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In the present paper we generalize a phenomenological model developed by Gomonay and Loktev (Fiz. Nizk.

Temp. 31, 1002 (2005)) for the description of magnetostructural phase transitions and related peculiarities of

elastic properties in solid oxygen under high pressure and/or temperature below 40 K. We show that variation of

all the lattice parameters in the vicinity of �–� phase transition is due to both the shift of basal closed-packed

planes and appearance of the long-range magnetic order. Competition between these two factors from one side

and lattice compression below T�� from another produces nonmonotonic temperature dependence of lattice pa-

rameter b (along monoclinic axis). Steep decrease of the sound velocities in the vicinity of T�� can be explained

by the softening of the lattice with respect to shift of the close-packed planes (described by the constant K2) prior

to phase transition point. We anticipate an analogous softening of sound velocities in the vicinity of �–� phase

transition and nonmonotonic pressure dependence of sound velocities in � phase.

PACS: 75.50.Ee Antiferromagnetics;
61.50.Ks Crystallographic aspects of phase transformations; pressure effects;
81.40.Vw Pressure treatment.

Keywords: magnetostructural phase transition, order parameter, lattice parameters.

1. Introduction

Solid oxygen that belongs to a family of cryocrystals is

being studied for more than 100 years and still attracts at-

tention of researches. This simple molecular crystal has

very complicated temperature–pressure T–P phase dia-

gram consisting of magnetic and nonmagnetic, metallic

and dielectric, studied and nondiscovered phases (see,

e.g., review [2] and references therein). Phase transitions

and drastic change of the magnetic, electronic, elastic

properties of solid O2 can be triggered by variation of

temperature, pressure, external magnetic field, etc. The

thorough analysis of corresponding regularities is rather

nontrivial problem because the O2 crystal lattice is main-

ly hold by the weak van der Waals forces and so is very

soft in comparison with ordinary solids. Besides, in con-

trast to other crystals, exchange magnetic interactions at

low temperature prove to be of the same order as lattice

energy. As a result, application of external fields (tempe-

rature, stress, magnetic) gives rise to a pronounced vari-

ation of all the lattice and magnetic parameters. In this

situation precise microscopic calculations should be com-

bined with general thermodynamic treatment.

In the 1st part of this paper [1] we made an attempt to

develop a phenomenologic (Landau-type) model aimed at

the description of the lattice and magnetic properties of

solid oxygen in a sequence of temperature/pressure in-

duced � � �� � transitions.

The proposed model was based on the following as-

sumptions:

1. Magnetoelastic coupling is so strong that abrupt

change of the magnetic structure leads to the noticeable

variation of the crystal lattice.
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2. The primary order parameter in the series of

� � �� � phase transitions is a homogeneous shift of

closed-packed planes. The order parameter is defined

with respect to the virtual hexagonal, D 6
1

h pra-phase.

3. The only macroscopic parameter that controls these

transitions is the specific volume. Temperature depend-

ence of the specific volume cannot be calculated within

the model and should be taken from the experiment.

As it was shown, this model gives good agreement

with experimental data. However, some questions have

been left beyond its scope. In particular, we have consid-

ered only two factors that define crystal structure of dif-

ferent phases — shift of the closed packed planes and spe-

cific volume of the crystal. More thorough analysis

should account for rather strong rhombic deformations

within the plane and separate contribution of interplane

distance and isotropic in-plane strain into the change of

specific volume.

In the present paper we try to refine the model by tak-

ing into account all the parameters that define the crystal

structure of �, �, and � phases and explain observed pe-

culiarities of temperature/pressure dependence of lattice

constants and sound velocities.

We would also like to mention with our great pleasure

that the preliminary results of this paper were presented at

International Conference CC-2006 (in Kharkov) devoted

to the prominent Ukrainian scientist and wonderful wo-

man Antonina Fedorovna Prihot’ko who is well known

for her brilliant experiments in physics of cryocrystals.

She is also famous for fundamental results in optical in-

vestigation of � and � phases in solid oxygen. With the

present paper we try to pay our tribute of respect to her

memory.

2. Model

It was already mentioned that the crystal structure of

�, �, and � phases can be considered as a homogeneously

deformed hexagonal lattice. In general, such a deforma-

tion can be consistently described with the use of four in-

dependent variables: lattice parameters a, b, c, and angle

� of monoclinic cell. Corresponding combinations that

form representation of the D 6
1

h space symmetry group

(parent pra-phase) are:

i) relative shift of closed-packed planes� �� ( / ) cosc a ;

i i ) isotropic strain in the basal plane �s s/ 0 �
� 	 
( ) ( )ab a b a b0 0 0 0 ;

iii) relative extension/contraction u h h hzz � 	( ) /0 0 in

the direction perpendicular to closed-packed planes (Z

axis), where h c� sin�;

iv) shear strain in the basal plane u a b� 	 �( )3

� 	 
( )3 0 0
1 2a b .

The quantities with subscript «0» are attributed to a

certain reference state (at zero T or P). In assumption of

small variation of interplane distance (formally expressed

by inequality u zz 

 1) relative change of the specific vol-

ume �v v/ can be readily expressed in a form of a simple

sum � �v v s s u zz/ /� �0 .

Equilibrium values of �, u zz , u, and �s s/ 0 at a given

temperature T and hydrostatic pressure P are calculated

from standard conditions for minimum of Gibbs’ poten-

tial� that is supposed to be invariant with respect to oper-

ations of the symmetry group D 6
1

h .

Using results of symmetry analysis given in [1] (see

Table 1 therein) general expression for � can be repre-

sented as a sum of structural �str , magnetic �mag , elastic

�elast contributions, and interaction term � int :

� � � � �� � � �str mag elast int . (1)

The structure of the first term in (1)

�str � 	 � � 	 �

�

K s h

K
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�
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s

s
uzz

�

(2)

reflects the translational invariance of the crystal with re-

spect to relative shift u of neighboring close-packed

planes of hexagonal lattice, namely: 2 1 2 1 2�� , ,� b u, where

b1 2, are vectors of the reciprocal pra-phase lattice.

Phenomenological constants K 2 and K 4 can be consid-

ered as coefficients in Fourrier series of lattice potential.

The coefficient K 2 is supposed to be a linear function

of the isotropic in-plane strain and interplane distance

with corresponding phenomenological constants

� � �s h, �
v

(where �
v
�10 GPa was estimated in [1]):

K K
s

s
us h zz2 0( )v � 	 	� �

�
.

Both constants � �s h, � 0 are supposed to be positive sign

basing on general considerations (confirmed with further

calculations, see below). Namely, the effective constant

K 2 describes the strength of intermolecular forces that

keep relative arrangement of basal planes. Increase of the

average intermolecular distance should give rise to weak-

ening of intermolecular bonds and hence to a decrease of

K 2.

Magnetic contribution in (1)

�mag � 	 	 	

	

� �
� �J J

J

j

j

j

j( ) ( ) ( ) ( )

(

( ) ( )
k l k l

k
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2
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1

3
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2) ( )

( )

j

j

�
� l

� (3)

accounts for the exchange interaction only, J j( )k � 0 are

Fourier components of exchange integrals labeled ac-

cording to stars k j ( j � 12, 13, 14) of irreducible repre-

sentations of D 6
1

h space group, antiferromagnetic (AFM)

vectors l
( )� , l

( )� , l
( )� unambiguously describe the mag-
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netic ordering in �, �, and � phases*. It should be also

stressed that the magnetic ordering in � phase has

short-range nature (so-called correlation ordering with

three sublattice 120° Loktev structure [2,6,7]). Collinear

long-range magnetic ordering characterized by one of

l
( )� vectors, is established in � phase. An effective Neel

temperature TN is close to the temperature T�� of �–�
transition (T�� = 23.5 K and TN � 40 K at ambient pres-

sure) [2], so, saturation magnetization M 0 and, corre-

spondingly, | |( )
l

� � M 0 noticeably depend on tempera-

ture in the vicinity of T��.

The elastic contribution in (1)

�elas ( � ) [( ) ]u c u u u c uxx yy xy zz� 	 � ��1

2
4

1

2

2 2
33

2 (4)

does not include strain tensor components u xz , u yz , that

can be considered as small excitations over finite defor-

mations given by the order parameter �1 2, . An expression

(4) is valid in the limit of infinitely small strains

u uxx yy	 , u zz . In such an approximation operations of

plane shift and deformation commute, hence, all the pa-

rameters of the model can be referred to the same «zero»

state. Otherwise, one should specify the succession of lat-

tice transformations, use different reference frames at

each stage and work within nonlinear elasticity approach.

Interaction energy includes terms that describe differ-

ent crossover effects. Here we are concentrated on several

of them. First, variation of interatomic distances gives

rise to the change of intra- (characterized with interaction

constants � intra , �� ), and inter- (constants � inter , � ||)

plane exchange integrals**. This effect has magnetoelas-

tic origin and can be formally described by two expres-

sions. The first one is responsible for isotropic

� �
�

�
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iso)
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and another one for anisotropic effects
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Another coupling effect originates from strong anhar-

monicity which is a peculiar feature of molecular crystals.

Corresponding contribution into thermodynamic poten-

tial has a form

�anhar � 	 	 �

� 	

� ��

�� � �

e xx yy

xy

u u

u

{( ) cos

[cos cos (

2

2 2 2

1

2 1 	 	 �� �2 )]} ,
�s

s
u zz (7)

where the coupling constants � e , �� are of the same na-

ture as� s ,� h but from the general point of view should be

much smaller in value (see Table 1). Really, � s , � h de-

scribe variation of average interatomic distances that

result from reconstruction of crystal lattice in the course

of phase transition. These constants are proportional to

Grünaisen parameter which is very high. At the same time

� e and �� are responsible for a «differential» effect,

namely, variation of anisotropy of the crystal lattice in the

course of phase transition.

Table 1. Phenomenological coefficients

Coefficient Value Comments

�s
0 31 10 12. � 	 cm2/dyne

3 2 10 12. � 	 cm2/dyne

at amb. P,

at T = 19 K, P � 1–10 GPa

�P T( )
1 6 10 4. � 	 1 / K

1 7 10 3. � 	 1 / K

T < 23.5 K

T > 23.5 K

Keff 3 GPa calc. at amb. P

K4 5 GPa calc. at amb. P

�s
13 GPa

0.2 GPa

at amb. P,

at T = 19 K, P � 1–10 GPa

�h 10 GPa in assumption that c33 = 10 GPa

�� � c13 1 GPa in assumption that c33 = 10 GPa

�e 0.06 GPa in assumption that c� = 1 GPa

�
||
( )�

M
0
2 –0.04 GPa

��
( )�

M
0
2 –0.02 GPa

�interM
0
2 �0.06 GPa in all phases
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* We assume that the series (3) may also include a wave vector corresponding to 4-sublattice structure of recently decoded

 phase [3–5]. Detailed analysis of this phase is out of scope of that paper.

** We keep superscripts ( )� , ( )� , and ( )� in the constants of magnetic nature only, in order to emphasize a step-like change of mag-

netic structure in the phase transition point. Variation of other phenomenologic coefficients is not so crucial.



Standard minimization procedure enables to obtain the

value of lattice parameters and stability conditions of �,�
and � phases.

3. Temperature/pressure dependence of lattice

parameters

Equations for order parameter and stability regions

were derived and discussed in details in [1]. The refine-

ment of the model (splitting of in- and out-of-plane con-

tribution into specific volume) gives rise to no qualitative

changes. In this section we discuss only some additional

effects that can be explained and predicted in the frame-

work of the model. As in [1] we consider a homoge-

neous (from crystallographic point of view) phase with

� � �� � 
1 2 2. An effective macroscopic order parameter

that vanishes in � phase is introduced as ! ��� �1 2 2cos .

Magnetic ordering in � and � phases is described by a sin-

gle AFM vector l
1
( )�

and l
1
( )�

, correspondingly.

3.1. Order parameter and isomorphic in-plane strain

In the «more symmetrical»� and � phases an order pa-

rameter takes the limiting values ! � 0 (� phase) and ! � 	1

(� phase). Saturation magnetization M 0 (or correlation

parameter in� phase) are constant. Pressure and tempera-

ture dependence of the isomorphic in-plane strain �s s/ in

these cases cannot be calculated from general thermody-

namic considerations and is determined experimentally as

�

�
� �

s

s
T P dT T Ps

T

s� 	 � �"
	 	

� �

� �

�

0

( ' ; ) ' ( ) [
( )
intra intra

ph p

�

h

( )
] ,

�
M 0

2

(8)

where the in-plane thermal expansion coefficient� s T P( ; )

and isothermal� s T( ) compressibility vary in a wide range

with pressure and temperature (for example, Abramson et

al. observed 10% change of compressibility per 1 GPa in�
phase at room temperature [8]).

In � phase the temperature/pressure dependence of !
and �s s/ can be calculated from the system

K K M
s

s
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�
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M
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s
s s

s

0
2

0

2

0
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3

�

� 	 � 	 	"�
�intra

( )
( ) .

�
M T0

2

(9)

(The behavior of interplane deformation u zz will be dis-

cussed in the next section.) The values of phenome-

nological constants derived from fitting of functions

!( , )T P , �s s T P
 ( , ) to experimental data [9,10] with due

to account of M T0( ) temperature dependence [11,12] are

given in Table 1. It can be seen from the Table 1 that

K K K Meff � 	 �0 4 0
2�

||
( )�

and K 4 are comparable in or-

der of value with the shear modulus of the material [13].

The value of � s which we associate with the «seed» com-

pressibility is much smaller compared with experimetally

observed values [2]. This means that the main contri-

bution into compressibility arises from shifts of close-

packed planes and magnetic interactions.

3.2. Interplane distance

Distance h between the close-packed planes can be cal-

culated from equations

u
c

s

s c
M

c

s

s

zz � 	 	

� 	 	

�

�

�
�

�

�

33 33
0
2

33

� �

�

inter for phase

( )

,

�
! �

� �

�
h

h

c c
M T

c

s

s

2 33

2

33
0
2

33

	

� 	 	�

�

�

inter for phase

( )

( ) ,

2 33 33
0
2

c c
M	

�
inter for phase

( )

,

�

�
(10)

once the dependencies !( , )T P and �s s T P
 ( , ) are known.

Analysis of equations (10) shows that in the � phase

temperature/pressure dependence of u zz (and hence inter-

plane distance) is related with lattice compression within

the close-packed plane. Thus, constant �� coincides with

the elastic modulus c13. Estimated ratios c c13 33 01
 � .

at ambient pressure and c c13 33
 � 0.24 at T �19 K,

P � 1–7 GPa and also the positive sign of c13 0� are in

agreement with observations made by Abramson et al.

[8].

Figure 1 shows temperature dependence of interplane

distance experimentally measured (squares) and calcu-

lated from (10) (fitting parameters calculated in assump-

tion that c33 10� GPa are given in Table 1). Below T�� an

interplane distance abruptly diminishes and then its tem-

perature derivative changes sign. This fact may be ex-
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Fig. 1. Temperature dependence of interplane distance:

(squares) calculated according to experimental data [9]. Theo-

retical curve (solid line) is calculated from Eq. (10). Arrow in-

dicates the point of �–� transition.



plained by the combined influence of the magnetic order-

ing (characterized by difference � �
inter inter
( ) ( )� �	 ) and shift

of basal planes (corresponding interaction constant � h ).

In� phase each O2 molecule is situated over the center of

underlying triangle. In-plane compression (that arises due

to cooling or application of pressure) pushes out the over-

laying molecules in vertical direction, so interplane dis-

tance increases. In � phase hexagonal planes are not only

shifted from an ideal «close-packed» (with respect to un-

derlying layer) position but can also «slip» under com-

pression. Appearance of an additional degree of freedom

allows lattice compression not only in-plane but also in

perpendicular direction. Formally this means that con-

stant � h is positive, in agreement with monotonic

decrease of interplane distance under pressure-induced

compression (see Fig. 2).

Contribution of magnetic interactions into interplane

distance is important not only at �–�, but also at �–� tran-

sition as can be seen from Fig. 2. If we assume that� and �
phases have the same magnetic structure, then pressure

dependence of interplane distance according to (10)

should be continuous up to (hypothetical) 2nd order tran-

sition point at P2 75� . GPa (dashed line in Fig. 2). Change

of magnetic structure that originates from interplane ex-

change interactions induces 1st order phase transition at

P1 6� GPa 
 P2 followed by abrupt change of the order

parameter ! and all the related parameters including u zz .

So, difference between the observed and hypothetical u zz

value above P1 (see Fig. 2 and Eq. (10)) is proportional to

� �
inter inter
( ) ( )� �	 and is of magnetic nature.

3.3. In-plane deformation: parameters a, b

It is quite obvious from symmetry considerations that

establishment of long-range magnetic order in � phase is

fol lowed by in-plane deformat ion descr ibed by

u u uxx yy	 � . Analysis of the expressions (6), (7) shows

that the same effect can be produced by the shift of basal

planes (term with � e) as seen from the following

equation:

u
c

M T

c

e�
�

	 �
�

��
! !

�

( )
( )

( )
2 0

2

3
�

. (11)

Pressure dependence of u uxx yy	 calculated from

Eq. (11) along with experimental data is given in Fig. 3. It

is clearly seen that in �-phase lattice anisotropy u uxx yy	
monotonically increases in absolute value with pressure.

This effect can be explained from very simple consider-

ations. Pressure produces compression in all directions in

the basal plane but relative shift of planes can induce an

effective tension in b direction as seen from Fig. 4 (O2

molecules move apart in b direction when overlaying

molecule moves toward the edge). As a result, deforma-

tion in basal plane is essentially anisotropic and aniso-
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tropy is more pronounced at smaller interatomic distances

(i.e., at higher pressure).

The same effect takes place during cooling � phase

at ambient pressure. Figure 5 shows temperature de-

pendence of a and b lattice parameters below T��.

Intermolecular lattice distance a decreases monotonically

because of cooling-induced compression. In contrast,

temperature dependence of the parameter b is nonmono-

tonic. Increase of b during cooling from 23.5 to 18 K

means that tension in this direction is stronger than cool-

ing-induced compression. In particular, Eq. (11) demon-

strates that two mechanisms may be responsible for this

behavior: repulsion of ferromagnetically ordered neigh-

bors [2] (described by the term ��
( )

( )
�

M T0
2 , M 0

2 increases

with temperature decrease) and already mentioned shift

of basal planes.

Comparison of the above theoretical dependences with

experimental data obtained by different groups using dif-

ferent technique makes it possible to estimate the values

and range of phenomenological constants (see Table 1).

All the coefficients could be grouped in three categories:

i) large ( � 10 GPa) constants responsible for anharmo-

nicity effects (� s h, ); ii) intermediate (� 1 GPa) constants

(K eff , K 4 , c13) that characterize elastic properties of crys-

tal and iii) small (below 0.1 GPa) constants that describe

magnetic interactions and anisotropy effects (rest of the

constants). Though small in value the magnetic interac-

tions reveal themselves in the case of competition be-

tween different structural interactions like pressure in-

duced compression and repulsion that arises due the shift

of basal planes. Strong anharmonicity is quite natural

phenomena for molecular crystals. It is remarkable that at

ambient pressure both coefficients � s and � h are of the

same order and the main contribution into effective

structural constant K 2 arises from isomorphic in-plane

strain* �s s
 .

4. Peculiarities of sound velocities in the vicinity

of phase transition points

Experimental study of sound velocity in solid oxygen

provides information about interactions that play the

leading role in phase transitions. High-pressure measure-

ments in � phase [8] show monotonic increase with pres-

sure of all the elastic constants except shear modulus c44 ,

the value of which abruptly decreases in the vicinity of

�–�-transition point (approximately 8 GPa at 295 K).

Low-temperature curves [13,14] have a pronounced min-

ima at T��.

Critical behavior of sound velocities can be quite natu-

rally explained in the framework of the developed model

using the concept of Goldstone mode. Really, the 2nd (or

weak 1st**) order phase transitions are usually accompa-

nied with softening of a certain bond responsible for ap-

pearance of the order parameter. So, characteristic fre-

quency of the corresponding excitations (symmetry

related to the order parameter) should vanish or at least

noticeably diminish in the vicinity of the phase transition

point (Goldstone mode). In the case of � � �� � transi-

tions an order parameter (shift of basal planes) is symme-

try related with strain tensor component u zx (see Table 2

in [1]) and, as a result, with the transverse acoustic modes

propagating in [0001] and [1000] directions. Thus, these

modes should have peculiarity in phase transition points.

Sound velocities of the «soft» transverse, vt , and lon-

gitudinal, vl , acoustic waves propagating in [1000] direc-

tion are expressed through the elastic moduli in a standard

way

v

v

t

l

c c c c c

c c

2
11 55 11 55

2
15
2

2
11 55

1

2
4

1

2

� � 	 	 �

� � �

)

)

[ ( ) ] ,

[ ( ) ] ,c c c11 55
2

15
24	 �

(12)

where ) is crystal density.

Elastic moduli that equal to the 2nd derivatives of ther-

modynamic potential � (see Eq. (1)) with respect to strain

tensor components are calculated at equilibrium values of

lattice parameters:
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Fig. 5. Temperature dependence of lattice parameters a and b

(solid lines) calculated from Eqs. (9), (11). Squares: experi-

mental data [9].

* We are grateful to Prof. Yu.A. Freiman who has drawn our attention to this fact.

** In other words, 1st order phase transition between the phases that are in subgroup relation, i.e., 1st order close to 2nd one.
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Factor ( ) sinc a
 � in (13) is deduced from geometrical

considerations.

Then, omitting some terms immaterial for further dis-

cussion we obtain that in all three phases c s11
1� 	� ,

c15 = 0 in� and � phases and
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in � phase.

It can be easily seen from (14) that in � phase shear

modulus increases with temperature and decreases with

pressure, at least in the vicinity of transition point, in con-

sistency with observations [8].

More interesting is comparison of experimental and

theoretical temperature dependencies* ct l t l, ,� )v
2 shown

in Fig. 6. Anomalous softening of ct agrees well with the-

oretical predictions and thus may be explained by high

compliance of O2 crystal lattice with respect to shift of

the closed-packed molecular planes. Softening of cl is not

so obvious from general point of view but in the case

of molecular crystal may originate from strong anhar-

monicity.

An analogous softening of elastic moduli and corre-

sponding sound velocities is also expected in the vicinity

of�–� transition. Figure 7 shows hypotetical pressure de-

pendence of the moduli product** c ct l calculated on the

basis of equations (12)–(16) with characteristic values of

phenomenologic parameters (see Table 1). It is clear that

this dependence should be nonmonotonic, with notice-
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Fig. 6. Temperature dependences of shear modulus ct (a) and

compression modulus cl (b) calculated from (12)–(16) (solid

line). Squares: experimental data [13].
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* Temperature dependence of c s11
1� 	� is taken from fitting the data in � phase.

** The lack of experimental data makes it impossible to separate ct and cl contributions.



able decrease of moduli while approaching to ��- and

��-phase boundaries.

5. Conclusions

In summary, we have calculated temperature and pres-

sure dependence of all the crystal lattice parameters of

solid oxygen in the magnetic �, �, � phases. The above

phenomenological model ascribes the leading role in

structural changes to the shift of close-packed basal

planes in satisfactory agreement with the experiment.

In particular, shift of the planes is responsible for

nonmonotonic temperature dependence of lattice parame-

ter b in � phase (effective repulsion), change of the effec-

tive thermal coefficient in c direction in �–� transition

(nonmonotonic t dependence of interplane distance),

softening of shear modulus and corresponding velocities

in the vicinity of T��.

We assume that with certain stipulation the developed

model may be applied to interpretation of IR spectra

[15,16] which pressure dependence looks similar to pres-

sure dependence of the order parameter. In particular,

we predict nonmonotonic pressure dependence of elastic

moduli in � phase and critical behavior in �–�-transition

point. At the same time some of the problems are still

being outside the theoretical treatment. First of all it

concerns magnetocrystalline structure of  phase, me-

tallization of highly compressed oxygen along with corre-

sponding mechanism of superconductivity, optical pro-

perties of high-pressure phases, etc. These and other

problems are the subject of future investigations.
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