
Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 

 
 
 
 
 
 
 
Beckham, K.S.H., Byron, O. , Roe, A.J. , and Gabrielsen, M. (2012) The 
structure of an orthorhombic crystal form of a 'forced reduced' thiol 
peroxidase reveals lattice formation aided by the presence of the affinity 
tag. Acta Crystallographica. Section F: Structural Biology and 
Crystallization Communications, 68 (5). pp. 522-526. ISSN 1744-3091 
 
http://eprints.gla.ac.uk/66789/ 
 
Deposited on: 4th July 2012 
 
 

http://eprints.gla.ac.uk/view/author/10235.html
http://eprints.gla.ac.uk/view/author/2191.html
http://eprints.gla.ac.uk/view/author/9353.html
http://eprints.gla.ac.uk/view/journal_volume/Acta_Crystallographica=2E_Section_F=3A_Structural_Biology_and_Crystallization_Communications.html
http://eprints.gla.ac.uk/view/journal_volume/Acta_Crystallographica=2E_Section_F=3A_Structural_Biology_and_Crystallization_Communications.html


The title, 
authors and 
addresses 
contain 
hidden text. 
Before  
editing, 
reveal the 
hidden text 
by pressing 

¶  
Be sure to 
preserve the 
SGML tag 
structure 
(see Help ) 

Structure of an orthorhombic crystal form of a 'forced 
reduced' thiol peroxidase reveals lattice formation aided by 
the presence of the affinity tag 

Katherine S H Beckham,a Olwyn Byron,b Andrew J Roea and Mads 
Gabrielsena*  

aInstitue of Infection, Immunity and Inflammation, College of Medical, Veterinary and 

Life Scienes, Sir Graeme Davies Building, University of Glasgow, G12 8QQ, UK, and 
bSchool of LIfe Sciences, College of Medical, Veterinary and Life Scienes, Sir 

Graeme Davies Building, University of Glasgow, G12 8QQ, UK. E-mail: 

mgabr@chem.gla.ac.uk 

 
 

Synopsis The crystal structure of TpxC61S from E. coli diffracting to 1.97 Å is reported.  

A brief structural comparison with homologues is presented. 

Abstract Thiol peroxidase (Tpx) is an atypical 2-Cys peroxiredoxin, which has been 

suggested to be important for cell survival and virulence, in Gram-negative pathogens. The 

structure of a catalytically inactive version of this protein, in an orthorhombic crystal form, 

has been determined by molecular replacement. Structural alignments reveal that Tpx is 

conserved.  Analysis of the crystal packing shows that the linker region of the affinity tag is 

important for the formation of the crystal lattice.  
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1. Introduction 

Thiol peroxidase (Tpx) is an atypical 2-Cys peroxiredoxin found in both Gram-negative 

and Gram-positive bacteria (Cha et al. 1995).  Tpx is a redox active protein that reduces alkyl 

peroxides and hydrogen peroxide through the catalytic recycling of a disulfide bond between 

cysteines 61 and 95. This cycle results in the production of water with reduced Tpx being 

regenerated through the interaction with thioredoxin (Baker and Poole 2003).  Tpx plays a 

major contribution to redox homeostasis in the bacterial cell.  For example, Escherichia coli 

Tpx deletion mutants display reduced survival after exposure to peroxide (Cha et al. 1995).  

Furthermore this protein has been shown to be important for the survival of human pathogens, 

such as Salmonella typhimurium, where the ability to withstand the oxidative burst in the 



phagosome is essential (Horst et al. 2010).  Tpx has also been implicated in the virulence of 

Gram-negative pathogens, as it was shown to be one of the target proteins of the salicylidene 

acylhydrazides (Wang et al. 2011).  These so called “antivirulence” compounds inhibit the 

bacterial type three secretion system, which is used by pathogens to modulate host cell 

pathways and facilitate disease (Baron 2010).  

Here we describe our crystallization and structure analysis of the catalytically inactive 

mutant TpxC61S from E. coli, which represents a 'forced reduced' structure, as described by 

(Hall et al. 2009).  The crystals diffracted to 1.97 Å, and exhibited an orthorhombic form.  A 

brief comparison of this structure with a number of structures of Tpx, present in the Protein 

Data Bank, including a trigonal crystal form of the same mutant from E. coli (Hall et al. 

2009), is presented.  Analysis of the crystal packing of the two TpxC61S structures reveals 

the importance of parts of the affinity-tag in forming crystal contacts in the orthorhombic 

space group.  

2. Material and methods 

2.1. Cloning, expression and purification  

The C61S mutant of Tpx was obtained by site directed mutagenesis utilizing a 

QuickChange Site-Directed Mutagenesis Kit (Stratagene) with the primer pair ecTpx5/3 

(CGTACTGATGCGGCCGAAACACCGGTATC and 

GATACCGGTGTTTCGGCCGCATCAGTACG) with the construct confirmed by DNA 

sequencing.  The amplified product was cloned into the TOPO pET-151 (Invitrogen) 

expression vector, which encodes an N-terminal affinty tag consisting of a hexahistidine 

seqeunce motif with a TEV cleavage site and a linker region consisting of 25 residues.  The 

resulting construct was transformed into BL21 DE3 (λD3) and grown in 1 L of LB medium 

containing ampicillin (100 µg ml-1).  The protein was purified using immobilized metal 

affinity chromatography protocols as described elsewhere (Gabrielsen et al. 2010), and 

dialysed against 20 mM Tris pH 7.5 and 50 mM NaCl.  

2.2. Crystallization 

Purified protein with affinity tag, at approximately 8 mg ml-1, was placed into several 

commercial crystallization screens using sitting drop vapor diffusion, and 1 µl drops in a 1:1 

ratio of protein and reservoir.  The crystal trays were incubated at 293 K.  Crystals appeared 

in the JCSG+ screen (Molecular Dimensions Ltd) after two weeks against a reservoir of 0.2 

M MgCl2, 0.1 M Tris pH 7 and 10% polyethylene glycol 8000.  The crystal was cryo-

protected by a short soak in paraffin oil (Riboldi-Tunnicliffe and Hilgenfeld 1999) before 

being flash-cooled in liquid nitrogen.  



 

2.3. X-ray data measurements, structure solution and refinement 

Diffraction data were collected at Diamond Light Source beamline I04 on an ADSC Q315 

CCD detector at a wavelength of 0.9763 Å.  Data were processed using MOSFLM (Leslie 

1992) and scaled and merged using SCALA (Evans 2006) from the CCP4 suite of programs 

(Winn et al. 2011).  The structure of C61S was determined using PHASER, and the existing 

C61S structure from E. coli, (PDB code 3HVV) (Hall et al. 2009) was used as a search 

model, for molecular replacement.  The structure was refined using REFMAC5 (Murshudov 

et al. 1997)  and BUSTER (Bricogne et al. 2011).  The model was manipulated as required, 

and waters were added using COOT (Emsley et al. 2010).  The model was validated using 

COOT and the Molprobity server (Davis et al. 2007).  PISA was used to analyze protein 

interfaces and crystal contacts (Krissinel and Henrick 2007) and structural superpositions 

were performed using the SUPER command in PYMOL (Schrödinger 2012).  Figures were 

made using ALINE (Bond and Schüttelkopf 2009) and PyMOL.  

The structure and data were deposited into the Protein Data Bank (Velankar et al. 2012) 

(accession code 4AF2). 

3. Results and Discussion 

3.1. Crystallization, data collection and structure determination 

The crystals of the C61S mutant of Tpx from E. coli were orthorhombic, with dimensions 

of approximately 0.1 x 0.1 x 0.03 mm (Figure 1A), and exhibited space group C2221, with 

unit cell parameters of a = 49.37, b = 71.75, c = 121.93 Å.  The data were collected to a 

resolution of 1.97 Å (Figure 1B), and the relevant data collection statistics are presented in 

Table 1.  The asymmetric unit comprised one subunit with a Matthews coefficient of 3.09 Å3 

Da-1, indicating a solvent content of 60%.  The data processed well, with overall Rmeas and 

Rpim values of 14.2% and 5.7 % respectively. 

The molecular replacement solution was refined to final Rwork and Rfree factors of 22.9% 

and 28.3%, respectively.  There are no outliers in the Ramachandran plot, and the structure is 

in the 94th percentile of Molprobity clash scores (Davis et al. 2007).  All relevant structure 

refinement statistics are listed in Table 1.  

3.2. Overall structure of TpxC61S 

TpxC61S exhibits a thioredoxin-like fold, with a seven-stranded β-sheet, flanked by four α 

helices, with an additional two N-terminal β-strands typical for Tpx but not found in other 

peroxiredoxin structures (Figure 2).  Due to the mutation of the active cysteine residue to a 



serine, the structure is locked in the reduced confirmation.  This conformation has an 

elongated α1 helix, which makes C61 available for interactions with H2O2 or alkyl peroxides, 

however the presence of the mutation to serine prevents these interactions.  Following 

oxidation of C61 helix α1  becomes unraveled to form an intramolecular disulfide bond with 

residue C95 (Hall et al. 2009; Gabrielsen et al. 2012).  The conformational change observed 

in response to redox state is show in Figure 3B.   

Tpx forms a homodimer in solution (Baker and Poole 2003; Gabrielsen et al. 2012).  In 

this crystal structure the dimer is formed by a crystallographic symmetry related molecule. 

The structure of TpxC61S superposes well onto other crystal structures of reduced structures 

of Tpx (Table 2).  In particular, this mutant superposes with the wild-type reduced protein 

from Yersinia pseudotuberculosis (Gabrielsen et al. 2012) with a root-mean-squared-

deviation (rmsd) of 0.376 Å indicating a high degree of similarity (Figure 3A).  This confirms 

the assumption made by Hall et al. that TpxC61S represents a ‘forced reduced’ structure. 

When compared with the oxidized E. coli structure (3HVS) (Hall et al. 2009), TpxC61S 

superposed with an rmsd of 0.711 Å.  This reflects the local conformational change between 

the oxidized and reduced structure mediated by the formation of a disulfide bond between 

C61 and C95 (Figure 3B).   

3.3. Analysis of the crystal lattice 

The orthorhombic form of TpxC61S superposes well onto the existing, trigonal TpxC61S 

structure (3HVV) (Hall et al. 2009) with an rmsd of 0.207 Å, showing that despite the 

different space groups, C2221 versus P3121 respectively, the structure remains essentially the 

same (Figure 2B).  However, when investigating the crystal packing, a noticeable difference 

between the two crystal forms became apparent.  The unit cell of the trigonal form of 

TpxC61S is much more densly packed, with a solvent content of 42%.  In contrast, 

orthorhombic TpxC61S has a solvent content of 60%.  This explains the difference in crystal 

contacts formed between the monomeric asymmetric unit and its environment.  Whilst the 

trigonal crystal form has ten neighboring TpxC61S within 5.0 Å, the orthorhombic form has 

only six.  

Despite the more spacious packing of the protein in C2221, the crystals diffract similarly 

and are robust.  When analyzing the crystal lattice, the linker region of the affinty tag 

construct, accounted for in the electron density, in orthorhombic TpxC61S, is involved in 

several crystal contacts, and thus stabilizes the crystal through facilitating lattice formation 

(Figure 4A).  

Analysis of the crystal packing in the orthorhombic crystal lattice, using the Protein 

Interfaces, Surfaces and Assemblies Server (PISA) (Krissinel and Henrick 2007), revealed 

that of a total surface area of 8349 Å2, 17% of this was buried.  The largest buried area occurs 



at the dimerisation interface of the protein, which accounts for about half of the buried surface 

area.  The rest of the crystal contacts are formed between the linker region of the affinity tag 

of one molecule with a neighboring molecule, shown in Figure 4B, and a smaller second 

crystal contact with another subunit.  The area of contact conferred by the linker region is 

stabilized by two hydrogen bonds between the tag (I-4 and F-1) and a symmetry related 

molecule (K'33) (Figure 3B).  In comparison, the buried surface area between trigonal 

TpxC61S and the symmetry related neighbors makes up around 10% of the total surface area.  

However, each subunit has direct crystal contacts with 8 symmetry related molecules.  This 

highlights the importance of the tag in stabilizing TpxC61S in the orthorhombic form.    

4. Conclusions 

We have reported the structure of an orthorhombic crystal form of TpxC61S from E. coli 

at 1.97 Å.  The overall structure is well conserved amongst the known homologues, and this 

mutant form is a good representation of the reduced form of Tpx.  The crystal lattice is held in 

place by the linker region of the affinity-tag of one subunit attaching to a neighboring unit, 

threading the lattice throughout.  

 

 

Figure 1 Escherichia coli TpxC61S crystals and diffraction.  A) The orthrombic crystals have 

dimensions of 0.1 x 0.1 x 0.3 mm.  B) The crystals diffracted to 1.97 Å (at detector edge) and exhibited 

space group C2221. 

 

Figure 2 The structure of orthorhombic TpxC61S compared with existing structures.  A) The overall 

structure of TpxC61S is shown with serine 61 (red) and cysteine 95 (yellow) highlighted.  The N- and 

C-terminal of the protein have been labeled, along with the secondary structure elements.  B) The 

sequence of the purified and crystallized protein with secondary elements above, and the catalytic 

residues highlighted.  The affinity tag is shown in grey, with the part of the tag that can be observed in 

electron density in pink. 



 

Figure 3 Comparison of TpxC61S with existing Tpx structures.  A) Superposition of orthorhombic 

TpxC61S (slate) with trigonal TpxC61S (PDB code 3HVV) (Hall et al. 2009) (pink) (from E. coli) and 

reduced wild type Tpx (PDB code 2XPD)(Gabrielsen et al. 2010)  (green) (from Y. 

pseudotuberculosis) illustrates the high level of similarity between this and the existing TpxC61S 

structure from E. coli, and reduced wild-type Tpx.  B) Orthorhombic TpxC61S (slate) superimposes 

less well with oxidised wild-type Tpx (cyan) (PDB code 3HVS) (Hall et al. 2009) due to the 

confirmational change caused by differing redox states. 



 

Figure 4 Crystal packing of TpxC61S. A) The crystal lattice formed in the orthorhombic crystal 

form of TpxC61S highlights the importance of the linker region of the affinity-tag (pink) in forming 

crystal contacts.  The biological dimer, formed by crystallographic symmetry, has been shown in slate 

with other molecules in the crystal lattice in light blue. B) Inset is a detailed view of the crystal contacts 

between the linker region and a symmetry related molecule highlighted in the black box shown in A.  

Residues involved in hydrogen bond formation have been labeled, namely K'33 Nζ to I -4 N (3.2 Å) 

and K'33 O to F -1 O (3.1 Å). The hydrogen bonds are shown as dashed lines.   



 

Table 1 Data collection and refinement statistics. Numbers in brackets show data for the highest 

resolution 

PDB code 4A2F 

Space group C2221 

Unit cell parameters (Å) a = 49.37, b = 71.75, c = 121.93 

Resolution (Å) 40.67 - 1.97 (2.08 – 1.97) 

Observed reflections  96980 

Unique reflections 15679 

Multiplicity 6.2 (6.6) 

Completeness (%) 90.2 (100) 

Rmeas
*
 (%) 14.2 (67.5) 

Rpim
#
 (%) 5.7 (26.0) 

(I/σ(I)) 7.5 (2.8) 

Wilson B (Å2) 19.9 

Matthews (Å3 Da-1) 3.09 

Solvent content (%) 60.16 

Water oxygen atoms 170 

Rwork (%)  22.93 



Rfree (%)  28.28 

Rmsd for bond lengths (Å) / 

angles (°) 

0.009 / 1.17 

Average isotropic thermal 

parameters (Å2) 

 

Main chain 35.34 

Side chain 40.95 

Water oxygen atoms 37.53 

Ramachandran outliers (%) 0 

Molprobity clash score 6.57 [94th percentile] 
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Table 2 Superposition of orthorhombic TpxC61S with reduced wild type and 'forced reduced’ 

mutated Tpx structures.  The oxidized Tpx from Escherichia coli (3HVS) has been added for 

completness. 

 
Species PDB code 

Escherichia coli 3HVV 

Yersinia psuedotuberculosis 2XPD 

Y. psuedotuberculosis 2YJH 

Mycobacterium tuberculosis 1Y25 

Streptococcus pneumoniae 1PSQ 

  

E. coli 3HVS 
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