck type (DIC1 = 27,163.5, DIC2 = 26,579.6, DIC3 = 26,529.3).
An additional means for assessing the model fit is verification
that the estimated model can generate the data found in the
experiment. To do this, we implemented a posterior predictive
check: 100 random draws are taken from the posteriors of the
model parameters. The mean squared error (MSE) was then
computed using the summary statistics for the true data and
the summary statistics for each simulated dataset. Specifically,
the difference between the observed summary statistic (e.g.,
percentage of Yes responses) and the simulated summary statistic
(e.g., percentage of Yes responses) was squared. The mean across

TABLE 2 | Simple DDM: parameter means and standard deviations of the trace

by loss aversion groups.

Drift rate (µ) Barrier (a) Starting point (z)

AVE SDT AVE SDT AVE SDT

LAU 0.28 0.07 1.67 0.04 0.47 0.12

LAM 0.53 0.08 1.67 0.04 0.48 0.12

LAL 0.50 0.07 1.60 0.04 0.47 0.11

all 100 simulations was the MSE. In all cases, the MSE for both
choice and RT reflected good fits to the data, and all summary
statistics for the simulated data were within 95 percent credible
intervals around the observed data. Thus, all models adequately
recovered the data. The values are very similar between choice
RTs to accept and to reject gambles.

To confirm that the model fits were stable, we assessed model
convergence using the R̂ statistic (Gelman and Rubin, 1992).
A value of R̂ = 1 is associated with perfect correspondence
across difference chains of the same model, reflecting parameter
convergence. For both models, using five different runs of
the models, values of R̂ were entirely consistent with model
convergence (Model 2, average = 1.0001, minimum = 0.9999,
maximum = 1.0012; Model 3 = average = 1.0001, minimum =

0.9999, maximum= 1.0010).

DDM Results

We first examined the effects of loss aversion using a simple
model with parameters split by loss aversion group (Table 2).
Based on the DIC, this model fit the data significantly better than
a model without loss aversion group as a between-subjects factor.
We foundwhile neither the starting point (Figure 2B) nor barrier
(Figure 2C) varied significantly by degree of loss aversion groups,
the drift rate parameter did (Figure 2D). Calculated using the
difference in the respective group posteriors, the drift rate was
positive and smaller in magnitude for the LAU group relative to
the LAM and the LAL groups, p < 0.01 and p < 0.05. Thus, as
smaller drift rates reflect slower time to reach a decision for a
given threshold, the upper loss aversion group showed increased
processing time to reach a choice relative to the middle and
lower loss aversion groups (LAU = 0.28; LAM = 0.53; LAL =

0.50). There were no other differences between the posterior
estimates of the starting point and barrier parameters by loss
aversion groups, p > 0.05. These data support the idea that
loss aversion reflects differences in information processing rather
than cognitive bias or response caution.

To test how loss aversion interacted with the underlying
probability distribution of the gambles, we fit a model with
the drift rate parameter split by both loss aversion group and
deck type (Figure 3). Parsing drift rate by deck type revealed
that the differences in drift rate between loss aversion groups
are primarily associated with the gain deck, not the loss deck
(Table 3). The difference in drift rate between the LAU group
and the two groups, LAM and LAL, held for the gain deck
at p < 0.05 for both tests. However, these differences were
not significant for the loss deck. Thus, variance in information
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FIGURE 3 | Model 2 posterior distributions for the drift rate parameter by loss aversion groups and deck type. Model 2 was estimated using a Bayesian hierarchical

framework, with Markov chain Monte-Carlo (MCMC) sampling methods employed to estimate a joint posterior distribution (known as traces) for the model

parameters, starting point and barrier, in addition to the drift rate parameter for each deck type, win and loss. The joint posterior distributions of the drift rate parameter

for each deck type are displayed here. (A) Win deck: Drift rate separates by loss aversion group. (B) Loss deck: Drift rate is not separable by loss aversion groups.

TABLE 3 | Full DDM: parameter means and standard deviations of the trace for

drift rate by loss aversion groups and deck type.

Drift rate (µ)

AVE SDT

GAIN DECK

LAU 0.29 0.10

LAM 0.58 0.11

LAL 0.59 0.10

LOSS DECK

LAU 0.26 0.10

LAM 0.47 0.11

LAL 0.43 0.10

processing associated with degree of loss aversion does not reflect
a significant difference in attribute weighting in situations where
loss is more likely. Instead, the processing of information by
highly loss-averse individuals appears to be distinct from less
loss-averse individuals only in the gain deck, where winning is
more likely.

DISCUSSION

Although loss aversion has been robustly observed over the last
30 years, the cognitive mechanisms underlying this phenomenon
remain largely unexplored. In this study, we used a novel
modeling approach to investigate how differences in loss
aversion map onto psychological processes, including evidence
accumulation, decision bias, and response caution. Because
the DDM draws on the full information available from the
distribution of RT data rather than simply looking at measures
of central tendency, this method can provide superior insight
into how different cognitive parameters contribute to response
(Voss et al., 2013). Group-level hierarchical linear modeling
revealed RT differences associated with loss aversion, namely
that highly loss-averse individuals responded more slowly when
making gambling decisions compared to less highly loss-averse
individuals, on average. Nonetheless, these analyses do not

differentiate among the underlying cognitive processes leading to
those group differences in RTs. In contrast, the DDM approach
revealed that differences in the degree of loss aversion displayed
during a risky decision-making task were not reflected in the
starting point or barrier parameters of the DDM, but rather in
the drift rate parameter.

The drift rate represents the rate of an individual’s evidence
accumulation toward a particular choice, as determined from
the perceptual discriminability of the stimulus (Palmer et al.,
2005; Ratcliff et al., 2009) or the informational content of
the decision (Ratcliff, 1981; Diederich and Busemeyer, 2006).
Typically, choices that are perceptuallymore similar result in drift
rates closer to zero, indicating longer time needed to accumulate
evidence toward a choice due to weaker stimulus strength
(Palmer et al., 2005; vanMaanen et al., 2012). Likewise, in choices
between different monetary values, the drift rate decreases as the
magnitude of difference in payoff values between the two choices
decreases (Ratcliff, 1981; Diederich and Busemeyer, 2006).

In our study, we found that the most loss-averse individuals
showed the greatest difficulty in choosing between accepting and
rejecting gambles, as measured by a smaller drift rate parameter.
Furthermore, specifying deck type as a factor in the model
revealed that this effect varied with the underlying probability
distribution of the gamble: when wins were more likely, the
least loss-averse individuals accumulated information at a faster
rate. That is, individuals in the low and medium loss-aversion
groups accumulated a stronger quality of evidence for the choice
to accept gambles in the win deck, relative to both their own
performance in the loss deck and to individuals in the highly
loss-averse group. These findings suggest that people with higher
levels of loss aversion may process risky decision scenarios more
slowly and inflexibly, contradicting the idea that loss aversion is
driven by pre-existing cognitive or motor response bias.

What could be the mechanism for this greater inflexibility of
evidence accumulation in highly loss-averse individuals? Drift
rate is known to be affected by attentional salience: that is,
time spent looking at a choice is related to greater evidence
accumulation for that choice (Krajbich et al., 2010; Krajbich and
Rangel, 2011; Cavanagh et al., 2014). The greater the amount
of time that individuals fixate on the non-selected option, the
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greater the difficulty in discriminating between choices, reflected
in a smaller drift rate (Krajbich et al., 2010; Krajbich and Rangel,
2011; Cavanagh et al., 2014). Here, we found that separation in
the drift rate parameter by loss aversion was only observed for
choice scenarios associated with a greater probability of winning
(i.e., the gain deck), but not a greater probability of losing (i.e.,
the loss deck). That is, when the probability of losing is higher,
the choice to accept or reject a gamble is less clear because of
the decreased likelihood of a winning outcome, regardless of
a person’s loss aversion score. However, when the probability
of winning is higher, the increased potential for receiving a
win outcome increases the likelihood of accepting a gamble for
people who score in the low or middle range of loss aversion. In
contrast, people who score high on loss aversion appear to face
difficulty in discriminating between the two options even when
the probability of winning is higher.

Given the faster drift rate toward accepting gambles found
in the low and middle loss-averse groups, but not the high
loss-averse group, what is the underlying cognitive mechanism?
Previous research on attentional biases and reward/loss suggests
that this result may reflect either (1) an increased attentional
bias toward reward in low and middle loss-averse individuals,
or (2) increased attentional bias toward loss in highly loss-averse
individuals. With respect to the former, high rewards have been
shown to drive attentional salience (Hickey and Theeuwes, 2010;
Anderson et al., 2011; Hickey and van Zoest, 2012; Theeuwes and
Belopolsky, 2012), and the extent to which an individual develops
an attentional bias to reward is related to trait reward-seeking
(Hickey and Theeuwes, 2010). Thus, one possibility is that highly
loss-averse individuals have a smaller attentional bias to reward
than those who score at low or mid-range levels, leading to the
separation in the drift rate parameter.

On the other hand, highly loss-averse individuals may have
an increased attentional bias toward losses, even when rewards
are more probable than losses. Loss and threat stimuli have
high attentional priority: for example, distractors associated with
threat produce slowing of visual search (Schmidt et al., 2015).
Previous work has found that both threat and loss-related stimuli
capture attention (Müller et al., 2015; Schmidt et al., 2015).
Furthermore, whereas loss-related stimuli typically lead to faster
disengagement from cued locations compared to neutral stimuli
(Bucker and Theeuwes, 2016), high trait anxiety is related to
delayed disengagement of attentional capture by negative stimuli
(Fox et al., 2002; Verkuil et al., 2009). This is consistent with
findings that the threat of losses increases exploratory behavior
and information search likely due to increased vigilance or
attention (Lejarraga et al., 2012; Lejarraga and Hertwig, 2017).
A phenomenon similar to trait anxiety could explain the failure
of highly loss-averse individuals in our sample to adjust their
evidence accumulation in the win deck due to the continued
presence of a potential loss. Future research should look at
whether loss averse individuals do not show typical patterns of
attention disengagement to losses or increases in information
search behavior.

Yet another body of evidence suggests that losses have a strong
effect on attention by leading to better task performance (cf.
Yechiam and Hochman, 2013a). For example, research using

a dual-task paradigm found that performance in a secondary
task improved when the primary task contained potential loss
outcomes (Yechiam and Hochman, 2014). Likewise, response
inhibition develops faster under conditions of punishment
compared to conditions of reinforcement (children and tokens:
Costantini and Hoving, 1973; adults and monetary outcomes:
Dickinson, 2001; Andreoni et al., 2003; Pietras et al., 2010).
Such attentional allocation to losses (or lack thereof) can explain
whether loss-averse behavior is present or absent in situations
with losses (Yechiam and Hochman, 2013b). More specifically,
attention to losses may interact with task performance. Yechiam
and Hochman (2013a) propose that losses increase on-task
attention, which in turn, enhances reinforcement learning and
decreases random responding, and this effect is asymmetric
depending on whether losses and gains are presented separately
or concurrently. Although our experiment examined variation in
loss aversion for separate win and loss decks, potential loss and
gain outcomes occurred in both conditions. Therefore, future
research should address this point by modeling loss aversion
in the context of tasks more optimally designed to tease apart
reinforcement learning and task demands.

In addition, the use of an unknown risk distribution in our
task may have influenced our finding that loss aversion affects
the rate of information accumulation rather than starting bias.
Because the risk distribution in our experiment was unknown
to participants, our experimental set-up may have prioritized
information processing over the cognitive processes indexed by
other DDM parameters. Future studies looking at the effects
of loss aversion on choice processes should manipulate several
factors including what information is provided to participants
about the risk distribution. Modeling the data from these
experiments using a DDM approach could further specify the
extent to which different types of information influence the
various DDM parameters.

Finally, although we treat loss aversion as a trait in this
study, previous research has shown that engaging in emotional
regulation can reduce loss aversion within individuals (Sokol-
Hessner et al., 2009, 2013, 2015). When participants are
instructed to regulate their emotional arousal via a cognitive
reappraisal strategy, they show decreases in loss-averse behavior
and concomitant reductions in physiological arousal and
amygdala activation to losses (Sokol-Hessner et al., 2009, 2013).
More recently, loss aversion has been found to correlate with
interoceptive ability, or the ability to reliably and accurately
perceive one’s own emotional reactivity (Sokol-Hessner et al.,
2015). Considering these findings, it is an open question
whether and how emotional regulation strategies like cognitive
reappraisal might modulate the differences in drift rate observed
in ourmost highly loss-averse participants. Given that our sample
was more loss-averse than typically reported in the literature,
our most loss-averse tercile may have been less able to regulate
their emotional arousal or less aware of their own emotional
reactivity to loss information in the gain domain. However,
there is high individual variability in the ability to regulate
emotional responses to loss aversion (Sokol-Hessner et al., 2009).
Thus, it may be that trait-level loss aversion and emotional
regulation are orthogonal to one another, or both may depend
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on an additional factor such as, interoception (Sokol-Hessner
et al., 2015). Clearly, this question should be addressed in future
research.

In summary, the DDM provides a unique approach to
formally defining loss aversion in terms of underlying cognitive
factors during risky decision-making. Consistent with individual
differences in information processing, as opposed to a cognitive
bias, these results shed new light on the cognitive mechanisms
underlying individual differences in loss aversion. By moving

away from a descriptive characterization of loss aversion toward
a computational model, our findings provide a foundation for
future work to explain and apply loss aversion in terms of
information processing within a noisy decision system.
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APPENDIX: ESTIMATION OF λ IN DOSE

According to Wang et al. (unpublished), the DOSE algorithm for
estimating loss aversion parameter λ uses the following equation
to specify the prospect-theory utility function over losses:

u(ω−) = − λ(−ω)ρ

where ω represents the payoff, ρ (risk aversion parameter)
characterizes the curvature of the utility function, and λ is the
loss aversion parameter. If λ= 1, then gains and losses are valued
equally. If λ > 1, then the subject is loss averse and if λ < 1,
then the subject is loss seeking. This model is combined with a
Bayesian updating procedure to select the most informative set
of questions based on participants’ previous responses.
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