
Durham E-Theses

On the Kernel of the Symbol Map for Multiple

Polylogarithms

RHODES, JOHN,RICHARD

How to cite:

RHODES, JOHN,RICHARD (2012) On the Kernel of the Symbol Map for Multiple Polylogarithms,
Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3905/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Durham e-Theses

https://core.ac.uk/display/8746469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.dur.ac.uk
http://etheses.dur.ac.uk/3905/
 http://etheses.dur.ac.uk/3905/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

On the Kernel of the Symbol Map
for Multiple Polylogarithms

John Richard Rhodes

A Thesis presented for the degree of

Doctor of Philosophy

Pure Mathematics

Department of Mathematical Sciences

Durham University

2012

Abstract

The symbol map (of Goncharov) takes multiple polylogarithms, Ir1,...,rs(x1, . . . , xs),

to a tensor product space where calculations are easier, but where important dif-

ferential and combinatorial properties of the multiple polylogarithm are retained.

Finding linear combinations of multiple polylogarithms in the kernel of the symbol

map is an effective way to attempt finding functional equations. We present and

utilise methods for finding new linear combinations of multiple polylogarithms (and

specifically harmonic polylogarithms) that lie in the kernel of the symbol map.

During this process we introduce a new pictorial construction for calculating the

symbol, namely the hook-arrow tree, which can be used to easier encode symbol

calculations onto a computer.

We also show how the hook-arrow tree can simplify symbol calculations where the

depth of a multiple polylogarithm is lower than its weight and give explicit expres-

sions for the symbol of depth 2 and 3 multiple polylogarithms of any weight. Using

this we give the full symbol for I2,2,2(x, y, z). Through similar methods we also give

the full symbol of coloured multiple zeta values.

We provide introductory material including the binary tree (of Goncharov) and the

polygon dissection (of Gangl, Goncharov and Levin) methods of finding the symbol

of a multiple polylogarithm, and give bijections between (adapted forms of) these

methods and the hook-arrow tree.

ii

Declaration

The work in this thesis is based on research carried out in the Pure Mathematics

Group at the Department of Mathematical Sciences, Durham University. No part

of this thesis has been submitted elsewhere for any other degree or qualification and

it is all my own work unless referenced to the contrary in the text.

Copyright c© 2012 by Author.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

iii

Acknowledgements

Although many would say it about themselves, I truly believe I am a very particular

kind of mathematician; one that might not suit some supervisors. Thank you,

Herbert, for communicating with me in a way that best suits my style. I have

always very much enjoyed our (often very long) conversations; the mathematical

parts were stimulating and the technology parts good fun. I truly am very grateful

for your patience and support.

Communication in the mathematics department is something it excels in. I have

very much enjoyed the small pure maths postgraduate community that has been

kept going by the GandAlF seminar. I also would like to thank Claude for some

very interesting talks concerning links between my work and the physics community.

Non-mathematical communication within the department is important to keeping

sanity levels reasonable. As many PhD students of Durham will know, coffee club is

essential to success. The ‘10.30 club’ is something I have frequently fought for and

its most loyal members are garnered with a special medal.

Outside of the mathematics department I have been lucky to have a great set of

friends providing me with a tremendous support network. I have always felt like I

had people to turn to. The times spent drinking coffee, making dinners and in the

pub have been incredibly important to my studies. It is hard to precisely define it

in words, but the way in which we discuss trivial matters is something that I never

want to be without.

iv

v

So, for the above reasons and many more, my thanks go to Alex, Ben, Ben, Ben,

Caroline, Chris, Dave, Elise, Harriet, Helen, Ian, Jack, James, James, Joey, John,

Josh, Kirsty, Luke, Mel, Nathan, Pamela, Rachel, Sarah, Scott, Simon, Steven, and

Ric.

Finally, special words of thanks to Mum, Dad, Anne-Marie, and Nan for talking to

me on the phone, and of course, everything.

Contents

Title Page i

Abstract ii

Declaration iii

Acknowledgements iv

List of Contents vi

0 Introduction 1

0.1 Opening remarks . 1

0.2 Definition of multiple polylogarithms 2

0.2.1 Other definitions of multiple polylogarithms 4

0.2.2 Linear combinations of multiple polylogarithms 7

0.3 Summary of Chapters . 8

1 The symbol of a multiple polylogarithms via binary trees and poly-

gon dissection 10

vi

Contents vii

1.1 Tensor algebra and notation conventions 11

1.1.1 Shuffle product . 14

1.1.2 2-torsion of tensor products and notation conventions 14

1.2 Outline of the symbol from binary trees 15

1.2.1 Attaching a symbol to the binary tree 16

1.3 Defining the symbol from polygon dissection 20

1.3.1 Associating a polygon to a multiple polylogarithm 20

1.3.2 Adding dissecting arrows to a polygon 23

1.3.3 Maximal dissections . 25

1.3.4 Definition of the symbol . 29

1.3.5 The symbol of products of multiple polylogarithms 31

1.4 Why choose the symbol to represent multiple polylogarithms? 31

1.4.1 Bar construction of the polygon algebra 32

1.4.2 Differential structure of multiple polylogarithms and the symbol 36

1.5 A simple element in the kernel of the symbol map 37

1.5.1 Hölder convolution . 37

2 Hook-arrow trees 39

2.1 Motivation for hook-arrow trees . 39

2.2 Moving from polygons to trees . 40

2.3 Obtaining terms in the symbol from a hook-arrow tree 44

Contents viii

2.3.1 Step 1: Selection of first distinguished edge 46

2.3.2 Step 2: Splitting the tree . 47

2.3.3 Step 3: Iterative step . 54

2.3.4 Recording the results of the algorithm and definition of the

symbol . 55

2.3.5 The sign of a hook-arrow tree 57

2.3.6 The definition of the symbol via hook-arrow trees 57

2.3.7 A worked example . 58

2.4 Viewing the algorithm as a ternary/4-valent tree 61

2.4.1 The definition of a ternary tree 62

2.4.2 An isomorphism on planted plane trees 62

2.4.3 Forming a ternary tree from the algorithm on a hook-arrow tree 65

2.4.4 Enumeration of hook-arrow trees 69

2.4.5 Schematic picture of a hook-arrow tree 70

2.5 Simple examples of finding the symbol using hook-arrow trees 71

2.5.1 Symbol for I1,1(x, y) . 71

2.5.2 Symbol for I1,1,1(x, y, z) . 72

2.5.3 Symbol for Im(x) . 73

3 Relating different pictorial representations of the symbol 75

3.1 Isolating single terms in the symbol 75

3.1.1 Isolating a single term on a binary tree 79

Contents ix

3.1.2 Isolating a single term on a polygon dissection 82

3.1.3 Isolating a single term on a hook-arrow tree 83

3.1.4 Isolating a single term on a ternary tree 83

3.2 Bijections between pictorial representations of the symbol 84

3.2.1 Hook-arrow trees to polygon dissection 85

3.2.2 Polygon dissections to ternary trees 87

3.2.3 Ternary trees to binary trees 90

3.2.4 Binary trees to a hook-arrow trees 93

3.2.5 Hook-arrow trees to ternary trees 94

3.2.6 A specific example of moving between all pictorial represent-

ations . 97

4 Symbols of multiple polylogarithms of a given depth 101

4.1 The symbol of Ir1,r2(x1, x2) . 106

4.2 The symbol of Ir1,r2,r3(x1, x2, x3) . 109

4.3 Higher depths . 115

4.3.1 Discussion on the symbol of a general depth 4 multiple poly-

logarithm . 116

5 The symbol of coloured multiple zeta values 120

5.1 Proof of Theorem 5.2 . 121

5.2 Correspondence between Propositions 5.4 and 5.7 and Theorem 5.2 . 128

Contents x

6 Relations on harmonic polylogarithms up to weight 8 130

6.1 The symbol of a harmonic polylogarithm 131

6.2 Finding a relation between harmonic polylogarithms 133

6.3 Extending to other weights . 139

7 Linear combinations of multiple polylogarithms with a zero symbol

and conclusion 141

7.1 Elements of Iw in kerS for w = 4, 5 and 6 142

7.2 Remarks on the Theorem . 143

7.2.1 Examining Ψ4(x, y) . 143

7.2.2 Examining Ψ5(x, y) and Φ5(x, y) 145

7.2.3 Examining Ψ6(x, y) and Φ6(x, y) 146

7.3 Conclusion . 147

Bibliography 148

A Using GP/Pari to find elements in the kernel of the symbol 152

A.1 Attaching a vector to a tensor product 153

A.2 An overview of finding elements in the kernel of the symbol with

GP/Pari . 156

A.3 Further linear combinations of multiple polylogarithms in the kernel

of the symbol . 157

B Non-maximal dissection in the language of hook-arrow trees 160

Contents xi

B.1 Motivation . 160

B.2 Hook-arrow bulbs . 161

B.2.1 Obtaining the bar construction element of a hook-arrow bulb . 163

B.3 General picture . 167

B.4 Further thoughts on hook-arrow bulbs 168

C The symbol for I2,2,2(x, y, z) 169

C.1 Hook-arrow trees attached to I2,2,2(x, y, z) 169

C.2 The symbol S(I2,2,2(x, y, z)) . 171

Chapter 0

Introduction

0.1 Opening remarks

Multiple polylogarithms, a natural generalisation of the logarithm, are an import-

ant class of functions which have applications in both mathematics and physics.

There exist well-known functional equations between multiple polylogarithms, but

current understanding is far from complete. There is much demand for expanding

knowledge on a set of generators of polylogarithmic functional equations, which are

extremely hard to find. A valuable tool to aid such exploration is the symbol map of

Goncharov (given first under the name ‘⊗m-invariant’ in [Gon05]), which takes a lin-

ear combination of multiple polylogarithms to an algebraic construction (involving

tensor products) which can be manipulated significantly easier than analytic ma-

nipulation of the functions themselves. Conjecturally, any functional equation on

multiple polylogarithms must lie in the kernel of the symbol map.

Through exploration of past methods and the development of the ‘hook-arrow tree’

(a new pictorial representation of the symbol) our contribution concerns the kernel

of the symbol map with examples of different multiple polylogarithmic elements for

several weights. We use the hook-arrow tree to give an explicit description of the

symbol of depth 2 and 3 multiple polylogarithms of any weight. We give a full

1

0.2. Definition of multiple polylogarithms 2

description of the symbol of coloured multiple zeta values, a specialised class of

multiple polylogarithms (this appears in our preprint [DGR11] with C Duhr and H

Gangl).

Polylogarithms appear in mathematics in a surprisingly large range of areas. These

include serving as volume functions for hyperbolic spaces ([ZN85], [Zag86], and

[ZG00]) and are connected to Algebraic K-Theory ([Zag91], [Zag90], and [Blo00])

as ‘higher regulators’ (generalising the natural logarithm’s role in the regulator of

an algebraic number field, see [BS66]). Algebraic cycles that ‘represent’ polylogar-

ithms (often referred to as Bloch-Kriz-Totaro cycles) have been extensively studied

([BK95], [GMS99], and [GGL09]). Multiple polylogarithms are strongly linked to

periods of moduli spaces ([GM04] and [Bro09]). An important paper of Goncharov

introducing the symbol formally is [Gon09]. Further relevant papers concerning sym-

bolic calculations for polylogarithms and their generalisations are [Bro11], [Gon95],

[Gan03], [Gan10] and [Zha04].

Functional equations of multiple polylogarithms are not only of considerable in-

terest to mathematicians, but also to the physics community due partly to the need

to simplify the calculation of Feynman integrals that can be written in terms of

(special classes of) multiple polylogarithms ([MUW02], [VW05], and for a discus-

sion including this link, see [WB09]). We give new functional equations of weight

4, 5, 6, 7 and 8 for one such class, namely harmonic polylogarithms ([RV00]). The

symbol has also, more recently, become prominent in the context of N = 4 Super

Yang-Mills theory ([GSVV10]). This is the topic of much research and collaboration

between the mathematics and physics communities ([GSVV10], [DDDS10], [HK11],

[DGR11], and [Duh12]).

0.2 Definition of multiple polylogarithms

We now define the multiple polylogarithm and give a well-known motivating relation

(shown analytically, rather than with the use of symbols).

0.2. Definition of multiple polylogarithms 3

As mentioned above, a multiple polylogarithm is a natural generalisation of a poly-

logarithm, which is itself a natural generalisation of a logarithm.

Definition 0.1. The m-th polylogarithm, a generalisation of the logarithm is

defined to be

Lim(z) =
∞∑
n=1

zn

nm
z ∈ C, |z| < 1.

Indeed, we see that Li1(z) = − ln(1 − z). An excellent, and very readable, article

on the dilogarithm, Li2(z), by Zagier is [Zag88].

Remark 0.2. We note at this point, by way of a disclaimer, that we do not concen-

trate in this thesis on the multivaluedness of the polylogarithm (the reader is referred

to [Woj02] and [Zha07]). Rather, we are interested in its algebraic properties under

the, to be defined, symbol map.

We motivate the definition of a multiple polylogarithm by observing the product of

two polylogarithms,

Lis(x)Lit(y) =
∑
0<m

xm

ms

∑
0<n

yn

nt
. (1)

Each term will take the form
xiyj

isjt
.

By splitting into cases where i < j, i = j, and i > j we see Equation 1 becomes

Lis(x)Lit(y) =
∑

0<m<n

xmyn

msnt
+
∑

0<m=n

xmyn

msnt
+
∑

0<n<m

xmyn

msnt
.

We now relabel in the last summation and, noticing that the second term is a

polylogarithm, we get

Lis(x)Lit(y) =
∑

0<m<n

xmyn

msnt
+ Lis+t(xy) +

∑
0<m<n

ymxn

mtns
.

This motivates introducing a multiple polylogarithm, as defined in [Gon97].

Definition 0.3. A weight w multiple polylogarithm, Lir1,...,rs(z1, . . . , zs) is defined

to be

Lir1,...,rs(z1, . . . , zs) :=
∑

0<n1<...<ns

zn1
1 · · · zns

s

nr11 · · ·nrss
zi ∈ C, |zi| < 1

0.2. Definition of multiple polylogarithms 4

where

w =
s∑
i=1

ri.

Equation 1 becomes the aesthetically pleasing and well known relation (it is seen,

for s = t = 1 in the previously mentioned paper, [Gon97])

Lis(x)Lit(y) = Lis,t(x, y) + Lis+t(xy) + Lit,s(y, x).

This is an example of a stuffle relation (‘shuffle and stuff’), so named in the literature

because the variables x and y are ‘shuffled’ (when i < j and i > j), but we also get

‘stuff’ (when i = j). The reader is directed to pages 12-16 of [BBBL01] where a

‘stuffle algebra’ is discussed (and in particular example Example 5.1 of that paper

shows a good example of a stuffle relation on multiple zeta values).

Remark 0.4. Not only does this relation nicely introduce multiple polylogarithms,

but it is an example of a polylogarithmic relation with an analytic proof. The proof

here is relatively simple. However, analytical methods do not scale well for finding

all relations between polylogarithms (which motivates the symbol map later).

Remark 0.5. We can still find more relations using the above idea. The product of

three polylogarithms will give the following relation.

3∏
i=1

Liri(zi) = Lir1,r2,r3(z1, z2, z3) + Lir1,r3,r2(z1, z3, z2) + Lir2,r1,r3(z2, z1, z3)

+ Lir2,r3,r1(z2, z3, z1) + Lir3,r1,r2(z3, z1, z2) + Lir3,r2,r1(z3, z2, z1)

+ Lir1,(r2+r3)(z1, z2z3) + Lir2,(r1+r3)(z2, z1z3) + Lir3,(r1+r2)(z3, z1z2)

+ Li(r1+r2),r3(z1z2, z3) + Li(r1+r3),r2(z1z3, z2) + Li(r2+r3),r1(z2z3, z1)

+ Lir1+r2+r3(z1z2z3).

0.2.1 Other definitions of multiple polylogarithms

There exist different forms of the definition of multiple polylogarithms, which are

given different notation in literature. Definition 0.3 has been given first as it is the

one that most intuitively follows from logarithms. However, in this thesis we will

0.2. Definition of multiple polylogarithms 5

use a definition of a multiple polylogarithm defined using an iterated integral. First

we define a multiple logarithm.

Definition 0.6. A multiple logarithm is defined by an iterated integral, for xi ∈

C, to be

I(x0;x1, . . . , xm;xm+1) =

∫
x0≤t1≤...≤tm≤xm+1

dt1
t1 − x1

∧ . . . ∧ dtm
tm − xm

.

Definition 0.7. A weight w multiple polylogarithm, Ir1,...,rs(x1, . . . , xs) is defined,

in terms of a multiple logarithm, to be

Ir1,...,rs(x1, . . . , xs) := I(0;x1, 0, . . . , 0︸ ︷︷ ︸
r1−1

, x2, 0, . . . , 0︸ ︷︷ ︸
r2−1

, . . . , xs, 0, . . . , 0︸ ︷︷ ︸
rs−1

; 1).

The above definition of a multiple logarithm and multiple polylogarithm appear in

[Gon98] on page 5.

Remark 0.8. We note that on page 8 of [Gon01] that a multiple polylogarithm is

sometimes known as a hyperlogarithm. We also see from the same paper that since

I(x0;x1, . . . , xm;xm+1) is invariant under the affine transformation xi → αxi + β we

have

I(x0;x1, . . . , xm;xm+1) = I(x0 − x0;x1 − x0, . . . , xm − x0;xm+1 − x0)

= I(0; a1, . . . , am; am+1)

for ai = xi − x0.

Another definition of a multiple polylogarithm, which is often the notation used in

physics is the function G(a1, . . . , an;x) (where the ‘G’ is either a reference to ‘Gon-

charov’ or ‘generalised’). It is almost identical to the definition of I(x0;x1, . . . , xm;xm+1)

and Ir1,...,rs(x1, . . . , xs) but has reordered variables.

Definition 0.9. We define

G(a1, . . . , an;x) := I(0; an, . . . , a1;x)

Gm1,...,mk
(t1, . . . , tk) := G(0, . . . , 0︸ ︷︷ ︸

m1−1

, t1, . . . , 0, . . . , 0︸ ︷︷ ︸
mk−1

, tk; 1)

= Imk,...,m1(tk, . . . , t1).

0.2. Definition of multiple polylogarithms 6

The functions G and I are also very similar to Li. We give the following Theorem

from pages 9-10 of [Gon01] to establish the link (a similar proof, specifically for

Li1,1(x, y) appears in [Gon97]).

Theorem 0.10.

Lim1,...,mk
(x1, . . . , xk) = (−1)k Im1,...,mk

(
1

x1 · · ·xk
, . . . ,

1

xk

)
= (−1)kGmk,...,m1

(
1

xk
, . . . ,

1

x1 · · ·xk

)

Proof. (Sketch) We would like to prove, for w =
∑
mi that

Lim1,...,mk
(x1, . . . , xk)

= (−1)k
∫

0≤t1≤...≤tm≤1

dt1
t1 − (x1 · · ·xk)−1

∧ dt2
t2
∧ · · · ∧ dtm1

tm1︸ ︷︷ ︸
m1−1

∧ . . .

. . . ∧
dt(w−mk+1)

t(w−mk+1) − x−1
k

∧
dt(w−mk+2)

t(w−mk+2)

∧ · · · ∧ dtw
tw︸ ︷︷ ︸

mk−1

.

We now use

dt

t− a
= −1

a

(
1

1− t
a

)
dt = −1

a

∑
m≥0

(
t

a

)m
dt = −

∑
m≥1

(
t

a

)m
dt

t

and integrate the right hand side termwise. For example, for k = 2, the right hand

side,

(−1)2

∫
0≤t1≤···≤tm1+m2≤1

dt1
t1 − (x1x2)−1

∧ dt2
t2
∧ . . . ∧ dtm1

tm1︸ ︷︷ ︸
m1−1

∧ dtm1+1

tm1+1 − x−1
2

∧ dtm1+2

tm1+2

∧ · · · ∧ dtm1+m2

tm1+m2︸ ︷︷ ︸
m2−1

,

becomes

(−1)4

∫
0≤t1≤···≤tm1+m2≤1

∞∑
n1=1

(x1x2t1)n1
dt1
t1
∧ . . . ∧ dtm1

tm1︸ ︷︷ ︸
m1−1

∧
∞∑

n2=1

(x2tm1+1)n2
dtm1+1

tm1+1

∧ · · · ∧ dtm1+m2

tm1+m2︸ ︷︷ ︸
m2−1

.

0.2. Definition of multiple polylogarithms 7

After integration termwise this becomes∑
n1,n2>0

xn1
1 x

n1+n2
2

nm1
1 (n1 + n2)m2

=
∑

r2>r1>0

xr11 x
r2
2

rm1
1 rm2

2

= Lim1,m2(x1, x2).

The proof for k > 2 works in an entirely similar way.

Remark 0.11. We will mainly use the function I throughout this thesis and refer to

it as a multiple polylogarithm (as justified by Theorem 0.10). We use I for reasons

of simplicity that become apparent in Chapter 1 when attaching a labelled polygon

to a multiple polylogarithm.

0.2.2 Linear combinations of multiple polylogarithms

The main objects of this thesis are linear combinations of multiple polylogarithms

with rational coefficients. We define these to lie in an algebra I•(S) for a set S (as

Goncharov gives on page 9 of [Gon05]).

Definition 0.12. We define I•(S), for a set S, to be the commutative Q-algebra

generated by the elements

Ir1,...,rs(x1, . . . , xs) for
s∑
i=1

ri = w and xi ∈ S.

We denote by Iw(S), for a fixed weight w, the vector space generated as follows.

Iw(S) =

〈∏
i

Iri,1,...,ri,s(xi,1, . . . , xi,s)

∣∣∣∣∣ xi,j ∈ S, ∑
i,j

ri,j = w

〉
.

Remark 0.13. In [Gon05], Goncharov also gives a Hopf algebra structure to I•(S)

and so is equipped with comultiplication. As we will not use this, the interested

reader is referred to the paper for more information.

In this thesis we concentrate on linear combinations of multiple polylogarithms with

rational coefficients of a fixed weight, w, which lie in Iw(S). Typically we will

take the set S to be rational functions on (normally one or two) complex variables.

Therefore, we will be interested in terms of the form∑
i

qiIr1,...,rs(X1, . . . , Xs) ∈ Iw(S)

0.3. Summary of Chapters 8

where qi ∈ Q and
s∑

k=1

rk = w and

Xi ∈ S = Q(x1, . . . , xt), for xj ∈ C.

We will avoid products of multiple polylogarithms, as seen in the stuffle relations

above.

Example 0.14. The following are examples from I•(S) (where we fix the grading).

• I1,2(x, y) + I1,1,1(x, y, z) + I1(x)I1(y)I1(z) + I2(xz)I1(y) ∈ I3(S).

• I4(x) + I1,2,1(x, y, z) + I1(x)I3(yz) ∈ I4(S).

However we will be more interested in elements, as described above, where we do

not include products of multiple polylogarithms (while still fixing the grading), i.e.,

such as

• I2,1(x, y) + I1,1,1(x, y, z) + I3(xyz) ∈ I3(S),

• I4(xy) + I1,2,1(x, y, z) + I1,3(x, yz) ∈ I4(S).

0.3 Summary of Chapters

We begin, in Chapter 1, by presenting an overview of the symbol map, both in

the form of its first appearance by Goncharov in [Gon05] and in the form given by

Gangl, Goncharov and Levin in [GGL09].

We then introduce, in Chapter 2, a new way of viewing the calculation of the symbol

of a multiple polylogarithm, namely the hook-arrow tree. The hook-arrow tree can

be used to calculate the symbol map on a computer (e.g. using the computer package

GP/Pari [PAR11]).

Chapter 3 gives bijections between different pictorial methods of finding the symbol;

the binary trees from [Gon05], polygon dissections from [GGL09], and hook-arrow

trees and ternary trees presented here.

0.3. Summary of Chapters 9

In Chapter 4 we use hook-arrow trees to give a method for simplifying the calculation

of the symbol for multiple polylogarithms with a given depth and construct a general

formula explicitly for the symbol of all depth 2 and 3 multiple polylogarithms. The

full symbol for I2,2,2(x, y, z) is given in Appendix C. Using a similar method, in

Chapter 5, we give the general form of the symbol for a specific class of multiple

polylogarithms, namely coloured multiple zeta values. This result appears in a

preprint of a paper, [DGR11], written with C Duhr and H Gangl.

We are then able to find new linear combinations of multiple polylogarithms in the

kernel of the symbol that would otherwise be too lengthy to calculate by hand, by

using a method outlined in Appendix A. We give these in Chapters 6 and 7. In

Chapter 6 we give linear combinations of harmonic polylogarithms, a specific class

of polylogarithms particularly useful in particle physics, that are in the kernel of the

symbol map. In Chapter 7 we give further linear combinations in the kernel of the

symbol, in one and two variables, for general multiple polylogarithms.

The symbol map takes multiple polylogarithms to elements in the ‘maximal part’

of a bar construction (to be discussed in Section 1.4). Appendix B proposes the

equivalent method to hook-arrow tree for finding non-maximal parts of the bar

construction.

Chapter 1

The symbol of a multiple

polylogarithms via binary trees

and polygon dissection

The symbol attached to a multiple polylogarithm is an algebraic object which con-

tains important combinatorial and analytical data about the function. Instead of

comparing multiple polylogarithms directly, we instead apply the symbol map and

compare their representatives in the image, which is considerably easier, though still

far from trivial. Conjecturally, any functional equation between multiple polylog-

arithms must be in the kernel of the symbol map (a priori, there could exist, for

example, functional equations between multiple polylogarithms of different weights,

that the symbol map would not see, but these are widely conjectured not to exist).

In this chapter we will give a method for finding the symbol of a multiple polylogar-

ithm by dissecting polygons. The description of polygon dissection in this chapter

is adapted mainly from the papers [GGL09] and [DGR11]. However, after briefly

introducing some basic tensor calculus, we will first give an outline of an earlier

description of the symbol (under the name ‘⊗m-invariant’) given by Goncharov in

[Gon05] via a binary (or plane trivalent rooted) tree. The two descriptions are given

in different forms but are nevertheless equivalent up to regrouping of terms. We

10

1.1. Tensor algebra and notation conventions 11

relate the two in Chapter 3.

We then give an explanation as to why we chose the symbol to represent a multiple

polylogarithm, and finally give an example of an element in the kernel of the symbol

map.

1.1 Tensor algebra and notation conventions

The symbol will be defined in terms of a formal linear sum of elementary tensors.

We overview tensor products now and set some notation conventions that will be

used for the rest of the thesis. For readers accustomed with tensor products, the

author recommends skipping to Section 1.2.

Definition 1.1. The tensor product of R-modules (V,+V , ·RV) and (W,+W , ·RW)

is defined by

V ⊗RW :=
〈v ⊗R w | v ∈ V, w ∈ W 〉

〈relations〉
where the relations are bilinearity and multiplication by elements of R:

(a+V b)⊗R c = a⊗R c+ a⊗R c,

a⊗R (c+W d) = a⊗R c+ a⊗R d,

(r ·RV a)⊗R c = a⊗R (r ·RV c) = r ·R V (a⊗R c),

where a, b ∈ V , c, d ∈ W and r ∈ R. We allow formal addition of tensor products.

We will only be concerned with tensor products of Z-modules. We will, for ease of

notation, denote ⊗ = ⊗Z. In this thesis, where elements of V will be in C×, we will

take

a+V b = ab.

So, for example, the first and second relations above will take the form

ab⊗ c = a⊗ c+ b⊗ c,

a⊗ bc = a⊗ b+ a⊗ c.

1.1. Tensor algebra and notation conventions 12

We take the operation ·Z on the module for a, b,∈ (V,+V , ·ZV) and r ∈ Z to be

r ·ZV a = a+V . . .+V a︸ ︷︷ ︸
r times

= ar.

So, the third relation above will take the form

ar ⊗ b = a⊗ br = r(a⊗ b).

Proposition 1.2. The following hold for a, b ∈ Q and n ∈ Z.

1. 1⊗ a = a⊗ 1 = 0.

2. For Z-modules, the relation on multiplication by elements of Z follows from

bilinearity.

Proof. 1. Directly from the definition of a tensor product we see that

1⊗ a = (1 · 1)⊗ a = 1⊗ a+ 1⊗ a

hence 1⊗ a = 0. The same method also gives a⊗ 1 = 0.

2. For n > 0 we see that by repeated applications of the first relation from the

definition of the tensor product then

an ⊗ b = (a⊗ b) + . . .+ (a⊗ b)︸ ︷︷ ︸
n times

= n(a⊗ b).

By part 1, the case n = 0 holds trivially. For n < 0 we see that

an ⊗ b+ a−n ⊗ b = 1⊗ b = 0

an ⊗ b = −a−n ⊗ b,

so, since −n > 0, we have that

an ⊗ b = n(a⊗ b).

Again, the proof for a⊗ bn = n(a⊗ b) works the same.

1.1. Tensor algebra and notation conventions 13

Remark 1.3. As a consequnce of statement 2 of Proposition 1.2, for the rest of this

thesis, a tensor product of Z-modules V and W is assumed to be

V ⊗W :=
〈v ⊗ w | v ∈ V, w ∈ W 〉

〈relations〉

where the relations are

ab⊗ c = a⊗ c+ a⊗ c,

a⊗ cd = a⊗ c+ a⊗ d,

for a, b ∈ V and c, d ∈ W .

Example 1.4. We give a very basic illustrative example of tensor algebra.

(4⊗ 3) + 2(2⊗ 2) + (1
4
⊗ 6) = (4⊗ 3) + (4⊗ 2)− (4⊗ 6)

= (4⊗ 6)− (4⊗ 6)

= 0.

Remark 1.5. We note here that tensor algebra defined this way will act much like

products of logarithms. We note the similarities (except for tensor products not

being commutative) between

ab⊗ c = a⊗ c+ b⊗ c,

a⊗ cd = a⊗ c+ a⊗ d
and

ln(ab) ln(c) = ln(a) ln(c) + ln(b) ln(c),

ln(a) ln(cd) = ln(a) ln(c) + ln(a) ln(d).

The symbol of a multiple polylogarithm will be defined in terms of tensor products;

the above similarity between tensor calculus and logarithms is very indicative of the

association between symbol and multiple polylogarithm.

Finally, we extend the definition of a tensor product to allow tensor products of

more than two Z-modules, so we typically consider elements

v1 ⊗ · · · ⊗ vn for vi ∈ Vi

for Z-modules Vi. The definition extends naturally and one imposes multilinearity.

1.1. Tensor algebra and notation conventions 14

1.1.1 Shuffle product

We will often have situations where we sum a⊗ b and b⊗ a. We make the following

definition to simplify notation.

Definition 1.6. We define the shuffle product, �, to be

a� b := a⊗ b+ b⊗ a

The following two examples demonstrate shuffling tensor products.

Example 1.7.

a� (b⊗ c) = a⊗ b⊗ c+ b⊗ a⊗ c+ b⊗ c⊗ a.

Example 1.8. A triple shuffle takes the form

a� b� c = a⊗ b⊗ c+ a⊗ c⊗ b

+ b⊗ a⊗ c+ b⊗ c⊗ a

+ c⊗ a⊗ b+ c⊗ b⊗ a.

1.1.2 2-torsion of tensor products and notation conventions

In this thesis, tensor products are considered equal when they are equivalent up to

2-torsion. By this we mean to say that

a1 ⊗ . . .⊗ (−ai)⊗ . . .⊗ an
2-torsion

= a1 ⊗ . . .⊗ ai ⊗ . . .⊗ an

because

2
(
a1 ⊗ . . .⊗ (−ai)⊗ . . .⊗ an

)
=a1 ⊗ . . .⊗ (−ai)2 ⊗ . . .⊗ an

=a1 ⊗ . . .⊗ a2
i ⊗ . . .⊗ an

=2
(
a1 ⊗ . . .⊗ ai ⊗ . . .⊗ an

)
.

We could multiply every tensor product throughout by a factor of 2 or always write

‘
2-torsion

= ’ during tensor calculus, but for convenience of notation, we simply use ‘=’

with the understanding that the calculations work up to 2-torsion.

1.2. Outline of the symbol from binary trees 15

We now establish some notation on tensors and shuffle products. We will often meet

tensor products of the form

(a⊗ ...⊗ a︸ ︷︷ ︸
b

),

to simplify this we introduce the notation

a⊗b := (a⊗ ...⊗ a︸ ︷︷ ︸
b

).

Since we will have many nested brackets, we establish the notation convention that

a shuffle product is ‘stronger’ than a tensor product, so we understand

a⊗ b� c = a⊗ (b� c).

Finally, to avoid confusion, we take

a⊗b� c⊗d := (a⊗ ...⊗ a︸ ︷︷ ︸
b

)� (c⊗ ...⊗ c︸ ︷︷ ︸
d

).

We now define the wedge product, which we will use occasionally; an anticommut-

ative version of the tensor product.

Definition 1.9. The wedge product of Z-module V with itself is defined, in terms

of the tensor product, as

V ∧ V :=
V ⊗ V

< a ∧ b+ b ∧ a for a, b ∈ V >
.

We note that, as a direct consequence, we have that a ∧ a = −(a ∧ a) = 0 for all

a ∈ V . We will also work modulo 2-torsion for wedge products (in the same way as

for tensor products).

1.2 Outline of the symbol from binary trees

We now briefly outline the definition of the symbol of a multiple polylogarithm from

[Gon05]. We begin by defining a binary tree.

Definition 1.10. We define a binary tree to be a trivalent rooted plane tree.

1.2. Outline of the symbol from binary trees 16

By trivalent we mean that every vertex of the tree has either valency 3 (and is an

internal vertex) or valency 1 (and is an external vertex). By rooted we mean that

one external vertex of the tree is distinguished as the root. We picture a binary

tree as being embedded in a plane, growing down from its root (which due to being

trivalent will be a planted tree) to a baseline (a helpful pictorial tool, but strictly

speaking not part of the tree). All external vertices of the binary tree lie on the

baseline, except the root vertex, and since the tree is embedded in a plane and they

are given a strict order (in this thesis this will be from left to right on the baseline).

Definition 1.11. A binary tree, T , with n + 2 external vertices is said to be dec-

orated if the sections of the baseline cut out by the external vertices (except for

the root vertex) are labelled anticlockwise, starting with the section after the root,

with an ordered set (a0, . . . , an+1) for distinct ai ∈ A1, where A1 is the affine line.

The n + 2 distinct points (the ai) will label the sections of the baseline cut out by

the external vertices of the binary tree.

Example 1.12. A binary tree, T , with 5 external vertices, decorated by the ordered

set (a0, . . . , a4) can be viewed as the following.

a0 a1 a2 a3 a4

1.2.1 Attaching a symbol to the binary tree

We note that, by viewing the root vertex to be extended to infinity and the baseline

to also be extended to infinity (in both directions), the tree cuts out domains of

the upper half plane. These domains obtain a unique label from the decoration

(a0, . . . , an+1). A nice way to consider this is to view it in an upper half plane model

1.2. Outline of the symbol from binary trees 17

of hyperbolic space, where the root vertex is the point at infinity and the baseline

is the real line.

Example 1.13. The labelling of domains as described above, gives the following

diagram for the tree in Example 1.12.

a0 a1

a2

a3

a4

There exists a canonical partial ordering on the internal vertices of the tree dictated

by distance from the root. We say that v1 ≺ v2 if and only if a direct path exists

from v2 to the root that passes through v1. A strict order, (vi1 , . . . , vin) on the

internal vertices {v1, . . . , vn} is compatible with the partial ordering if vij ≺ vik for

all 1 ≤ j < k ≤ n.

Each internal vertex, v, of the tree lies at the apex of three domains, which we

call ∆v
1,∆

v
2,∆

v
3. The order of the labelling of these domains is dictated by a natural

anticlockwise direction on the plane. The first domain, ∆1 lies directly anticlockwise

of the edge connecting v to the closest vertex to the root (in the partial ordering).

We let a∆1 , a∆2 , a∆3 be the labels corresponding to ∆v
1,∆

v
2,∆

v
3 and define

fTv :=
a∆3 − a∆2

a∆1 − a∆2

∈ Q(a0, . . . , an+1) for ai ∈ A1. (1.1)

Example 1.14. For the binary tree, T , in Example 1.12 there is only one compatible

strict ordering on the 3 internal vertices, (v1, v2, v3), shown on the following diagram:

1.2. Outline of the symbol from binary trees 18

v1

v2

v3

a0 a1 a2 a3 a4

We have that

fTv1 =
a4 − a1

a0 − a1

, fTv2 =
a4 − a3

a1 − a3

, and fTv3 =
a3 − a2

a1 − a2

.

We now define the ⊗m-invariant of a multiple logarithm (which appears on pages

22-23 of [Gon05], though is slightly adapted such that a0 = 0 and an+1 = 1). This

foreshadows the definition of the symbol, which we will give next.

Definition 1.15. We attach to a weight-m multiple logarithm I(0;x1, . . . , xm; 1)

the ⊗m-invariant given by ∑
T

∑
{v1,...,vm}

fTv1 ⊗ · · · ⊗ f
T
vm

where the first summation runs over all binary trees with m + 2 external vertices,

decorated with the distinct labels {0, x1, . . . , xm, 1} and the second summation runs

over all strict orders of internal vertices compatible with T .

We now extend this definition to allow for non-distinct arguments of the multiple

logarithm. We do this by extending the definition of fTv from Equation (1.1) to

gTv :=


a∆3 − a∆2

a∆1 − a∆2

if a∆i
6= a∆j

for all i, j

1 if a∆i
= a∆j

for some i, j
(1.2)

where ai ∈ A1. This allows us to define the symbol of a multiple polylogarithm.

Definition 1.16. We attach, to a weight w multiple polylogarithm Ir1,...,rs(x1, . . . , xs),

the symbol given by

S(Ir1,...,rs(x1, . . . , xs)) :=
∑
T

∑
{v1,...,vw}

gTv1 ⊗ · · · ⊗ g
T
vw

1.2. Outline of the symbol from binary trees 19

where the first summation runs over all binary trees with w + 2 external vertices,

decorated with the ordered labels

(0, x1, 0, . . . , 0︸ ︷︷ ︸
r1−1

, x2, 0, . . . , 0︸ ︷︷ ︸
r2−1

, . . . , xs, 0, . . . , 0︸ ︷︷ ︸
rs−1

, 1),

and the second summation runs over all strict orders of internal vertices (v1, . . . , vw)

compatible with T . The symbol lies in the space

w⊗
i=1

Q(x1, . . . , xs)
∗

where here Q(x1, . . . , xs)
∗ denotes the multiplicative group of the invertible elements

of Q(x1, . . . , xs).

Remark 1.17. We note that when a binary tree contains a vertex which is at the

apex of two domains with the same label, then the respective gTv = 1, and therefore

that term in the symbol, will not contribute due to statement 1 of Proposition 1.2.

An equivalent way to view terms not contributing to the symbol due to non-distinct

labels (rather than through the definition of gTv = 1) is to consider these terms to

be given a coefficient of zero.

Example 1.18. When finding the symbol of a weight 3 multiple polylogarithm, say

I1,1,1(x1, x2, x3), using the above definition, we will sum over all binary trees with

5 external vertices. These are shown below; the first being the tree from Example

1.12.

0 x1 x2 x3 1 0 x1 x2 x3 1 0 x1 x2 x3 1

1.3. Defining the symbol from polygon dissection 20

0 x1 x2 x3 1 0 x1 x2 x3 1

Giving the terms in the order of the binary trees above, and noting that there are

two possible strict orders compatible with the partial order on the internal vertices

of the third tree (shown with a shuffle), we find the symbol, S(I1,1,1(x1, x2, x3)) to

be

= +

(
1− x1

−x1

⊗ 1− x3

x1 − x3

⊗ x3 − x2

x1 − x2

)
+

(
1− x3

−x3

⊗ x3 − x1

−x1

⊗ x3 − x2

x1 − x2

)

+

(
1− x2

−x2

⊗ x2 − x1

−x1

�

1− x3

x2 − x3

)
+

(
1− x3

−x3

⊗ x3 − x2

−x2

⊗ x2 − x1

−x1

)

+

(
1− x1

−x1

⊗ 1− x2

x1 − x2

⊗ 1− x3

x2 − x3

)
.

We now, in the next section, define the symbol using polygon dissection. While the

definition of the symbol using binary trees and polygon dissection are equivalent,

they differ slightly in their approach. As mentioned, the differences are discussed in

Chapter 3, and a proof is given that they really do give the same symbol.

1.3 Defining the symbol from polygon dissection

1.3.1 Associating a polygon to a multiple polylogarithm

We begin by defining an algebra of R-decorated polygons (as defined on page 563

of [GGL09]). We will soon associate an n-gon of this form with n = w + 1 sides to

a weight w multiple polylogarithm.

Definition 1.19. An R-decorated polygon, with n sides given by

P (a1, . . . , an)

1.3. Defining the symbol from polygon dissection 21

is a polygon where an orientation (always given anticlockwise in this thesis) is given

by designating a first vertex (drawn with an enlarged ‘dot’) and a final side (drawn

with a ‘double line’). The sides are labelled, beginning with the first side, by

a1, . . . , an from a set R. We do not label the vertices, but due to the designation of

a first vertex they are understood to have an order v1, . . . , vn.

a1

a2

an−1

an

Definition 1.20. The graded vector space of polygons is given by

V pg
• (R) :=

∞⊕
n=0

V pg
n (R)

where V pg
n (R) is the Q-vector space of R-decorated (n + 1)-gons for n ≥ 1 and

V pg
0 (R) := Q.

Definition 1.21. We call the exterior algebra on the graded vector space of poly-

gons, with decorations in R, the polygon algebra and denote it by P•• = P•• (R).

The algebra is bigraded. The first grading (denoted with a subscript) comes from

summing the number of non-root sides of the polygons in each product. The second

grading (denoted with a superscript) comes from the exterior power.

We note that we will sometimes drop the second grading (the exterior power) from

the notation. We demonstrate the two gradings of the polygon algebra in the fol-

lowing example.

Example 1.22. Some simple examples follow.

1.3. Defining the symbol from polygon dissection 22

1.

∗

∗

∗

∗

∈ P1
3 .

2.
∗

∗ ∗ ∧
∗

∗

∈ P2
3 .

3.
∗

∗ ∗ ∧

∗

∗ ∗ ∈ P2
4 .

4.
∗

∗

∧
∗

∗

∧
∗

∗

∈ P3
3 .

An R-decorated (w+1)-gon is associated to a weight w multiple polylogarithm (with

arguments in a given set R) by associating

Im1,...,mw(x1, . . . , xw) := I(0;x1, 0, . . . , 0︸ ︷︷ ︸
m1−1

, x2, 0, . . . , 0︸ ︷︷ ︸
m2−1

, . . . , xw, 0, . . . , 0︸ ︷︷ ︸
mw−1

; 1)

to

P (x1, 0, . . . , 0︸ ︷︷ ︸
m1−1

, x2, 0, . . . , 0︸ ︷︷ ︸
m2−1

, . . . , xw, 0, . . . , 0︸ ︷︷ ︸
mw−1

, 1).

Example 1.23. The multiple polylogarithm I3,1(x, y) is associated to the polygon

P (x, 0, 0, y, 1) given by

x

0 0

y

1

1.3. Defining the symbol from polygon dissection 23

1.3.2 Adding dissecting arrows to a polygon

We now describe a process of dissecting decorated rooted n-gons into products of

polygons with fewer sides. After fully dissecting we will be left with 2-gons (which

cannot be dissected further), of which there will be n− 1, with a partial order. We

will see how there are options as to how to dissect the polygon; the symbol will arise

from formally adding these options under an algebraic interpretation.

We now define how to dissect a polygon. This is achieved by adding arrows, which

we now define.

Definition 1.24. Let π = P (a1, . . . , an) be an R-decorated polygon with vertices

v1, . . . , vn as in Definition 1.19. An arrow, α, associates a vertex to a non-adjacent

side where

vi is considered to be adjacent to

 a1 and an for i = 1,

ai−1 and ai for i = 2, . . . n.

An arrow from vi to the side labelled aj is said to be backwards if i > j and

forwards if i < j.

Definition 1.25. A dissection of a polygon, π = P (a1, . . . , an) corresponds to

an arrow, α, from vertex vi to side aj. A polygon is dissected into two polygons

given by

π1 = P (a1, . . . , ai−1, aj, . . . , an) and π2 = P (ai, . . . , aj)

if α is a forwards arrow and

π1 = P (a1, . . . , aj, ai, . . . , an) and π2 = P (ai−1, . . . , aj)

if α is a backwards arrow. It is important to note that, in the case of a backwards

arrow, the sides on the polygon π2 = P (ai−1, ai−2, . . . , aj) are now in a different

order to that of the original polygon.

We now define the sign of a polygon dissection.

1.3. Defining the symbol from polygon dissection 24

Definition 1.26. Let α be an arrow on a polygon π. We define its sign to be

sgn(α) :=

 (−1)χ(α) if α is backwards

1 otherwise

where χ(α) is defined to be the number of non-root edges of polygon π2 from Defin-

ition 1.25.

The above definitions are best understood via an example.

Example 1.27. We start with a 4-gon given by P (a1, . . . , a4) and add a dissecting

arrow, α1, from v2 to a3. This will leave us with polygons P (a1, a3, a4) and P (a2, a3).

If we draw this we see

a1

a2

a3

a4

is dissected to
a4

a1 a3
and

a3

a2

which is an example of a forwards arrow with sgn(α1) = 1. If instead we dissect

P (a1, . . . , a4) by an arrow, α2, from v4 to a2 we are left with polygons P (a1, a3, a4)

and P (a2, a3). If we draw this we see

a1

a2

a3

a4

1.3. Defining the symbol from polygon dissection 25

is dissected to

a4

a1 a2
and

a2

a3

which is a backwards arrow with with sgn(α2) = −1.

Remark 1.28. The best way to see intuitively the inheritance of first vertex and final

edge is as follows. The original first vertex or final side of the polygon to be dissected

are always retained in any subsequent ‘sub-polygons.’ If these are not present then

the vertex at the base of the arrow or the side at the head of the arrow take the

respective roles of first vertex or final side.

1.3.3 Maximal dissections

Definition 1.29. A maximal dissection, ρ, of a polygon P (a1, . . . , an) is a set of

(n− 2) distinct, non-crossing, dissecting arrows.

For a maximal dissection, ρ, we define an overall sign, which, in a slight abuse of

notation, we also denote by sgn(ρ).

Definition 1.30. Let ρ be a maximal dissection of a polygon. The sign of the

dissection is defined to be

sgn(ρ) := (−1)#{backwards arrows}.

Remark 1.31. This definition of the sign of a maximal dissection comes from the

sign of the dissection arising from each individual arrow. In fact we have that

sgn(ρ) =
∏

backwardsα∈ρ

(−1)χ(α),

where χ(α) is defined to be the number of non-root edges of polygon π2 from Defin-

ition 1.25 (when ignoring all other arrows in ρ).

1.3. Defining the symbol from polygon dissection 26

We give maximal dissections of a 3-gon and 4-gon.

Example 1.32. There are 3 possible maximal dissections of a 3-gon, given by the

following.

a3

a1 a2

a3

a1 a2

a3

a1 a2

sign = + 1 sign = + 1 sign = − 1

There are 12 possible maximal dissections of a 4-gon, given by the following.

a1

a2

a3

a4

a1

a2

a3

a4

a1

a2

a3

a4

a1

a2

a3

a4

sign = + 1 sign = + 1 sign = − 1 sign = + 1

a1

a2

a3

a4

a1

a2

a3

a4

a1

a2

a3

a4

a1

a2

a3

a4

sign = + 1 sign = + 1 sign = − 1 sign = + 1

a1

a2

a3

a4

a1

a2

a3

a4

a1

a2

a3

a4

a1

a2

a3

a4

sign = + 1 sign = − 1 sign = − 1 sign = − 1

A maximal dissection will dissect a polygon into 2-gons. Before we discuss these

2-gons we add a rooted ‘dual tree.’ This tree will put a partial order on the 2-gons

and is formally defined as follows.

1.3. Defining the symbol from polygon dissection 27

Definition 1.33. The dual tree of a maximal polygon dissection is a rooted

tree with a vertex representing each dissected region (the dissected regions will

become 2-gons). Two vertices of the dual tree are connected if they share the same

arrow on the boundary of the region. The root of the dual tree is defined to be the

region containing both the first vertex and (at least part of) the final side on its

boundary, this will be unique by construction.

Example 1.34. We give the dual tree for a few of the maximal dissections from

Example 1.32. The root of the tree is shown with an circle around the vertex.

a3

a1 a2

a3

a1 a2

a1

a2

a3

a4

a1

a2

a3

a4

We now describe a partial order on the 2-gons of a maximal dissection, dictated by

the dual tree.

Definition 1.35. The partial order, ≺, on a tree is defined as follows. Let v0 be

the root of the tree. A vertex vi comes after the root vertex, written v0 ≺ vi for all

i 6= 0. Then vi ≺ vj, with i 6= 0 if and only if there is a direct path through the tree

from v0 to vj passing through vi.

Definition 1.36. A strict order, v0 < vi1 < . . . < vir , on a tree is said to be

compatible with the partial order, ≺, on a tree if

vij < vik =⇒ vij ≺ vik for all ij, ik.

Example 1.37. The tree

v0 v1 v2 v3

1.3. Defining the symbol from polygon dissection 28

has partial order of v0 ≺ v1 ≺ v2 ≺ v3. This has only one compatible strict ordering,

namely v0 < v1 < v2 < v3. However, the tree

v1 v0 v2 v3

has partial order dictated by v0 ≺ v1 and v0 ≺ v2 ≺ v3. There are three possible

strict orderings compatible with this partial order:

v0 < v1 < v2 < v3, v0 < v2 < v1 < v3 and v0 < v2 < v3 < v1.

We can think of v1 as being ‘shuffled’ through v2 and v3.

When we ‘retract’ the arrows in a maximal polygon dissection to form 2-gons we are

left with a set of strict orderings (which are compatible with the partial ordering on

the dual tree) of the 2-gons.

Example 1.38. The following 4-gons are associated to the following strict orderings

on 2-gons.

a1

a2

a3

a4

gives only

a4

a1

<

a4

a2

<

a4

a3

a1

a2

a3

a4

gives either

a4

a2

<

a2

a1

<

a4

a3

or

a4

a2

<

a4

a3

<

a2

a1

1.3. Defining the symbol from polygon dissection 29

1.3.4 Definition of the symbol

Definition 1.39. We define a map µ which associates each 2-gon with a rational

function on the labels of the original polygon by

µ


y

x

 :=



1− y
x

when x, y are distinct and non-zero,

y when x ≡ 0, and y non-zero

1
y

when x ≡ y and are non-zero

1 otherwise.

This map will serve a very similar purpose to the function gTv defined in Equation

(1.2).

Remark 1.40. We note that we will rarely use that µ(P (y, y)) = 1/y (where y 6≡ 0)

as we will mostly use multiple polylogarithms with distinct arguments (where 2-gons

of this form do not occur).

We now define the symbol of a multiple polylogarithm (this time found by polygon

dissection).

Definition 1.41. The symbol of a weight w multiple polylogarithm

Im1,...,mr(x1, . . . xr),

written

S(Im1,...,mr(x1, . . . xr))

is found by first associating

Im1,...,mw(x1, . . . , xw) to P = P (x1, 0, . . . , 0︸ ︷︷ ︸
m1−1

, x2, 0, . . . , 0︸ ︷︷ ︸
m2−1

, . . . , xw, 0, . . . , 0︸ ︷︷ ︸
mw−1

, 1)

and then

S(Im1,...,mr(x1, . . . xr)) :=

∑
ρ

sgn(ρ)
∑

Strict orders compatible
with the dual tree of P

µ

 ∗

∗

⊗ · · · ⊗ µ
 ∗

∗


where the first summation runs over all maximal dissections, ρ of P .

1.3. Defining the symbol from polygon dissection 30

We note that, in a similar way to Remark 1.17, when the map µ takes a 2-gon to the

value 1, then the resulting term does not contribute to the symbol (or equivalently

is ‘given a coefficient of zero’).

The bijection between this symbol definition and the binary tree version (in Defini-

tion 1.16) is given in Chapter 3. We now give an illustrative example.

Example 1.42. We give the symbol of I1,1(x, y). The function is related to the

3-gon

1

x y

We have already seen all possible dissections of a 3-gon in Example 1.32. The symbol

follows:

S(I1,1(x, y)) = +

µ
 1

y

⊗ µ
 y

x


+

µ
 1

x

⊗ µ
 1

y




−

µ
 1

x

⊗ µ
 x

y


= +

((
1− 1

y

)
⊗
(
1− y

x

))
+
((

1− 1
x

)
⊗
(
1− 1

y

))
−
((

1− 1
x

)
⊗
(
1− x

y

))
We will see further simple examples of symbols in Section 2.5, including observing

the similarities between S(I2(x)) and S(I1,1(x, y)).

Remark 1.43. When there are more than one strict orderings on the dual tree, instead

of writing out every possibility we can use the shuffle notation, a� b = a⊗ b+ b⊗ a

defined in Section 1.1.

1.4. Why choose the symbol to represent multiple polylogarithms? 31

1.3.5 The symbol of products of multiple polylogarithms

The symbol preserves products of multiple polylogarithms. The symbol map takes

a product of two multiple polylogarithms to the shuffle of their symbols, i.e.,

S
(
Im1,...,mr(x1, . . . xr) · In1,...,ns(y1, . . . ys)

)
= S

(
Im1,...,mr(x1, . . . xr)

)
� S

(
In1,...,ns(y1, . . . ys)

)
.

We note, however, that this thesis will not concentrate on symbols of products of

multiple polylogarithms. We will focus on finding linear combinations of multiple

polylogarithms in the kernel of the symbol. The interested reader is referred to

[DGR11] where products play a more important role.

1.4 Why choose the symbol to represent multiple

polylogarithms?

As described in the literature (for example in [Gon01] and [Gon05]), the symbol,

originally constructed by Goncharov, has been chosen as a useful representative of

multiple polylogarithms as it both holds a great deal of the differential structure of

the polylogarithm while being convenient to work with. The tensor calculus that

results from comparing symbols, whilst sometimes lengthy, is much easier to work

with than comparing the multiple polylogarithms directly (and analytically).

Objects similar to the symbol appear in research on algebraic cycles. In a similar

way to attaching the symbol to multiple polylogarithms, a topic of interest is finding

algebraic cycles that ‘represent’ polylogarithms (often referred to as Bloch-Kriz-

Totaro cycles). The reader is directed to the paper [BK95]. The ‘boundaries’ of these

cycles (in particular the cycles representing weight 2 multiple polylogarithms) bear

a very strong similarity to the symbol. The paper [GGL09] uses the bar construction

on polygons (see below) to find algebraic cycles for multiple polylogarithms.

In this section we give a ‘feel’ as to why we would chose the symbol as a representative

1.4. Why choose the symbol to represent multiple polylogarithms? 32

of a multiple polylogarithm. We outline the bar construction of the polygon algebra

and also show how the more direct differential structure of multiple polylogarithms

are similar to the symbol map. The author defers to the work of Goncharov for

further explanation.

1.4.1 Bar construction of the polygon algebra

The symbol of a multiple polylogarithm can be seen as an algebraic interpretation of

the maximal part of a bar construction of the algebra on the polygons. We overview

this construction in this section which is adapted from pages 563 to 573 of [GGL09].

1.4.1.1 Differential graded algebra of polygons

Definition 1.44. Let A be a graded algebra. We can construct a differential

graded algebra (shortened to DGA) from A with a map ∂ : A→ A of degree +1

or −1 such that

• ∂ ◦ ∂ = 0

• ∂(a ∗ b) = (∂a) ∗ b+ (−1)deg(a)a ∗ (∂b) (which is a graded Leibniz rule).

Here, deg(a) denotes the degree of a in the grading of the algebra A.

In our case, we will take the algebra on polygons, denoted P•• , from Definition 1.21

and will define a differential ∂ : P•• → P•• with degree +1. The degree of the

differential corresponds to the change in the grading on the exterior algebra. We

define ∂ on an R-decorated n-gon π = P (a1, . . . , an) to be

∂π :=
∑
α

sgn(α)∂απ.

The summation runs over all possible arrows, α, as in Definition 1.25. The sign of

the dissection, sgn(α), is from Definition 1.30 and

∂απ := π1 ∧ π2

1.4. Why choose the symbol to represent multiple polylogarithms? 33

where π1 and π2 are the polygons resulting from dissecting the polygon π as in

Definition 1.25. We note that this is similar to the structure of the symbol, but

instead it only sums over single arrow dissections (as opposed to maximal dissections

in the symbol) and is anticommutative. We define an augmentation in the usual

way to be, for ni ∈ Q, the map ∑
i

niπi 7−→
∑
i

ni.

We have now constructed an augmented DGA, A• =
⊕

m≥1A on the polygons (see

page 565 of [GGL09] for more details).

Example 1.45. We give an example of the action of ∂ on a polygon. Let π =

P (1, 2, 3) be the 3-gon

3

1 2

then

∂(π) = +

3

2
∧

2

1
−

3

1
∧

1

2
+

3

1
∧

3

2
.

Here we see that

∂ : P1
2 → P2

2 .

This demonstrates that the differential has a degree of +1 on the exterior algebra

of ∂ : P•• .

1.4.1.2 Defining the bar construction on the polygon algebra

We now define a bar construction. We will denote tensor signs by ‘|’ throughout.

Definition 1.46. The bar construction, denoted B(A) for an augmented DGA

1.4. Why choose the symbol to represent multiple polylogarithms? 34

A• is the tensor coalgebra
⊕

iA
|i
• with differential D1 +D2 given by

D1([a1| . . . |an]) =
n−1∑
j=1

(−1)(
∑

i≤j deg(ai)−1)[a1| . . . |aj ∧ aj+1| . . . |an]

D2([a1| . . . |an]) =
n∑
j=1

(−1)(
∑

i<j deg(ai)−1)[a1| . . . |∂(aj)| . . . |an]

for homogeneous a1, . . . , an ∈ A•.

It is important to note that, in the calculation of the signs, D1 has a ‘≤’ in the

summation of deg(ai)− 1 and D2 has a ‘<’.

We use the augmented DGA (with differential ∂) on the polygons and create the

bar construction B(P••) (which actually comes equipped with further structure, a

coproduct, which will not come into the context of this thesis). We can view B(P••)

as a double complex with respect to D1 and D2.

Definition 1.47. The element B(π) attached to an n-gon π = P (a1, . . . , an), in the

bar construction of the polygon algebra, denoted B(P•), has a component in P |m•
of ∑

ρ

sgn(ρ)
∑
λ

[π∗| · · · |π∗]

where the first summation runs over all dissections of π consisting of m arrows,

the second summation runs over all linear orders, λ, of the subpolygons πi of the

dissection compatible with the partial order, ≺, on the dissection from Definition

1.35.

Example 1.48. Let π = P (1, 2, 3), then we see that B(π) is given by
3

1 2

+

 3

2

∣∣∣∣∣∣∣
2

1

−
 3

1

∣∣∣∣∣∣∣
1

2

+

 3

1

∣∣∣∣∣∣∣
3

2

 .
where

D1(B(π)) =

 3

2
∧

2

1

 −
 3

1
∧

1

2

 +

 3

1
∧

3

2



1.4. Why choose the symbol to represent multiple polylogarithms? 35

and

D2(B(π)) = −

 3

2
∧

2

1

 +

 3

1
∧

1

2

 −
 3

1
∧

3

2

 .
Note that:

• D1 sends the P |1• component of B(π) to 0.

• D2 sends the P |2• component of B(π) to 0.

We now see that after cancelling pairwise, we have

(D1 +D2)(B(π)) = 0.

Example 1.49. If we let π = P (1, 2, 3, 4) we see that

B(π) = Π3 + Π1,2 + Π1,1,1

where Π3 is the P• component of B(π), given by

[P (1, 2, 3, 4)],

Π1,2 is the P•|P• component of B(π), given by

+[P (1, 4)|P (2, 3, 4)] + [P (3, 4)|P (1, 2, 3)]− [P (1, 2, 4)|P (3, 2)]− [P (1, 3, 4)|P (2, 1)]

+[P (1, 2, 4)|P (3, 4)] + [P (1, 3, 4)|P (2, 3)] + [P (2, 3, 4)|P (1, 2)] + [P (1, 4)|P (3, 2, 1)],

and Π1,1,1 is the P•|P•|P• component of B(π), given by

+[P (1, 4)|P (2, 4)|P (3, 4)] +[P (3, 4)|P (1, 3)|P (2, 3)] −[P (2, 4)|P (1, 2)� P (3, 2)]

+[P (1, 4)|P (3, 1)|P (2, 1)] +[P (1, 4)|P (3, 4)|P (2, 3)] +[P (3, 4)|P (2, 3)|P (1, 2)]

+[P (1, 4)|P (2, 1)|P (3, 2)] −[P (1, 4)|P (2, 1)� P (3, 4)] −[P (1, 4)|P (2, 4)|P (3, 2)]

−[P (3, 4)|P (1, 3)|P (2, 1)] +[P (2, 4)|P (1, 2)� P (3, 4)] −[P (1, 4)|P (3, 1)|P (2, 3)].

We note that

Π3 ∈ P3, Π1,2 ∈ P2|P1 ⊕ P1|P2, and Π1,1,1 ∈ P1|P1|P1.

The symbol of a multiple polylogarithm can be seen as the final (or ‘maximal’) part

of the bar construction of the relevant polygon after taking P (∗, ∗) to µ(P (∗, ∗)).

When comparing multiple polylogarithms under the symbol map we can view this

as projecting to the final part of the bar construction and working there.

1.4. Why choose the symbol to represent multiple polylogarithms? 36

1.4.2 Differential structure of multiple polylogarithms and

the symbol

We give an example of how the differential structure of a polylogarithm is reflected

in the symbol by examining dI1,1(x1, x2).

The statement of Theorem 2.1 in [Gon01] gives us

dI(x0;x1, . . . , xm;xm+1)

=
m∑
i=1

I(x0;x1, . . . , x̂i, . . . , xm;xm+1) · (d log(xi+1 − xi)− d log(xi−1 − xi)).

We recall that

I1,1(x1, x2) = I(0;x1, x2; 1)

and so, applying the theorem we get

dI1,1(x1, x2) =I1(x2)(d log(x2 − x1)− d log(−x1))

+ I1(x1)
(
d log(1− x2)− d log(x1 − x2)

)
=I1(x2)d log

(
1− x2

x1

)
+ I1(x1)

(
d log(1− x2)− d log(−x2)− d log(x1 − x2) + d log(−x2)

)
=I1(x2)d log

(
1− x2

x1

)
+ I1(x1)d log

(
1− 1

x2

)
− I1(x1)d log

(
1− x1

x2

)
By now applying that log(1− 1

x
) = −Li1

(
1
x

)
= I1(x),

dI1,1(x1, x2) =I1(x1)dI1(x2)− I1(x1)dI1

(
x2

x1

)
+ I1(x2)dI1

(
x1

x2

)

= log

(
1− 1

x1

)
d log

(
1− 1

x2

)
− log

(
1− 1

x1

)
d log

(
1− x1

x2

)
+ log

(
1− 1

x2

)
d log

(
1− x2

x1

)
.

We recall from Example 1.42 that the symbol for I1,1(x1, x2) is

S(I1,1(x1, x2)) = +
(
1− 1

x1

)
⊗
(
1− 1

x2

)
−
(
1− 1

x1

)
⊗
(
1− x1

x2

)
+
(
1− 1

x2

)
⊗
(
1− x2

x1

)
,

which is clearly very similar to dI1,1(x1, x2).

1.5. A simple element in the kernel of the symbol map 37

1.5 A simple element in the kernel of the symbol

map

As discussed in Chapter 0, we look for a method for finding relations between mul-

tiple polylogarithms that is easier than purely analytical methods. As said at the

beginning of this chapter, conjecturally, any functional equation between multiple

polylogarithms must be in the kernel of the symbol map. We now give an example

of a linear combination of multiple polylogarithms in the kernel of the symbol map.

The combination arises from Hölder convolution, which we introduce now (it will

also be used later in Chapter 5).

1.5.1 Hölder convolution

Hölder convolution (given as Equation 7.1 in [BBBL01]) gives us, in terms of the

definition of multiple polylogarithms G(a1, . . . , an;x) in Definition 0.9, that,

G(xw, . . . , x1; 1) =
w∑
k=0

(−1)kG

(
1− x1, . . . , 1− xw; 1− 1

p

)
G

(
xk+1, . . . , xw;

1

p

)
∀p ∈ C∗, and where x1 6= 1 and xw 6= 0.

We are particularly interested in the limiting case, p → ∞, of Hölder convolution,

giving a duality on multiple polylogarithms of

G(xw, . . . , x1; 1) = (−1)wG(1− x1, . . . , 1− xw; 1),

which is the same as

I1,...,1(x1, . . . , xw) = (−1)wI1,...,1(1− xw, . . . , 1− x1).

Hölder convolution gives us an entire family of functional equations between multiple

polylogarithms. Therefore, conjecturally, we will have

S (I1,...,1(x1, . . . , xw) + (−1)wI1,...,1(1− xw, . . . , 1− x1)) = 0

for all x1 6= 1 and xw 6= 0. We now prove a very simple case of this, and it serves as

a nice introduction to linear combinations of multiple polylogarithms in the kernel

of the symbol map, albeit one that is as a direct consequence of Hölder convolution.

1.5. A simple element in the kernel of the symbol map 38

Example 1.50. We show that

I1,1(x, y)− I1,1(1− y, 1− x)

lies in the kernel of the symbol map. We use the symbol for I1,1(x, y) calculated in

Example 1.42 and see that

S
(
I1,1(x, y)− I1,1(1− y, 1− x)

)
∈ I2(S)

= +
((

1− 1
y

)
⊗
(
1− y

x

))
+
((

1− 1
x

)
⊗
(
1− 1

y

))
−
((

1− 1
x

)
⊗
(
1− x

y

))
+
((

1− 1
1−x

)
⊗
(
1− 1−x

1−y

))
+
((

1− 1
1−y

)
⊗
(
1− 1

1−x

))
−
((

1− 1
1−y

)
⊗
(
1− 1−y

1−x

))
= +

(
y − 1

y
⊗ x− y

x

)
+

(
x− 1

x
⊗ y − 1

y

)
−
(
x− 1

x
⊗ y − x

y

)
+

(
x

x− 1
⊗ y − x
y − 1

)
+

(
y

y − 1
⊗ x

x− 1

)
−
(

y

y − 1
⊗ x− y
x− 1

)

= +

(
x− 1

x
⊗
(
y − x
y − 1

· y − 1

y

))
−
(
x− 1

x
⊗ y − x

y

)
−
(

y

y − 1
⊗
(
x− y
x
· x

x− 1

))
+

(
y

y − 1
⊗ x− y
x− 1

)
= 0.

We can see that even for a two term, weight 2, linear combination of multiple poly-

logarithms, with simple arguments, the symbol calculation is already fairly unwieldy.

The object of main interest in this thesis will be linear combinations of multiple

polylogarithms in the kernel of the symbol map.

Chapter 2

Hook-arrow trees

We introduce a new method of finding the symbol of a multiple polylogarithm called

the hook-arrow tree. The symbol found is equivalent to the polygon and binary tree

methods described in Chapter 1 (bijections between them will be given in Chapter

3). The hook-arrow tree has been developed so as to provide an algorithm for finding

symbols that can be done on the computer package GP/Pari [PAR11]. Later we also

use the hook-arrow tree to find the symbol of coloured multiple zeta values (CMZV)

and simplify symbol calculations for given depths of multiple polylogarithms.

We also introduce a way of viewing the structure of the symbol of a multiple poly-

logarithm which takes the form of a ternary tree.

2.1 Motivation for hook-arrow trees

To find the symbol of a multiple polylogarithm using a computer we face the problem

of encoding a visual method into computer code. This involves relatively simple

problems such as how to encode an arrow, more difficult problems such as how to

check arrows do not cross, and even harder problems like checking all possible arrows

are exhausted without duplication.

39

2.2. Moving from polygons to trees 40

The arrows in the dissection of a polygon start at a vertex v and end at a non-

adjacent edge e. A natural idea would be to encode this as a vector [v,e]. We give

a possible notation in the following example.

Example 2.1. One possible dissection of the 4-gon P (a1, a2, a3, a4) of the form

a1

a2

a3

a4

could be encoded as the vector

[Edge labels, Arrows] = [[a1,a2,a3,a4],[[1,a2],[3,a4]]].

However, there are problems with this method of encoding. Firstly, it is quite

difficult to generate all possible arrows and check whether they cross. Secondly, to

calculate the dissection we need to retract along the arrows which can cause the

labels to change order. It also proves very difficult to discern when a dissection is a

shuffle.

2.2 Moving from polygons to trees

We will define and construct a hook-arrow tree from a possible maximal dissection

of a polygon. In [GGL09], the authors map trees to polygons. However, the reader

should note that the hook-arrow trees we construct here are different (albeit repres-

enting similar information) to the trees in [GGL09] and are designed to represent

terms in the symbol attached to the polygon.

Remark 2.2. For simplicity, we will sometimes consider all edges of polygons (and

then vertices of the trees) to have numerical labelling. The sides will be labelled

2.2. Moving from polygons to trees 41

such that the root side is labelled n on an n-gon. For example, we label a 4-gon

P (1, 2, 3, 4) anticlockwise with the final label, 4, being the root side.

1

2

3

4

The labels can easily be substituted for algebraic values when terms in the symbol

are needed.

Every maximal dissection of a polygon uniquely defines a certain spanning tree τ

on the vertices which are the midpoints of the polygon sides, and vice-versa. These

vertices, v1, ..., vn, inherit the label of the side they sit on, and form the vertices of

τ . We induce the edges of τ as all possible lines, between the vi, that do not cross

arrows from the dissection. Here is an example of a maximal dissection of a 4-gon

with the spanning tree induced:

1

2

3

4

We also induce a root on τ as the vertex lying on the final side of the polygon.

We will always assume that an orientation of the edges can be induced on a hook-

arrow tree as being towards towards the root. For the above example of a dissected

4-gon the rooted spanning tree is:

2.2. Moving from polygons to trees 42

1

2

3

4

The edges of the tree will not cross by construction; we define interlacing to reflect

this for use in the definition of a hook-arrow tree.

Definition 2.3. A graph with a linear order on its vertices wj is said to be inter-

laced if there exists a choice of four vertices w1 < ... < w4 such that both edges

{w1, w3} and {w2, w4} are contained in the graph.

We now give a formal definition of a hook-arrow tree and illustrate the definition

with an example.

Definition 2.4. A hook-arrow tree is a rooted spanning tree on a set of vertices

in a linear order, (v1, . . . , vn), which is not interlaced and has root vn. The edges

are directed towards vn.

We can think of a hook-arrow tree as being a tree, embedded in a plane, on vertices

arranged in a circle.

Example 2.5. The following two examples show the process of moving between a

fully dissected 4-gon and a hook-arrow tree.

1

2

3

4

1

2

3

4

1

2

3

4
1)

2.2. Moving from polygons to trees 43

1

2

3

4

1

2

3

4

1

2

3

4
2)

We at once see that each edge of a hook-arrow tree represents a 2-gon resulting from

the full dissection of a polygon. The first polygon above represents the term

µ(P (2, 4))⊗ µ(P (1, 2))� µ(P (3, 4))

and the second represents

µ(P (1, 4))⊗ µ(P (2, 4))⊗ µ(P (3, 4)).

Example 2.6. We give all possible hook-arrow trees on 4 vertices directly by ex-

haustion of trees that satisfy Definition B.3.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

We note that, as with the dissection of a 4-gon in Example 1.32, we have 12 possible

hook-arrow trees on 4 vertices.

2.3. Obtaining terms in the symbol from a hook-arrow tree 44

There is a bijection between the set of all hook-arrow trees on n points in a fixed

general position and the set of polygons with maximal dissection. The map of the

bijection is outlined in the Definition B.3. However, a bijection between hook-arrow

trees and polygon dissections is given in Chapter 3, although it is important to

note that the bijection is in fact between a slightly different form of these pictorial

representations, namely ones that isolate a single term in the symbol and so do not

contain shuffles.

To see fully where hook-arrow trees can be of benefit in finding the symbol attached

to a multiple polylogarithm we must describe the analogous method to finding the

symbol.

2.3 Obtaining terms in the symbol from a hook-

arrow tree

We take a hook-arrow tree, τ , with an ordered vertex set Vτ = (vτ1 , ..., v
τ
n), a dis-

tinguished final vertex vτn (from the strict order on the vertices) and a set of edges

Eτ = {eτ1, ..., eτn−1}. We must first give a way to write this information without

needing to draw the tree.

Notation 2.7. We will use the notation that {vi, vj} denotes an undirected edge,

and so the vertices are given in their original ordering, and that [vi, vj] denotes a

directed edge from vi to vj.

We will understand vτt+1 to be the vertex directly after vτt in the linear order of

vertices of the hook-arrow tree τ .

Definition 2.8. For an hook-arrow tree with n points Vτ = (vτ1 , ..., v
τ
n) and a set of

edges Eτ = {eτ1, ..., eτn−1} then its description is

Dτ := {Vτ , Eτ} = {(vτ1 , ..., vτn), {eτ1, ..., eτn−1}}

The algorithm will involve subtrees of the hook-arrow tree τ . We can display the

2.3. Obtaining terms in the symbol from a hook-arrow tree 45

information for these subtrees in the same way (they themselves will also be hook-

arrow trees). We note that although only a subset of the vertices (vτ1 , ..., v
τ
n) will be

contained in the subtree, these will be given an order and a final vertex and so still

fit into the framework of the description of a full hook-arrow tree.

While we have given a linear order on the vertices of a hook-arrow tree, we have not

given an order to the edges. The algorithm (to be given below) for extracting terms

in the symbol from a hook-arrow tree is effectively a method for choosing a partial

order on the edges, but we do not include this in the description Dτ .

The edges in the description are also not given with a direction, but since directing

edges towards a particular vertex on a tree is unique, for simplicity, we will not

include this in the description. We will display the edges in the description in

lexicographic order.

Example 2.9. Two examples of this description of a hook-arrow tree are

{(1, 2, 3, 4), {{1, 2}, {1, 3}, {3, 4}}}

which describes the tree

1

2

3

4

and

{(1, 2, 3, 4, 5), {{1, 2}, {1, 3}, {3, 4}, {4, 5}}}

which describes the tree

2.3. Obtaining terms in the symbol from a hook-arrow tree 46

1

2 3

4

5

We now outline the method of selecting the edges of a hook-arrow tree in a partial

order so as to form a tensor product term in the symbol. This involves three steps,

and is iterative.

2.3.1 Step 1: Selection of first distinguished edge

We start with a hook-arrow tree, τ , with n vertices and a description Dτ = {Vτ , Eτ}

as above. We select the unique distinguished edge of τ to be

eτd = [vτa , v
τ
n] ∈ Eτ

where vτn is the final vertex and vτa is the only member of the set

{vτi ∈ Vτ | {vτi , vτn} ∈ Eτ and {{vτ1 , vτn}, . . . , {vτ(i−1), v
τ
n}} /∈ Eτ}.

We note that the edge eτ is directed from vτa to vτn.

Intuitively, the edge eτd can be thought of as the edge in Eτ connecting vτn with a

vertex, vτa , where a is the lowest possible. Or equivalently, if we arrange the vertices

in a circle ordered anticlockwise, the first edge hit by moving from outside the circle

anticlockwise around the distinguished vertex vτn.

Example 2.10. For a tree τ ′ with description

Dτ ′ = {(1, 2, 3, 4, 5, 6, 7), {{1, 2}, {1, 3}, {3, 4}, {4, 7}, {5, 7}, {6, 7}}}

we find that vτ
′
a = 4, since {4, 7} ∈ Eτ ′ and {{1, 7}, {2, 7}, {3, 7}} /∈ Eτ ′ . We do not

choose {5, 7} to be the distinguished edge because if vτ
′
a = 5 then {vτ ′(a−1), v

τ ′
n } =

{4, 7} and {4, 7} ∈ Eτ ′ . Similarly for {6, 7}.

2.3. Obtaining terms in the symbol from a hook-arrow tree 47

Overall we have that eτd = {4, 7}. The following diagram shows the tree τ ′ where

the distinguished edge, eτd, is ringed.

1

2

3 4

5

6

7

2.3.2 Step 2: Splitting the tree

We will now use our choice of distinguished edge to split the tree into the edge eτd

and (up to) three subtrees. First, we give an example of how one might go about

splitting a tree into subtrees by removing an edge. However, we will require a slightly

different method.

Example 2.11. For a general tree, you can define a set of subtrees by ‘removing’

an edge. This is done by removing an edge and its bounding vertices and ‘breaking’

the tree at either end. We then restore the vertices to the created subtrees. For

example, for the tree

u v

2.3. Obtaining terms in the symbol from a hook-arrow tree 48

if we remove the edge {u, v}, break up the edges connected to u and v at either end,

and then restore the vertices u and v, we will be left with the subtrees

u

u

u

v

v

The splitting we require for hook-arrow trees is slightly different to the above ex-

ample, although fairly similar.

We will remove the distinguished edge eτd = [vτa , v
τ
n] from a hook arrow tree τ to

form subtrees, but we do not wish to entirely split up every edge connected to vτa

and vτn. By removing eτd we will create up to three subtrees defined and labelled in

the following section. First, however, so as to give the reader an idea of the desired

subtrees, we provide an example.

Example 2.12. The hook-arrow tree, τ , of the form

1

2

3 4

5

6

7

described by

{(1, 2, 3, 4, 5, 6, 7), {{1, 4}, {2, 3}, {3, 4}, {4, 5}, {4, 7}, {6, 7}}}

2.3. Obtaining terms in the symbol from a hook-arrow tree 49

has distinguished edge {4, 7} and by removing this edge we split the tree into three

subtrees (in a method to be described below) as follows:

1

2

3

4
4

5

6

7

We then label these τ1, τ2 and τ3. These are shown circled in the following diagram.

1

2

3

4
4

5

6

7 τ3

τ1

τ2

The difference to the splitting in Example 2.11 is that there τ1 would have become

two subtrees. In a sense we have ‘divided’ the hook-arrow tree into two halves by

cutting out the distinguished edge and then labelled the remaining parts, thus τ1

remains as one. This will be now formally defined.

2.3. Obtaining terms in the symbol from a hook-arrow tree 50

2.3.2.1 Formally defining the subtrees τ1, τ2 and τ3

To construct τ1, τ2 and τ3 formally we first isolate a vertex vτx of a hook arrow tree τ

with vertices Vτ , edges Eτ and distinguished edge eτd = {vτa , vτn}. We define x to be

the maximum value i ∈ {a, a + 1, . . . , n− 2, n− 1} such that the direct route from

vτi to vτn passes through vτa . Note that if the maximum value of i is equal to a then

we set vτx = vτa .

We can now define the subtrees τ1, τ2 and τ3 by the following descriptions.

Dτ1 = {Vτ1 , Eτ1}, Dτ2 = {Vτ2 , Eτ2}, Dτ3 = {Vτ3 , Eτ3},

where

Vτ1 = (vτ1 , v
τ
2 , ..., v

τ
a),

Vτ2 = (vτx, v
τ
(x−1), ..., v

τ
(a+1), v

τ
a),

Vτ3 = (vτ(x+1), v
τ
(x+2), ..., v

τ
(n−1), v

τ
n)

and

Eτi = {{vτp , vτq } ∈ Eτ | vτp ∈ Vτi and vτq ∈ Vτi}.

Remark 2.13. It is important to note here that the linear order on the vertices in

Vτ2 has been reversed from the order of those vertices in Vτ .

Definition 2.14. A subtree of a hook-arrow tree is a trivial subtree if it contains

only one vertex.

We will, from now on, disregard subtrees that are trivial. We will show the above

creation of subtrees in Example 2.16.

Remark 2.15. We note that now we have defined the τi there is another way of

viewing the definition of the vertex vτx. Note, though, that we could not define the

vτx in the following way (as circular logic would occur).

Every point of the original tree τ will be contained in at least one of the subtrees τi.

The vertices between vτa and vτn in the linear order of Vτ will be the, possibly empty,

2.3. Obtaining terms in the symbol from a hook-arrow tree 51

ordered set

Sτ = {vτ(a+1), ..., v
τ
(n−1)}.

These points will be, by construction, contained in the, possibly trivial, subtrees τ2

and τ3. Because no edges cross, and because every point in Sτ will definitely be

contained in one of these two subtrees, there will exist a vertex vτx ∈ Sτ , for which

{vτ(a+1), ..., v
τ
x}
∈ τ2

/∈ τ3

, and {vτ(x+1), ..., v
τ
(n−1)}

∈ τ3

/∈ τ2.

This can be viewed, in the case of τ in Example 2.12, as

vτa

vτx

vτ(x+1)

vτn

where the dashed line denotes, in a sense, the division between vertices in τ2 and τ3.

Example 2.16. We use a hook-arrow tree, τ with description

Dτ = {Vτ , Eτ} = {(1, 2, 3, 4, 5, 6, 7), {{1, 2}, {1, 3}, {3, 4}, {4, 5}, {4, 7}, {6, 7}}}

taking the form

1

2

3 4

5

6

7

2.3. Obtaining terms in the symbol from a hook-arrow tree 52

The hook-arrow tree has distinguished edge eτd = {4, 7}. The vertex vτx will be the

vertex labelled 5.

We therefore describe the subtrees τ1, τ2 and τ3 by

Dτ1 = {Vτ1 , Eτ1}

= {(1, 2, 3, 4), {{1, 2}, {1, 3}, {3, 4}}}

Dτ2 = {Vτ2 , Eτ2}

= {(5, 4), {{4, 5}}}

Dτ3 = {Vτ3 , Eτ3}

= {(6, 7), {{6, 7}}}

which gives

1

2

3

4
4

5

6

7 τ3

τ1

τ2

2.3.2.2 A visual method for forming τ1, τ2 and τ3

As an alternative to the above method of splitting a hook-arrow tree into subtrees

we give a visual, less formal, method. Each step includes a running example of τ

from Example 2.16.

2.3. Obtaining terms in the symbol from a hook-arrow tree 53

Firstly, introduce a construction circle through the ordered vertices (when arranged

in order in a circle).

vτa

vτn

Next, split the circle into two circle segments along the distinguished edge eτd =

{vτa , vτn} leaving a copy of eτd on each segment.

vτa
vτa

vτnvτn

Now remove all remaining parts of the construction circle. Also, remove the distin-

guished edge eτd (both parts), but not its vertices, {vτa , vτn}.

vτa
vτa

vτnvτn

2.3. Obtaining terms in the symbol from a hook-arrow tree 54

We remove any trivial subtrees (subtrees with only one vertex). Finally, we label

the subtrees (again noting there may be less than three) in the following way.

• τ1 - The subtree containing at least vτa and vτ(a−1).

• τ2 - The subtree containing at least vτa and vτ(a+1).

• τ3 - The subtree containing at least vτn and vτ(n−1).

vτ(a−1)
vτa

τ1

vτa

vτ(a+1)

vτ(n−1)

vτn
τ3

τ2

We are left with the required subtrees.

2.3.3 Step 3: Iterative step

We have created three subtrees, τ1, τ2, τ3, with descriptions, Dτ1 , Dτ2 , Dτ3 , of the

same form as the original hook-arrow tree, τ . We can therefore iterate the two

previous steps (isolate a distinguish edge and then split into more subtrees) above

for each of the new subtrees created, until every new subtree is trivial.

Remark 2.17. Each iteration applies steps 1 and 2 to all non-trivial subtrees and

puts aside distinguished edges. We will explain how to track (and record) the dis-

tinguished edges created in Section 2.3.4.

2.3. Obtaining terms in the symbol from a hook-arrow tree 55

Proposition 2.18. The iterative process will terminate for finite hook-arrow trees

on n vertices in fewer than n iterations.

Proof. Because the distinguished edge of a previous iteration is not in any of the

resulting subtrees, each new and non-trivial subtree will have a distinguished edge

which is different to every other previous distinguished edge. The subtrees inherit a

distinguished edge from its supertree, so since the tree is connected, every edge will

become a distinguished edge in some iteration. Therefore, for a finite tree there will

be an iterative step when every remaining subtree is trivial, and the process ends.

Since at least one edge becomes a distinguished edge in each iteration, and since a

hook-arrow tree on n vertices has n− 1 edges, the iterative process will end in fewer

than n iterations.

Remark 2.19. When the iteration ends, every edge will have gained a direction.

The direction on the edges will correspond to the direction on the tree towards the

original distinguished vertex, bτ , as expected.

2.3.4 Recording the results of the algorithm and definition

of the symbol

We now explain how to record the results of the algorithm (steps 1, 2 and 3 above)

so as to give the symbol attached to the hook-arrow tree. We begin by giving the

algebraic expression attached to a directed edge (directed towards vτn) of a hook-

arrow tree, τ . Since an edge of a hook-arrow tree represents the same information

as a 2-gon, we merely extend Definition 1.39.

Definition 2.20. For a directed edge of a hook-arrow tree, [a, b] we define

µ([a, b]) := µ(P (a, b)),

where the map µ is defined as in Definition 1.39.

2.3. Obtaining terms in the symbol from a hook-arrow tree 56

Remark 2.21. Due to the direction on each edge being inherent, we understand that

whenever µ is applied to an edge, the direction of the edge is obtained from the

direction towards vτn on a hook-arrow tree, τ .

We start with a hook-arrow tree τ on n vertices. We apply steps 1 and 2 of the

above algorithm, but record the distinguished edge of τ and the subtrees created as

T = {eτd = [vτa , v
τ
n], τ1, τ2, τ3}.

As specified in Step 3 we iterate the algorithm on the subtrees τ1, τ2, and τ3. We

record in the same way and obtain T1 for τ1, T2 for τ2 and T3 for τ3. These will take

the form

• T1 = {eτ1d , τ11, τ12, τ13},

• T2 = {eτ2d , τ21, τ22, τ23},

• T3 = {eτ3d , τ31, τ32, τ33}.

We continue and apply steps 1 and 2 on all the τij which are non-trivial (obtaining

T11, T12, . . .). We continue until all subtrees are trivial (when the iterative process

terminates).

To obtain the required symbol from the Ti1,...,ik we first write

µ([vτa , v
τ
b]) ⊗ T1 � T2 � T3

and then systematically replace each Ti1,...,ik with

(
µ([v

τi1,...,ik
a , v

τi1,...,ik
b]) ⊗ Ti1,...,ik,1 � Ti1,...,ik,2 � Ti1,...,ik,3

)
until we have covered all Ti1,...,ir .

We label the resulting tensor product Alg(τ).

2.3. Obtaining terms in the symbol from a hook-arrow tree 57

2.3.5 The sign of a hook-arrow tree

We now give a way to determine the sign of each hook-arrow tree, as in the polygon

dissection. This is done by counting the number of ‘backwards’ edges (again, similar

to backwards arrows in a polygon dissection). The sign is then determined by taking

−1 to the power of this number.

Definition 2.22. Let τ be a hook-arrow tree with description

Dτ = {Vτ = (vτ1 , . . . , v
τ
n), Eτ = {eτ1, . . . , eτn−1}}.

An edge eτi = [vτs , v
τ
t], directed from vτs to vτt towards vτn, is said to be a backwards

edge if s > t.

Definition 2.23. The sign of a hook-arrow tree, written sgn(τ) , is defined to

be

sgn(τ) = (−1)m where m = #{e ∈ Eτ | e backwards}.

2.3.6 The definition of the symbol via hook-arrow trees

We can now define the symbol of a multiple polylogarithm, as obtained through

hook-arrow trees.

Definition 2.24. The symbol of a multiple polylogarithm, Ir1,...,rs(x1, . . . , xs) is

defined to be

S(Ir1,...,rs(x1, . . . , xs)) =
∑
τ

sgn(τ)Alg(τ),

where the summation runs over all possible hook-arrow trees on the vertices

(
x1, 0, ..., 0︸ ︷︷ ︸

r1−1

, x2, 0, ..., 0︸ ︷︷ ︸
r2−1

, . . . , xs, 0, ..., 0︸ ︷︷ ︸
rs−1

, 1
)

and Alg(τ) is as in Section 2.3.4.

The reader is reminded that Chapter 3 explores the bijections between this definition

and the definitions of the symbol via binary trees and polygon dissections.

2.3. Obtaining terms in the symbol from a hook-arrow tree 58

2.3.7 A worked example

The following example gives a full working of Alg(τ) of a hook-arrow tree, τ .

Example 2.25. We give an example of the algorithm described. We will again use

the tree from Example 2.16,

1

2

3 4

5

6

7

and it is described by

Dτ = {(1, 2, 3, 4, 5, 6, 7), {{1, 2}, {1, 3}, {3, 4}, {4, 5}, {4, 7}, {6, 7}}}.

2.3. Obtaining terms in the symbol from a hook-arrow tree 59

We now follow the algorithm described to find T, T1, T2, ...

T =


[4, 7], τ1 =

1

2

3 4

, τ2 =

4

5 , τ3 =
6

7


T1 =

[3, 4], τ11 =

1

2

3


T2 = {[5, 4]}

T3 = {[6, 7]}

T11 =

[1, 3], τ112 =

1

2


T112 = {[2, 1]}

We now combine the Ti1,...,ik .

1. [4, 7] | T1 � T2 � T3.

2. [4, 7] | ([3, 4] | T11) � [5, 4] � [6, 7].

3. [4, 7] | ([3, 4] | ([1, 3] | T112)) � [5, 4] � [6, 7].

4. [4, 7] | ([3, 4] | ([1, 3] | [2, 1])) � [5, 4] � [6, 7].

After removing unnecessary parentheses we obtain

[4, 7] | ([3, 4] | [1, 3] | [2, 1]) � [5, 4] � [6, 7].

2.3. Obtaining terms in the symbol from a hook-arrow tree 60

There are two backwards edges in the hook-arrow tree: the edges [2, 1] and [5, 4].

The sign of the term is therefore (−1)2, giving

+[4, 7] | ([3, 4] | [1, 3] | [2, 1]) � [5, 4] � [6, 7].

When finding the symbol of a multiple polylogarithm the labels of a hook-arrow tree

representing terms in its symbol will have algebraic labels. Suppose that we relabel

the vertices of the above hook-arrow tree from

(1, 2, 3, 4, 5, 6, 7) to (x1, x2, x3, x4, x5, x6, 1)

to give the hook-arrow tree

x1

x2

x3 x4

x5

x6

1

Applying the algebraic association to edges gives us

µ([x4, x7]) ⊗
(
µ([x3, x4]) ⊗ µ([x1, x3]) ⊗ µ([x2, x1])

)
� µ([x5, x4]) � µ([x6, x7])

= +

(
1− 1

x4

)
⊗
((

1− x4
x3

)
⊗
(

1− x3
x1

)
⊗
(

1− x1
x2

))
�

(
1− x7

x6

)
�

(
1− x4

x5

)
which is the term in a symbol which this particular hook-arrow tree represents. Note

that there are two backwards edges and so we have a positive sign.

Repeating this for every possible tree on these vertices and formally adding all tensor

products will give us the symbol attached to the polygon P (x1, x2, x3, x4, x5, x6, 1),

which will be the symbol of the multiple polylogarithm I1,1,1,1,1,1(x1, x2, x3, x4, x5, x6).

2.4. Viewing the algorithm as a ternary/4-valent tree 61

2.4 Viewing the algorithm as a ternary/4-valent

tree

We now define a ternary tree which a good way to view the structure of a hook-arrow

tree and the symbol, although cannot be easily used to find the symbol itself.

The algorithm described in the previous section may at first appear complicated and

unwieldy. However, after applying it a few times the author hopes that the reader

will start to see its structure come through. The ternary tree should help with this.

Loosely speaking a ternary tree is a planted tree where every internal vertex has

three ‘children’. The following diagram shows a typical ternary tree.

We can view our algorithm in this way by considering distinguished edges of an

iteration to be internal vertices of the ternary tree. The ‘children’ of each internal

vertex will either be another internal vertex representing the distinguished edge of a

subtree (from the next iteration), or an external vertex representing a trivial subtree.

There will be exactly the same number of internal vertices in the related ternary

tree as there are edges on the hook-arrow tree. The above example would therefore

represent a hook-arrow tree with 4 edges, which would arise from the dissection of

a pentagon.

We now formally define a ternary tree and construct it from a hook-arrow tree. The

definition and isomorphism between ternary trees is adapted to our needs from a

2.4. Viewing the algorithm as a ternary/4-valent tree 62

paper by Klarner [Kla70].

Remark 2.26. Ternary trees appear in literature in different forms, we will define

them here to be 4-valent planted plane trees.

2.4.1 The definition of a ternary tree

Definition 2.27. A planted plane tree is a tree given by (V, v0, E,R), with

1. V - A set of vertices

2. v0 - A root vertex with v0 ∈ V .

3. E - a set of edges of the form {w1, w2} with w1, w2 ∈ V .

4. R - A linear order relation on V possessing the following two properties, given

a function ρ(x), defined to be the length of the path from v0 to x ∈ V :

(a) If x, y ∈ V and ρ(x) < ρ(y) then x < y in R.

(b) If {r, s}, {x, y} ∈ E with ρ(r) = ρ(x) = ρ(s)− 1 = ρ(y)− 1 and r < x in

R, then s < y in R.

Definition 2.28. A planted plane tree is said to be k-valent if every vertex has

either degree 1 or k.

Definition 2.29. A ternary tree is a 4-valent planted plane tree.

2.4.2 An isomorphism on planted plane trees

The linear order relation R and its two conditions give us a well-defined order on

vertices with the same distance from the route. It also allows us to define an iso-

morphism on planted plane trees.

Two planted plane trees on the same set of vertices V , given by (V, v, E,R) and

(V,w, F, S), are said to be isomorphic if there exists a permutation π of V such that

2.4. Viewing the algorithm as a ternary/4-valent tree 63

1. πv = w.

2. {πx, πy} ∈ F for all {x, y} ∈ E.

3. πx < πy in S for all x, y in R.

This allows us to see that the tree(
{v0, ..., v4}, v0, {{v0, v1}, {v1, v2}, {v1, v3}, {v1, v4}}, v0 < v1 < v2 < v3 < v4

)
,

which can be viewed as

v0

v1

v2 v3 v4

is isomorphic to(
{v0, ..., v4}, v0, {{v0, v1}, {v1, v2}, {v1, v3}, {v1, v4}}, v0 < v1 < v3 < v2 < v4

)
which can be viewed as

v0

v1

v3 v2 v4

with π being the identity except for permuting v2 and v3. However the tree{v0, ..., v10}, v0,

 {v0, v1}, {v1, v2}, {v1, v3}, {v1, v4}, {v2, v5},

{v2, v6}, {v2, v7}, {v4, v8}, {v4, v9}, {v4, v10}

 , v0 < ... < v10


which can be viewed as

2.4. Viewing the algorithm as a ternary/4-valent tree 64

v0

v1

v2 v3 v4

v5 v6 v7 v8 v9 v10

is not isomorphic to the tree{v0, ..., v10}, v0,

 {v0, v1}, {v1, v2}, {v1, v3}, {v1, v4}, {v3, v5},

{v3, v6}, {v3, v7}, {v4, v8}, {v4, v9}, {v4, v10}

 , v0 < ... < v10


which can be viewed as

v0

v1

v2 v3 v4

v5 v6 v7 v8 v9 v10

They are not isomorphic as no permutation on the vertices v0, ..., v10 exists that

satisfy the required properties. Note that by permuting v2 and v3 in either tree, it

not only changes the order in R but also the edges attaching the vertices v5, v6 and

v7, which does not give the other tree.

2.4. Viewing the algorithm as a ternary/4-valent tree 65

2.4.3 Forming a ternary tree from the algorithm on a hook-

arrow tree

Remark 2.30. In Chapter 3 we will give a more direct (and possibly simpler) recipe

for forming the ternary tree. The method given now is chosen as it gives an indication

as to the structure of the symbol map.

We can construct a ternary tree from a non-trivial hook-arrow tree with n vertices

by following the algorithm described in Section 2.3 for finding the term in the symbol

attached to a hook-arrow tree.

We denote, but largely overlook, a root vertex by r, and attach it to a first internal

vertex w0; we let this vertex represent the initial distinguished edge [vτa , v
τ
n] of τ , a

hook-arrow tree described in the normal way. The vertex w0 is then connected by

three edges to vertices w1, w2, w3 (which we now create).

In the algorithm we form up to three subtrees, τ1, τ2 and τ3, of the hook-arrow tree

after selecting the initial distinguished edge. We note that an order on these subtrees

can be inherited from the order on the vertices of the hook-arrow tree (which we

have shown in an anti-clockwise direction). For the first subtrees τi this will be the

order of τ1, τ2 and τ3.

If the subtree τi is trivial, we let wi represent it, and it is an external vertex of

the ternary tree. If τi is not trivial then wi is an internal vertex representing the

distinguished edge of τi and we attach three more vertices, wi,1, wi,2, and wi,3.

If the subtrees τi contain more than one edge then we continue. At this point we

must note an important fact. In the algorithm we reversed the order on the vertices

in the subtree τ2 (see Remark 2.13). This will correspond to the order of the tensor

components in each term of the symbol. However, for reasons which are made clear

in Chapter 3, we do not reflect this in the ordering of the vertices in the ternary

tree. Instead we associate the internal vertices of the ternary tree to the edges of

the hook-arrow tree based on their lexicographic order.

2.4. Viewing the algorithm as a ternary/4-valent tree 66

We again let the vertices wi,j represent either the distinguished edge of a subtree,

or it is an external vertex and nothing if the subtree is trivial.

We continue to attach more sets of three vertices to any vertices representing non-

trivial subtrees of the hook-arrow tree until all non-trivial subtrees are exhausted.

The linear relation R is given by dictating that vertices are ordered in sets by level

and then by lexicographic order on the indices within each group. For example

r < w0 < w1 < w2 < w3 < w1,1 < w1,2 < w1,3 < ...

Remark 2.31. A term in a symbol given by,

µ([a, b]) ⊗ µ([c, a]) � µ([d, a]) � µ([e, b])

is equivalent to the following hook-arrow tree and section of a ternary tree (with

external vertices omitted).

[a, b]

[c, a] [d, a] [e, b]

c

a d

e

b

Note that this is a very intuitive demonstration of what is meant by a shuffle. We

have an ‘option’ at each vertex as to which of the three ‘children’ to go to next.

The systematic replacing of Ti1,...,ik described in Section 2.3.4 can be seen to correlate

to retracting the edges of the ternary tree from the bottom, disregarding trivial,

external vertices.

Example 2.32. We now find the ternary tree for the hook-arrow tree in Example

2.25.

2.4. Viewing the algorithm as a ternary/4-valent tree 67

1

2

3 4

5

6

7

We set the root vertex to be r and then attach a vertex w0 which represents the

initial distinguished edge [4, 7]. All of the three subtrees τ1, τ2 and τ3 are nontrivial

and so we create the vertices

• w1 - representing the distinguished edge of τ1, which is [3, 4].

• w2 - representing the distinguished edge of τ2, which is [5, 4].

• w3 - representing the distinguished edge of τ3, which is [6, 7].

We continue through the algorithm creating vertices.

• w1,1 - represents the distinguished edge of τ11, which is [1, 3].

• w1,1,2 - representing the distinguished edge of τ112, which is [2, 1].

• w1,2, w1,3, w2,1, w2,2, w2,3, w3,1, w3,2, w3,3, w1,1,1, w1,1,3, w1,1,2,1, w1,1,2,2, w1,1,2,3 - are

all external vertices representing trivial subtrees.

2.4. Viewing the algorithm as a ternary/4-valent tree 68

The full description of the ternary tree is therefore given by (V, v0, E,R) where

V =

 r, w0, w1, w2, w3, w1,1, w1,2, w1,3, w2,1, w2,2, w2,3, w3,1, w3,2, w3,3,

w1,1,1, w1,1,2, w1,1,3, w1,1,2,1, w1,1,2,2, w1,1,2,3



E =


{r, w0},

{
{w0, wi} for i = 1, 2, 3

}
,{

{wi, wi,j} for i = 1, 2, 3, j = 1, 2, 3
}
,{

{w1,1,, w1,1,i} for i = 1, 2, 3
}
,
{
{w1,1,2,i, w1,1,i} for i = 1, 2, 3

}


R =
r < w0 < w1 < w2 < w3 < w1,1 < w1,2 < w1,3 < w2,1 < w2,2 < w2,3 < w3,1

< w3,2 < w3,3 < w1,1,1 < w1,1,2 < w1,1,3 < w1,1,2,1 < w1,1,2,2 < w1,1,2,3

and takes the following form:

r

w0

w1 w2 w3

w1,1

w1,1,1

w1,1,2

w1,1,2,1w1,1,2,2w1,1,2,3

w1,1,3

w1,2 w1,3

w2,1
w2,2 w2,3

w3,1
w3,2 w3,3

2.4. Viewing the algorithm as a ternary/4-valent tree 69

If we remove the external nodes and substitute the labels on the vertices with the

distinguished edges they represent we can see the structure of the term in the symbol

even more clearly.

[4, 7]

[3, 4] [5, 4] [6, 7]

[1, 3]

[2, 1]

2.4.4 Enumeration of hook-arrow trees

The association between hook-arrow trees and ternary tree allows us to count how

many possible hook-arrow trees there are on a given number of vertices.

Proposition 2.33. The number of distinct hook-arrow trees, representing a weight

w multiple polylogarithm, on n = w + 1 vertices is equal to

1

2w + 1

(
3w

w

)
.

Proof. This result follows from the enumeration of 4-valent planted plane trees in

[Kla70] and we do not explicitly give this here.

Remark 2.34. As well as in [Kla70], discussion on enumerating ternary trees and their

relation to generalised Catalan numbers also appears in [HP91]. We also note that

the On-Line Encyclopedia of Integer Sequences ([OEI12]) is an invaluable resource

here.

2.4. Viewing the algorithm as a ternary/4-valent tree 70

2.4.5 Schematic picture of a hook-arrow tree

The name ‘hook-arrow tree’ comes from the resemblance of each τ and its three

subtrees τ1, τ2 and τ3 to a right hook or left hook arrow. The following diagram

shows this. The reader is invited to see why, if we take the longest edge to be the

first distinguished edge, then every five vertex, four edge tree containing the longest

edge can be displayed on this diagram by selecting four connected edges. Note that,

if we decide to add another edge to the tree at a vertex, the longest edge (in the

picture) attached to that vertex must be chosen first.

vτn

2.5. Simple examples of finding the symbol using hook-arrow trees 71

We can see that the dual of this tree (and in this case we mean turning edges

into vertices and vice-versa as with a normal dual) is the ternary tree, albeit after

removing the the vertices r and w0, and the edge {r, w0}.

2.5 Simple examples of finding the symbol using

hook-arrow trees

We now give two examples of symbol calculations using hook-arrow trees.

2.5.1 Symbol for I1,1(x, y)

There are three possible hook-arrow trees on the vertices (x, y, 1) representing the

multiple polylogarithm I1,1(x, y). These are as follows.

1) 2) 3)

x y

1

x y

1

x y

1

This gives us the following symbol, where the terms are given in the order of the

trees they correspond to above.

S(I1,1(x, y))

=

(
1− 1

x

)
⊗
(

1− 1

y

)
+

(
1− 1

y

)
⊗
(

1− y

x

)
−
(

1− 1

x

)
⊗
(

1− x

y

)
.

We note that we can easily obtain the symbol for I2(x) from the above. I2(x)

essentially comes from setting y = 0 (see Definition 0.7), as we will be looking for

hook-arrow trees on the vertices labelled (x, 0, 1). As described in Definition 2.20

we will therefore see that the terms above including (1− 1
y
) or (1− y

x
) will be given

2.5. Simple examples of finding the symbol using hook-arrow trees 72

a coefficient of zero, and that (1− x
y
) will become x. Therefore

S(I2(x)) = −
(

1− 1

x

)
⊗ x = −(1− x)⊗ x.

A similar procedure also applies to general classical polylogarithms, Im(x), as we

will see in Section 2.5.3.

2.5.2 Symbol for I1,1,1(x, y, z)

There are twelve possible hook-arrow trees on the vertices (x, y, z, 1) representing

the multiple polylogarithm I1,1(x, y, z). These are as follows:

x

y

z

1

x

y

z

1

x

y

z

1

x

y

z

1

x

y

z

1

x

y

z

1

x

y

z

1

x

y

z

1

x

y

z

1

x

y

z

1

x

y

z

1

x

y

z

1

This gives us the following symbol, where the terms are given in the order of the

trees they correspond to above.

S(I1,1,1(x, y, z)) = +
(
1− 1

x

)
⊗
(
1− 1

y

)
⊗
(
1− 1

z

)
+
(
1− 1

z

)
⊗
(
1− z

x

)
⊗
(
1− z

y

)
−
(
1− 1

y

)
⊗
(
1− y

x

)
�

(
1− y

z

)
+
(
1− 1

x

)
⊗
(
1− x

z

)
⊗
(
1− x

y

)
+
(
1− 1

z

)
⊗
(
1− z

y

)
⊗
(
1− y

x

)
+
(
1− 1

x

)
⊗
(
1− 1

z

)
⊗
(
1− z

y

)
−
(
1− 1

x

)
⊗
(
1− 1

z

)
�

(
1− x

y

)
+
(
1− 1

x

)
⊗
(
1− x

y

)
⊗
(
1− y

z

)
−
(
1− 1

x

)
⊗
(
1− 1

y

)
⊗
(
1− y

z

)
+
(
1− 1

y

)
⊗
(
1− y

x

)
�

(
1− 1

z

)
−
(
1− 1

x

)
⊗
(
1− x

z

)
⊗
(
1− z

y

)
−
(
1− 1

z

)
⊗
(
1− z

x

)
⊗
(
1− x

y

)
.

2.5. Simple examples of finding the symbol using hook-arrow trees 73

2.5.3 Symbol for Im(x)

The symbol of the classical polylogarithm is very simple and well-known. Im(x) will

correspond to hook-arrow trees on the vertices

(x, 0, . . . , 0︸ ︷︷ ︸
m−1

, 1).

After a little consideration, and bearing mind that any edge of a hook arrow tree

directed towards a vertex labelled 0, we see that the only one hook-arrow tree that

will not be given a zero coefficient is

x

0

0 0

0

0

1

We therefore see that

S(Im(x)) = (−1)m
((

1− 1

x

)
⊗ x⊗(m−1)

)
= (−1)m

(
(1− x)⊗ x⊗(m−1)

)
.

The hook-arrow tree pictorial presentation of symbol calculations, while it does func-

tion in a very similar way, has some useful features that are easier to see than polygon

dissections. In particular, it is easier to do symbol calculations on a computer. We

are then able to do fast calculations with symbols and compare the symbols of re-

latively high weight multiple polylogarithms. Before we do this, and after relating

the different pictorial forms of the symbol, we give some other applications of the

hook-arrow tree. Firstly, it provides a nice way to simplify calculating the symbol of

a multiple polylogarithm with a given depth. For the maximum depth, fixed weight,

multiple polylogarithm, I1,...,1(x1, . . . , xm), every hook-arrow tree contributes to the

2.5. Simple examples of finding the symbol using hook-arrow trees 74

symbol, whereas all but one hook-arrow tree contributes to the symbol for the min-

imum depth multiple polylogarithm Im(x). We will see in Chapter 4 how we can

simplify the procedure for intermediate depths. In Chapter 5 we will see another

application of the hook-arrow tree: in the symbol calculation of coloured multiple

zeta values.

Chapter 3

Relating different pictorial

representations of the symbol

There are several ways of viewing the symbol in a pictorial form. Goncharov gave a

binary tree (or 3-valent planted plane tree) in [Gon05], a dissected polygon is given

by Gangl, Goncharov and Levin in [GGL09], and we introduced the hook-arrow

tree and ternary tree (or 4-valent planted plane tree) in Chapter 2. This chapter

discusses and shows the relationships between these forms of the same data. The full,

and same (to be proved) symbol can be found from each of these representations.

However, it is important to note that, for a given weight, the different representations

group the terms in the symbol in different ways. In the following section we explore

this and add extra data to the pictorial representations to isolate ‘single terms’ (to

be defined) in the symbol.

3.1 Isolating single terms in the symbol

It is useful to have an indexing set of terms in the symbol; one that is, in a sense, the

most ‘broken-up.’ For polygon dissections and hook-arrow trees this will be when

the symbol terms are extracted and we have expanded shuffles. The indexing set we

75

3.1. Isolating single terms in the symbol 76

will use are ‘single terms.’

Definition 3.1. We define a single term of a weight w symbol to be one of the

form

c

(
1−

xa1,1
xa1,2

)
⊗
(

1−
xa2,1
xa2,2

)
⊗ · · · ⊗

(
1−

xaw,1

xaw,2

)
for some xai,j and constant c.

Remark 3.2. We note that for a term arising from a binary tree it is always possible

to break it up into a sum of single terms by simply noting that

a− b
a− c

=

(
1− b

a

)
·
(

1− c

a

)−1

and using normal tensor product operations.

Example 3.3. We look at the symbol for the weight 3 multiple polylogarithm

I1,1,1(x1, x2, x3). The last column of the following diagram shows how many of each

representation of weight 3 exists and gives the general formula for that enumeration

for other weights (i.e. for the symbol of I1,...,1(x1, . . . xn)).

3.1. Isolating single terms in the symbol 77

Representation Example Enumeration

Binary trees

x1 x2 x3 1

C(3) = 5

where

C(n) = 1
n+1

(
2n
n

)
(Catalan numbers)

Polygon dissections x1

x2

x3

1

f(3) = 12

where

f(n) = 1
2n+1

(
3n
n

)

Hook-arrow trees x1

x2

x3

1

f(3) = 12

where

f(n) = 1
2n+1

(
3n
n

)

Ternary trees

f(3) = 12

where

f(n) = 1
2n+1

(
3n
n

)

Single symbol term −
(

1− 1

x1

)
⊗
(

1− 1

x3

)
⊗
(

1− x1

x2

) g(3) = 15

where

g(n) = (2n− 1)!!

3.1. Isolating single terms in the symbol 78

The symbol of I1,1,1(x1, x2, x3) has 15 single terms. However, the other represent-

ations all have less than 15 forms. In the case of polygon dissections, hook-arrow

trees and ternary trees, some give rise to a shuffle. In the table above the example

symbol single term given is actually only one of two possible terms that could come

from the examples of polygon dissection, hook-arrow tree and ternary tree. In fact

x1

x2

x3

1

gives rise to −
(

1− 1

x1

)
⊗
(

1− x1

x2

)
�

(
1− 1

x3

)
.

On the other hand, there are only 5 possible binary trees, the symbol term being

one of 4 possible terms from the binary tree given. In fact

x1 x2 x3 1

gives rise to

(
x1 − 1

x1

)
⊗
(
x3 − 1

x3 − x1

)
⊗
(
x2 − x3

x2 − x1

)
,

and(
x1 − 1

x1

)
⊗
(
x3 − 1

x3 − x1

)
⊗
(
x2 − x3

x2 − x1

)
=

(
1− 1

x1

)
⊗

(
1− 1

x3

1− x1
x3

)
⊗

(
1− x3

x2

1− x1
x2

)

=

(
1− 1

x1

)
⊗
(

1− 1

x3

)
⊗
(

1− x3

x2

)
−

(
1− 1

x1

)
⊗
(

1− x1

x3

)
⊗
(

1− x3

x2

)
−

(
1− 1

x1

)
⊗
(

1− 1

x3

)
⊗
(

1− x1

x2

)
+

(
1− 1

x1

)
⊗
(

1− x1

x3

)
⊗
(

1− x1

x2

)
.

It is important to note here that the other term in the shuffle from the hook-arrow

tree does not appear as one of the terms from this binary tree, and is a good

example of different groupings of the 15 terms in the symbol from different pictorial

representations.

3.1. Isolating single terms in the symbol 79

This motivates us to add extra data to each representation to isolate a single term

of the symbol.

3.1.1 Isolating a single term on a binary tree

We define a ‘level binary tree with connected regions’ to be the version of the binary

tree symbol representation which represents a single term in the symbol. Firstly we

define a ‘level binary tree’.

Definition 3.4. A level binary tree is a binary tree (as in Definition 1.10) with

a strict ordering on the height of the internal vertices.

A binary trees will have one or more level binary trees associated to it. These

are found by running through all possible strict height orders compatible with the

partial ordering inherent from a binary tree being embedded in a plane.

Example 3.5. We will use the following weight w = 4 Goncharov tree as a running

example.

Note that there are three possible level binary trees associated to this, which are

3.1. Isolating single terms in the symbol 80

As before, we consider all lines away from the root to be extended to a base line

(which is not part of the tree). The root vertex is considered to be at infinity (so

as to separate the regions to left and right of the tree; we will refer to these regions

as being ‘outside’ the tree). Every region cut out by the Goncharov tree will touch

the base line, we label these regions a0, ..., aw+1 by moving from left to right along

the base line.

We then place vertices in each region (excluding a0). The height of these vertices

must respect the height ordering on the internal vertex at the top of each region,

with the vertex in aw+1 being above the first internal vertex. The vertices inherit

the label of the region they inhabit. A single term in the symbol is then represented

by the binary tree with another tree on these region vertices where only adjacent

regions may be connected.

Definition 3.6. A level binary tree with connected regions is a level binary

tree with a dual tree, τ on the regions a1, . . . aw+1 that satisfy:

1. The vertices of the dual tree have labels inherited from the regions, a1, . . . , aw+1.

2. The vertices of the dual tree have a strict height ordering

ai1 < . . . < aiw < aw+1

dictated by the height ordering on the internal vertices (of the binary tree) at

the top of each region and aw+1 being the greatest.

3. Let Sai = {aj|ai < aj}. There must only be one edge in the tree of the

form {ai, ak} for ak ∈ Sai , and for all i. In other words, each vertex may be

connected to only one of the vertices that lies above it.

4. The edges are given a strict order, starting with an edge attached to aw+1,

ending with an edge attached to the lowest region vertex, and dictated by the

position of the lower vertex of each edge in the strict height ordering of the

region vertices.

The definition is demonstrated in the following example.

3.1. Isolating single terms in the symbol 81

Example 3.7. The following represents a possible single term of the symbol ob-

tained from the level binary tree in Example 3.5.

a0 a1 a2 a3 a4 a5

a5

a3

a1

a2 a4

1

2

3
4

We run through all other possible ways of connecting the ai while obeying the rule

that each ai, for i = 1, ..., 4, which must be attached to exactly one higher vertex,

can only be attached to a higher vertex aj if they are in adjacent regions. As a

consequence we see that a1 must be attached to a3 and a3 must be attached to a5.

However, a2 can either be attached to a1 or a3, and likewise a4 to either a3 or a5;

resulting in four possibilities. One is above, the other three are now given.

a0 a1 a2 a3 a4 a5

a5

a3

a1

a2 a4

1

2
3 4

a0 a1 a2 a3 a4 a5

a5

a3

a1

a2 a4

1

2

3

4

3.1. Isolating single terms in the symbol 82

a0 a1 a2 a3 a4 a5

a5

a3

a1

a2 a4

1

2
3

4

3.1.2 Isolating a single term on a polygon dissection

To isolate a single term on a polygon dissection we must pick out one particular

term that arises from the expansion of any shuffles. Shuffles arise on a polygon due

to the dual tree only having a partial order and not a strict order. For example, the

region of the dissection containing both the final edge of the polygon and the first

vertex will always map to the first vertex (or root) on the dual tree, but if there are

more than one other vertices attached to the root of the dual tree, we must shuffle

these vertices. We can therefore isolate a single term by choosing an order on the

vertices of the dual tree (albeit one that is compatible with the partial order).

Definition 3.8. An ordered polygon dissection is a polygon dissection with a

dictated strict order, compatible with the partial order, on its dual tree.

Example 3.9. The following shows the dissection of a 5-gon where a strict order

on the dual tree is shown by a numbering on its vertices.

a1

a2 a3

a4

a5

1

23 4

3.1. Isolating single terms in the symbol 83

The resulting single term is

+

(
1− a5

a3

)
⊗
(

1− a3

a1

)
⊗
(

1− a1

a2

)
⊗
(

1− a3

a4

)
,

as opposed to all terms in the symbol arising from this dissection, given by

+

(
1− a5

a3

)
⊗
((

1− a3

a1

)
⊗
(

1− a1

a2

))
�

(
1− a3

a4

)
.

3.1.3 Isolating a single term on a hook-arrow tree

Isolating a single term on a hook-arrow tree is a very similar procedure to that for

a polygon dissection.

Definition 3.10. An ordered hook-arrow tree is one that has a strict order

chosen on its edges compatible with the partial order on its dual tree.

Example 3.11. The hook-arrow tree of the single term given by the polygon dis-

section in Example 3.9, with added strict ordering on the edges, is given by the

following.

a1

a2 a3

a4

a5

1

23 4

3.1.4 Isolating a single term on a ternary tree

The internal vertices of a ternary tree are, by construction, directly related to the

dual tree of a hook-arrow tree.

Definition 3.12. A level ternary tree, representing a single term in the symbol,

is a ternary tree with a strict ordering on the internal vertices.

3.2. Bijections between pictorial representations of the symbol 84

We denote the strict ordering on the internal vertices by giving them a height order,

from root to base line, within the ternary tree. We demonstrate this definition

through the following example.

Example 3.13. What follows are three copies of the same ternary tree but three

different level ternary trees (each representing a different single term of the symbol).

1

2

3
4

1

2

4
3

1

3

4

2

3.2 Bijections between pictorial representations

of the symbol

We will now give selected direct maps between the different pictorial representations,

and overall they will form bijections between all. Figure 3.1 outlines the maps we

will give and they are labelled with the sections in which they appear. The map

from hook-arrow trees to ternary trees is unnecessary for the bijection, but is still

3.2. Bijections between pictorial representations of the symbol 85

useful.

Goncharov tree Polygon dissection

Hook-arrow tree

Ternary tree

3.2.4

3.2.3

3.2.1

3.2.2

3.2.5

Figure 3.1: Commutative diagram of maps between pictorial representations labelled

with section numbers.

3.2.1 Hook-arrow trees to polygon dissection

Remark 3.14. We note that hook-arrow trees were defined from polygon dissections

in Chapter 2. We require the map in the reverse direction here so as to show

bijections in Figure 3.1.

We will use a weight 4 hook-arrow tree representing a single term in the symbol as

a running example.

Example 3.15. A possible weight 4 labelled hook-arrow tree, τ is given by

Dτ =
{

(1, 2, 3, 4, 5), ({3, 5}, {1, 3}, {2, 1}, {4, 3})
}
.

This takes the following form.

3.2. Bijections between pictorial representations of the symbol 86

a1

a2 a3

a4

a5

1

23 4

We start with a weight w hook-arrow tree with vertices in a linear order labelled

(a1, ..., aw+1).

Step 1 Create the polygon P (a1, ..., aw+1) and add the hook-arrow tree such that

the vertices of the hook-arrow tree lie on the centre of the respective edge of the

polygon.

Step 2 We add all possible arrows that satisfy the following conditions:

• The arrow starts at a vertex of the polygon and ends at a vertex of the hook-

arrow tree which is not on an adjacent side.

• The arrow will bisect the vertices of the hook-arrow tree into two sets with

one common vertex. For the arrow to be allowed, the hook-arrow tree must

only contain edges that connect two vertices in the same set, i.e., the arrows

must not ‘cross’ an edge of the hook-arrow tree.

Step 3 We remove the edges and vertices of the hook-arrow tree, but allow the

labels on the centre of hook-arrow tree to become vertices inhabiting the region

of the dissected polygon they lie in. We then form the dual tree of the polygon

dissection by connecting these numbered vertices if they lie in adjacent regions.

We are then left with the required polygon dissection representing a single term of

the symbol.

3.2. Bijections between pictorial representations of the symbol 87

Example 3.16. We apply steps 1,2 and 3 to the hook-arrow tree in Example 3.15.

a1

a2 a3

a4

a5

1

23 4

a1

a2 a3

a4

a5

1

23 4

After applying Step 1. After applying Step 2.

a1

a2 a3

a4

a5

1

23 4

After applying Step 3.

3.2.2 Polygon dissections to ternary trees

We start with a term in the symbol of a multiple polylogarithm arising from a given

linear order on the dual tree of a maximal dissection of a polygon. Our goal is to

map this to a level binary tree with connected regions. We note that the sides of

the polygon are ‘paired-up’ by the bigons cut out by a maximal dissection.

Example 3.17. We use the same weight 4 polygon maximal dissection as in Ex-

amples 3.9 and 3.16 where the sides of the polygon are paired{
{a1, a2}, {a1, a3}, {a3, a4}, {a3, a5}

}
.

Step 1 We start the transition to a ternary tree by adding all possible trivial

arrows to the dissection, i.e., all possible arrows that end on adjacent sides. We

3.2. Bijections between pictorial representations of the symbol 88

note that this is a natural relaxation of the stipulation that arrows must not be

attached to adjacent edges in a dissection.

Step 2 Next, we ‘complete’ the dual tree of a maximal polygon dissection (in-

cluding all the trivial arrows) in a natural way to a ternary tree. The new edges

correspond to (the parts cut-off by) the trivial arrows.

Example 3.18. For the polygon dissection in Example 3.17 these two steps appear

as follows.

a1

a2 a3

a4

a5

1

23 4

Step 1

a1

a2 a3

a4

a5

1

23 4

Step 2

Step 3 We then remove the arrows (and trivial arrows) and extend the leaves of

the dual tree to the edges of the polygon.

Step 4 The root vertex of the ternary tree is inherited from the root edge of the

polygon (and is on the leaf closest to first vertex of the polygon on the root edge).

We ‘break’ the polygon at the root vertex of the ternary tree and ‘roll-out’. The

edges of the polygon will then form a base line, which is not part of the ternary tree.

It is crucial to note that we induce a height ordering on the internal vertices of the

ternary tree inherited from the linear order on the dual tree.

Example 3.19. Steps 3 and 4 for our running example appear as follows.

3.2. Bijections between pictorial representations of the symbol 89

a1

a2 a3

a4

a5

1

23 4

Step 3

1

2

3
4

a1 a2 a3 a4 a5

Step 4

Remark 3.20. We note that, by retaining the labels from the edges of the polygon

and setting them to represent only the middle portion of each original polygon side

(divided by the leaves of the ternary tree), we have now inherited alternating labels

on the regions of the ternary tree. We could, at this point, label these regions as

such, and connect by the pairings of edges from the polygon dissection. We put a

linear ordering on these edges based on the height ordering of the lower vertex on

each edge. In the case of the running example, noting the pairings from Example

3.17, we get the following.

3.2. Bijections between pictorial representations of the symbol 90

a0 a1 a2 a3 a4 a5

a5

a3

a1

a2
a4

1

2

3

4

This combination of region vertices and ordered edges will be exactly the hook-arrow

tree for this term in the symbol.

3.2.3 Ternary trees to binary trees

We start with a level ternary tree with a base line.

Step 1 We apply an alternating labelling (alternating between an ai and an empty

label) of the partitions of the base line (skipping the first partition and labelling it

a0). So, we label the partitions, from left to right,

a0, a1, ∅, a2, ∅, ..., ai, ∅, ..., aw, ∅, aw+1.

For clarity we will shade the regions with an empty label.

Example 3.21. We use the following level ternary tree. The height order on the

internal vertices has been labelled for clarity.

3.2. Bijections between pictorial representations of the symbol 91

1

2

3
4

After labelling partitions of the base line and shading regions with an empty label

on the ternary tree in Example 3.19 we obtain the following.

1

a0 a1 a2 a3 a4 a5

1

2

3
4

Remark 3.22. The alternating shading can be seen nicely if we recall the ‘roll-out’ as

explained in Section 3.2.2. If we shade the regions cut-out by the ternary tree that

include a corner of the original polygon, for Example 3.19 we obtain the following.

a1

a2 a3

a4

a5

1

23 4

‘Rolling-out’ (by breaking the polygon at the root vertex of the ternary tree) we ob-

tain the required shading (as well as an explanation for the labelling of the regions).

3.2. Bijections between pictorial representations of the symbol 92

Step 2 On a shaded ternary tree we add a vertex in the centre of the non-shaded

regions (except a0) and allow the vertices to inherit its label. It is important that

these vertices also obey the strict height ordering on the internal vertices at the top

of each region. We now connect the vertices a1, ..., aw+1 if the regions they inhabit

share the same internal vertex.

We order the edges connecting the ai in the following way. Each edge {ai, aj} will

have a unique lower vertex. We apply an order on the edges by the position (from

top to bottom) of their lower vertices in the height order.

Example 3.23. Adding vertices to regions and their numbered connecting edges to

our running example gives the following.

a0 a1 a2 a3 a4 a5

a5

a3

a1

a2
a4

1

2

3

4

Step 3 The final step involves a horizontal contraction of the shaded regions.

Within each shaded region we identify all points of the same height. Due to the

alternating shading, each internal vertex will be reduced in valency by exactly one.

The result of this procedure will be a 3-valent tree, the level binary tree required,

complete with decorations designating a single term in the symbol.

Example 3.24. We apply horizontal contraction to our example, temporarily re-

moving the region vertices and edges for clarity. We show steps part of the way

3.2. Bijections between pictorial representations of the symbol 93

through the horizontal contraction and the resulting binary tree (after replacing the

region vertices and edges).

a1 a2 a3 a4 a5 a1 a2 a3 a4 a5

a5

a3

a1

a2

a4

1

2

3

4

3.2.4 Binary trees to a hook-arrow trees

By taking a decorated level binary tree we will have a single term in the symbol.

We then simply extract the region vertices and their connecting edges. We use the

order on the vertices given by the order the regions appear along the base line of the

binary tree from left to right, to obtain the ordered hook-arrow trees representing

3.2. Bijections between pictorial representations of the symbol 94

a single symbol term. This also comes with an ordering on the edges (so it really

does represent one term in the symbol).

As an example, compare the first decorated level binary tree in Example 3.7 and

the ordered hook-arrow tree in Example 3.11.

3.2.5 Hook-arrow trees to ternary trees

We now give an alternative to the recipe for forming a ternary tree (or 4-valent

planted plane tree) to the one given in Section 2.4.3. This method is more direct

and pictorial, and takes a labelled hook-arrow tree to a level ternary tree. We will

use the hook-arrow tree from Example 3.15 as a running example.

Step 1 Begin with a hook-arrow tree τ with description

Dτ = {(vτ1 , . . . , vτw+1), {eτ1, . . . eτw}}.

We form a boundary construction circle which passes through the vertices of the

hook-arrow tree. We consider the boundary circle and the region outside it to be

‘out of bounds’.

We now add 2w + 2 extra vertices on the boundary circle, one on each side of each

vτi . We label the new vertex directly after a vτi with vτi+ and the vertex directly

before with vτi−. We now add edges {vτi , vτi+} and {vτi , vτi−}.

We have created a tree, τ , with a description (as for a hook-arrow tree) of

Dτ = {Vτ , Eτ}

= {(vτ1−, vτ1 , vτ1+, . . . , v
τ
(w+1)−, v

τ
w+1, v

τ
(w+1)+),

{eτ1, . . . eτw, {vτ1 , vτ1+}, {vτ1 , vτ1−}, . . . , {vτw+1, v
τ
(w+1)+}, {vτw+1, v

τ
(w+1)−}}}.

On a weight w hook-arrow tree, this will bring the total number of vertices up to

3w + 3 and the number of edges to 3w + 2 (up from w + 1 vertices and w edges).

3.2. Bijections between pictorial representations of the symbol 95

Example 3.25. We add the boundary circle, extra vertices and edges to the hook-

arrow tree, τ , from Example 3.15. We switch to labelling the vertices of the hook-

arrow tree with v1, . . . , v5 rather than 1, . . . , 5.

vτ1

vτ2 vτ3

vτ4

vτ5 vτ5−vτ5+

vτ1−

vτ1+

vτ2−

vτ2+ vτ3−

vτ3+

vτ4−

vτ4+

1

23 4

Step 2 We place new vertices in the centre of each of the new edges; a vertex

labelled wi+ in the middle of {vτi , vτi+} and a vertex labelled wi− in the middle of

{vτi , vτi−}. We also now place new vertices, ui in the centre of the original hook-

arrow tree edges (note that in a labelled hook-arrow tree where we have labelled the

centres of these edges, these labels can serve as these new vertices).

We form a set C containing the wi−, wi+ and ui. We also let w(w+1)+ = r (it will

become the root vertex of the ternary tree).

We now connect the vertices of C with edges. This is done in the following way.

The vertex c1 ∈ C on edge e1 ∈ Eτ is connected to c2 ∈ C on edge e2 ∈ Eτ if both

the following hold:

• c1 and c2 lie on the boundary of the same region inside the boundary circle.

• e1 and e2 share a vertex of the original hook-arrow tree.

We then discard everything except the vertices in C and their connecting edges.

3.2. Bijections between pictorial representations of the symbol 96

Example 3.26. We add centre vertices to the hook-arrow tree from Example 3.25

and connect them if they satisfy the conditions.

1

2 3

4

5
r

1

23 4

We then discard unwanted vertices and lines.

r

1

23 4

Step 3 The vertex labelled r is the root of the level ternary tree. The numbers on

the vertices ui from the original labelled hook-arrow tree dictate the height of the

internal vertices of the ternary tree. Finally, the anticlockwise order inherited from

the linear order on Vτ gives us the required linear order on vertices which are of the

same distance from the root.

3.2. Bijections between pictorial representations of the symbol 97

Example 3.27. We again look at the hook-arrow tree from Example 3.25. We now

take into account the inherited order of the vertices from the boundary circle and

extend the edges of the ternary tree to a base line to give the following:

1

2

3
4

We note that this step is very similar to the previously seen concept of ‘rolling-out’.

3.2.6 A specific example of moving between all pictorial rep-

resentations

Since the above maps had the same running example we provide diagrams for another

single term. We start with a weight 3 hook-arrow tree, H, given by the following:

1

2

3

4

1

2

3

Hook-arrow tree H

We now move around the diagram in Figure 3.1 in the following way:

H
3.2.1−−→ P

3.2.2−−→ T
3.2.3−−→ B

3.2.4−−→ H
3.2.5−−→ T.

3.2. Bijections between pictorial representations of the symbol 98

We give pictures for various steps along the process. The reader is invited to look

at the relevant sections for explanations.

1

2

3

4

1

2

3

1

2

3

4

1

2

3

3.2.1 Step 1 & 2. Polygon dissection P after 3.2.1 Step 3.

1

2

3

4

1

2

3

1

2

3

4

1

2

3

1

2

3

3.2.2 Steps 1 & 2. 3.2.2 Step 3 (with shading as in Remark 3.22).

3.2. Bijections between pictorial representations of the symbol 99

1

2

3

1 2 3 4

1

2
3

4

1

2

3

Ternary tree T after 3.2.2 Step 4 and 3.2.3 Steps 1 & 2.

1 2 3 4

1

2

3

4

1

2

3

1

2

3

4

1

2

3

Binary tree B after 3.2.3 Step 3. Hook-arrow tree H after 3.2.4.

3.2. Bijections between pictorial representations of the symbol 100

1

2

3

4

1

2

3

1

2

3

4

1

2

3

r

3.2.5 Step 1. 3.2.5 Step 2.

1

2

3

r

1

2

3

3.2.5 Step 2 (continued). Ternary tree T after 3.2.5 Step 3.

Chapter 4

Symbols of multiple

polylogarithms of a given depth

To find the symbol of a multiple polylogarithm for a given weight, we must currently

consider all hook-arrow trees (or polygon dissections or binary trees). In this chapter

we propose a more efficient method if the multiple polylogarithms is of a given depth.

There is motivation for this from the physics community’s interest in the symbol of

multiple polylogarithms. We begin by noting a conjecture of Goncharov (as noted in

[DGR11] on page 23, the conjecture was learned from Goncharov by word of mouth

by H Gangl).

Conjecture 4.1. Any multiple polylogarithm Im1,...,mk
(x1, . . . , xm) with mj = 1 for

some j can be expressed in terms of multiple polylogarithms where no index is equal

to 1.

There is therefore motivation to examine multiple polylogarithms where the depth

is lower than the weight, and so have a non-zero co-depth.

Definition 4.2. The co-depth of a depth d, weight w, multiple polylogarithm is

equal to w − d.

Although there has been considerable interest in weight 4 polylogarithms for some

time through their part in 2-loop Wilson loops (as in [GSVV10]), it is assumed that

101

Chapter 4. Symbols of multiple polylogarithms of a given depth 102

3-loop Wilson loops will consist of weight 6 polylogarithms (see [HK11]). By only

considering multiple polylogarithms with indices greater than 1, the highest depth

multiple polylogarithms of weight 4 are of depth 2 (indeed, there is only I2,2(x1, x2)).

If we move to weight 6 we consider I2,2,2(x1, x2, x3). In this chapter we provide a

method for finding S(Ip,q,r(x1, x2, x3)) efficiently for any p, q, r ∈ N and we provide

the full symbol of I2,2,2(x1, x2, x3) in Appendix C.

We begin by exploring depth 2 multiple polylogarithms, and specifically take the

symbol of I1,2(x, y) as an example.

Example 4.3. The 4-gon representing I1,2(x, y) is

P (x, y, 0, 1).

As in the algorithm previously described we now form every hook-arrow tree with

vertices x, y, 0 and 1. We get the following 12 trees.

1

x

y

0

1
2

x

y

0

1
3

x

y

0

1
4

x

y

0

1

5

x

y

0

1
6

x

y

0

1
7

x

y

0

1
8

x

y

0

1

9

x

y

0

1
10

x

y

0

1
11

x

y

0

1
12

x

y

0

1

We discard (give a zero coefficient in the symbol) trees 1, 6, 8, 10 and 11 as they have

an arrow ending at the vertex 0, as described in Definition 2.20. We then discard

trees 3, 5 and 7 for containing the edge [0, 1] (again due to Definition 2.20). The

only trees contributing to the symbol are 2, 4, 9 and 12.

Chapter 4. Symbols of multiple polylogarithms of a given depth 103

We see that the only way to form a hook-arrow tree that contributes to the symbol

for I1,2(x, y) is when the vertex 0 is only attached to either vertex x or vertex y, and

necessarily forms a directed edge [0, x] or [0, y].

Proposition 4.4. Let τ be a hook-arrow tree on labelled vertices vτ1 , . . . , v
τ
n. For τ

to represent a term in the symbol with a non-zero coefficient, any vertices vτi = 0

(i.e. labelled with a 0) must only be contained in one edge and it must of the form

[0, t], where t 6≡ 0, 1.

Proof. We prove that no other possible edge can exist.

First, we prove that the vertex 0 can only have one other vertex directly connected

to it. We want to show that if this is not the case then there must be a edge in

the tree of the form [a, 0], for some a, and so the tree would represent a term with

a zero coefficient in the symbol. The algorithm dictates that the direction of the

edges correspond to the direction towards the final vertex, vτn, which is unique on a

tree. Since the vertex 0 must be connected to the final edge by a unique sequence of

edges then there will be an edge containing and directed away from it; we call this

edge [0, b].

We also see that for any other vertex, ci 6= b, directly connected to the vertex 0,

then the unique path from ci to the final vertex, vτn, must contain [0, b].

The edges containing each vertex ci and 0 must therefore be directed [ci, 0] and

therefore the tree will not contribute to the symbol (because µ([ci, 0]) = 1 from

Definition 2.20). We conclude that for the tree to have a non-zero coefficient in the

symbol, then the only edge connected to the vertex 0 must be [0, b] for some b.

Finally we note that b must not equal 0 or 1 by Definition 2.20.

A vertex of a tree representing a weight w =
∑
rs, depth s, hook-arrow tree rep-

resenting Ir1,...,rs(x1, ..., xs) will either be a 0-vertex, an argument xi, or the solitary,

final vertex, 1. We put aside the 0-vertices and form every possible tree formed

from the vertices labelled with the arguments xi and the vertex labelled 1. In other

Chapter 4. Symbols of multiple polylogarithms of a given depth 104

words we find all possible hook-arrow trees of the vertices (x1, ..., xs, 1). This will

be the same as finding all possible hook-arrow trees for I1,...,1(x1, ..., xs). Since we

know that each 0-vertex can only be added to this tree by attaching it to one of

the xi, we can find all possible hook-arrow trees with a non-zero coefficient in the

symbol by exhausting possible additions of w − s edges of the form [0, xi]. There is

some restriction where these are added as the edges of a hook-arrow tree must not

interleave by definition. We now give some examples.

Example 4.5. We found all possible trees for I1,2(x, y) in Example 4.3. We corrob-

orate the above method by finding these again.

1

x

y

0

1
1a

x

y

0

1

2

x

y

0

1
2a

x

y

0

1
2b

x

y

0

1

3

x

y

0

1
3a

x

y

0

1

We see that in 1 and 3 there is only one possible place to add the edge containing

the vertex 0, both to the vertex y. However in 2 we can attach the vertex 0 to either

the vertex x or y, creating two terms of the symbol. The four trees 1a, 2a, 2b and

3a exactly match trees 9, 12, 4 and 2 respectively from example 4.3.

Example 4.6. We now explore an example with more 0-vertices. The polygon

Chapter 4. Symbols of multiple polylogarithms of a given depth 105

representing I2,3(x, y) is

P (x, 0, y, 0, 0, 1).

We again find the three trees for the vertices (x, y, 1) and add all possible 0-vertices.

1

x

0

y

0

0

1
1a

x

0

y

0

0

1
1b

x

0

y

0

0

1

2

x

0

y

0

0

1
2a

x

0

y

0

0

1
2b

x

0

y

0

0

1
2c

x

0

y

0

0

1

2d

x

0

y

0

0

1
2e

x

0

y

0

0

1
2f

x

0

y

0

0

1

3

x

0

y

0

0

1
3a

x

0

y

0

0

1
3b

x

0

y

0

0

1

We can see that, because r1 = 2, there is r1 − 1 = 1 vertex labelled 0 that can

be attached to either vertices x or y in trees 1, 2 and 3. Because r2 = 3 there are

r2− 1 = 2 vertices labelled 0 that can only be attached to vertex y in trees 1 and 3,

but to either vertices x or y in tree 2. Because the cyclic order of the vertices is fixed,

4.1. The symbol of Ir1,r2(x1, x2) 106

and because arrows must not interleave, there are now three different arrangements

for the r2 − 1 vertices labelled 0 in tree 2. These will be to include the edges

{[0, x], [0, x]}, {[0, x], [0, y]} or {[0, y], [0, y]}.

We have 10 hook-arrow trees on the vertices (x, 0, y, 0, 0, 1) with a non-zero coef-

ficient and it is an exhaustive list. If we were to write out all trees representing

dissections of a 6-gon and then remove trees with a zero coefficient, we would have

sorted through 273 trees to find the 10 required.

4.1 The symbol of Ir1,r2(x1, x2)

Examples 4.5 and 4.6 motivate an attempt to generalise finding the symbol for

any depth 2 multiple polylogarithm. By using the 3 possible hook-arrow trees for

vertices (x, y, 1) and simply adding 0-vertices either between the vertices labelled x

and y or between y and 1, and considering all combinations of attaching these to the

hook-arrow tree, we can group all the terms in the symbol into three summations.

Proposition 4.7. A multiple polylogarithm Ir1,r2(x1, x2), represented by the polygon

P (x1, 0, ..., 0︸ ︷︷ ︸
r1−1

, x2, 0, ..., 0︸ ︷︷ ︸
r2−1

, 1),

has r1r2 + 2r1 terms in the symbol with non-zero coefficients.

Proof. As in Examples 4.5 and 4.6, we first ignore the 0-vertices and consider the

three hook-arrow trees on the vertices (x, y, 1). We now add r1− 1 vertices labelled

0 between vertices x and y and r2 − 1 vertices labelled 0 between vertices y and 1.

We run through every combination of attaching the 0-vertices.

Firstly we have r1 trees of the following form, where

t11 + t12 = r1 − 1 and t13 = r2 − 1.

4.1. The symbol of Ir1,r2(x1, x2) 107

x

y

1

0
0

0t11

0 0 0

t12

0
0

0 t13

Then we have r1r2 trees of the following form, where

t21 + t22 = r1 − 1 and t23 + t24 = r2 − 1.

x

y

1

0
0

0t21

0 0 0

t22

0

0

0
t23

0
0

0 t24

Finally we have r1 trees of the following form, where

t31 + t32 = r1 − 1 and t33 = r2 − 1.

4.1. The symbol of Ir1,r2(x1, x2) 108

x

y

1

0
0

0t31

0 0 0

t32

0
0

0 t33

In total we have r1r2 + 2r1 hook-arrow trees with a non-zero coefficient.

We can now extract the symbol using the algorithm and write the terms in the

symbol. We first require a basic fact about shuffling copies of the same variable.

Proposition 4.8. Given any a and b, c ∈ Z then

a⊗b� a⊗c =

(
b+ c

c

)
a⊗(b+c) =

(
b+ c

b

)
a⊗(b+c)

Proof. The result follows from a standard result that there are
(
b+c
c

)
ways to arrange

b objects into c+ 1 boxes given that order is retained.

Theorem 4.9. The symbol for the multiple polylogarithm Ir1,r2(x1, x2) is the follow-

ing formal sum of tensor products.∑
t1+t2=r1−1

(−1)t1+r2−1

[(
1− 1

x2

)
⊗ x⊗(r2−1)

2 �

((
1− x2

x1

)
⊗ x⊗t11 � x⊗t22

)]

+
∑

t1+t2=r1−1
t3+t4=r2−1

(−1)t1+r2

(
t2 + t4
t2

)[(
1− 1

x1

)
⊗ x⊗t31 ⊗

(
1− x1

x2

)
⊗ x⊗t2+t4

2 � x⊗t11

]

+
∑

t1+t2=r1−1

(−1)t1+r2+1

(
t2 + r2 − 1

t2

)[(
1− 1

x1

)
⊗ x⊗t11

�

((
1− 1

x2

)
⊗ x⊗(t2+r2−1)

2

)]
.

4.2. The symbol of Ir1,r2,r3(x1, x2, x3) 109

Proof. This is done by simply working out the tensor element for each tree in the

proof of Proposition 4.7. The first summation covers trees of the type ‘tree 1’ in that

proof, the second summation of type ‘tree 2’ and the third summation of type ‘tree

3’. The sign for each term is calculated as in the algorithm previously described.

Simplifying using Notation 1.1, and Proposition 4.8 we obtain the expression in the

statement.

4.2 The symbol of Ir1,r2,r3(x1, x2, x3)

The obvious next step is to consider depth 3 multiple polylogarithms. The polygon

representing Ir1,r2,r3(x1, x2, x3) will be

P (x1, 0, ..., 0︸ ︷︷ ︸
r1−1

, x2, 0, ..., 0︸ ︷︷ ︸
r2−1

, x3, 0, ..., 0︸ ︷︷ ︸
r3−1

, 1).

We look at possible hook-arrow trees on vertices with these labels and again tempor-

arily ignore the 0-vertices to leave the 4 vertices (x1, x2, x3, 1). As seen in Example

2.6, there are 12 possible hook-arrow trees on 4 general vertices. We continue as

before.

Proposition 4.10. A multiple polylogarithm Ir1,r2,r3(x1, x2, x3), represented by the

polygon

P (x1, 0, ..., 0︸ ︷︷ ︸
r1−1

, x2, 0, ..., 0︸ ︷︷ ︸
r2−1

, x3, 0, ..., 0︸ ︷︷ ︸
r3−1

, 1),

has
1

2
r1r2(r3 + 2)(r1 + r2 + r3 + 5)

terms in the symbol with non-zero coefficients.

Proof. We consider the 12 possible hook-arrow trees with vertices (x1, x2, x3, 1). We

add r1 − 1 vertices labelled 0 between vertices x1 and x2, we add r2 − 1 vertices

labelled 0 between vertices x2 and x3, and r3−1 vertices labelled 0 between vertices

x3 and 1. We then run through every combination of possible ways of attaching the

0-vertices.

4.2. The symbol of Ir1,r2,r3(x1, x2, x3) 110

1. 2.

x1

x2

x3

1

0
·· ··
0u1

0 ··
··
0

u2
0 ··
·· 0

s1

0
····
0
s2

0
····

0 t1

x1

x2

x3

1

0
·· ··
0u1

0 ··
··
0

u2
0 ··
·· 0

s1

0
····
0
s2

0
····

0 t1

0
····

0
t2

3. 4.

x1

x2

x3

1

0
·· ··
0u1

0 ··
··
0

u2
0 ··
·· 0

s1

0
····
0
s2

0
····

0 t1

x1

x2

x3

1

0
·· ··
0u1

0 ··
··
0

u2

0
·· ·
·
0u3

0 ··
·· 0

s1

0
····
0
s2

0
····

0 t1

5. 6.

x1

x2

x3

1

0
·· ··
0u1

0 ··
··
0

u2
0 ··
·· 0

s1

0
····
0
s2

0
··
·· 0

s3

0
····

0 t1

x1

x2

x3

1

0
·· ··
0u1

0 ··
··
0

u2

0
·· ·
·
0u3

0 ··
·· 0

s1

0
····
0
s2

0
····

0 t1

4.2. The symbol of Ir1,r2,r3(x1, x2, x3) 111

7. 8.

x1

x2

x3

1

0
·· ··
0u1

0 ··
··
0

u2
0 ··
·· 0

s1

0
····
0
s2

0
····

0 t1

0
····

0
t2

x1

x2

x3

1

0
·· ··
0u1

0 ··
··
0

u2
0 ··
·· 0

s1

0
····
0
s2

0
··
·· 0

s3

0
····

0 t1

0
····

0
t2

9. 10.

x1

x2

x3

1

0
·· ··
0u1

0 ··
··
0

u2
0 ··
·· 0

s1

0
····
0
s2

0
····

0 t1

x1

x2

x3

1

0
·· ··
0u1

0 ··
··
0

u2
0 ··
·· 0

s1

0
····
0
s2

0
····

0 t1

0· ···
0

t3

0
····

0
t2

11. 12.

x1

x2

x3

1

0
·· ··
0u1

0 ··
··
0

u2

0
·· ·
·
0u3

0 ··
·· 0

s1

0
····
0
s2

0
····

0 t1

0
····

0
t2

x1

x2

x3

1

0
·· ··
0u1

0 ··
··
0

u2
0 ··
·· 0

s1

0
····
0
s2

0
··
·· 0

s3

0
····

0 t1

4.2. The symbol of Ir1,r2,r3(x1, x2, x3) 112

We now enumerate the number of hook-arrow trees represented by each diagram.

Diagram #{Hook-arrow trees}

1 r1r2

2 r1r2r3

3 r1r2

4
(
r1+1

2

)
r2

5 r1

(
r2+1

2

)
6

(
r1+1

2

)
r2

7 r1r2r3

8 r1

(
r2+1

2

)
r3

9 r1r2

10 r1r2

(
r3+1

2

)
11

(
r1+1

2

)
r2r3

12 r1

(
r2+1

2

)
Total

1

2
r1r2(r3 + 2)(r1 + r2 + r3 + 5)

Notation 4.11. Before we explicitly give the symbol for a depth 3 multiple poly-

logarithm, for ease of notation we write∑
∗

:=
∑

∑
ui=r1−1∑
si=r2−1∑
ti=r3−1

.

Note that this notation only applies for the following Theorem.

Theorem 4.12. The symbol for the multiple polylogarithm Ir1,r2,r3(x1, x2, x3) can

be written in tensor form as the sum of 12 summations. The sum of products now

follows.

4
.2

.
T

h
e

sy
m

b
o
l

o
f
I
r
1
,r

2
,r

3 (x
1 ,x

2 ,x
3)

1
1
3

∑
∗

(−1)u1+s1+r3−1

(
s1 + u2

s1

)(
s2 + r3 − 1

s2

)[(
1− 1

x1

)
⊗ x⊗u11 �

((
1− 1

x2

)
⊗ x⊗(s1+u2)

2 �

((
1− 1

x3

)
⊗ x⊗(s2+r3−1)

3

))]

+
∑
∗

(−1)u1+s1+r3

(
s2 + t1
s2

)[(
1− 1

x1

)
⊗ x⊗u11 �

((
1− 1

x2

)
⊗ x⊗u22 �

(
x⊗t22 ⊗

(
1− x2

x3

)
⊗ x⊗(s2+t1)

3 � x⊗s12

))]

+
∑
∗

(−1)u1+s1+r3−1

(
s2 + r3 − 1

s2

)[(
1− 1

x2

)
⊗ x⊗s12 �

((
1− 1

x3

)
⊗ x⊗(s2+r3−1)

3

)
�

((
1− x2

x1

)
⊗ x⊗u11 � x⊗u22

)]

+
∑
∗

(−1)u1+s1+r3−1

(
s1 + u2

s1

)[(
1− 1

x1

)
⊗ x⊗u11 �

((
1− 1

x3

)
⊗ x⊗(r3−1)

3 �

(
x⊗u33 ⊗

(
1− x3

x2

)
⊗ x⊗(s1+u2)

2 � x⊗s23

))]

+
∑
∗

(−1)u1+s1+s2+r3

(
s1 + u2

s1

)(
s3 + r3 − 1

s3

)[((
1− 1

x1

)
⊗ x⊗s21 ⊗

(
1− x1

x2

)
⊗ x⊗(s1+u2)

2 � x⊗u11

)
�

((
1− 1

x3

)
⊗ x⊗(s3+r3−1)

3

)]

+
∑
∗

(−1)u1+s1+r3−1

(
s1 + u2

s1

)[(
1− 1

x3

)
⊗ x⊗(r3−1)

3 �

((
1− x3

x1

)
⊗ x⊗u11 �

(
x⊗u33 ⊗

(
1− x3

x2

)
⊗ x⊗(s1+u2)

2 � x⊗s23

))]

4
.2

.
T

h
e

sy
m

b
o
l

o
f
I
r
1
,r

2
,r

3 (x
1 ,x

2 ,x
3)

1
1
4

+
∑
∗

(−1)u1+s1+r3

(
s2 + t1
s2

)[(
1− 1

x2

)
⊗
((

1− x2

x1

)
⊗ x⊗u22 � x⊗u11

))
�

(
x⊗t22 ⊗

(
1− x2

x3

)
⊗ x⊗s12 � x

⊗(s2+t1)
3

)]

+
∑
∗

(−1)u1+s1+s3+r3−1

(
s2 + t1
s2

)(
s1 + u2

s1

)[(
1− 1

x1

)
⊗ x⊗t21 ⊗

(
1− x1

x3

)
⊗ x⊗(s2+t1)

3 �

(
x⊗s31 ⊗

(
1− x1

x2

)
⊗ x⊗(s1+u2)

2 � x⊗u11

)]

+
∑
∗

(−1)u1+s1+r3−1

[(
1− 1

x3

)
⊗
(
x
⊗(r3−1)
3 �

((
1− x3

x2

)
⊗ x⊗s23 � x⊗s12 �

((
1− x2

x1

)
⊗ x⊗u11 � x⊗u22

)))]

+
∑
∗

(−1)u1+s1+r3−1

(
s2 + t1
s2

)[(
1− 1

x1

)
⊗ x⊗t31 ⊗

(
1− x1

x2

)
⊗ x⊗u11 � x⊗u22 �

(
x⊗t22 ⊗

(
1− x2

x3

)
⊗ x⊗s12 � x

⊗(s2+t1)
3

)]

+
∑
∗

(−1)u1+s1+r3

(
s1 + u2

s1

)[(
1− 1

x1

)
⊗ x⊗t21 ⊗

(
1− x1

x3

)
⊗ x⊗u11 � x⊗t13 �

(
x⊗u33 ⊗

(
1− x3

x2

)
⊗ x⊗s23 � x

⊗(s1+u2)
2

)]

+
∑
∗

(−1)u1+s1+s3+r3

(
s1 + u2

s1

)[(
1− 1

x3

)
⊗ x⊗(r3−1)

3 �

((
1− x3

x1

)
⊗ x⊗s23 �

(
x⊗s31 ⊗

(
1− x1

x2

)
⊗ x⊗u11 � x

⊗(s1+u2)
2

))]
.

4.3. Higher depths 115

Proof. As in the case for Ir1,r2(x1, x2) we examine each tree in the proof of propos-

ition 4.10 and apply the algorithm for finding the symbol from a hook-arrow tree.

We then simplify as before.

In Appendix C we give the symbol of a depth 3, weight 6 multiple polylogarithm,

I2,2,2(x, y, z), which the above method allows us to find relatively easily.

4.3 Higher depths

The above process can of course be generalised to higher depths and can provide

benefits to calculating symbols for multiple polylogarithms with a non-zero co-depth.

The process amounts to effectively reducing the complexity of the calculation of the

symbol by the co-depth.

A general multiple polylogarithm Ir1,...,rk(x1, ..., xk) of depth k and weight

n = r1 + ...+ rk

will correspond to a polygon

P (x1, 0, ..., 0︸ ︷︷ ︸
r1−1

, x2, 0, ..., 0︸ ︷︷ ︸
r2−1

, ..., xk, 0, ..., 0︸ ︷︷ ︸
rk−1

, 1).

As before we first ignore the sides labelled and, switching to hook-arrow trees, look

at possible hook-arrow trees on the vertices labelled (x1, ..., xk, 1) of which there are

1

2k + 1

(
3k

k

)
,

as in Proposition 2.33. The process of enumerating and evaluating the number

of ways to add the 0-vertices gets more complicated as the weight and co-depth

increases. However, we now further justify the advantages of this process rather

than calculating all hook-arrow trees on n vertices and disregarding the terms with

coefficient zero. We give a brief discussion of the symbol of depth 4 multiple poly-

logarithms.

4.3. Higher depths 116

4.3.1 Discussion on the symbol of a general depth 4 multiple

polylogarithm

For a general depth 4 multiple polylogarithm we can give the symbol as the sum of

55 summations. This is because we have

55 =
1

2 · 4 + 1

(
3 · 4

4

)
possible hook-arrow trees on the vertices (x1, x2, x3, x4, 1). One possible hook-arrow

tree on these 5 vertices is

x1

x2 x3

x4

1

which, if we now add all zero vertices representing the vertices of a hook-arrow tree

for a general depth 4 multiple polylogarithm Ir1,...,r4(x1, ..., x4) will give us

4.3. Higher depths 117

x1

x2 x3

x4

1

0
·· ··
0

s1

0
·· ·
·

0s2

0 ··
··

0

t1

0 ··
··
0

t2

0 ··
··

0

t3

0
··
··

0

t4

0
··

·· 0

u1

0
····
0

u2

0
··
··
0

v

where

s1 + s2 = r1 − 1, t1 + t2 + t3 + t4 = r2 − 1, u1 + u2 = r3 − 1, v = r4 − 1.

When we apply the algorithm the hook-arrow trees represented by the above diagram

corresponds to the following terms in the symbol.∑
∑
ui=r1−1∑
si=r2−1∑
ti=r3−1

κs,t,u,v

[(
1− 1

x4

)
⊗ x⊗(v)

3 �

((
1− x4

x1

)
⊗Υ1

s,t,u,v �Υ2
s,t,u,v

)]

where

κs,t,u,v = (−1)1+s1+t1+t2+u1+v1

(
s2 + t1
s2

)(
t4 + u1

t4

)
,

Υ1
s,t,u,v = x⊗t21 ⊗

(
1− x1

x2

)
⊗ x⊗s11 � x

⊗(s2+t1)
2 ,

Υ2
s,t,u,v = x⊗t44 ⊗

(
1− x4

x3

)
⊗ x⊗u24 � x

⊗(u1+t4)
2 .

To find the full general form of the symbol of Ir1,...,r4(x1, ..., x4) we would add this

to the 54 other summations, found in a similar way. This is fairly unwieldy. The

4.3. Higher depths 118

following example should demonstrate why, even for a very simple depth 4 multiple

polylogarithm, it is still vastly easier than computing all dissections on n vertices.

Example 4.13. We consider the multiple polylogarithm I3,2,3,2(x1, x2, x3, x4) which

has weight n = 10 and co-depth 6. If we try to find the full dissection head on

we must first find all hook-arrow trees on 11 vertices, or possible dissections of a

polygon with 11 sides, of which there will be

1

2 · 11− 1

(
3 · (11− 1)

11− 1

)
= 1430715.

Each of these will then need to be decorated with

(x1, 0, 0, x2, 0, x3, 0, 0, x4, 0, 1),

examined to see if they have coefficient zero (if there is a disregarded edge/2-gon),

and if not, have the corresponding tensor product calculated. This will be a lengthy

process even for a computer.

On the other hand, by first considering the hook-arrow trees on the vertices labelled

(x1, x2, x3, x4, 1) and attaching zeros we need only consider, essentially, 55 trees. For

I3,2,3,2(x1, x2, x3, x4) the above example of a dissection will be trees of the form

x1

x2 x3

x4

1

0

0

0

0

0

0

where we run through all possible ways of attaching the 0-vertices.

We can then use the summation we have already established by setting r1 = 2, r2 =

3, r3 = 2 and r4 = 3, to find all tensor expansions. The above tree represents 36

4.3. Higher depths 119

possible hook-arrow trees. This can then be repeated, still in a fairly lengthy way,

for the other 54 forms.

Remark 4.14. It is important to note that if the general 55 summation signs for

depth 4 are formulated once then they can be used repeatedly for the symbol of any

depth 4 multiple polylogarithm.

The above process will, however, require considerably less work than running through

all C(11) = 1430715 (where C(n) is the Catalan numbers) possible hook-arrow trees

on 11 vertices and then discarding trees that do not contribute to the symbol.

Chapter 5

The symbol of coloured multiple

zeta values

In this chapter we give an application of polygons and hook-arrow trees, namely

finding the symbol for coloured multiple zeta values (defined below in Definition

5.1).

The main theorem of this chapter is included in a joint paper with Claude Duhr

and Herbert Gangl [DGR11]. The paper concerns an attempt to find a systematic

approach to ‘integrating’ a symbol, i.e., how to construct a function corresponding

to a given symbol. Having a good grasp of the generators of the kernel of the

symbol map is important during this procedure. Coloured multiple zeta values are

specialised multiple polylogarithms for which we can fully formulate the symbol in

all weights.

Definition 5.1. A coloured multiple zeta value is defined to be

ζ(m1, ...,mk; ε1, ..., εk) :=
∑

0<n1<...<nk

εn1
1 ε

n2
2 · · · ε

nk
k

nm1
1 nm2

2 · · ·n
mk
k

.

with mi ∈ N and εi ∈ {±1}.

We note that coloured multiple zeta values are clearly a special class of multiple

120

5.1. Proof of Theorem 5.2 121

polylogarithms via the identity

ζ(m1, ...,mk; ε1, ..., εk) = (−1)kIm1,...,mk
(ε̂1, ..., ε̂k) where ε̂i =

k∏
j=i

εj. (5.1)

This follows directly from Theorem 0.10. We now formulate the symbol for coloured

multiple zeta values.

Theorem 5.2. For εi ∈ {−1, 1} and k ≥ 1,

1. When mi = 1 for all i,

S

ζ(1, . . . , 1︸ ︷︷ ︸
k times

; ε1, . . . , εk−1,−1)

 = (−1)k2⊗k.

2. If at least one of the mi is different from 1, then

S(ζ(m1, . . . ,mk; ε1, . . . , εk)) = 0.

We prove Theorem 5.2 in the following section.

Remark 5.3. The theorem restricts to cases where εk = −1. This corresponds to

coloured multiple zeta values which converge. We will, in Proposition 5.4, find

the symbol of coloured multiple zeta values with this restriction lifted; where the

coefficient of 2⊗k when the mi = 1 is calculated using a binomial.

Using the correspondence between coloured multiple zeta values and multiple poly-

logarithms (from Equation 5.1) we can associate to ζ(m1, ...,mk; ε1, ..., εk) the poly-

gon

P (ε̂1, 0, . . . , 0︸ ︷︷ ︸
m1−1 times

, ε̂2, 0, . . . , 0︸ ︷︷ ︸
m2−1 times

, . . . , ε̂k 0, . . . , 0︸ ︷︷ ︸
mk−1 times

, 1) where ε̂i =
k∏
j=i

εj.

We note that the factor (−1)k of Equation 5.1 must be kept in mind.

5.1 Proof of Theorem 5.2

In this section we prove Propositions 5.4 and 5.7. These are equivalent to statements

1 and 2 of Theorem 5.2, respectively, but are given in terms of the symbol attached

5.1. Proof of Theorem 5.2 122

to polygons. We will discuss the exact correspondence to Theorem 5.2 at the end

of the section.

Proposition 5.4. The symbol corresponding to the decorated polygon P (x1, ..., xn, 1),

for some xi ∈ {−1, 1}, is equal to λa,n(2⊗n) for

λa,n = (−1)a
(
n− 1

a

)
and a = n−max{i | xi = −1}.

We will prove Proposition 5.4 after noting the benefits of applying the Hölder con-

volution and proving a proposition involving generating functions.

By the Hölder convolution introduced in Section 1.5.1 it follows that P (x1, ..., xn, 1)

has the same symbol as the polygon P (1− xn, ..., 1− x1, 1) times a factor of (−1)n.

So, without loss of generality, when xi = ±1, we consider the polygon

P (0, ..., 0︸ ︷︷ ︸
t0

, 2, 0, ..., 0︸ ︷︷ ︸
t1

, 2, 0, ..., 0, 2, 0, ..., 0︸ ︷︷ ︸
tm

, 1),

find its symbol, and reintroduce a factor of (−1)n from Hölder convolution at the

end. The move from sides labelled 1 and −1 to sides labelled 0 and 2 increases the

number of dissections that do not contribute to the symbol. The combinatorics of

the dissections of polygons of this type is best captured by hook-arrow trees due to

the convenience of how to enumerate dissections with edges/vertices labelled 0. The

enumeration of these 0-vertices is similar to the situation outlined in Chapter 4.

We first explore one possible polygon which represents a coloured multiple zeta value

under the Hölder convolution.

Example 5.5. For the polygon P (2, 0, 2, 0, 0, 2, 0, 1) we have a possible dissection

of

2

0

2
0

0

2

0
1

with hook-arrow tree

2

0

2
0

0

2

0
1

5.1. Proof of Theorem 5.2 123

We now reintroduce the dual tree view of a dissection from Definition 1.33, beneficial

in finding the symbol attached to a polygon. As with the dissection of a polygon using

arrows, the dual tree can easily be seen in the hook-arrow tree view. For clarity we give

the dual tree a dash-dotted line.

2

0

2
0

0

2

0
1

2

0

2
0

0

2

0
1

Polygon dissection and dual tree. Hook-arrow tree and dual tree.

For the proof of Proposition 5.4, we also require the following proposition which is

proved using generating functions (and using methods outlined in [Wil94]).

Proposition 5.6. If c, n ∈ Z≥0 then

n∑
i=0

(−1)i
(
n− i+ c

n− i

)(
n+ c+ 1

i

)
= (−1)n.

Proof. Let r = n− i and view both sides as coefficients of generating functions. To

prove the identity we therefore need to show

ρ =
∞∑
n=0

xn
n∑
r=0

(−1)n−r
(
r + c

r

)(
n+ c+ 1

n− r

)
is equivalent to

∑∞
n=0(−x)n. Firstly since for r > n we have

(
n+c+1
n−r

)
= 0 then we

can change the summation of r to run over all positive integers.

ρ =
∞∑
n=0

xn
∞∑
r=0

(−1)n−r
(
r + c

r

)(
n+ c+ 1

n− r

)
.

We then re-order the summation signs, assuming small x. Also, since
(
n+c+1
n−r

)
=(

n+c+1
r+c+1

)
, we have that

ρ =
∞∑
r=0

(
r + c

r

) ∞∑
n=0

(−1)n−r
(
n+ c+ 1

r + c+ 1

)
xn

=
∞∑
r=0

(−1)r−c−1

xc+1

(
r + c

r

) ∞∑
n=0

(
n+ c+ 1

r + c+ 1

)
(−x)n+c+1.

5.1. Proof of Theorem 5.2 124

We let s = n + c + 1 and relabel. We can sum
∞∑
s=0

as opposed to
∞∑

s=c+1

because if

0 ≤ s < c+ 1 we have s = n+ c+ 1 < r + c+ 1 and so
(
n+c+1
r+c+1

)
= 0.

ρ =
∞∑
r=0

(−1)r−c−1

xc+1

(
r + c

r

) ∞∑
s=0

(
s

r + c+ 1

)
(−x)s

=
∞∑
r=0

(
r + c

r

)
xr

(1 + x)r+c+2

=
1

(1 + x)c+2

∞∑
r=0

(
r + c

r

)(
x

1 + x

)r
=

1

(1 + x)c+2
(
1− x

1+x

)c+1

=
1

1 + x

=
∞∑
n=0

(−x)n.

.

Proof. (of Proposition 5.4) After applying the Hölder convolution, and without loss

of generality, we attempt to find all hook-arrow trees relating to the polygon

P (0, ..., 0︸ ︷︷ ︸
t0

, 2, 0, ..., 0︸ ︷︷ ︸
t1

, 2, 0, ... , 0, 2, 0, ..., 0︸ ︷︷ ︸
tm

, 1)

which do not represent terms with coefficient 0 in the symbol. After some consider-

ation and because of Proposition 4.4 we see that these hook-arrow trees must take

the following form.

5.1. Proof of Theorem 5.2 125

2

2

2

1

·
·

·

0
· ·
· ·0

t0

0

·· ·
·

0
t1,1

0
··
··

0t1,2

0 ··
··

0

t2,1

0

··
··

0

tm−1,2

0
· ·· ·

0
tm

Each ti,1 and ti,2, for i = 1, ...,m− 1 are chosen integers 0 ≤ ti,1, ti,2 ≤ ti such that

ti,1 + ti,2 = ti. The choice of the ti,j arises from the fact that we can choose where to

partition each group of ti vertices labelled 0, for i = 1, ...,m − 1, and attach them

to the vertices labelled 2, remembering that the vertices must not cross. In the case

of the function P (2, 0, 2, 0, 0, 2, 0, 1) from Example 5.5, where m = 3, t0 = 0, t1 =

1, t2 = 2 and t3 = 1, we have 6 possible valid dissections, arising from two choices of

the ti,j in t1,1 + t1,2 = 1 and three choices from t2,1 + t2,2 = 2. We note that example

5.5 explored the particular dissection where t1,1 = 0, t1,2 = 1, t2,1 = 1 and t2,2 = 1.

We will now show how it is possible to simplify this tree by, in effect, removing the

edges joining vertices labelled 2 and 1 and replacing them with edges connecting

vertices labelled 0 and 2. For this we return to the dual tree notation. The dual

tree of the hook-arrow tree above is

5.1. Proof of Theorem 5.2 126

1
2

2

2

t0
t1,1

1
2

2

2

t1,2
t2,1

1
2

2

2

t2,2
t3,1

1
2

2

2

tm−2,2
tm−1,1

1
2

2

2

tm−1,2
tm

1
2

where we

define
to be

α

α

α

α

n
n

α

We claim that

1
2

2
2

tk−1,2
tk,1 1

2

2
2

tk,2
c

can be simplified to

(i.e., gives the same symbol term as)

(−1)tk+1+1

times the tree

1
2

2

2

tk−1,2

c+ tk + 1

We will now write the tensor product of the symbol of the left hand dual tree part

5.1. Proof of Theorem 5.2 127

in the above claim. The left hand dual tree part in the claim will have the symbol

tk∑
tk,1=0

(−1)tk,1
(

1

2
⊗ 2⊗tk−1,2

� 2⊗tk,1 �

(
1

2
⊗ 2⊗tk,2 � 2⊗c

))

= −
tm−1∑

tm−1,1=0

(−1)tm−1,1

(
tm−1 − tm−1,1 + tm
tm−1 − tm−1,1

)
·
(
tm−1 + tm + 1

tm−1,1

)
·
(

1

2
⊗ 2⊗tk−1,2

� 2⊗(tm−1+tm+1)

)
= (−1)tk+1+1

(
1

2
⊗ 2⊗tk−1,2

� 2⊗(c+tk+1)

)
.

which is exactly the symbol for the tree on the right side. Note that we used

Proposition 5.6 in the last line of the calculation.

By repeated application of this simplification, starting with c = tm and k = m− 1,

we will arrive at a much simplified tree. By noting that

n− a− 1 =
m∑
i=1

(ti + 1)

and recalling that t0 = a we see that this tree is

1
2

2

2

a
n− a− 2

1
2

times a factor of (−1)(n−a−1). This represents the symbol

(−1)n−a−1

(
1

2
⊗ 2⊗a� 2⊗(n−a−2)

)
= (−1)n−a

(
n− 1

a

)
2⊗n.

Finally, by applying the factor of (−1)n from the application of the Hölder involution

we find

λa,n = (−1)a
(
n− 1

a

)
.

5.2. Correspondence between Propositions 5.4 and 5.7 and Theorem 5.2128

Proposition 5.7. The polygon

P (x1, 0, ..., 0︸ ︷︷ ︸
m1−1

, . . . , xk, 0, ..., 0︸ ︷︷ ︸
mk−1

, 1)

for xi ∈ {−1, 1} and at least one of the mi 6= 1, has a symbol with coefficient 0.

Proof. (Sketch) After applying the Hölder involution we try to find possible hook-

arrow trees which do not correspond to terms with coefficient 0 in the symbol. The

vertices of the hook-arrow tree will be labelled corresponding to the sides of the

polygon

P (γ1,1, ..., γt0,1, 2, γ1,2, ..., γt1,2, 2, ..., 2, γ1,m, ..., γtm,m, 1).

where all the γi,j are equal to either 0 or 1. As in the proof of Proposition 5.4, the

vertices labelled 2 must connect directly to the final 1 and the vertices labelled 0

must connect to a vertex labelled 2. However, there is no way to to connect the

vertices labelled 1 to any other vertex without setting the coefficient of the term to

0. There is therefore no term that has a non-zero coefficient.

5.2 Correspondence between Propositions 5.4 and

5.7 and Theorem 5.2

The labels on the polygon corresponding to a coloured multiple zeta value are,

because of Equation 5.1, found from successive products of the arguments. As

discussed in Remark 5.3, the convergence of a coloured multiple zeta value,

ζ(1, . . . , 1; ε1, . . . , εk)

requires εk = −1. The symbol of this will be (−1)k (from Equation 5.1) times the

symbol attached to the polygon

P (ε̂1, . . . , ε̂k−1,−1, 1) where ε̂i =
k∏
j=i

εj.

5.2. Correspondence between Propositions 5.4 and 5.7 and Theorem 5.2129

If we now apply the result of Proposition 5.4 (noting that, for this polygon, a = 0,

and that therefore λ1,n = 1), the symbol attached to the above polygon is simply

2⊗n. Therefore,

S

ζ(1, . . . , 1︸ ︷︷ ︸
k times

; ε1, . . . , εk−1,−1)

 = (−1)k2⊗k.

Since Proposition 5.7 can be applied directly: this completes the proof of Theorem

5.2.

Chapter 6

Relations on harmonic

polylogarithms up to weight 8

In this chapter we examine a specific class of polylogarithm, the so-called harmonic

polylogarithms [RV00], and find the first non-trivial (to the author’s knowledge)

linear combinations of them in the kernel of the symbol in weight 8.

Harmonic polylogarithms have been shown (e.g. in [RV00]) to play a part in eval-

uating Feynman integrals (something which does not appear within the scope of

this thesis). Therefore, finding relations between them is of great relevance in the

physics community.

We define harmonic polylogarithms in terms of Goncharov polylogarithms (from

Definition 0.9).

Definition 6.1. A weight w harmonic polylogarithm H(a, x) is defined, for a vector

a = (a1, . . . , aw) with ai ∈ {−1, 0, 1} ∀i,

to be

H(a, x) := (−1)kG(a1, . . . , aw;x),

where

k = # {i | ai = 1} .

130

6.1. The symbol of a harmonic polylogarithm 131

6.1 The symbol of a harmonic polylogarithm

The symbol of a harmonic polylogarithm has been well studied (see [DGR11]) and is

easy to find. We will recall it briefly here. Firstly we note the following relationship

H(a, x) ≡ (−1)kI1,...,1

(aw
x
, . . . ,

a1

x

)
where again k = # {i | ai = 1} . Therefore (−1)kH(a, x) relates to a hook-arrow tree,

after scaling by x, with vertices labelled

(aw, . . . , a1, x),

Every edge of any possible hook-arrow trees on these vertices will therefore take one

of two forms. An edge of the form

relating to, in the symbol,


1− x for ai = 1

1 + x for ai = −1

x for ai = 0,

x

ai

or an edge of the form

aj

ai

relating to, in the symbol,


a term of coefficient zero for ai = aj

a term of coefficient zero for ai = 0 or aj = 0

2 for ai = −aj 6= 0.

We can therefore see that every term in the symbol of a harmonic polylogarithm

will be formed from the tensor products of x, 1± x and 2.

We will now specialise to harmonic polylogarithms H(a, x) where the vector a has

ai ∈ {0, 1} for all i. The symbol of this class of harmonic polylogarithms is, in fact,

very simple. The Proposition 6.2 appears in Example 6.1 of [DGR11] and is also

well known.

6.1. The symbol of a harmonic polylogarithm 132

Proposition 6.2. Let H(a, x) be a harmonic polylogarithm where the vector a has

ai ∈ {0, 1} for all i, then

S(H(a, x)) = (−1)k ((aw − x)⊗ · · · ⊗ (a1 − x))

where

k = # {i | ai = 1} .

Proof. (−1)kH(a, x) will relate to a hook-arrow tree with vertices labelled

(aw, . . . , a1, x) .

We now observe that since ai ∈ {0, 1} for all i, every hook arrow tree containing an

edge of the form

ai

aj

will have a coefficient of zero in the symbol, the only possible hook-arrow tree with

a non-zero coefficient will therefore be

aw

aw−1 a2

a1

x

· · ·

which has symbol, up to torsion, of

(aw − x)⊗ · · · ⊗ (a1 − x).

Reintroducing the factor of (−1)k we have the required result.

6.2. Finding a relation between harmonic polylogarithms 133

6.2 Finding a relation between harmonic polylog-

arithms

Because of the simple nature of the symbol of a harmonic polylogarithm it is easier

to find terms in the kernel of the symbol. A numerical evaluation is kindly provided

by C Duhr.

Proposition 6.3. The following linear combination of harmonic polylogarithms,

which we will call Υ5, lies in the kernel of the symbol map:

+H(0, 0, 0, 1, 1;x)−H(0, 0, 0, 1, 1; 1− x)−H
(
0, 0, 0, 1, 1; 1

1−x

)
+H

(
0, 0, 0, 1, 1; x

x−1

)
+H(0, 0, 1, 0, 1;x)−H(0, 0, 1, 0, 1; 1− x)−H

(
0, 0, 1, 0, 1; 1

1−x

)
+H

(
0, 0, 1, 0, 1; x

x−1

)
+H(0, 1, 0, 0, 1;x)−H(0, 1, 0, 0, 1; 1− x)−H

(
0, 1, 0, 0, 1; 1

1−x

)
+H

(
0, 1, 0, 0, 1; x

x−1

)
+H(1, 0, 0, 0, 1;x)−H(1, 0, 0, 0, 1; 1− x)−H

(
1, 0, 0, 0, 1; 1

1−x

)
+H

(
1, 0, 0, 0, 1; x

x−1

)
+2

(
H(0, 0, 0, 0, 1;x)−H(0, 0, 0, 0, 1; 1− x)−H

(
0, 0, 0, 0, 1; 1

1−x

)
+H

(
0, 0, 0, 0, 1; x

x−1

))
and in fact, it can be numerically shown, with a certain choice of branch cut, that

720Υ5 =− (2πi)4 ln(x(1− x))− 15(2πi)3(ln(x(1− x)))2

− 60(2πi)2
(

ln(x(1− x))
)3 − 60(2πi)

(
ln(x(1− x))

)4

+ 120(2πi)(ln(1− x))3 ln(x) + 120(2πi) ln(1− x)(ln(x))3

+ 60(2πi)2(ln(1− x))2 ln(x) + 60(2πi)2 ln(1− x)(ln(x))2

− 240(2πi)2ζ(3)− 720(2πi) ln(1− x)ζ(3)− 720(2πi) ln(x)ζ(3)

+ (2πi)5.

The symbol calculation was originally done (when finding the relation), using a

GP/Pari script and the method described in Appendix A. However, we can give

a full proof that the above combination of harmonic polylogarithms have a zero

symbol fairly elegantly.

Notation 6.4. Since many of the terms above are very similar, and 1s and 0s can be

seen to be shuffled in the arguments of the harmonic polylogarithms, we introduce

6.2. Finding a relation between harmonic polylogarithms 134

notation to shorten the relation. Firstly, let

V(a,b) :=

{
(v1, . . . , va+b)

∣∣∣∣ vi ∈ {0, 1}, va+b = 1,
a+b∑
i

vi = a

}
,

in other words, the set of vectors of length a+b, with entries all either 1 or 0, ending

in 1 with a values equalling 1 and b values equalling 0. Note that this can be viewed,

albeit with a small abuse of notation, as all vectors arising from shuffling

({1, . . . , 1}︸ ︷︷ ︸
a−1

� {0, . . . , 0}︸ ︷︷ ︸
b

, 1).

We now let

H(a,b)(x) :=
∑

v∈V(a,b)

H(v;x).

So, for example,

H(2,3)(x) = H(1, 0, 0, 0, 1;x)+H(0, 1, 0, 0, 1;x)+H(0, 0, 1, 0, 1;x)+H(0, 0, 0, 1, 1;x).

Applying this notation to our relation we can now write

Υ5 =H(2,3)(x)−H(2,3)(1− x)−H(2,3)(1
1−x) +H(2,3)(x

x−1
)

+ 2

(
H(1,4)(x)−H(1,4)(1− x)−H(1,4)(1

1−x) +H(1,4)(x
x−1

)

)
.

Proof. As seen above we have that S(H(a, x)) = (−1)k ((aw − x)⊗ · · · ⊗ (a1 − x)).

We note that every part of every tensor arising from the harmonic polylogarithms

in our relation will be of the form

xb0(1− x)c0 ⊗ xb1(1− x)c1 ⊗ xb2(1− x)c2 ⊗ xb3(1− x)c3 ⊗ xb4(1− x)c4

for some bi and ci. This can then be expanded using tensor calculus into a linear

combination of tensor products of the form

f0 ⊗ f1 ⊗ f2 ⊗ f3 ⊗ f4

with each fi ≡ x or 1 − x. We now index the 32 tensor products using binary

notation as follows. First let

b(fi(x)) :=

 0 if fi ≡ x

1 if fi ≡ 1− x

6.2. Finding a relation between harmonic polylogarithms 135

then define a map

B
(
f0 ⊗ · · · ⊗ fn

)
:=

[
n∑
i=0

2ib(fi)

]
.

We have, in effect, attached a unique integer to each tensor product formed from

only 1− x and x via a binary number. For example

B
(
(1− x)⊗ x⊗ x⊗ (1− x)⊗ x

)
= [9],

B
(
x⊗ (1− x)⊗ x⊗ (1− x)⊗ (1− x)

)
= [26].

We formally add linear combinations of [n] in exactly the same way as we would

the tensor products they represent (and it gives us a more compact way to display

the lengthy tensor calculation that follows). We also note that this method is very

similar to the more general approach described in Appendix A.

We therefore have

S(Υ5) = P 5
1 − P 5

2 − P 5
3 + P 5

4 + 2
(
Q5

1 −Q5
2 −Q5

3 +Q5
4

)
where

P 5
1 = S

(
H(2,3)(x)

)
= (1− x)⊗ (1− x)�

(
x⊗ x⊗ x

)
P 5

2 = S
(
H(2,3)(1− x)

)
= x⊗ x�

(
(1− x)⊗ (1− x)⊗ (1− x)

)
P 5

3 = S
(
H(2,3)(1

1−x)
)

= −
(

x
x−1
⊗ x

x−1
�

(
(1− x)⊗ (1− x)⊗ (1− x)

))
P 5

4 = S
(
H(2,3)(x

x−1
)
)

= (1− x)⊗ (1− x)�
(

x
x−1
⊗ x

x−1
⊗ x

x−1

)
Q5

1 = S
(
H(1,4)(x)

)
= −

(
(1− x)⊗ x⊗ x⊗ x⊗ x

)
Q5

2 = S
(
H(1,4)(1− x)

)
= −

(
x⊗ (1− x)⊗ (1− x)⊗ (1− x)⊗ (1− x)

)
Q5

3 = S
(
H(1,4)(1

1−x)
)

= −
(

x
x−1
⊗ (1− x)⊗ (1− x)⊗ (1− x)⊗ (1− x)

)
Q5

4 = S
(
H(1,4)(x

x−1
)
)

= (1− x)⊗ x
x−1
⊗ x

x−1
⊗ x

x−1
⊗ x

x−1
.

We now apply the map B. We first give B(P 5
1) explicitly.

B(P 5
1) = B

(
(1− x)⊗ (1− x)⊗ x⊗ x⊗ x

)
+B

(
(1− x)⊗ x⊗ (1− x)⊗ x⊗ x

)
= B

(
(1− x)⊗ x⊗ x⊗ (1− x)⊗ x

)
+B

(
(1− x)⊗ x⊗ x⊗ x⊗ (1− x)

)
= [3] + [5] + [9] + [17]

and then give the remaining terms in table form, where each column gives how many

of each [n] in the term contains.

6.2. Finding a relation between harmonic polylogarithms 136

[n] B(P 5
1) B(P 5

2) B(P 5
3) B(P 5

4) B(Q5
1) B(Q5

2) B(Q5
3) B(Q5

4)

0

1 -1 1

2

3 1 1 -1

4

5 1 1 -1

6

7 -2 1

8

9 1 1 -1

10

11 -2 1

12

13 -2 1

14 1 -1

15 1 3 -1

16

17 1 1 -1

18

19 -2 1

20

21 -2 1

22 1 -1

23 1 3 -1

24

25 -2 1

26 1 -1

27 1 3 -1

28 1 -1

29 1 3 -1

30 4 -1 -1

31 -4 -4 1 1

6.2. Finding a relation between harmonic polylogarithms 137

By looking across each row we can see that

B

(
s1 − s2 − s3 + s4 + 2

(
t1 − t2 − t3 + t4

))
= 0

and so we have shown

S(Υ5) = 0.

The numerical evaluation shown was calculated by C Duhr.

The weight 5 harmonic polylogarithm relation in the previous section has a notice-

able structure, in that it features harmonic polylogarithms of the form

H2,3(f(x)) = H({1}� {0, 0, 0}, 1; f(x)) and H1,4(f(x)) = H(0, 0, 0, 0, 1; f(x))

for f(x) ∈ {x, 1 − x, 1
1−x ,

x
x−1
}. For other weights, w, we are motivated to examine

terms of the form

Ha,w−a(f(x)) for f(x) ∈ {x, 1− x, 1
1−x ,

x
x−1
} and 1 ≤ a ≤ w

2
.

We begin by examining weight 4, and so consider

P 4
1 = S

(
H(2,2)(x)

)
, P 4

2 = S
(
H(2,2)(1− x)

)
,

P 4
3 = S

(
H(2,2)(1

1−x)
)
, P 4

4 = S
(
H(2,2)(x

x−1
)
)
,

Q4
1 = S

(
H(1,3)(x)

)
, Q4

2 = S
(
H(1,3)(1− x)

)
,

Q4
3 = S

(
H(1,3)(1

1−x)
)
, Q4

4 = S
(
H(1,3)(x

x−1
)
)

and, after calculations similar to the previous section we obtain the following table.

6.2. Finding a relation between harmonic polylogarithms 138

[n] B(P 4
1) B(P 4

2) B(P 4
3) B(P 4

4) B(Q4
1) B(Q4

2) B(Q4
3) B(Q4

4)

0

1 -1 1

2

3 1 1 -1

4

5 1 1 -1

6 1 1

7 -1 -2 1

8

9 1 1 -1

10 1 1

11 -1 -2 1

12 1 1

13 -1 -2 1

14 -3 -1 1

15 3 3 -1 -1

We see that, for weight 4 we can form a linear combination of harmonic polylogar-

ithms in the kernel of the symbol map without using P 4
2 or P 4

3 . We have

Υ4 = +H(2,2)(x) +H(2,2)(x
x−1

)

+ 2H(1,3)(x) +H(1,3)(1− x) +H(1,3)(1
1−x) + 2H(1,3)(x

x−1
)

= +H(0, 0, 1, 1;x) +H(0, 1, 0, 1;x) +H(1, 0, 0, 1;x)

+H
(
0, 0, 1, 1; x

x−1

)
+H

(
0, 1, 0, 1; x

x−1

)
+H

(
1, 0, 0, 1; x

x−1

)
+ 2H(0, 0, 0, 1;x) +H(0, 0, 0, 1; 1− x) +H

(
0, 0, 0, 1; 1

1−x

)
+ 2H

(
0, 0, 0, 1; x

x−1

)
,

with S(Υ4) = 0.

6.3. Extending to other weights 139

6.3 Extending to other weights

By similar methodology, we can find analogous linear combinations of harmonic

polylogarithms in the kernel of the symbol map for weights 6, 7 and 8, and possibly

further. We give these, and repeat the linear combinations for weights 4 and 5 for

comparison.

Theorem 6.5. Let Υ4,Υ5,Υ6,Υ7 and Υ8 be the following linear combinations of

harmonic polylogarithms.

Υ4 = + H(2,2)(x) + H(2,2)(x
x−1

)

+2H(1,3)(x) + H(1,3)(1− x) + H(1,3)(1
1−x) +2H(1,3)(x

x−1
)

Υ5 = + H(2,3)(x) − H(2,3)(1− x) − H(2,3)(1
1−x) + H(2,3)(x

x−1
)

+2H(1,4)(x) −2H(1,4)(1− x) −2H(1,4)(1
1−x) +2H(1,4)(x

x−1
)

Υ6 = + H(3,3)(x) −2H(3,3)(1− x) −2H(3,3)(1
1−x) + H(3,3)(x

x−1
)

+ H(2,4)(x) −4H(2,4)(1− x) −4H(2,4)(1
1−x) + H(2,4)(x

x−1
)

+2H(1,5)(x) −7H(1,5)(1− x) −7H(1,5)(1
1−x) +2H(1,5)(x

x−1
)

Υ7 = +H(3,4)(x) −2H(3,4)(1− x) +2H(3,4)(1
1−x) −H(3,4)(x

x−1
)

+H(2,5)(x) −5H(2,5)(1− x) +5H(2,5)(1
1−x) −H(2,5)(x

x−1
)

−9H(1,6)(1− x) +9H(1,6)(1
1−x)

Υ8 = + H(4,4)(x) − H(4,4)(x
x−1

)

+2H(3,5)(x) −2H(3,5)(x
x−1

)

+2H(2,6)(x) −2H(2,6)(1− x) +2H(2,6)(1
1−x) −2H(2,6)(x

x−1
)

−7H(1,7)(1− x) +7H(1,7)(1
1−x)

then S(Υi) = 0 for i = 4, 5, 6, 7, 8.

Remark 6.6. The above linear combinations can be written even more concisely if

you combine H(i,j)(x) and H(i,j)(x
x−1

) and also combine H(i,j)(1−x) and H(i,j)(1
1−x).

We would add these in the first three cases and subtract one from the other in the

other two.

6.3. Extending to other weights 140

Proof. The proof that the combinations of weights 4 and 5 are provided above. The

higher weights can be proven in a similar way (which we do not provide here for

brevity).

Chapter 7

Linear combinations of multiple

polylogarithms with a zero symbol

and conclusion

In Chapter 6 we found linear combinations of harmonic polylogarithms, we now

find linear combinations of general multiple polylogarithms (whose symbols can

have many more terms) that have a symbol of zero. The combinations we find will

be of multiple polylogarithms in 2 variables, of depth ≤ 2 and in weights 4, 5 and 6.

There is a scarcity of functional equations for polylogarithms of higher weights in

the literature, even for classical polylogarithms, Lim(x). The author is not aware

of any prior combinations of multiple polylogarithms in higher weights, apart from

shuffle/stuffle relations and from a weight 4 functional equation in [Dan11].

We can use the algorithm outlined in Chapter 2 to encode hook-arrow trees into

GP/Pari. We do not explicitly provide the code in this thesis, but it closely follows

the algorithm. We can therefore calculate the symbol for multiple polylogarithms

that would otherwise be too lengthy to do by hand. We are, of course, still con-

strained by computing power. Appendix A outlines the method of finding the linear

combinations using GP/Pari (as well as giving further combinations).

141

7.1. Elements of Iw in kerS for w = 4, 5 and 6 142

7.1 Elements of Iw in kerS for w = 4, 5 and 6

Theorem 7.1. The following linear combinations of multiple polylogarithms, Ψ4 ∈

I4,Ψ5,Φ5 ∈ I5 and Ψ6,Φ6 ∈ I6 have a symbol of zero.

Weight 4

Ψ4(x, y) =2

 I2,2

(
1
xy
, 1
x

)
+ I2,2

(
1
xy
, 1
y

)
+ I2,2

(
y
x
, 1
x

)
+ I2,2

(
y
x
, y
)

+I2,2 (xy, x) + I2,2 (xy, y) + I2,2

(
x
y
, x
)

+ I2,2

(
x
y
, 1
y

)


+ 2

(
I4

(
1

x

)
+ I4

(
1

y

)
+ I4 (x) + I4 (y)

)
− 3

(
I4

(
1

xy

)
+ I4

(y
x

)
+ I4

(
x

y

)
+ I4 (xy)

)
Weight 5

Ψ5(x, y) =− I2,3

(
1

x
,
y

x

)
− I2,3

(
1

x
, y

)
− I2,3

(
1

y
,

1

x

)
− I2,3

(
1

y
,
x

y

)
− I2,3

(
1

y
, x

)
+ I2,3

(
x,
x

y

)
+ I2,3

(
x,

1

y

)
+ I2,3

(
y, x

)
+ I2,3

(
y,
y

x

)
+ I2,3

(
y,

1

x

)
− I3,2

(
1

x
,
y

x

)
− I3,2

(
1

x
, y

)
− I3,2

(
1

y
,

1

x

)
− I3,2

(
1

y
,
x

y

)
− I3,2

(
1

y
, x

)
+ I3,2

(
x,
x

y

)
+ I3,2

(
x,

1

y

)
+ I3,2

(
y, x

)
+ I3,2

(
y,
y

x

)
+ I3,2

(
y,

1

x

)
− 2I2,3

(
1

xy
,

1

x

)
− I2,3

(
1

xy
,

1

y

)
+ I2,3

(
xy, y

)
+ 2I2,3

(
xy, x

)
− I3,2

(
1

xy
,

1

x

)
− 2I3,2

(
1

xy
,

1

y

)
+ 2I3,2

(
xy, y

)
+ I3,2

(
xy, x

)
+ I3,2

(
y

x
,

1

x

)
− I3,2

(
y

x
, y

)
+ I3,2

(
x

y
,

1

y

)
− I3,2

(
x

y
, x

)
+ 4I5

(
1

xy

)
− 4I5

(
xy

)

Φ5(x, y) = + I2,3(x, y)− I2,3(y, x) + I2,3(xy, y)− I2,3(xy, x)

+ I3,2(x, y)− I3,2(y, x)− I3,2(xy, y) + I3,2(xy, x)

7.2. Remarks on the Theorem 143

Weight 6

Ψ6(x, y) = + I2,4(xy, y) + 2I2,4(xy, x)− I2,4(x, y) + I2,4(y, x)

− 2I3,3(xy, y)− 2I3,3(xy, x)− 2I3,3(x, y)

+ 2I4,2(xy, y) + I4,2(xy, x)− 2I4,2(x, y)− I4,2(y, x)

− I6(xy)

Φ6(x, y) = + I2,4(xy, y)− I2,4(xy, x) + 2I2,4(x, y)− 2I2,4(y, x)

+ 2I3,3(x, y)− 2I3,3(y, x)

− I4,2(xy, y) + I4,2(xy, x) + I4,2(x, y)− I4,2(y, x)

Proof. The relations were found using GP/Pari with the procedure outlined in Ap-

pendix A.

7.2 Remarks on the Theorem

Firstly we note that these linear combinations are given only on multiple polylog-

arithms Ir1,...,rs(x1, . . . , xs) where ri > 1 for all i. In light of Conjecture 4.1 we are

more interested in terms in the kernel of the symbol of this form.

7.2.1 Examining Ψ4(x, y)

We note that Ψ4(x, y) is symmetric under inverting each argument independently,

Ψ4(x, y) = Ψ4(y, x) = Ψ4

(
1

x
, y

)
= Ψ4

(
x,

1

y

)
= Ψ4

(
1

x
,

1

y

)

= Ψ4

(
y,

1

x

)
= Ψ4

(
1

y
, x

)
= Ψ4

(
1

y
,

1

x

)
.

We now recall the stuffle relation from Section 0.2. The iterated integrals form of a

two variable stuffle relation is, for r, s ∈ Z,

Ir(x)Is(y) = Ir,s(xy, y)− Ir+s(xy) + Is,r(xy, x).

7.2. Remarks on the Theorem 144

By applying this relation to Ψ4(x, y), we see that

Ψ4(x, y) =2

(
I2

(
1

xy

)
I2

(
1

x

)
+ I2

(y
x

)
I2

(
1

x

)
+ I2 (xy) I2 (x) + I2

(
x

y

)
I2 (x)

)
+ 2

(
I4

(
1

x

)
+ I4

(
1

y

)
+ I4 (x) + I4 (y)

)
−
(
I4

(
1

xy

)
+ I4

(y
x

)
+ I4

(
x

y

)
+ I4 (xy)

)
.

Notation 7.2. We introduce notation for the pure weight parts of the 2-variable

stuffle relation above. We let

Stur,s(x, y) := Ir,s(xy, y)− Ir+s(xy) + Is,r(xy, x).

Next, recall the well-known inversion relation on multiple polylogarithms, stating

that

Ir(x) + (−1)rIr

(
1

x

)
can be written in terms of ‘lower weight objects’ (see, among others, [Zag90], for

more details). We therefore use the notation

Invr(x) = Ir(x) + (−1)rIr

(
1

x

)

We can now write

Ψ4(x, y) = + 2Stu2,2(x, y) + 2Stu2,2

(
x,

1

y

)
+ 2Stu2,2

(
1

x
, y

)
+ 2Stu2,2

(
1

x
,

1

y

)
+ 2Inv4(x) + 2Inv4(y)− Inv4(xy)− Inv4

(
x

y

)
.

We have shown that Ψ4(x, y) is merely a combination of other functional equations,

however there is still worth to the combination. Stu2,2(x, y) and Inv4(x) do not in

fact lie in the kernel of the symbol, whereas Ψ4(x, y) does. Stu2,2(x, y) and Inv4(x)

lie in the kernel of a ‘restricted’ symbol map which allows for anticommutativity,

i.e., instead of taking tensor products in the definition of the symbol, we use the

wedge product introduced in Definition 1.9.

Example 7.3. Since the symbol for Stu2,2(x, y) is fairly long, we use Stu1,1(x, y) as

7.2. Remarks on the Theorem 145

an explanatory example. We see that

S(Stu1,1(x, y)) = +
(
1− 1

y

)
⊗
(
1− 1

x

)
+
(
1− 1

xy

)
⊗
(
1− 1

y

)
−
(
1− 1

xy

)
⊗ (1− x)

+
(
1− 1

xy

)
⊗ xy

+
(
1− 1

x

)
⊗
(
1− 1

y

)
+
(
1− 1

xy

)
⊗
(
1− 1

x

)
−
(
1− 1

xy

)
⊗ (1− y)

= +
(
1− 1

x

)
⊗
(
1− 1

y

)
+
(
1− 1

y

)
⊗
(
1− 1

x

)
6=0.

However, if we look at its image when passing to the wedge product, the above cal-

culation still holds (since all properties of a tensor product hold for wedge products)

but then,

(
1− 1

x

)
∧
(
1− 1

y

)
+
(
1− 1

y

)
∧
(
1− 1

x

)
=
(
1− 1

x

)
∧
(
1− 1

y

)
−
(
1− 1

x

)
∧
(
1− 1

y

)
= 0.

Similar (though more lengthy) calculations hold for general Stur,s(x, y).

S(Invr(x)) =
(
1− 1

x

)
⊗ x⊗(r−1) + (−1)r(1− x)⊗

(
1

x

)⊗(r−1)

= x⊗r 6= 0

but again with wedge products, x ∧ · · · ∧ x = −(x ∧ · · · ∧ x) = 0.

For Ψ4(x, y) we have that

S
(

2Stu2,2(x, y) + 2Stu2,2

(
x,

1

y

)
+ 2Stu2,2

(
1

x
, y

)
+ 2Stu2,2

(
1

x
,

1

y

))
= S

(
− 2Inv4(x)− 2Inv4(y) + Inv4(xy) + Inv4

(
x

y

))
= 2(x)⊗4 + 2(y)⊗4 + 2(xy)⊗4 + 2

(
x

y

)⊗4

.

7.2.2 Examining Ψ5(x, y) and Φ5(x, y)

Unlike for Ψ4(x, y), we are not (as far as the author can see) able to reduce Ψ5(x, y)

to a combination of stuffle relations. However, it does relate strongly to Φ5(x, y).

7.2. Remarks on the Theorem 146

By symmetrising Ψ5(x, y) and summing we see that

Ψ5(x, y)−Ψ5(y, x) =− I2,3

(
1

y
,

1

x

)
+ I2,3

(
1

x
,

1

y

)
+ I2,3

(
y, x

)
− I2,3

(
x, y

)
− I3,2

(
1

y
,

1

x

)
+ I3,2

(
1

x
,

1

y

)
+ I3,2

(
y, x

)
− I3,2

(
x, y

)
− I2,3

(
1

xy
,

1

x

)
+ I2,3

(
1

xy
,

1

y

)
− I2,3

(
xy, y

)
+ I2,3

(
xy, x

)
+ I3,2

(
1

xy
,

1

x

)
− I3,2

(
1

xy
,

1

y

)
+ I3,2

(
xy, y

)
− I3,2

(
xy, x

)

=− Φ5(x, y)− Φ5

(
1

x
,

1

y

)
.

We now look simply at Φ5(x, y), which has similarities to stuffle relations Stu2,3(x, y)

and Stu2,3(y, x) and we see that

Φ5(x, y) = + I2,3(x, y)− I2,3(y, x) + I3,2(x, y)− I3,2(y, x)

+ Stu2,3(y, x)− Stu2,3(x, y).

but also that Φ5(x, y) cannot be reduced completely into stuffle relations.

In summary, we have found distinct Ψ5,Φ5 ∈ I5(S) that are individually in the

kernel of the symbol and are related by

Ψ5(x, y)−Ψ5(y, x) = −Φ5(x, y)− Φ5

(
1

x
,

1

y

)
.

7.2.3 Examining Ψ6(x, y) and Φ6(x, y)

We can reduce the expression Ψ6(x, y) by stuffle relations to

Ψ6(x, y) =Stu2,4(x, y) + 2Stu2,4(y, x)− 2Stu3,3(x, y)− 2I6(xy)

+ I2,4(y, x)− I2,4(x, y)− 2I3,3(x, y)− I4,2(y, x)− 2I4,2(x, y)

but, as with Φ5, we cannot reduce further by stuffle relations.

We also see that Ψ6 are Φ6 are strongly related by

Ψ6(x, y)−Ψ6(y, x) = −Φ6(x, y).

Further linear combinations of multiple polylogarithms in the kernel of the symbol

to those featured in this chapter are provided in Section A.3.

7.3. Conclusion 147

7.3 Conclusion

In this thesis we develop techniques to explore the symbol map of Goncharov and

find new linear combinations of multiple polylogarithms in its kernel.

In the literature the symbol has been defined pictorially by Goncharov from binary

trees in [Gon05] and from polygon dissections by Gangl, Goncharov and Levin in

[GGL09]. We have shown that these two definitions agree and have given a pictorial

way to move between them.

We have also introduced a new method of calculating the symbol (the hook-arrow

tree) and again shown that it agrees with binary trees and polygons. The hook-

arrow tree provides an algorithm for symbol calculation that can be computed with

GP/Pari. It also allowed us to simplify symbol calculations where the depth of the

multiple polylogarithm is given. We have given explicit formulation of the symbol

of depth 2 and 3 multiple polylogarithms of any weight.

Using the hook-arrow tree we have presented the explicit formulation of the symbol

of coloured multiple zeta values (CMZV). This takes the form λ2⊗w for a weight w

CMZV, where λ is explicitly formulated.

We examined the symbol of harmonic polylogarithms and have given the first non-

trivial functional equations relating different harmonic polylogarithms in weight 8.

Finally, in this chapter, we used GP/Pari to find linear combinations of multiple

polylogarithms in weights 4, 5 and 6 in two variables and in depth ≤2.

Bibliography

[BBBL01] J.M. Borwein, D.M. Bradley, D.J. Broadhurst, and P. Lisonek, Spe-

cial values of multiple polylogarithms, Trans. Amer. Math. Soc. 353

[arXiv:math/9910045] (2001), 907–941.

[BK95] S. Bloch and I Kriz, Mixed Tate motives, Annals of Math., 140 (1995),

557–605.

[Blo00] S. Bloch, Higher regulators, algebraic K- theory and zeta functions of el-

liptic curves, CRM Monograph Series, 11. American Mathematical Society,

Providence, RI (better known as Irvine Lecture Notes, 1978) (2000).

[Bro09] F.C.S. Brown, Multiple zeta values and periods of moduli spaces M0,n,

Annales scientifiques de l’ENS 42, fascicule 3 (2009), 371–489.

[Bro11] , Mixed Tate motives over Z, arXiv:1102.1312v1 [math.AG] (2011).

[BS66] Z.I. Borevich and I.R. Shafarevich, Number theory, Academic Press, 1966.

[Dan11] N. Dan, Sur la conjecture de Zagier pour n = 4. II, arXiv:1101.1557v1

[math.KT] (2011).

[DDDS10] V. Del Duca, C. Duhr, and V. Smirnov, An analytic result for the two-

loop hexagon Wilson loop in N = 4 SYM, J. High Energy Phys. no. 3, 099,

(2010).

[DGR11] C. Duhr, H. Gangl, and J. Rhodes, From polygons and symbols to polylog-

arithmic functions (preprint), arXiv:1110.0458v1 [math-ph] (2011).

148

Bibliography 149

[Duh12] C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs

boson amplitudes, arXiv:1203.0454v1 [hep-ph] (2012).

[Gan03] H. Gangl, Functional equations of higher logarithms, Selecta Math. (N.S.)

9, no. 3. (2003), 361–377.

[Gan10] , Functional equations and ladders for polylogarithms, preprint

(2010).

[GGL07] H. Gangl, A.B. Goncharov, and A. Levin, Multiple logarithms, algebraic

cycles and trees, Frontiers in Number Theory, Physics and Geometry II: On

Conformal Field Theories, Discrete Groups and Renormalization (2007),

759–774.

[GGL09] , Multiple polylogarithms, polygons, trees and algebraic cycles, Proc.

of Summer Institute in Algebraic Geometry, Seattle 2005, Proc. Symp.

Pure Math. 80 (2009), 547–594.

[GM04] A. Goncharov and Y. Manin, Multiple ζ-motives and moduli spaces M0,n,

Compos. Math. 140, no. 1 (2004), 1–14.

[GMS99] H. Gangl and S. Mueller-Stach, Polylogarithmic identities in cubical higher

Chow groups, Proc. of Symp. in Pure Math., volume 67; AMS, Providence,

(1999), 25–40.

[Gon95] A. Goncharov, Geometry of configurations, polylogarithms and motivic co-

homology, Advances in Mathematics, Vol. 114, No. 2, (1995).

[Gon97] , The double logarithm and Manin’s complex for modular curves,

Mathematical Research Letters, vol. 4, No 1 (1997), 1–20.

[Gon98] , Multiple polylogarithms, cyclotomy and modular complexes, Math-

ematical Research Letters, vol. 5, No 3, (1998), 497–516.

[Gon01] , Multiple polylogarithms and mixed Tate motives, arXiv:

math.AG/0103059 (2001).

Bibliography 150

[Gon05] , Galois symmetries of fundamental groupoids and noncommutative

geometry, Duke Math. J. 128, no. 2 (2005), 209–284.

[Gon09] , A simple construction of Grassmannian polylogarithms,

arXiv:0908.2238v3 [math.AG] (2009).

[GSVV10] A.B. Goncharov, M. Spradlin, C. Vergu, and A. Volovich, Classical poly-

logarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 151605

[arXiv:1006.5703 [hep-th]] (2010).

[HK11] P. Heslop and V.V. Khoze, Wilson loops @ 3-loops in special kinematics,

arXiv:1109.0058v2 [hep-th] (2011).

[HP91] P. Hilton and J. Pederson, Catalan numbers, their generalization, and their

uses, The Mathematical Intelligencer Vol 13, No 2 (1991), 64–75.

[Kla70] D. Klarner, Correspondences between plane trees and binary sequences,

Journal of Combinatorial Theory, 9 (1970), 401–411.

[MUW02] S. Moch, P. Uwer, and S. Weinzierl, Two-loop amplitudes with nested

sums: Fermionic contributions to e + e− → qqg, Phys.Rev.D66:114001

(2002).

[OEI12] OEIS Foundation Inc., The on-line encyclopedia of integer sequences, 2012,

http://oeis.org.

[PAR11] PARI Group, Bordeaux, GP/Pari, version 2.5.0, 2011, available from

http://pari.math.u-bordeaux.fr/.

[RV00] E. Remiddi and J. A. M. Vermaseren, Harmonic polylogarithms, Int. J.

Mod. Phys. A 15 [arXiv:hep-ph/9905237] (2000), 725–754.

[VW05] J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogar-

ithms, Comput. Phys. Commun. 167 (2005), 177–194.

[WB09] S. Weinzierl and C. Bogner, Feynman graphs in perturbative quantum field

theory, arXiv:0912.4364v1 [math-ph] (2009).

Bibliography 151

[Wil94] H.S. Wilf, Generatingfunctionology, Academic Press, 1994.

[Woj02] Z. Wojtkowiak, Mixed Hodge structures and iterated integrals. I., Motives,

Polylogarithms and Hodge Theory (Part I: Motives and Polylogarithms),

F. Bogomolov, L. Katzarkov (Eds.), Int. Press Lect. Ser., 3, I, Somerville,

MA (2002), 121–208.

[Zag86] D. Zagier, Hyperbolic manifolds and special values of Dedekind zeta-

functions, Inventiones Math. 83 (1986), 285 – 301.

[Zag88] , The remarkable dilogarithm, J. Math and Phys. Soc. 22 (1988),

131–145.

[Zag90] , The Bloch-Wigner-Ramakrishnan polylogarithm function, Math-

Annalen 286 (1990), 612–624.

[Zag91] , Polylogarithms, Dedekind zeta functions, and the algebraic K-

theory of fields, Arithmetic Algebraic Geometry, Prog. in Math. 89 (1991),

391–430.

[ZG00] D. Zagier and H. Gangl, Classical and elliptic polylogarithms and special

values of L-series, The arithmetic and geometry of algebraic cycles (Banff,

AB, 1998) NATO Sci. Ser. C Math. Phys. Sci., Kluwer Acad. Publ. (2000),

561–615.

[Zha04] J. Zhao, Variations of mixed Hodge structures of multiple polylogarithms,

Canad. J. Math. 56, no. 6. (2004), 1308–1338.

[Zha07] J. Zhao, Analytic continuation of multiple polylogarithms, Analysis Math-

ematica, 33 (2007), 301–323.

[Zha10] , Standard relations of multiple polylogarithm values at roots of

unity, Documenta Mathematica 15 (2010), 1–34.

[ZN85] D. Zagier and W.D. Neumann, Volumes of hyperbolic 3-manifolds, Topo-

logy 24 (1985), 307–332.

Appendix A

Using GP/Pari to find elements in

the kernel of the symbol

The hook-arrow tree is harder to define than the polygons from [GGL09]. However,

the author hopes that the reader can see some benefits when trying to make a

computer calculate the symbol of a multiple polylogarithm. In particular, the shuffle

relations appear by construction and so there is no need to program a check for

whether a polygon has a shuffle, something which proved difficult in initial attempts

to encode finding a symbol. Section 2.3 is deliberately set out in algorithm form so

as to ease transition to GP/Pari.

Remark A.1. A computer program has been written by the author to calculate

the symbol but we do not give it here. It was used for calculating symbols too

cumbersome to do by hand throughout this thesis.

In this appendix we outline a method of finding linear combinations of multiple

polylogarithms in the kernel of the symbol, given a computer program that can

calculate the symbol. The method we use is based on standard linear algebraic

techniques. We start with a motivational example.

Example A.2. The Hölder convolution from Definition 1.5.1 tells us to expect

S
(
I2(x)− I1,1(1, 1− x)

)
= 0

152

A.1. Attaching a vector to a tensor product 153

We calculate this explicitly as

S
(
I2(x)− I1,1(1, 1− x)

)
= S

(
I2(x)

)
− S

(
I1,1(1, 1− x)

)
=

(
x

x− 1
⊗ x
)

+

(
x− 1

x
⊗ x
)

=

(
x

x− 1
⊗ x
)
−
(

x

x− 1
⊗ x
)

= 0.

We see that the symbol of I2(x) and the symbol of I1,1(1, 1 − x) are not identical;

a small amount of tensor calculus is required to make them cancel. This is possible

to do by hand because the symbols in question are simple, however, the symbols of

higher weight multiple polylogarithms can become very large. This motivates us to

find a good way to compare symbols, i.e. in this case, a way to do tensor calculus

methodically with a computer.

We now outline one possible way to go about this. It is by no means perfect and

is, to a certain extent, a ‘sledgehammer’ approach. However, given that computers

with relatively high power are readily available, it has proved to give some good

results. The method was told to the author by H Gangl.

A.1 Attaching a vector to a tensor product

We observe that arguments in the relation of Example A.2 and the arguments of

the tensor product in the symbol are all equal to

xa(1− x)b

for some a, b ∈ Z. Due to linearity of tensor products we therefore see that

xa(1−x)b⊗xc(1−x)d = ac
(
x⊗x

)
+ad

(
x⊗1−x

)
+bc

(
1−x⊗x

)
+bd

(
1−x⊗1−x

)
.

We can attach to p
(
xa(1− x)b ⊗ xc(1− x)d

)
, with p ∈ Q, the vector

[pac, pad, pbc, pbd].

A.1. Attaching a vector to a tensor product 154

For the above linear combination the calculation to show it has zero symbol now

takes the form

S
(
I2(x)− I1,1(1, 1− x)

)
= S

(
I2(x)

)
− S

(
I1,1(1, 1− x)

)
=

(
x

x− 1
⊗ x
)

+

(
x− 1

x
⊗ x
)

→ [1, 0,−1, 0] + [−1, 0, 1, 0]

= 0.

The addition of vectors is considerably easier, and faster, for a computer than tensor

calculus. We are motivated to test the symbols of many multiple polylogarithms

and therefore reduce the search for elements in the kernel of the symbol to a linear

algebra problem. It is important to remember that this method does require every

component of every tensor in a symbol to be formed as the product of elements from

a selected set of functions. We will discuss this further after formally defining the

procedure of attaching a vector to a tensor product.

Definition A.3. Given a set of base functions F = {f1, ..., fm} and a tensor product

Tf = p
n⊗
s=1

m∏
t=1

fas,ts ,

with p ∈ Z, then we define a vector VF of length mn with i-th component

p
n∏
s=1

as,ts

where ts is the s-th component of a vector of the form

(t1, ..., tn) with ts ∈ {1, ...,m}.

We define i to be position of the chosen vector (t1, ..., tn) in the lexicographic order

of all possible vectors of that form.

We now give another worked example.

Example A.4. We take F = {x, 1 − x} and examine the weight 3 functions

I3, I1,2(x, x), I1,2

(
1
x
, 1
x

)
and I2,1

(
1

1−x ,
1

1−x

)
.

A.1. Attaching a vector to a tensor product 155

Firstly we have

S(I3) =
x− 1

x
⊗ x⊗ x

and so is associated to the vector

[−1, 0, 0, 0, 1, 0, 0, 0]

which is equivalent to

−1

0

0

0

1

0

0

0



·



x ⊗ x ⊗ x

x ⊗ x ⊗ 1− x

x ⊗ 1− x ⊗ x

x ⊗ 1− x ⊗ 1− x

1− x ⊗ x ⊗ x

1− x ⊗ x ⊗ 1− x

1− x ⊗ 1− x ⊗ x

1− x ⊗ 1− x ⊗ 1− x



.

The other functions are associated to vectors as follows.

I1,2(x, x) associates to [−1, 0, 1, 0, 1, 0,−1, 0]

I1,2

(
1

x
,

1

x

)
associates to [0, 0, 0, 0, 0, 0, 1, 0]

I2,1

(
1

1− x
,

1

1− x

)
associates to [0, 0, 1, 0, 0, 0, 0, 0]

We can see that

S
(
I3 − I1,2(x, x)− I1,2

(
1

x
,

1

x

)
+ I2,1

(
1

1− x
,

1

1− x

))
is equivalent to summing the vectors

[−1, 0, 0, 0, 1, 0, 0, 0]+[1, 0,−1, 0,−1, 0, 1, 0]+[0, 0, 0, 0, 0, 0,−1, 0]+[0, 0, 1, 0, 0, 0, 0, 0],

which is the zero vector and tells us that the suggested symbol is indeed zero.

Remark A.5. It is important to note that setting the arguments of a multiple poly-

logarithm to be formed as a product of elements from a set of functions does not

A.2. An overview of finding elements in the kernel of the symbol with
GP/Pari 156

guarantee the tensor products in its symbol will have elements that are a product

of elements in the set. For example, given F = {x, 1− x}, then

S(I3(x(1− x))) =
−x2 + x− 1

x(1− x)
⊗ x(1− x)⊗ x(1− x).

There obviously does not exist a, b ∈ Z such that

−x2 + x− 1

x(1− x)
= xa(1− x)b.

for all x. This stresses the importance of the choice of the set F . We can expand

the function set to {x, 1− x, 1− x+ x2} and then

−x2 + x− 1

x(1− x)
= −x−1(1− x)−1(1− x+ x2).

So, we can associate the vector

VF = [−1,−1, 0,−1,−1, 0, 0, 0, 0,−1,−1, 0,−1,−1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0]

to I3(x(1 − x)). Balancing the scope of the variables used and the size of F will

play an important role when we try to maximise the results. Increasing the size of

F increases the size of VF exponentially.

A.2 An overview of finding elements in the kernel

of the symbol with GP/Pari

We now use both our GP/Pari script for finding the symbol of a multiple poly-

logarithm and our proposed method of converting a symbol into a vector to linear

combinations of multiple polylogarithms in the kernel of the symbol. The outline of

a script to do this follows:

1. Choose a set of functions F = {f1, ..., fm}.

2. Choose a range [d1, d2] for some d1, d2 ∈ Z.

3. Choose a selection of multiple polylogarithms of a fixed weight, possibly all of

them.

A.3. Further linear combinations of multiple polylogarithms in the
kernel of the symbol 157

4. Construct a list, L, of possible arguments

m∏
i=1

f bii

for all bi ∈ [d1, d2] ⊂ N.

5. For all possible selections of arguments from list L find the symbol of the

multiple polylogarithms chosen.

6. Determine if each symbol can be associated to a vector using basis F =

{f1, ..., fm} and create a list of successful multiple polylogarithms with their

vectors.

7. Perform linear algebraic methods to find linear dependences within the set of

vectors.

This is the method used in Chapter 7 and in the following section for finding the

linear combinations of multiple polylogarithms in the kernel of the symbol map.

A.3 Further linear combinations of multiple poly-

logarithms in the kernel of the symbol

The following list of elements,

Ξw,n ∈ Iw(S), with S(Ξw,n) = 0

are provided ‘as is’ and have not been fully explored.

Note that here that the calculations were made using the convention that

µ(P (a, a)) = 1 rather than µ(P (a, a)) =
1

a
.

As a consequence terms in the symbol arising from a polygon dissection with a 2-gon

of the form P (a, a) do not contribute.

A.3. Further linear combinations of multiple polylogarithms in the
kernel of the symbol 158

Weight 2

Ξ2,1 = I1,1(x, y) + I1,1(x, 1− y) + I1,1(1− x, y) + I1,1(1− x, 1− y)

Weight 3

Ξ3,1 =− I1,2

(
1

x
,

1

x

)
− I1,2(x, x) + I2,1

(
1

1− x
,

1

1− x

)
+ I3(x)

Ξ3,2 =− I1,2

(
T

x
,
T

x

)
+ I1,2

(
T

x
, T

)
+ I1,2

(
T

x
, x

)
+ I1,2

(
T,
T

x

)
− I1,2 (T, T) + I1,2 (T, 1− x)

where T = 1− x+ x2.

Ξ3,3 =I3(xy) + I1,2(x, y) + I1,2(y, x)− I1,2(xy, x) + I2,1(x, y)− I2,1(xy, y)

Ξ3,4 =I1,2(x, y) + I1,2(y, x) + I1,2(x, 1− y) + I1,2(1− y, x)

+ I2,1(x, y) + I2,1(x, 1− y)

Ξ3,5 =I1,2(x, y) + I1,2(y, x)− I1,2(1− x, 1− y)− I1,2(1− y, 1− x)

+ I2,1(x, y) + I2,1(x, 1− y)− I2,1(1− y, 1− x)− I2,1(1− y, x)

Weight 4

Ξ4,1 =2I1,3(x, x) + I1,3(x(1− x), x) + I2,2(x, x) + I3,1(x, x)

− I3,1(x(1− x), 1− x)− I4(x(1− x))

Ξ4,2 =I1,3(y(1− x), y) + I1,3(xy, y) + I3,1(y(1− x), 1− x)

+ I3,1(xy, x)− I4(y(1− x))− I4(xy)

Ξ4,3 =I1,3(x, y) + I1,3(y, x)− I1,3(xy, x) + I2,2(x, y)

+ I3,1(x, y)− I3,1(xy, y) + I4(xy)

A.3. Further linear combinations of multiple polylogarithms in the
kernel of the symbol 159

Weight 5

Ξ5,1 =− I2,2,1(y, y, x) + I2,2,1(y, x, y)− I2,2,1(y, xy, y) + I2,2,1(y, xy, x)

+ I2,1,2(y, y, x)− I2,1,2(x, y, x) + I2,1,2(y, xy, y)− I2,1,2(y, xy, x)

+ I1,2,2(y, x, x)− I1,2,2(y, x, y)

+ I2,3(x, y)− I2,3(y, x)

Ξ5,2 =− I2,2,1(y, y, x) + I2,2,1(x, y, y) + I2,2,1(y, xy, x)− I2,2,1(x, xy, y)

− I2,2,1(xy, y, y) + I2,2,1(xy, x, y)

+ I2,1,2(y, xy, y)− I2,1,2(x, xy, x)

− I1,2,2(xy, x, y) + I1,2,2(xy, x, x)

− I2,3(y, xy) + I2,3(x, xy) + I2,3(xy, y)− I2,3(xy, x)

Ξ5,3 =− I1,2,2(x, y, x) + I1,2,2(x, y, y)− I1,2,2(y, x, x) + I1,2,2(y, x, y)

+ I1,2,2(xy, y, x)− I1,2,2(xy, y, y)

− I2,1,2(x, x, y)− I2,1,2(x, y, x) + I2,1,2(y, x, y) + I2,1,2(y, y, x)

+ I2,2,1(xy, x, x)− I2,2,1(xy, y, x)− I2,2,1(y, x, x) + I2,2,1(y, y, x)

+ I3,2(xy, y)− I3,2(xy, x)

Weight 6

Ξ6,1 =I2,4(xy, y)− I2,4(xy, x)− 2I2,4(y, x) + 2I2,4(x, y)

− 2I3,3(y, x) + 2I3,3(x, y)

− I4,2(xy, y) + I4,2(xy, x)− I4,2(y, x) + I4,2(x, y)

Appendix B

Non-maximal dissection in the

language of hook-arrow trees

B.1 Motivation

The hook-arrow tree construction outlined in Chapter 2 is only an equivalent rep-

resentation of maximal dissections of polygons. However, the full bar construction

from [GGL09] of a polygon also includes non-maximal dissections (a dissection of

an n-gon with less than n− 2 arrows).

Example B.1. As seen on page 572 of [GGL09] there are 8 possible placements of

adding a single arrow to the 4-gon P (1, 2, 3, 4). The relevant interpretation of these

non-maximal dissections is also included.

160

B.2. Hook-arrow bulbs 161

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

+ 234 | 12 + 34 | 123 + 134 | 23 + 14 | 234

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

− 134 | 21 + 124 | 34 + 14 | 321 − 124 | 32

B.2 Hook-arrow bulbs

We are motivated to find the equivalent method for the hook-arrow tree view of

dissections. To do this, we follow a very similar procedure as described in Section

2.2 and add vertices to the centre of each side of a non-maximal dissected polygon

and allow them to inherit the label from the edge. We then join every possible vertex

with a straight line that will not cross an arrow. We remove the polygon and arrows

and are left with a connected graph. We note that due to the dissection of the

polygon not being maximal we will have loops in the resulting graph. For example,

the first non-maximally dissected 4-gon in the above example gives a graph in the

following way.

4

1

2

3 −→ 1

2

3

4

These loops will appear in sets of vertices that are all connected to each other

(representing parts of the polygon that could have had more arrows added). We

B.2. Hook-arrow bulbs 162

consider each of these sets to be a face and disregard the diagonals. We don’t

actually consider the faces as 2-dimensional: instead as a collection of vertices and

edges bounding a region, and will denote the faces by their set of bounding vertices.

As an example

1

2 3

4

5

will have diagonals

disregarded and become

1

2 3

4

5

creating faces f1 = {1, 2} and f2 = {2, 3, 4, 5}.

Notation B.2. We will call these graphs hook-arrow bulbs, in that they represent a

non-maximal dissection and are thus partially formed hook-arrow trees (and slightly

resemble a sprouting bulb). The faces of a hook-arrow bulb are a generalisation of

the edges of hook-arrow trees. By construction, a face will meet any other face at a

maximum of one vertex and so will never share an edge.

We now formally define a hook-arrow bulb.

Definition B.3. A hook-arrow bulb, β is a rooted spanning graph on a set

of vertices in a linear order, (vβ1 , . . . , v
β
n), for which no edges are interlaced (see

Definition 2.3) and has root vβn.

Remark B.4. Due to disregarding the diagonals on faces, the definition of interlacing

here applies suitably and hook-arrow bulbs are seen as a natural extension of the

definition of hook-arrow trees that now allow loops.

A hook-arrow bulb, β, on n vertices Vβ = (vβ1 , ..., v
β
n) has a set of edges Fβ =

{fβ1 , ..., fβm}. The number of faces can be seen to be m = t+1 where t is the number

of dissecting arrows in the polygon dissection.

Definition B.5. A hook-arrow bulb has a description of

Cβ = {Vβ, Fβ} = {(vβ1 , ..., vβn), {fβ1 , ..., fβm}}.

B.2. Hook-arrow bulbs 163

Example B.6. The hook-arrow bulb, β′,

1

2

3

4

would have a description of

Cβ′ = {(1, 2, 3, 4), {{1, 2}, {2, 3, 4}}}.

B.2.1 Obtaining the bar construction element of a hook-

arrow bulb

We now explain how to direct a hook-arrow bulb and extract its element in the

bar construction. The method is a generalisation of the procedure of directing and

extracting the symbol from a hook-arrow tree.

B.2.1.1 Step 1 - Selecting the first face

The first face is selected in the same way as the first distinguished edge on a hook-

arrow tree. The first distinguished face will again intuitively be the first face hit

by moving around the distinguished final vertex anticlockwise. More precisely, we

start with a hook-arrow bulb β with description Cβ. We select a unique first and

distinguished face of β, denoted fβd as

fβd = {f ∈ Fβ |vβi , vβn ∈ f and vβ1 , . . . , v
β
(i−1) /∈ f}.

Again, this is a natural extension of the idea of a distinguished edge for hook-arrow

trees.

B.2. Hook-arrow bulbs 164

This chosen distinguished face is then given a linear order on its vertices, obeying

the linear order in Vβ and ending with vβn. As with hook-arrow trees we will use the

notation [vβ• , . . . , v
β
•] to denote a face where the linear order is designated.

Example B.7. The distinguished face of the hook-arrow bulb described by

Cβ = {(1, 2, 3, 4, 5), {{1, 2}, {2, 3, 5}, {4, 5}}},

1

2 3

4

5

is {2, 3, 5} and is given a linear order of [2, 3, 5].

B.2.1.2 Step 2 - Splitting the hook-arrow bulb

We again generalise the algorithm for the hook-arrow trees. We remove the edges

of the first distinguished face and form ‘sub-bulbs’. Sub-bulbs containing only one

vertex are trivial. Sub-bulbs must also only contain vertices that are including and

immediately after, or, including and immediately before, a vertex. This method

is analogous to that in step 2 of the hook-arrow tree algorithm and a suitably

complicated example follows to demonstrate this (instead of explicitly explaining).

The sub-bulbs are labelled βi in the direction of the linear order of Vβ.

Example B.8. We examine the hook-arrow bulb, β, given by

B.2. Hook-arrow bulbs 165

1

2

3

4

5
6

7

8

9

10

11
12

The first distinguished face will be [1, 6, 11, 12]. After removing this face we are left

with 4 sub-bulbs.

1

2

3

4

5
66

7

8

9

10

11

We orientate a sub-bulb, βi and give its vertices:

• the same linear order as that of Vβ if it is formed from a vertex of fβd and

vertices immediately before in the linear order of Vβ, i.e.,

vβi , v
β
(i−1) ∈ βi where vβi ∈ f

β
d .

• the opposite orientation to the linear order of Vβ if it is formed from a vertex

of fβd and vertices immediately after in the linear order of Vβ, i.e.,

vβi , v
β
(i+1) ∈ βi where vβi ∈ f

β
d .

B.2. Hook-arrow bulbs 166

The vertices of each sub-bulbs now have a linear order and we take the final vertex

of each sub-bulb to be the vertex it includes from fβd . We can therefore give each

sub-bulb a description, Cβi and it is itself a hook-arrow bulb.

B.2.1.3 Step 3 - Iterate the process

We then repeat the steps 1 and 2 on each sub-bulb and record the results in a similar

way to that of the hook-arrow trees, shuffling sub-bulbs which are at the same depth.

Example B.9. We continue to apply the algorithm to the hook-arrow bulb from

example B.8.

We have the distinguished face fβd = [1, 6, 11, 12] with sub-bulbs with descriptions

as follows:

• β1 given by Cβ1 = {(3, 2, 1), {{1, 2, 3}}}.

• β2 given by Cβ2 = {(4, 5, 6), {{4, 5, 6}}}.

• β3 given by Cβ3 = {(7, 6), {{6, 7}}}.

• β4 given by Cβ4 = {(8, 9, 10, 11), {{8, 9, 11}, {10, 11}}}.

We note that β1 and β3 have a different linear order to fβd .

The sub-bulbs β1, β2 and β3 only have one face which therefore becomes the distin-

guished face of that sub-tree. We record these faces as

fβ1d = [3, 2, 1], fβ2d = [4, 5, 6] and fβ3d = [7, 6].

The distinguished face of β4 will be [8, 9, 11]. We obtain one sub-bulb of β4, namely

β4,1, which has description

Cβ4,1 = {(10, 11), {{10, 11}}}.

Overall the bar element represented by this hook-arrow bulb is

[1, 6, 11, 12]
∣∣ ([3, 2, 1] � [4, 5, 6] � [7, 6] � ([8, 9, 11] | [10, 11])

)
.

B.3. General picture 167

B.3 General picture

The analogous general picture of a hook-arrow bulb to that of the hook-arrow tree

in Section 2.4.5 is as follows:

·
·
·

	

β1

β2

�

	

β3

β4

�

	

β5

β6

�
	

βl−3

βl−2

�

	

vβn βl−1

βl

�
	

where

vβi vβ(i+j)

B.4. Further thoughts on hook-arrow bulbs 168

represents j + 1 points connected to each other in a line in the form

vβi vβ(i+1) vβ(i+2)
· · ·

vβ(i+j−2) vβ(i+j−1) vβ(i+j)

and

v
βj
i

βj

�

represents a sub-bulb with the orientation indicated.

Note that, as with the subtrees formed in the algorithm for hook-arrow trees, some

(or all) of the sub-bulbs, βi, may be trivial (i.e., consist only of a single vertex). We

also note that edges between different v
βj
i are only displayed curved for ease of the

schematic drawing.

B.4 Further thoughts on hook-arrow bulbs

Hook-arrow bulbs are offered here as an alternative to the non-maximal dissections

of polygons that make up the full bar construction outlined in Section 1.4.1. Further

research into extending the symbol to cover all parts of the bar construction and

comparing multiple polylogarithms may well lead to seeing extra structure. An

important aspect of the symbol is that it simplifies the comparison of, while still

holding a lot of important information about, multiple polylogarithms. However, if

reasonable algebraic manipulation of non-maximal dissections can be constructed,

particularly if a computer could calculate them quickly, interesting results could

arise. It is hoped that the systematic structure of the algorithm in this appendix

could be encoded in a program such as GP/Pari.

Appendix C

The symbol for I2,2,2(x, y, z)

C.1 Hook-arrow trees attached to I2,2,2(x, y, z)

The polygon representing I2,2,2(x, y, z),

P (x, 0, y, 0, z, 0, 1)

will have, as seen from Proposition 4.10,

1

2
r1r2(r3 + 2)(r1 + r2 + r3 + 5) =

1

2
· 2 · 2 · 4 · 11 = 88

possible dissections. However, by the proof of Proposition 4.10 we know that these

can be divided into 12 groups (represented by each summation sign in Theorem

4.12). Each group being represented by a hook-arrow tree of a dissection of the

polygon P (x, y, z, 1). We then find every possible addition of the three vertices

labelled 0. These tree groupings are now shown.

169

C.1. Hook-arrow trees attached to I2,2,2(x, y, z) 170

1

x

y

z

1

0

00

Trees of this type = 4

2

x

y

z

1

0

00

Trees of this type = 8

3

x

y

z

1

0

00

Trees of this type = 4

4

x

y

z

1

0

00

Trees of this type = 12

5

x

y

z

1

0

00

Trees of this type = 4

6

x

y

z

1

0

00

Trees of this type = 6

7

x

y

z

1

0

00

Trees of this type = 6

8

x

y

z

1

0

00

Trees of this type = 12

9

x

y

z

1

0

00

Trees of this type = 8

10

x

y

z

1

0

00

Trees of this type = 6

11

x

y

z

1

0

00

Trees of this type = 6

12

x

y

z

1

0

00

Trees of this type = 12

C.2. The symbol S(I2,2,2(x, y, z)) 171

We observe that there are 88 possible hook-arrow trees, as expected.

C.2 The symbol S(I2,2,2(x, y, z))

We now use Theorem 4.12 to give that full symbol for I2,2,2(x, y, z). We group the

terms by the number of the hook-arrow tree from which they originate above.

S(I2,2,2(x, y, z)) =

−
(
1− 1

z

)
⊗ z �

((
1− z

y

)
⊗ y�

((
1− y

x

)
⊗ x
))

(Tree 1)

+
(
1− 1

z

)
⊗ z �

((
1− z

y

)
⊗ z �

((
1− y

x

)
⊗ x
))

+
(
1− 1

z

)
⊗ z �

((
1− z

y

)
⊗ y�

((
1− y

x

)
⊗ y
))

−
(
1− 1

z

)
⊗ z �

((
1− z

y

)
⊗ z �

((
1− y

x

)
⊗ y
))

+
(
1− 1

x

)
⊗ x�

((
1− 1

y

)
⊗ y ⊗

(
1− y

z

)
⊗ y
)

(Tree 2)

+
(
1− 1

x

)
⊗ x�

((
1− 1

y

)
⊗
(
1− y

z

)
⊗ y� z

)
−
(
1− 1

x

)
⊗ x�

((
1− 1

y

)
⊗ y ⊗

(
1− y

z

)
⊗ z
)

−
(
1− 1

x

)
⊗ x�

((
1− 1

y

)
⊗
(
1− y

z

)
⊗ z � z

)
−
(
1− 1

x

)
⊗
(
1− 1

y

)
⊗ y�

(
y ⊗

(
1− y

z

)
⊗ y
)

−
(
1− 1

x

)
⊗
(
1− 1

y

)
⊗ y�

((
1− y

z

)
⊗ y� z

)
+
(
1− 1

x

)
⊗
(
1− 1

y

)
⊗ y�

(
y ⊗

(
1− y

z

)
⊗ z
)

+
(
1− 1

x

)
⊗
(
1− 1

y

)
⊗ y�

((
1− y

z

)
⊗ z � z

)
−
(
1− 1

x

)
⊗ x�

((
1− 1

y

)
⊗ y�

((
1− 1

z

)
⊗ z
))

(Tree 3)

+
(
1− 1

x

)
⊗ x�

((
1− 1

y

)
⊗
(
1− 1

z

)
⊗ z � z

)
−
(
1− 1

x

)
⊗
(
1− 1

y

)
⊗ y� y�

((
1− 1

z

)
⊗ z
)

+
(
1− 1

x

)
⊗
(
1− 1

y

)
⊗ y�

((
1− 1

z

)
⊗ z � z

)

C.2. The symbol S(I2,2,2(x, y, z)) 172

−
(
1− 1

x

)
⊗ x⊗

(
1− x

y

)
⊗ x�

((
1− y

z

)
⊗ y
)

(Tree 4)

−
(
1− 1

x

)
⊗
(
1− x

y

)
⊗ x�

(
y ⊗

(
1− y

z

)
⊗ y
)

−
(
1− 1

x

)
⊗
(
1− x

y

)
⊗ x�

((
1− y

z

)
⊗ y� z

)
+
(
1− 1

x

)
⊗ x⊗

(
1− x

y

)
⊗ x�

((
1− y

z

)
⊗ z
)

+
(
1− 1

x

)
⊗
(
1− x

y

)
⊗ x�

(
y ⊗

(
1− y

z

)
⊗ z
)

+
(
1− 1

x

)
⊗
(
1− x

y

)
⊗ x�

((
1− y

z

)
⊗ z � z

)
+
(
1− 1

x

)
⊗ x⊗

(
1− x

y

)
⊗ y�

((
1− y

z

)
⊗ y
)

+
(
1− 1

x

)
⊗
(
1− x

y

)
⊗ y�

(
y ⊗

(
1− y

z

)
⊗ y
)

+
(
1− 1

x

)
⊗
(
1− x

y

)
⊗ y�

((
1− y

z

)
⊗ y� z

)
−
(
1− 1

x

)
⊗ x⊗

(
1− x

y

)
⊗ y�

((
1− y

z

)
⊗ z
)

−
(
1− 1

x

)
⊗
(
1− x

y

)
⊗ y�

(
y ⊗

(
1− y

z

)
⊗ z
)

−
(
1− 1

x

)
⊗
(
1− x

y

)
⊗ y�

((
1− y

z

)
⊗ z � z

)
−
(
1− 1

y

)
⊗
((

1− y
x

)
⊗ x
)
� y�

((
1− 1

z

)
⊗ z
)

(Tree 5)

+
(
1− 1

y

)
⊗
((

1− y
x

)
⊗ x
)
�

((
1− 1

z

)
⊗ z � z

)
+
(
1− 1

y

)
⊗
((

1− y
x

)
⊗ y
)
� y�

((
1− 1

z

)
⊗ z
)

−
(
1− 1

y

)
⊗
((

1− y
x

)
⊗ y
)
�

((
1− 1

z

)
⊗ z � z

)
−
(
1− 1

z

)
⊗ z �

((
1− z

x

)
⊗ x�

((
1− z

y

)
⊗ y
))

(Tree 6)

+
(
1− 1

z

)
⊗ z �

((
1− z

x

)
⊗ x�

((
1− z

y

)
⊗ z
))

+
(
1− 1

z

)
⊗ z �

((
1− z

x

)
⊗ z ⊗

(
1− z

y

)
⊗ y
)

−
(
1− 1

z

)
⊗ z �

((
1− z

x

)
⊗ z ⊗

(
1− z

y

)
⊗ z
)

+
(
1− 1

z

)
⊗ z �

((
1− z

x

)
⊗
(
1− z

y

)
⊗ y� y

)
−
(
1− 1

z

)
⊗ z �

((
1− z

x

)
⊗
(
1− z

y

)
⊗ y� z

)

C.2. The symbol S(I2,2,2(x, y, z)) 173

+
(
1− 1

x

)
⊗
((

1− 1
z

)
⊗ z
)
�

(
x⊗

(
1− x

y

)
⊗ x
)

(Tree 7)

+
(
1− 1

x

)
⊗
((

1− 1
z

)
⊗ z
)
�

((
1− x

y

)
⊗ x� y

)
−
(
1− 1

x

)
⊗
((

1− 1
z

)
⊗ z � z

)
�

((
1− x

y

)
⊗ x
)

−
(
1− 1

x

)
⊗
((

1− 1
z

)
⊗ z
)
�

(
x⊗

(
1− x

y

)
⊗ y
)

−
(
1− 1

x

)
⊗
((

1− 1
z

)
⊗ z
)
�

((
1− x

y

)
⊗ y� y

)
+
(
1− 1

x

)
⊗
((

1− 1
z

)
⊗ z � z

)
�

((
1− x

y

)
⊗ y
)

+
(
1− 1

x

)
⊗ x⊗

(
1− x

z

)
⊗ x�

((
1− z

y

)
⊗ y
)

(Tree 8)

−
(
1− 1

x

)
⊗ x⊗

(
1− x

z

)
⊗ z ⊗

(
1− z

y

)
⊗ y

−
(
1− 1

x

)
⊗ x⊗

(
1− x

z

)
⊗
(
1− z

y

)
⊗ y� y

+
(
1− 1

x

)
⊗
(
1− x

z

)
⊗ x� z �

((
1− z

y

)
⊗ y
)

−
(
1− 1

x

)
⊗
(
1− x

z

)
⊗ z �

(
z ⊗

(
1− z

y

)
⊗ y
)

−
(
1− 1

x

)
⊗
(
1− x

z

)
⊗ z �

((
1− z

y

)
⊗ y� y

)
−
(
1− 1

x

)
⊗ x⊗

(
1− x

z

)
⊗ x�

((
1− z

y

)
⊗ z
)

+
(
1− 1

x

)
⊗ x⊗

(
1− x

z

)
⊗ z ⊗

(
1− z

y

)
⊗ z

+
(
1− 1

x

)
⊗ x⊗

(
1− x

z

)
⊗
(
1− z

y

)
⊗ z � y

−
(
1− 1

x

)
⊗
(
1− x

z

)
⊗ x� z �

((
1− z

y

)
⊗ z
)

+
(
1− 1

x

)
⊗
(
1− x

z

)
⊗ z �

(
z ⊗

(
1− z

y

)
⊗ z
)

+
(
1− 1

x

)
⊗
(
1− x

z

)
⊗ z �

((
1− z

y

)
⊗ y� z

)
+
(
1− 1

y

)
⊗
((

1− y
x

)
⊗ x
)
�

(
y ⊗

(
1− y

z

)
⊗ y
)

(Tree 9)

+
(
1− 1

y

)
⊗
((

1− y
x

)
⊗ x
)
�

((
1− y

z

)
⊗ z � y

)
−
(
1− 1

y

)
⊗
((

1− y
x

)
⊗ x
)
�

(
y ⊗

(
1− y

z

)
⊗ z
)

−
(
1− 1

y

)
⊗
((

1− y
x

)
⊗ x
)
�

((
1− y

z

)
⊗ z � z

)
−
(
1− 1

y

)
⊗
((

1− y
x

)
⊗ y
)
�

(
y ⊗

(
1− y

z

)
⊗ y
)

−
(
1− 1

y

)
⊗
((

1− y
x

)
⊗ y
)
�

((
1− y

z

)
⊗ z � y

)
+
(
1− 1

y

)
⊗
((

1− y
x

)
⊗ y
)
�

(
y ⊗

(
1− y

z

)
⊗ z
)

+
(
1− 1

y

)
⊗
((

1− y
x

)
⊗ y
)
�

((
1− y

z

)
⊗ z � z

)

C.2. The symbol S(I2,2,2(x, y, z)) 174

−
(
1− 1

x

)
⊗ x�

((
1− 1

z

)
⊗ z �

((
1− z

y

)
⊗ y
))

(Tree 10)

+
(
1− 1

x

)
⊗
(
1− 1

z

)
⊗ z �

(
z ⊗

(
1− z

y

)
⊗ y
)

+
(
1− 1

x

)
⊗
(
1− 1

z

)
⊗ z �

((
1− z

y

)
⊗ y� y

)
+
(
1− 1

x

)
⊗ x�

((
1− 1

z

)
⊗ z �

((
1− z

y

)
⊗ z
))

−
(
1− 1

x

)
⊗
(
1− 1

z

)
⊗ z �

(
z ⊗

(
1− z

y

)
⊗ z
)

−
(
1− 1

x

)
⊗
(
1− 1

z

)
⊗ z �

((
1− z

y

)
⊗ y� z

)
+
(
1− 1

z

)
⊗ z �

((
1− z

x

)
⊗
(
1− x

y

)
⊗ x� y

)
(Tree 11)

+
(
1− 1

z

)
⊗ z �

((
1− z

x

)
⊗ x⊗

(
1− x

y

)
⊗ x
)

−
(
1− 1

z

)
⊗ z �

((
1− z

x

)
⊗ z �

((
1− x

y

)
⊗ x
))

−
(
1− 1

z

)
⊗ z �

((
1− z

x

)
⊗
(
1− x

y

)
⊗ y� y

)
−
(
1− 1

z

)
⊗ z �

((
1− z

x

)
⊗ x⊗

(
1− x

y

)
⊗ y
)

+
(
1− 1

z

)
⊗ z �

((
1− z

x

)
⊗ z �

((
1− x

y

)
⊗ y
))

−
(
1− 1

x

)
⊗ x⊗

(
1− x

z

)
⊗
(
1− x

y

)
⊗ y� x (Tree 12)

−
(
1− 1

x

)
⊗ x⊗

(
1− x

z

)
⊗ x⊗

(
1− x

y

)
⊗ x

+
(
1− 1

x

)
⊗ x⊗

(
1− x

z

)
⊗ z �

((
1− x

y

)
⊗ x
)

−
(
1− 1

x

)
⊗
(
1− x

z

)
⊗ z �

((
1− x

y

)
⊗ y� x

)
+
(
1− 1

x

)
⊗
(
1− x

z

)
⊗ z �

(
x⊗

(
1− x

y

)
� x

)
+
(
1− 1

x

)
⊗
(
1− x

z

)
⊗ z � z �

((
1− x

y

)
� x

)
+
(
1− 1

x

)
⊗ x⊗

(
1− x

z

)
⊗
(
1− x

y

)
⊗ y� y

+
(
1− 1

x

)
⊗ x⊗

(
1− x

z

)
⊗ x⊗

(
1− x

y

)
⊗ y

−
(
1− 1

x

)
⊗ x⊗

(
1− x

z

)
⊗ z �

((
1− x

y

)
⊗ y
)

+
(
1− 1

x

)
⊗
(
1− x

z

)
⊗ z �

((
1− x

y

)
⊗ y� y

)
−
(
1− 1

x

)
⊗
(
1− x

z

)
⊗ z �

(
x⊗

(
1− x

y

)
� y

)
−
(
1− 1

x

)
⊗
(
1− x

z

)
⊗ z � z �

((
1− x

y

)
� y

)
.

