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Park Angelinum 9, 041 54 Košice, Slovak Republic
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The generalized Fisher super-exchange antiferromagnetic model with uniaxial crystal-field anisotropy is ex-
actly investigated using an extended mapping technique. An exact relation between partition function of the
studied system and that of the standard zero-field spin-1/2 Ising model on the corresponding lattice is ob-
tained applying the decoration-iteration transformation. Consequently, exact results for all physical quantities
are derived for arbitrary spin values S of decorating atoms. Particular attention is paid to the investigation
of the effect of crystal-field anisotropy and external longitudinal magnetic field on magnetic properties of the
system under investigation. The most interesting numerical results for ground-state and finite-temperature
phase diagrams, thermal dependences of the sublattice magnetization and other thermodynamic quantities
are discussed.
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1. Introduction

The Ising model turned out to be a very convenient model for the investigation of magnetic
properties of strongly anisotropic materials. In particular, the two-dimensional spin-1/2 Ising mod-
el and other exactly solvable models play an important role in statistical mechanics of cooperative
phenomena. Although, in most of theoretical studies the exchange interaction is usually assumed
to be of short-range, in many real magnetic insulators the exchange coupling between magnetic
atoms is predominantly carried out by means of the indirect exchange through the intermediary
non-magnetic atom (the so-called superexchange interaction). In order to describe these materials
theoretically, Fisher introduced a two-dimensional antiferromagnetic Ising model on the decorated
square lattice, in which the interaction between decorating magnetic atoms realized via interme-
diate non-magnetic atoms was considered [1,2].

It is also well known that the Fisher superexchange antiferromagnet is one of the few exactly
solvable models in the presence of an external magnetic field. In fact, until its establishing, the Ising
model in a nonzero magnetic field was included in the class of unsolved problems in statistical me-
chanics. Consequently, the effect of external magnetic field on magnetic properties was investigated
only applying various approximate methods, the solutions of which were in many cases in no good
agreement with each other as well as with experiments. The typical example of the experimental
as well as theoretical discussions is the behavior of initial susceptibility in antiferromagnetic solids.
Some experiments and approximations predicted that susceptibility has a maximum at a critical
point and falls away on either its site. According to others, the zero-field susceptibility passes
through a maximum up to above the critical temperature. At the critical temperature it shows the
infinite slope.

Moreover, no approximate methods yield explicit expressions for the initial susceptibility as a
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function of temperature, nor do they indicate how it behaves in a finite magnetic field. The only
case in which the magnetic susceptibility as well as other thermodynamic quantities can be exactly
calculated is Fisher two-dimensional model. However, this model is only one of a number of similar
exactly solvable antiferromagnetic lattices and its simple generalization leads to a series of other
models which could display a variety of interesting features. To the best of our knowledge, only
two generalizations of Fisher model have been investigated so far, namely, the superexchange Ising
model on the kagome lattice [3] and the decorated Ising model which is the combination of the
Fisher model and the Shiozi-Miyazima model of dilute-Ising spin system [4].

Considering this fact, the main purpose of the present work is to generalize the original su-
perexchange model for arbitrary values of decorating atoms including the effect of the uniaxial
crystal-field anisotropy as well.

The outline of this paper is as follows. In the next section the basic points of the exact solution
are briefly presented. In section 3 we discuss the most interesting results for the ground-state phase
diagram, critical temperature and thermodynamic properties of the system under investigation.
Finally, some concluding remarks are given in section 4.

2. Model and method

In this article we will consider a generalized Fisher superexchange antiferromagnet on the
square lattice (see figure 1), in which vertex sites are occupied by the fixed spin-1/2 atoms (open
circles) and decorating sites by the spin-S atoms (S > 1/2) (closed and obliquely lined circles).
Hence, we assume that horizontal and vertical decorating spins interact with each other through
the so-called superexchange leading to an antiferromagnetic long-range order. Similarly to Fisher
[1,2], we also suppose that all horizontal decorating spins are coupled with their nearest neighbors
through an antiferromagnetic interaction, whereas in the vertical direction, there is a ferromagnetic
nearest-neighbor exchange interaction.

Furthermore, including the effects of external longitudinal field and uniaxial crystal-field anisotropy
on all decorating atoms, the total Hamiltonian of the system can be written in the form

Ĥd = J

2N
∑

〈i,j〉

Ŝz
i µ̂z

j − J

2N
∑

〈k,l〉

Ŝz
k µ̂z

l − D

2N
∑

i∈B

(Ŝz
i )2 − H

2N
∑

i∈B

Ŝz
i , (1)

Figure 1. Part of the decorated square lat-
tice with vertex spin 1/2 (open circles) and
decorating spins 3/2 (closed and obliquely
lined circles. J denotes the exchange inter-
action which is antiferromagnetic (ferromag-
netic) in the horizontal (vertical) direction.

where µ̂z
j and Ŝz

i , respectively, denote the stan-
dard spin operators of spin-1/2 and spin-S Isi-
ng atoms, the first and second terms describe the
exchange interaction between the nearest neigh-
bors in the horizontal and vertical direction and
the last two expressions describe the interacti-
on of decorating atoms with the uniaxial crystal-
field anisotropy D and the longitudinal mag-
netic field H , respectively. Finally, the parameter
J > 0 represents the exchange integral between the
nearest neighbors.

For later convenience, it is useful to rewrite the
total Hamiltonian (1) in the form Ĥd =

∑N
h=1

Ĥh+
∑N

v=1
Ĥv, where the first (second) term represents

the sum of bond Hamiltonians involving all interac-
tion terms associated with the decorating atoms on
the horizontal (vertical) bonds and that are defined
as follows:

Ĥk = αJŜz
k(µ̂z

k1 + µ̂z
k2) − Ŝz

kH − D(Ŝz
k)2 (2)
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with k = h and v for horizontal and vertical bonds, respectively. The parameter α specifies the
type of exchange interaction, thus for k = h we put α = 1 (antiferromagnetic exchange) and for
k = v is α = −1 (ferromagnetic exchange).

The most important point of our calculation is the evaluation of the partition function Zd

of the investigated system. The validity of commutation relation for the bond Hamiltonians (i.e.
[Ĥi, Ĥj ] = 0, for i 6= j) enables one to rewrite Zd in the partially factorized form, namely

Zd = Tr exp(−βĤd) = Tr{µ}

N
∏

〈h,v〉

Zh Zv. (3)

In the above, β = 1/kBT , (kB being Boltzmann constant and T the absolute temperature) and
Tr{µ} means a trace over the degrees of freedom of spin-1/2 Ising vertex spins. Finally, the bond
partition functions Zh and Zv furnish the traces over all remaining degrees of freedom and they
are given by

Zk = TrSk
exp(−βĤk) =

S
∑

n=−S

exp(βDn2) cosh
(

βn [ J(µ̂z
k1 + µ̂z

k2) − αH ]
)

, (4)

where TrSk
denotes a trace over spin-S decorating atom on the kth horizontal (k = h) or vertical

(k = v) bond, respectively. The latter relation implies the possibility of introducing the decoration-
iteration mapping transformation [5,6]

TrSk
exp(−βĤk) = A exp

(

βRµ̂z
k1

µ̂z
k2

+ βH0k(µ̂z
k1

+ µ̂z
k2

)/4
)

, k = h, v. (5)

Considering all possible configurations of the spins µ̂z
k1

and µ̂z
k2

in previous equations one finds that
H0h = −H0v. Consequently, when equation (5) is substituted into (3), the magnetic contributions
H0h and H0v belonging to the vertex spins of the lattice cancel out and the partition function of
the system Zd reduces to the form

Zd(β, J, D, H) = A2NZ0(β, R). (6)

Here, Z0 represents the partition function of the standard spin-1/2 Ising square lattice without
external longitudinal magnetic field and the transformation parameters A and R are given by

A = {W (J)W (−J)W (0)2}1/4, βR = ln

{

W (J)W (−J)

W (0)2

}

, (7)

where W (x) depends on the temperature, external magnetic field and spin S of decorating atoms
and it is defined as

W (x) =

S
∑

n=−S

exp(βDn2) cosh(βnx − βnH). (8)

It is worth noticing that equation (6) relates the partition function of the studied model in the
presence of an external magnetic field and that of the standard zero-field spin-1/2 Ising model
on the square lattice. Since the explicit expression for Z0 is known [7], we can straightforwardly
calculate many relevant physical quantities based on the familiar thermodynamic relations. On
the other hand, some important quantities, such as the staggered magnetization or correlation
functions cannot be obtained within thermodynamic approach. Fortunately, this problem can be
solved utilizing the following exact spin identities [8]

〈f1(µ̂
z
i , µ̂

z
j , ..., µ̂

z
k)〉d = 〈f1(µ̂

z
i , µ̂

z
j , ..., µ̂

z
k)〉0 , (9)

〈f2(Ŝ
z
k , µ̂z

k1
, µ̂z

k2
)〉d =

〈

TrSk
f2(Ŝ

z
k , µ̂z

k1
, µ̂z

k2
)exp(−βĤk)

TrSk
exp(−βĤk)

〉

d

, k = h, v. (10)
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where arbitrary function f1 depends on vertex spin variables, the function f2 depends on the spin
variables of the kth bond only and the symbols 〈...〉0 and 〈...〉d stand for the standard canonical
averages of the original and decorated lattice, respectively. For example, applying the identity (10),
one simply attains the following results for the sublattice magnetization in the horizontal direction

mz
Bh ≡ 〈Ŝz

k〉d = A0 + A1m
z
A + A2εA, (11)

where coefficients Ai depend on the temperature, external magnetic field and crystal field. More-
over, we have introduced the sublattice magnetization mz

A ≡ 〈µ̂z
i 〉d and correlation function

εA ≡ 〈µ̂z
i1µ̂

z
i2〉d. Very similar equations but with a different coefficient can also be derived for

the correlation function Cz
k ≡ 〈µ̂z

kŜz
k〉d and quadrupolar momentum qz

k ≡ 〈(Ŝz
k)2〉d with k = h, v.

Although the derivation of final equations for the above-mentioned quantities is straightforward,
the calculation by itself is lengthy and tedious. Therefore we do not present details here.

Finally, let us briefly comment on the choice of the order parameter in our
model. In general, at low temperatures the antiferromagnets are distinguished by the long-range
order with anti-parallel alignment of the nearest-neighboring magnetic moments (or spins). This
type of magnetic arrangement is usually described by the so-called staggered magnetization which
is defined as a difference of reduced sublattice magnetization. It is also well-known that Ising-type
antiferromagnets in higher dimensions undergo a second-order phase transition at some critical
temperature and the staggered magnetization is then nonzero bellow the critical temperature and
vanishes above this temperature.

However, as we have already mentioned at the beginning of this section, the long-range an-
tiferromagnetic order between pairs of horizontal and vertical decorating atoms of the lattice is
realized indirectly through intermediate non-magnetic vertex atoms. Moreover, the vertex atoms
(that are not coupled to the external magnetic field) also exhibit a spontaneous magnetization
bellow the transition temperature. For this purpose, it is convenient to define the order parameter
of the model under investigation in the form of binary vector m = (|ms

B|, mz
A), where the first vec-

tor component represents the absolute value of staggered magnetization (ms
B = (mz

Bh − mz
Bv)/2)

describing the long-range antiferromagnetic ordering of horizontal and vertical decorating atoms,
while the second one describes the spontaneous magnetization of the spin-1/2 Ising sublattice.

3. Numerical results and discussion

Before discussing the most interesting numerical results, it is worth emphasizing that the su-
perexchange model is generally slightly different from the standard antiferromagnetic Ising models
on the square lattice usually treated by most authors. In particular, the standard antiferromag-
netic model becomes ferromagnetic when the sign of exchange integral J is changed, whereas the
superexchange model remains invariant against the transformation J → −J . It is also worth noting
that for S = 1/2 and S = 1 our calculation recovers the results obtained by Fisher, and Mashiya-
ma and Nara [1,2,4]. For this reason we concentrate here on the case S = 3/2 which has not been
discussed yet.

Table 1. Values of sublattice magnetization, correlation functions and quadrupolar momentum
for different ground-state phases.

mz
A mz

Bh mz
Bv εA Cz

h Cz
v qz

h qz
v

SAP1 0.5 –1.5 1.5 0.25 –0.75 0.75 2.25 2.25
SAP2 0.5 –0.5 0.5 0.25 –0.25 0.25 0.25 0.25
SAP 0.5 –0.5 1.5 0.25 –0.25 0.75 0.25 2.25
FIFP 0.5 0.5 1.5 0.25 0.25 0.75 0.25 2.25
PP1 0.0 1.5 1.5 0.0 0.0 0.0 2.25 2.25
PP2 0.0 0.5 0.5 0.0 0.0 0.0 0.25 0.25

50



The effect of uniaxial crystal-field anisotropy . . .

Now let us proceed with the discussion of the ground state. Possible phases at T = 0.0 can
be identified throught the analysis of all sublattice magnetization, pair-correlation functions and
quadrupolar momenta belonging to the decorating spins and those of the original undecorated
Ising lattice. The results of our investigation are collected in table 1. As we can see, there exist six
different phases, namely three superantiferromagnetic phases (SAP1, SAP2 and SAP), one field-
induced ferromagnetic phase (FIFP) and two paramagnetic phases (PP1 and PP2). For a better
illustration, we have depicted in figure 2 the ground-state phase diagram in the D − H plane.

Figure 2. Ground-state phase diagram in the
D−H plane for the decorated superexchange
antiferromagnetic model with S = 3/2.

Comparing the quantities evaluated above one
easily observes that for sufficiently small magnetic
fields, the decorating sublattice of the system al-
ways exhibits an antiferromagnetic long-range or-
der. This is characterized by the mutually oppo-
site signs of sublattice magnetization belonging
to them: mz

Bh = −3/2 and mz
Bv = 3/2 in the

SAP1, mz
Bh = −1/2 and mz

Bv = 1/2 in the SAP2

and mz
Bh = −1/2 and mz

Bv = 3/2 in the SAP.
Moreover, the sublattice magnetization mz

A takes
its saturated value in the whole region where the
superantiferromagnetic phases are stable. Conse-
quently, the spin-1/2 Ising atoms localized in ver-
texes of the lattice exhibit here exclusively a perfect
ferromagnetic arrangement.

On the other hand, the magnetic field stronger than a certain critical value (Hc/J > 1.0)
overturns anti-parallel decorating spins to its direction and consequently destroys the long-range
antiferromagnetic ordering in the system. Therefore, in the region of magnetic fields H > Hc,
both sublattice magnetization mz

Bh and mz
Bv will be positive: mz

Bh = mz
Bv = 3/2 in the PP1,

mz
Bh = mz

Bv = 1/2 in the PP2 and mz
Bh = 1/2, mz

Bv = 3/2 in the FIFP. In fact, for H >
Hc the FIFP is the only stable ordered ground-state phase, which always exists in a relatively
narrow region of the crystal fields. It is also interesting, that in spite of the external magnetic

Figure 3. Global phase diagram in the D −

H−T space for the decorated superexchange
antiferromagnetic model with S = 3/2.

field being applied only to the decorating atoms, its
sufficiently strong value indirectly effects the ali-
gnment of the Ising spins in the vertexes of the
lattice. In fact, in both paramagnetic phases PP1

and PP2 the vertex non-magnetic spins are strong-
ly frustrated due to the competitive effect of the
magnetic field, crystal field and antiferromagnetic
exchange interaction. Indeed, the zero values of all
relevant correlation functions (see table 1) clearly
confirm the presence of frustration. One also finds
that at the exact phase boundaries, the relevant
phases co-exist implying the possibility of the first-
order phase transition at T = 0.0. Thus the ground-
state behavior of our model is much more complex
in comparison with the original Fisher model.

Apart from the ground state properties, we have also calculated the critical temperatures at
which the system undergoes the second-order phase transition. Our results for the global phase
diagram in the D − H − T space are shown in figure 3. As we can see, the critical temper-
ature exhibits a very interesting behavior. Naturally, the ordered (disordered) phases are sta-
ble bellow (above) the critical temperature. Of course, in some regions the stability of disor-
dered phases extends down to zero temperature in agreement with the ground-state phase di-
agram. One should also note that our model exhibits essentially the same critical behavior as
Fisher and Mishiyama and Nara models [1,2,4]. This is obvious, since the decoration of the lat-
tice by finite number of atoms cannot lead to a change of the universality class of the model.
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Figure 4. Temperature dependences of the
reduced initial susceptibility for the decorat-
ed superexchange antiferromagnetic model
with S = 3/2 and some typical values of the
crystal field.

As we have already mentioned above, one of the
most interesting physical quantities in antiferro-
magnetic models represents the initial suceptibilty.
In order to understand the behavior of this quanti-
ty, in figure 4 we have presented thermal variation
of the initial susceptibility (i.e H = 0) for several
typical values of the crystal-field anisotropy. Be-
sides the standard curves (see the curve labeled
D/J = 0.5), we also obtained some new depen-
dences with clear maxima in the low-temperature
region (see curves labeled D/J = −0.6 and −0.38).
Moreover, one finds that strong negative value of
the crystal field rapidly depresses the absolute val-
ue of the initial susceptibility and causes its very
slow decreasing above Tc (see the case D/J =
−1.0). This kind of dependences cannot be ob-
served in the original Fisher model, since they ori-
ginate from the crystal-field effects. The curve obtained for D/J = −0.5 also represents a further
original result which exhibits a strong divergence as temperature approaches zero. This behavi-
or indicates the appearence of the first-order phase transition, since in this case we are exactly
located at the phase boundary of the ground state. Finally, to illustrate the behavior of other
physical quantities at finite temperatures, in figures 5 we have depicted thermal variations of the
order parameter components ms

B, mz
A and magnetization mz

Bh, mz
Bv of decorating spins. In both

figures we have fixed D/J = −0.5 and have changed the values of magnetic field. Comparing the
behavior of the relevant quantities in figure 5 one observes the characteristic behavior of the order
parameter components being nonzero bellow Tc and vanishing at all temperatures above Tc. On the
other hand mz

Bh, mz
Bv exhibit nonzero values in the whole temperature region. Thus they cannot

serve as good order parameters for the model. At T = 0.0 all quantities take the corresponding
characteristic values depending on the strength of the magnetic field. Of particular interest is the
curve for H/J = 1.0 which apparently indicates the co-existence of the SAP1 and FIFP at T = 0.0
in agreement with the ground-state phase diagram. The existence of different phases and compet-
itive effect of the magnetic field, crystal-field anisotropy and temperature are also reflected in the
thermal dependences of the specific heat and susceptibility that are shown in figure 6. Both quan-
tities exhibit a characteristic behavior with interesting low-temperature maxima and logarithmic
divergence at the critical temperature.
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Figure 5. Temperature dependences of the reduced components ms

B , mz

A of the order-parameter
and the reduced sublattice magnetization mz

Bh, mz

Bv for the decorated superexchange antifer-
romagnetic model with S = 3/2, D/J = −0.5 and some typical values of the magnetic field.
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Figure 6. Temperature dependences of the reduced specific heat and susceptibility for the dec-
orated superexchange antiferromagnetic model with S = 3/2, D/J = −0.5 and some typical
values of the magnetic field.

4. Conclusion

In this work we have generalized the Fisher superexchange antiferromagnetic model for the
case of arbitrary decorating spins. Excepting the external magnetic field we have also investigated
the effect of the uniaxial crystal-field anisotropy. Some preliminary results for the case of S = 3/2
decorating atoms have revealed very rich and interesting behavior. Further interesting results
for the magnetization process, thermal- and field dependences of the entropy, specific heat and
susceptibility will be presented in the near future. Moreover, more realistic versions of this model
including the transverse magnetic field or biaxial crystal-field anisotropy are also exactly solvable
and may potentially enrich our knowledge about exactly solvable models in statistical mechanics.
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