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Ab initio approach is developed for thermodynamical investigations of dis-
ordered binary alloys. It is based on utilizing the collective variables meth-
od. The explicit expression for the free energy and the equation determin-
ing the alloy components’ chemical potentials are obtained within the rigid
lattice approximation and for the case when atomic static displacements
(ASD) are taken into consideration. An ASD drastic effect on the behaviour
of the binary correlation function Fourier components in the first Brillouin
zone is observed. The ASD is shown to favour the ordering tendency in
alloys of Ca-Ba and K-Cs systems. An approach in which configurational
and vibrational degrees of freedom are considered at the microscopic level
in the grand partition sum calculation is advanced. The role of the atomic
thermal vibrations in alloy forming is discussed. The condition when con-
figurational and vibrational effects can be treated separately is formulated.
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1. Introduction

The method of the collective variables (CV) was introduced in [1] and developed
by I.Yukhnovskii [2]. The efficiency of this method was demonstrated during the
last three decades in solving quite different problems of condensed matter physics:
theory of liquids [3–5], statistical physics [6] and theory of multicomponent systems
[7–9]. The modified CV method (named as displacements and collective variables
method) was successfully used for describing the interacting electron gas [10–12] and
bose-systems [13,14].

The theory of the second order phase transition [6,15] and the study of liquid-gas
critical point [16–18] are the most striking examples of achievements within the CV
method.
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The partition sum of the three-dimensional Ising model was first rigorously ob-
tained by I.Yukhnovskii, see [19,20]. It allows one to get an equation for the tem-
perature of the second order phase transition and perform numerical calculations
of the Ising model thermodynamical properties in the critical region [15,21–24]. To
put it in another way, the nonuniversal characteristics of the three-dimensional Ising
model have been calculated in the critical region for the first time. This significant
result stimulates investigations of phase transitions in different physical objects that
can be described by the Ising-like models [25–29].

The CV method is also a powerful tool in constructing the microscopic theory
for substitutional binary alloys [7,26,27]. To show the main stages of this theory
development within the CV method is the aim of the present paper.

Calculation of the alloy free energy as a function of temperature and alloy com-
ponents’ concentration is the key point in constructing alloy phase diagrams as well
as in investigating thermodynamical properties. Three trends in the problem of alloy
free energy determination can be distinguished.

1. In the “constructive method” [30] the free energy

F = E − TS (1.1)

components (E, the internal energy, and S, the entropy) are calculated separately
within quite different approaches. For example, one can get E by the pseudopotential
method [7,31] and S using combinatorial arguments [30].

2. The analytical theory proceeds from the partition function Z:

F = −kBT lnZ. (1.2)

Here kB is the Boltzmann’s constant and T is the temperature. The analytical theory
is usually based on model assumptions [32].

3. Computer simulations have been exploited intensively for investigating differ-
ent properties of alloys [33].

Each trend has its advantages and restrictions. For instance, the Ising model of
the nearest neighbours (or of the nearest neighbours and next-to-nearest neighbours)
is commonly used in the analytical theory [32]. However such models cannot describe
real alloys adequately because the pair interatomic effective interactions in alloys
belong neither to the short-range potentials nor to the long-range ones [7,30]. They
need to take into account the interatomic interactions within 5 or 6 coordination
spheres at least to reach reasonable results for atomic properties of metals and alloys
[30,31].

In computer simulations one deals with systems of finite size and the problem
always exists of extrapolating the results obtained to the thermodynamical limit
when N → ∞, Ω → ∞, Ω/N = const, where N is the number of particles and Ω is
the system volume.

What should one know to calculate the alloy thermodynamical properties at the
microscopic level? In the first place we need information on interatomic potentials
in the alloy. Besides, one should take into consideration local static displacements of
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the lattice sites and the atomic thermal vibrations [31]. The CV method is efficient
in taking into account all these factors [7,34,35].

The paper is organized as follows. The problem of deriving the interatomic po-
tentials in metals and alloys is considered in section 2. Calculation of the binary alloy
grand partition sum using the CV method within the rigid lattice approximation
is a subject of section 3. Modification of the developed theory if the atomic static
displacements (ASD) are taken into account is shown in section 4. The role of the
atomic thermal vibrations (ATV) in binary alloy thermodynamics is discussed in
section 5. Some possible ways regarding the further development of the given theory
are considered in Conclusions. Acknowledgements complete the paper.

2. Many-body interatomic potentials in metals and alloys

Calculation of interatomic potentials is one of the central problems in modern
condensed matter physics. It is caused by utilizing these potentials in numerous
problems of physics and materials science in construction of alloy statistical the-
ory on the microscopic level [7,31,32], computer simulations that use the molecular
dynamics method [31], etc. In some cases an adequate theoretical description of
metal and alloy properties could not be achieved within the pair interatomic inter-
action model [7]. It means the many-body interactions (three-, four-particles) play
an important role in these objects [36].

One can distinguish several trends in deriving interatomic potentials in metals.
2.1. A rigorous determination of interatomic potentials in quantum mechanics is

based on the pseudopotential method [37,38,7]. Working within the framework of
perturbation theory in pseudopotential, we can represent the metal total energy in
the form of expansion in the effective multi-ion interactions [7,31,36–38]:

Etot = E0(Ω) +
1

2!

′
∑

i,j

V2(Ri,Rj) +
1

3!

∑

i,j,l

V3(Ri,Rj,Rl) + . . . (2.1)

The first term E0 depends on the atomic volume Ω0 only and includes the energy of
the interacting electron gas as well as all one particle interatomic contributions to
the Etot. The interatomic potentials V2, V3 etc. are implicitly volume dependent but
explicitly structure independent and thus rigorously transferable at a given volume
Ω0 to the all bulk structures either ordered or disordered. To put it in another
way the potentials themselves are independent of the absolute ion positions R i

and depend only on relative separations Rij = |Ri −Rj| [36,38]. For example, the
angular force triplet potential V3 is a three-dimensional function: V3(R1,R2,R3) ≡
V3(R12, R13, R23; Ω) [36]. The prime on each summation in (2.1) denotes exclusion of
all the self-interaction terms where two indices are equal. The structure dependence
of the total energy (2.1) appears through the summation in (2.1) over all N ion
positions. One should stress the important feature of the equation (2.1) obtained
within the pseudopotential theory. Expansion (2.1) is rapidly convergent in the sense
that the four-ion quadruplet potential V4 is smaller than V2, V3 and higher potentials
(V5, V6, . . .) appear to be negligible [36].
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2.2. A somewhat another approach to deriving the effective interatomic potentials
in metals has been advanced in [39,40]. It is based on utilizing the Hohenberg-Kohn
theorem [41] and on treating the Kohn-Sham total energy functional [42] in terms
of the many-body interatomic interactions.

Let us consider an electron-ion system within the pseudopotential concept. It
means that pseudoions are placed in positions R and their interactions with the
valence electrons are described by a pseudopotential w(r−R) which is an operator
in a general case.

The Kohn-Sham total energy functional of such a system has the following form
[39,40,42]:

Etot[ρ] = T [ρ] +
∫

W (r)ρ(r)dr+
1

2

∫

ρ(r)ρ(r′)

|r− r′| drdr′ + Exc[ρ] + Ei−i (2.2)

(all equations are written in the atomic units in the present paper). Here T [ρ] is a
functional of the kinetic energy, the second and the third terms in (2.2) describe the
energy of the electron subsystem in the external field of the pseudoions

W (r) =
∑

R

w(r−R) (2.3)

and the Hartree energy respectively. The last terms in (2.2) are Exc, the exchange-
correlation energy functional and Ei−i, energy of the ion-ion direct interactions.
The total energy E[ρ] (2.2) is the universal functional of an electron density ρ.
The present theory provides knowledge regarding the electron density ρ(r), that
minimizes E[ρ(r)] (2.2), with high accuracy, see [43,44]. In [39] the known quantity
of ρ(r) has been presented in the form

ρ(r) = ρ0 +
∑

R

ρi(r−R), (2.4)

where ρ0 = z/Ω0 (Ω0 = Ω/N) is the density of the uniform electron distribution, z
is the ion valency, Ω0 is the atomic volume and ρi(r−R) is the electron density re-
lated to the pseudoion at the site R. Equation (2.4) indicates that the total valence
electron density is represented as the linear superposition of contributions from the
individual pseudoions, embedded in the uniform background of the density ρ0. The
focal point of the linear superposition assumption (2.4) is an accurate real-space
treatment of the metal total energy in terms of well-defined interatomic potentials
[39,40]. The local density approximation [42] and equation (2.4) make it possible
to represent the T [ρ] and Exc[ρ] functionals in terms of appropriate contributions
to the many-body interatomic interactions [45] and get the total energy functional
(2.2) in the form of equation (2.1), see for details [39,40,45]. The explicit expres-
sions for the pair and triplet interatomic potentials are given in [39,45]. One should
stress that these results are obtained without utilizing the perturbation theory in
pseudopotential. Unlike the perturbation theory the advanced method permits one
to accurately calculate the so-called reducible contributions to the pair and triplet
potentials arising from the n-particle interactions when (n− 2) or (n− 3) indices of
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ion co-ordinates coincide, respectively. The analytical expressions for these contri-
butions are presented in [45].

Thus, the present stage of theory allows one to determine the interatomic poten-
tials in metal systems with high accuracy.

3. The alloy partition function within the collective variables
method

Consider a substitutional binary alloy with one atom per elementary cell. Atoms
of two kinds A and B are placed arbitrarily on N crystal lattice sites. Their config-
uration is given by the set of numbers σR that equals +1 if the site R is occupied
by an A-type of atom, and equals −1 otherwise.

One can separate the electronic and ionic degrees of freedom in non-transition
metal alloys [7]. The alloy Hamiltonian within the rigid lattice and pair interatomic
interaction approximations has the following form after summing over electron states
[7]

H{σR} =
1

2N

∑

R,R′

{

∑

q

[(

VAA(q)
1 + σR

2

1 + σR′

2
+ VAB(q)

1 + σR

2

1− σR′

2

+VBA(q)
1− σR

2

1 + σR′

2
+ VBB(q)

1− σR

2

1− σR′

2

)

exp[iq(R−R′)]
]

}

. (3.1)

Here Vi,j(q) (i, j = A,B) is the Fourier transform of the effective interaction
between ions of i- and j-types, VAB(q) = VBA(q). The explicit expressions for Vij(q)
are given in [7], see also [46].

We proceed from the partition function to find the free energy (see equation (1.2))

Z = Tr(σR) exp[−βH(σ)]. (3.2)

The symbol Tr{σR} denotes the sum over all possible values of the occupation num-
bers {σR}, where β = (kBT )

−1 is the inverse temperature. This procedure is equiv-
alent to summing over all possible configurations of two types of atoms on N lattice
sites at the given alloy concentration ci = Ni/N , where Ni is the number of i-type
atoms, i = A,B.

The calculation of Z within the canonical ensemble is a hard problem even
in the case of finite small systems because the occupation numbers σR are not
independent. To avoid this difficulty, and to perform the Tr{σR} operation on each
site R, independent of the specific configuration, one has to work within the grand-
canonical ensemble, introducing µi, the chemical potentials of the alloy components,
as Lagrangian multipliers. Then in view of (3.1) and the following conditions

NA =
∑

R

1 + σR

2
, NB =

∑

R

1− σR

2
, (3.3)
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the grand partition function takes the form [7,46]

Z̃ = Tr{σR} exp







−β
[

H{σR} −
∑

i=A,B

µiNi

]







= exp(−NβV0(µ))Tr{σR}

× exp







−β
[

V1(µ)
∑

R

σR +
1

2

∑

R,R′

V2(R,R′)σRσR′

]







(3.4)

with

V0(µ) = V0 −
1

2
(µA + µB), V1(µ) = V1 −

1

2
(µA − µB). (3.5)

The chemical potentials {µi} are found from the condition

〈Ni〉 = Ni = kBT
∂

∂µi
ln Z̃, i = A,B. (3.6)

The explicit expressions for V0, V1, V2(R,R′) are given in [7]. They have the
following physical meaning: V0 is the part of alloy energy which does not depend on
the atomic configuration, V1(R) indicates the difference between alloy component
atomic characteristics, and V2(R) = VAA(R) + VBB(R) − 2VAB(R) is the ordering
potential; see [7] for details. In crystals with one atom per elementary cell V 1(R) =
const [7].

The next relation exists between the grand potential F̃ = kBT ln Z̃ and the free
energy F in the thermodynamic limit [32]

F (T, c) = F̃ (T, µ) +
∑

i=A,B

µiNi . (3.7)

The grand partition function Z̃, equation (3.4) is calculated by the collective
variables (CV) method [6,7]. The CV space {ρk} is introduced in the following way
[6]

ρ̂k =
∫

ρkJ(ρk, σr)
∏

k∈BZ

dρk. (3.8)

Here

ρ̂k =
1√
N

∑

R

σR exp(−ikR) (3.9)

is the Fourier transform of the occupation numbers σR. The values ρ̂k depend on
the atomic configuration in the alloy.

J(ρk, σR) =
∏

k∈BZ

δ

(

ρk −
1√
N

∑

R

σR exp(−ikR)

)

(3.10)

is the transition operator from the set {ρ̂k}, that is the Fourier components of the
occupation numbers {σR}, to the collective variables {ρk}. The symbol k ∈ BZ
denotes that the wave vector k takes N values in the first Brillouin zone (BZ), δ is
the Dirac delta function.
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Equation (3.4) for the grand partition function is rewritten as follows within the
CV method

Z̃ = exp(−NβV0(µ))
∫

. . .
∫

exp







−β
1

2

∑

k∈BZ

V2(k)ρkρ−k







J(ρ)
∏

k∈BZ

δρk, (3.11)

where
J(ρ) = Tr{σR}J(ρk, σR) exp

[

−βV1(µ)
∑

R

σR

]

(3.12)

is the transition Jacobian to the collective variables {ρk} space, V2(k) is the Fourier
transform of the ordering potentials V2(R). One should not mix the variables ρk

with ρ̂k (3.9) that are the configuration-dependent quantities.
The general ideas for calculating J(ρ) are given in [6] and [7].
The transition Jacobian to the CV space can be presented in the following way

J(ρ) = 2N exp(NM0)QN exp
[

−a1
√
Nρ0 −

a2
2!

∑

k∈BZ

ρkρ−k

− a3

3!
√
N

∑

k∈BZ

ρk1
. . . ρk3

δ(k1 + . . .+ k3)

− a4

4!
√
N

∑

k∈BZ

ρk1
. . . ρk4

δ(k1 + . . .+ k4)− . . .
]

(3.13)

with

Q =

∞
∫

−∞

exp

[

2πiM1ω +
(2πi)2

2!
M2ω

2 +
(2πi)3

3!
M3ω

3

+ . . .
(2πi)n

n!
Mnω

n + . . .

]

dω ≡
∞
∫

−∞

f(ω)dω, (3.14)

where an are the coefficients of J(ρ) and

Mn =
∂n

∂χn
ln cosh(x)|x=βV1(µ). (3.15)

As follows from equations (3.14) and (3.15), the cumulants Mn and the coefficients
of the transition Jacobian an appear to be complicated functions of the potentials
V1(µ) (3.5).

Finally, in view of (3.11) and (3.13), the problem of calculating the alloys’ grand
partition function is reduced to the following integral form [46]

Z̃ = 2N exp(NM0 −NβV0(µ))QN
∫

. . .
∫

exp







−a1
√
Nρ0 −

1

2

∑

k∈BZ

(a2

+ βV2(k))ρkρ−k −
a3

3!
√
N

∑

ki∈BZ

ρk1
. . . ρk3

δ(k1 + . . .+ k3)

− a4

4!
√
N

∑

ki∈BZ

ρk1
. . . ρk4

δ(k1 + . . .+ k4)− . . .







∏

k∈BZ

dρk. (3.16)
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A natural question arises. Which distribution function should one take in J(ρ)
(3.13) to achieve an adequate description of alloy thermodynamic properties using
the CV method? To put it another way, how many coefficients an(n = 1, 2, 3, 4, . . .)
does one have to take into account in the series (3.13)?

It was shown in [6,7] that the Gaussian distribution (a1, a2 6= 0, a3 = a4 =
. . . = 0) is appropriate in a wide temperature range both above the temperature
of the phase transition Tc, and below Tc (T > Tc and T < Tc). They had to use
the measure ρ4(a3, a4 6= 0) in equation (3.13) just in a narrow temperature interval
τ = |T − Tc|/Tc ≈ 0.01 to get the correct values of the critical exponents [6,7].

Let us analyse the alloy thermodynamic properties at T > Tc.
All calculations can be performed analytically within the Gaussian approxima-

tion of the CV method T > Tc. One has to restrict oneself to the cumulant M2 in
(3.14), that is put M3 = M4 = . . . = 0. Then,

QG =
1√

2πM2

exp

(

−M2
1

2M2

)

(3.17)

and

aG1 =
M1

M2
, aG2 =

1

M2
, aG3 = aG4 = . . . = 0. (3.18)

Further on, the index G will be omitted in expressions (3.17) and (3.18) to
simplify notations, because the next analysis concerns the Gaussian approximation
only.

Calculation of the alloy’s grand partition function (3.16), in view of (3.17) and
(3.18), does not encounter any difficulties. Then, the grand potential F̃ per atom is

F̃ (T, µ) = kBTN
−1 ln Z̃ = V0(µ)− β−1 ln 2

−β−1







M0 −
a21
2a2

βV2(0)

a2 + βV2(0)
− 1

2N

∑

k∈BZ

ln

[

1 +
βV2(k)

a2

]







. (3.19)

The equation, see (3.6)

cA − cB =
∂F̃

∂µB
− ∂F̃

∂µA
(3.20)

determines the difference of alloy component chemical potentials at the given alloy
concentration. In view of (3.19), equation (3.20) is written as follows

cA − cB = −M1 +
a1
a2

βV2(0)

a2 + βV2(0)

∂a1
∂x

−






a21
2a22

βV2(0)(2a2 + βV2(0))

(a2 + βV2(0))2
+

1

2N

1

a2

∑

k∈BZ

βV2(k)

a2 + βV2(k)







∂a2
∂x

, (3.21)

where x ≡ βV1(µ), and see [46].

∂a1
∂x

= 1 + 2
M2

1

M2

= 1 + 2
a1
a2

,
∂a2
∂x

= 2
M2

1

M2

= 2a1. (3.22)
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One has to solve a system of equations (3.19)–(3.21) to find the alloy free energy as
a function of temperature and alloy concentration.

The binary correlation function 〈σRσR′〉 is an important characteristic of disor-
dered alloys. It is related to the short-range order parameter [7]. The calculation of
〈σRσR′〉 Fourier components is fairly trivial within the Gaussian approximation of
the CV method [7,27,46]

〈ρ̂kρ̂−k〉 = − ∂ ln Z̃

∂{1
2
βV2(k)}

= [1 + βV2(k)M2]
−1. (3.23)

One can obtain the equations for Tc, the temperature of the order-disorder phase
transition proceeding from the fact that 〈ρ̂k∗ ρ̂−k∗〉 diverges at T = Tc. Here {k∗} are
the points of the Brillouin zone where the ordering potential V2(k) has the absolute
minimum [7,25]. The equation determining Tc follows from (3.23)

1 + βcV2(k
∗)M2 = 0. (3.24)

At first glance, equation (3.24) is very much similar to the one obtained by the
method of static concentration waves [47]

1 + βcV2(k
∗)4cAcB = 0. (3.25)

The cumulantM2 in (3.24) is a complex function of temperature, alloy concentration,
and the potential V1. Therefore (3.24) is a complicated non-linear equation with
respect to the temperature. It is reduced to the form of equation (3.25) in the high-
temperature limit only [7,46]

M2 → 4cAcB, if βV1 ≪ 1, βV2(k) ≪ 1. (3.26)

However, inequalities (3.26) become true just at T > TL for many alloys, where TL

is the liquidus temperature. Thus, conditions (3.26) ascertain the limits of equation
(3.25) applicability and allow one to understand why the static concentration waves
method does not work in describing the order-disorder phase diagrams of polyvalent
metal alloys [46].

The theory given above was exemplified in [46] by investigations of Ca-Ba and
K-Cs systems. Both systems are characterized by a great mutual solubility of com-
ponents. The system of equations (3.19)–(3.21) are solved to find the free energy as
a function of temperature and concentration c. The equilibrium atomic volume is
found from the condition

∂F (T, c)

∂Ω0
= 0. (3.27)

The heat of alloy formation

∆F (T, c) = F (T, c)− CAFA − CBFB (3.28)

calculated at different values of temperature and concentration for K-Cs and Ca-Ba
systems in [46] indicates the tendencies which perfectly agree with the experimental
data [48]. In (3.28) Fi (i = A,B) denotes free energy of the i-type of pure metal.
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One can construct the order-disorder phase diagram plotting Tc against alloy
concentration. The Tc temperature is determined from equation (3.24). As the cu-
mulant M2 is a complicated function of the chemical potentials and temperature,
equations (3.19)–(3.21) and (3.24) and (3.27) are solved simultaneously. The reason-
able agreement between theoretical and experimental data for Tc = f(ci) is achieved
for K-Cs and Ca-Ba systems in [46] (always within 30 %).

All numerical results presented in [46] demonstrate the efficiency of the approach
which is based on the CV method.

4. Role of atomic static displacements in alloy
thermodynamics

It is well known that the formation of metal solid solutions is accompanied by
arising of local lattice distortions. The latter are characterised by atomic static
displacements (ASD) with respect to the ideal mean lattice sites. The ASD have a
drastic effect on the X-ray (neutron) diffuse scattering [49]. They determine a lattice
parameter dependence on alloy concentration. That is why including the ASD into
consideration is of great importance in constructing a consistent microscopic theory
of binary alloys, see for more details [35] and [50].

Let us take into account the fact that the local ASD are present in an alloy.
Then, the coordinates of the lattice sites are the following ones:

R = R0 + δR, (4.1)

where δR are the ASD with respect to the sites R0 of the ideal mean lattice.
Assume that δR does not depend on the type of an atom and perform the Fourier
transformation of δR:

δR =
1√
N

∑

k∈BZ

[

δRk exp(ikR
0) + δR−k exp(−ikR0)

]

, (4.2)

The ASD (δR; as well as δRk) are random quantities in a disordered alloy. Let us
separate Ak, a configurationally independent part of δRk, by means of the following
relationship [35]

δRk = i
Ak

2

(

ρ̂k −
√
Nδ0,k

)

, A−k = −Ak. (4.3)

Here, compare with (3.9),

ρ̂k =
1√
N

∑

R

σR exp(−ikRi
0). (4.4)

is the k-th Fourier component of the occupation numbers, δ0,k, the Kronecker sym-
bol. Equations (4.3) and (4.4) indicate that the Fourier components of the local
lattice distortions are caused by fluctuations of the impurity concentration waves
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with respect to the average value CB = NB/N . Component B is regarded as an
“impurity”. One should emphasize that the approximation (4.3) works very well in
the whole region of CB values (0 < CB < 1) in such alloys where the dependence of
the mean lattice parameter on CB is close to the linear one [35,49].

Let us expand the factor exp(iqR) in (3.1) in power series of the static displace-
ments δR, restricting ourselves to the square of δR. The alloy Hamiltonian H(σ)
(3.1) with allowance for (4.1) to (4.4) in the harmonic approximation takes the form
[35]

H(σR) = H0(ρ̂) +
∑

k∈BZ

[H1(k, δAk, ρ̂k) +H2(k,Ak, ρ̂k)], (4.5)

where

H0(ρ̂) = NV0 +
√
NV1ρ̂0 +

1

2

∑

k∈BZ

V2(k)ρ̂kρ̂−k (4.6)

is the Hamiltonian of an ideal mean lattice without displacements, see section 3.

The addends H1(k,Ak, ρ̂k) and H2(k,Ak, ρ̂k) are linear and quadratic in Ak

amplitudes, respectively. The explicit equations for them are given in [35].

We proceed from the grand partition sum to find the free energy, see (3.4) One
can rewrite equation (3.4) with a view of (4.5) and using the rigid ideal lattice of an
alloy as a reference system, as follows:

Z = exp
[

−NβṼ0(µ)
]

Tr{σR} exp



−βṼ1(µ)
∑

R

σR − 1

2

∑

k∈BZ

βṼ2(k,Ak)ρ̂kρ̂−k



 .

(4.7)
Details are given in [35]. Here

Ṽ0(µ) = V0 −
1

2
(µA + µB) +

1

4
A0Φ

(0)A0 , (4.8)

Ṽ1(µ) = V1 −
1

2
(µA − µB) +

1

2
P 0A0 −

1

2
A0Φ

(0)A0 , (4.9)

Ṽ2(k,Ak) = V2(k)− P kAk +
1

2
AkΦ

(0)Ak (4.10)

are the addends of the alloy Hamiltonian (4.6) renormalized by the ASD and

P k =
1

4

∑

G

{(G− k)[VAA(G− k)− VBB(G− k)]

− (G+ k)[VAA(G+ k)− VBB(G+ k)]} . (4.11)

The following notations are accepted in (4.8)–(4.11): G are the reciprocal lattice
vectors, and Φ(0) – the force constant matrix of the reference system. The correlated
average crystal (CAC) in the rigid lattice approximation is used as a reference sys-
tem. One can get familiarized with the CAC term value in [7,34]. The expression for
Φ(0) is given in [34], also see appendix 2 in [35].
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The grand partition sum (4.7) is calculated by the CV method. Equation (4.7)
is rewritten in the following way within the CV method [50],

Z̃ = exp
[

−NβṼ0(µ)
]

∫

. . .
∫

exp



−1

2
β
∑

k∈BZ

Ṽ2(k,Ak)ρkρ−k



 J(ρ)
∏

k∈BZ

dρk

(4.12)
compare (4.12) with (3.11).

Calculation of the grand partition sum (4.12) can be performed analytically in
the Gaussian approximation. Details of the consideration are omitted because they
are similar to those given in section 3. Then the grand potential per one atom equals

F̃ (T, µ) = −kBTN
−1 ln Z̃ = Ṽ0(µ)− β−1(ln 2 +M0) +

1

2

Ṽ2(0)M
2
1

1 + βṼ2(0)M2

+ (2Nβ)−1
∑

k∈BZ

ln[1 + βṼ2(k,Ak)M2] . (4.13)

HereMn are cumulants, see (3.15). Equation (3.20) determines the difference of alloy
components chemical potentials at the given alloy concentration.

One has to perform the Legandre transformation and solve equation (3.20) to
find the alloy free energy F (T, C) as a function of temperature and component
concentration. Then, see [50] for details

F (T, C) = Ṽ0 +
1

2

Ṽ2(0)M
2
1

1 + βṼ2(0)M2

+ β−1
{

ln 2 +M0 −
1

2N

∑

k∈BZ

ln[1

+βṼ2(k,Ak)M2]
}

+
(

β−1x− Ṽ1

)

{

M1

[

1

1 + βṼ2(0)M2

+
1

N

∑

k∈BZ

βṼ2(k,Ak)

1 + βṼ2(k,Ak)M2

]

+M1M2

[

βṼ2(0)M1

1 + βṼ2(0)M2

]2}

, (4.14)

where

Ṽ0 = Ṽ0(µ) +
1

2
(µA + µB),

Ṽ1 = Ṽ1(µ) +
1

2
(µA − µB), (4.15)

and x = βṼ1(µ), see (4.9), is the solution of the system of equations

∂F (T, C)

∂Ak

= 0, (4.16)

and (3.20). Solution of equation (4.16) is given in [35]. We present the final result
omitting details

Akλ =
∑

λ

(Pkǫkλ)

Mω2
kλ

εkλ . (4.17)

Here εkλ and ω2
kλ are eigenvectors and eigenvalues of the force constant matrix Φ(0),

respectively, λ = 1, 2, 3 – the polarization index and
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Figure 1. Behaviour of the ordering
potential Fourier transform V2(k) in
the [111] direction in alloys of K-Cs
system at T = 250 K. Dashed and
full curves show results obtained, re-
spectively, with and without the ASD
taken into account. Curves 1 refer to
alloy K0.7Cs0.3 while the curves 2 cor-
respond to alloy K0.1Cs0.9.

Figure 2. Behaviour of the ordering
potential Fourier transform V2(k) in
the [111] direction in alloys of Ca-Ba
system at T = 750K. Notations are
the same as in figure 1. Curves 1 refer
to alloy Ca0.5Ba0.5 and the curves 2
correspond to alloy Ca0.2Ba0.8.

M =
∑

i=A,B

MiCi (4.18)

is the average ion mass, see [7] for de-
tails. Analyse result (4.17). One can con-
clude from (4.11) and (4.17) that the ASD
amplitudes Ak are small if the pair in-
teratomic potentials VAA and VBB Fourier
components are similar: VAA(q) ≈ VBB(q).
Really, P k ≡ 0 at VAA(q) = VBB(q)
and then Ak = 0. This conclusion allows
one to clear up the nature of the well-
known phenomenological Hume-Rothery
rules [51] on the microscopic level. Using
equations (4.9), (4.15) and condition (4.16)
one can prove that

Ṽ1 = V1 . (4.19)

It means that the potential Ṽ1 does not
depend explicitly on the ASD amplitudes
Ak. This result greatly simplifies the cal-
culation of the alloy free energy (4.14). Let
us more carefully analyse equation (4.14)
for the alloy free energy. The third term in
(4.14) proportional to β−1 is entropy (S),
while the rest of the terms define the alloy
internal energy (E). One can get the next
formulae for E and S considering equa-
tions (4.14) and (3.20) in the high tem-
perature limit: βV2(k) ≪ 1.

Eid = V0+V1(CA−CB)+
1

2
V2(0)(CA−CB)

2,

(4.20)
Sid = −kB

∑

i=A,B

Ci lnCi . (4.21)

Equation (4.20) determines the energy of
an average crystal: all the lattice sites are
occupied by mean ions which interact via
the mean potential.

v̄ = vACA + vBCB

with vi – the potential of an i-type ion. Equation (4.21) defines the configura-
tional entropy of an ideal binary solution. Thus, the high temperature limit of the
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CV method Gaussian approximation is equivalent to the well-known W.Bragg –
E.Williams theory which ignores the pair atomic correlations. By the way, the dif-
ference

∆F = F (T, C)−Eid + TSid

with F (T, C) (4.14) indicates the contribution of the short-ranger order (SRO) ef-
fects to the alloy free energy.

Figure 3. Temperature effects on the
binary correlation function Fourier
components in the K0.7Cs0.3 alloy.
Dashed and full curves show results
obtained, respectively, with and with-
out the ASD taken into account.
Curves 1 refer to T = 300 K and
curves 2 correspond to T = 200 K.

Figure 4. The same for the K0.1Cs0.9
alloy.

The Fourier components of the binary
correlation function are important alloy
characteristics. They are needed to calcu-
late the X-ray (neutron) diffuse scattering
intensity [49,52]. Besides, they are related
to the SRO parameter

αR =
1

4CACB

∑

k∈BZ

〈ρkρ−k〉 exp(ikR) .

(4.22)
Here αR is the value of the SRO parameter
on the R-coordination sphere, 〈ρkρ−k〉 –
the Fourier components of the binary cor-
relation function. Calculation of 〈ρkρ−k〉
does not face any difficulties within the
Gaussian approximation of the CV method
[7], see also section 3

〈ρkρ−k〉 = − ∂ ln Z̃

∂
(

1
2
βṼ2(k)

)

= [1 + βṼ2(k,Ak)M2]
−1. (4.23)

Compare (4.23) with (3.23). Potential
Ṽ2(k,Ak) (4.10), renormalized by the
ASD, takes the form [53]

Ṽ2(k,Ak) = V2(k)−
1

2

∑

λ

(P kεkλ)
2

Mω2
kλ

.

(4.24)
It is seen from (4.24) that Ṽ2 < V2 in
the whole first Brillouin zone except for
the points of high symmetry where vector
P k = 0 [35]. One can notice from (4.23),
(4.24) and (4.17) that the binary correla-
tion function Fourier components directly
depend on the ordering potential, temper-
ature and the ASD. Besides, they are com-
plicated functions of potential V1 and the
alloy concentration via cumulant M2 and the equilibrium atomic volume.
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Figure 5. The same for the Ca0.5Ba0.5
alloy. Curves 1 refer to 850 K while
curves 2 correspond to T = 650 K.

Figure 6. Dependence of the binary
correlation function on atomic concen-
tration in the Ca-Ba system alloys. Di-
rection [111] of the Brillouin zone. No-
tations are the same as in figure 3.
Curves 1 refer to the Ca0.2Ba0.8 al-
loy and curves 2 correspond to the
Ca0.8Ba0.2 alloy.

In the present section the theoretical
results are illustrated by numerical calcu-
lations performed for the alloys of K-Cs
and Ca-Ba systems. Solid solutions of the
body centred cubic (bcc) structure exist in
wide ranges of temperature and alloy con-
centration in both systems [48]. The renor-
malized potential Ṽ2(k,Ak) (4.24) for K-
Cs and Ca-Ba alloys are shown by dashed
lines in figures 1 and 2, respectively. The
bare ordering potentials Ṽ2(k) are depicted
by full lines. Details of the calculations
are omitted because they are described in
[7,35,46]. The potential Ṽ2(k,Ak) has the
absolute minimum in the [111] direction in
the alloys of the systems investigated. The
ASD smooth the dispersion of the order-
ing potential V2(k) in the first Brillouin
zone, especially in the [100] direction. It
is seen from figures 1 and 2 that an ad-
ditional minimum appears owing to the
ASD in the [111] direction in the alloys
of K-Cs and Ca-Ba systems. Dependence
of Ṽ2(k,Ak) on the atomic concentration
is more pronounced in K-Cs alloys than in
Ca-Ba ones.

Behaviour of the binary correlation
function Fourier components 〈ρkρ−k〉 in
some principal symmetry directions has
been investigated according to equation
(4.23) for K-Cs and Ca-Ba alloys. Calcula-
tions have been performed with the ASD
taken into consideration (dashed curves),
and without them: Ak ≡ 0 for k ∈ BZ
(full curves), see figures 3–6. Drastic effect
of the ASD on the 〈ρkρ−k〉 = f(k) be-
haviour is observed, especially for Ca-Ba
alloys, see figures 3–6. The ASD encour-

age the gaining of the 〈ρkρ−k〉 values in the whole first Brillouin zone. They smooth
dispersion of 〈ρkρ−k〉 in the alloys studied. Thus, the alloys become more simi-
lar to the ideal solutions owing to the ASD, especially at high temperatures. The
〈ρkρ−k〉 = f(k) functions strongly depend upon the atomic concentration and tem-
perature in alloys of the both systems investigated, see figures 3–6. Dispersion of
〈ρkρ−k〉 becomes more visible at the decrease of temperature, see figures 3–5. The
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〈ρkρ−k〉 = f(k) functions display the most interesting behaviour in the [111] direc-
tion. The largest effect of the ASD on 〈ρkρ−k〉 is observed in the [110] direction of
the first Brillouin zone, see figures 3–6.

The given results can be summarized in the following statements.

1. The ASD have a drastic effect on the binary correlation function Fourier com-
ponents 〈ρkρ−k〉 behaviour in the first Brillouin zone. They smooth the dis-
persion of the 〈ρkρ−k〉 = f(k)-function.

2. Tendency to ordering becomes more pronounced owing to the ASD in the
alloys of K-Cs and Ca-Ba systems.

3. Dependence of the SRO parameter on temperature obtained numerically in
[50] agrees with the conclusions drawn from the treatment of X-ray diffuse
scattering experiments [52].

5. Lattice-vibrations’ contribution to the free energy of disor-
dered binary alloys

The most calculations of the alloy free energy have been performed within the
rigid lattice approximation, see, for example [7,26,27,30–32]. The first attempts to
incorporate the vibrational contributions to the alloy free energy were based on em-
pirical methods or phenomenological models, see review of literature in [54]. Ab initio
approach to take the atomic thermal vibrations (ATV) into account was advanced
in [54]. The main ideas of [54] are presented shortly in this section.

There are two kinds of freedom degrees in disordered alloys: configurational and
vibrational ones. They should be incorporated into computational scheme on the
same microscopic level to construct a consistent theory [31,54]. The main aim of
the present section is to calculate the substitutional binary alloy free energy if the
configurational and vibrational degrees of freedom and interrelations between them
are taken into account explicitly. Some features of it are worthy of attention.

(i) We start from the problem for the grand partition sum of substitutional binary
alloy. One can perform summing over vibrational and configurational states
separately because of the two quite different time scales characterizing them
[55].

(ii) The correlated average crystal (CAC) model [7,34] is used here to sum over the
vibrational degrees of freedom. This microscopic model is more adequate than
the Einstein one or phenomenological Debye-Gruneisen approach. The short-
range order effect on the phonon density of states, the Debye temperature
and other quantities can be naturally investigated within this model [7,34].
Analysis of the relationships between CAC approach and the known virtual
crystal and coherent potential approximations is given in [34].
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(iii) Conditions when interrelations between the configurational and vibrational
degrees of freedom can be ignored have been formulated for the first time in
the present section, see also [54].

Substitutional binary alloy Hamiltonian with the ATV included into considera-
tion has the following form in the pair interatomic interaction approximation [7,54].

H [{σR}] = T [{σR}] + U [{σR}] (5.1)

with

T [{σR}] =
1

2

∑

R

[

MA
1 + σR

2
+MB

1− σR

2

]

(δṘ)2 (5.2)

and

U [{σR}] =
1

2

∑

R,R′

{

∑

q

[(

VAA(q)
1 + σR

2

1 + σR′

2
+ VAB(q)

1 + σR

2

1− σR′

2

+VBA(q)
1− σR

2

1 + σR′

2
+ VBB(q)

1− σR

2

1− σR′

2

)

exp[iq · (R−R′)]
]}

. (5.3)

Here T and U are the kinetic and potential energies, respectively which depend on
configurations of two types (A,B) atoms on N lattice sites R via sets {σR}. Each
configuration is characterized by a certain set of {σR}. Such notations are used in
(5.1) to (5.3): Mi (i = A,B) is the mass of i-type atom, δR atomic displacement
from the ideal lattice site R0 caused by the thermal vibrations, symbol δṘ means
the derivative of δR with respect to time, and Vij(q) (i, j = A,B) is the Fourier
transform of the effective pair interaction between ions of i- and j-types. We assume
in (5.2) that δR do not depend on the atom type.

Introduce the Fourier components of σR and δR

ρ̂k =
1√
N

∑

R

σR exp(−ikR0) , k ∈ BZ , (5.4)

δRk =
1√
N

∑

R

δR exp(−ikR0) , k ∈ BZ . (5.5)

It should be emphasized that δRk (5.5) implicitly depend on an alloy configuration.
To put it another way, they are the configurationally dependent quantities. Equation
(5.1) with allowance for (5.2) to (5.5) takes the form in the harmonic approximation
[54]

H = U0(ρ̂) +
∑

k∈BZ

[T (k) + U(k)] = U0(ρ̂) +Hth, (5.6)

where U0(ρ̂) is the potential energy of the rigid lattice, T (k) + U(k) are Fourier
components of the atomic thermal vibrations Hamiltonian H th.

T (k) = T (0)(k) + T (1)(k)

=
MA +MB

2
δṘkδṘ−k +

MA −MB

2
√
N

∑

k′∈BZ

δṘkδṘk′ ρ̂−k−k′ , (5.7)
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U(k) = U (0)(k) + U (1)(k) + U (2)(k)

=
1

2
δRkf

(0)(k)δR−k +
1

2
√
N

∑

k′∈BZ

δRkf
(1)(k,k′)δRk′ ρ̂−k−k′

+
1

2N

∑

k′k′′∈BZ

δRkf
(2)(k′′)δRk′ (ρ̂−k−k′′ ρ̂−k′+k′′ − ρ̂−k−k′−k′′ ρ̂k′′) . (5.8)

Expression for U0(ρ̂) will be given below, equations for f (i)(k) functions (i = 0, 1, 2)
are presented in [7]. The terms T (1)(k), U (1)(k) and U (2)(k) proportional to ρ̂k and
ρ̂kρ̂k′ are concerned with the long-range order and the short-range order effects
accordingly, while T (0)(k) and U (0)(k) depend on an alloy configuration implicitly
via δRkδRk′. Interrelations between δRk with different indices k are present in
the T (1)(k), U (1)(k) and U (2)(k) terms because of the absence of the translational
invariance in a disordered alloy, see (5.7), (5.8). The same takes place for ρ̂k. It
means that the wave vector k is the adequate (“good”) quantum number just in the
case of an ideal crystal. Nevertheless, the Fourier transformation of the Hamiltonian
is also advantageous in the case of a disordered alloy, so long as it allows to treat
interatomic interactions via Vij(q) formally exactly, see (5.3) [7,47]. As is well known,
the pair interatomic potentials in alloys neither belong to the short-range potentials
nor to the long-range ones [7,30,31]. They need to count interatomic interactions
within 5 or 6 coordination spheres at least to reach reasonable results for metal and
alloy atomic properties [7,30,31]. This problem is naturally solved by utilizing the
Fourier transformed alloy Hamiltonian and the collective variables (CV) or static
concentration waves methods [7,47].

Let us search the unknown amplitudes of the atomic thermal vibrations δRk in
the form of expansion in the complete set of some functions. The polarization vectors
ekλ of the CAC vibrations generate such a complete set of the basis functions [21].
They are the eigenvectors of the following eigenvalues problem [34]

Φ(0)(k)ekλ = M̄ω̄2
kλekλ , (5.9)

where Φ(0)(k) is the CAC dynamic matrix, M̄ =
∑

i=A,B
CiMi the average ion mass,

ω̄kλ the frequencies of vibrations and λ = 1, 2, 3 is polarization. Equation for Φ(0)(k)
is presented in [7].

Then
δRk =

∑

λ

akλekλ (5.10)

with akλ the expansion coefficients.
A correct transition to the quantum mechanical formulation of the problem under

consideration can be performed based on the complete set {ekλ}. The operator

δR̂k =
∑

λ

(

h̄

2M̄ω̄kλ

)1/2

Bkλekλ
(

b+−kλ + bkλ
)

(5.11)

is put in correspondence with the amplitude δRk (5.10). Here Bkλ are unknown
dimensionless expansion coefficients, b+−kλ and bkλ operators of creation and anni-
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hilation of the vibrational excitation ω̄kλ, accordingly. Obviously Bkλ ≡ 1 for the
CAC case.

Momentum P = M̄δṘ is the conjugate quantity to δR. The corresponding
operator P̂ is written as

P̂ = i

(

h̄M̄

2N

)1/2
∑

kλ

Bkλ(ω̄kλ)
1/2ekλ exp

[

−ikR0
] (

b+−kλ − bkλ
)

. (5.12)

Condition
1

N

∑

kλ

B∗
kλBkλ = 1 (5.13)

for the coefficients Bkλ follows from the commutators [δR̂, P̂ ] = ih̄ and [bkλ, b
+
k′λ′] =

δkk′δλλ′ . Symbol ∗ in (5.13) indicates the complex conjugation.
The problem of the partition sum calculation within the grand canonical ensem-

ble reads as

Z̃ = Tr{σR}Tr{Ph} exp



−β



H −
∑

i=A,B

µiNi







 , (5.14)

where symbols Tr{σR} and Tr{Ph} denote summing diagonal matrix elements of the
statistical operator exp(−βH) over all possible configurational and vibrational alloy
states, respectively.

The configurational and vibrational degrees of freedom in (5.14) are characterized
by two quite different time scales. The typical times for the lattice vibrations are
of the order of 10−13 sec., while substitutional interchanges occur in times that are
several orders of magnitude longer [55]. That is why one can assume that vibrational
states are ergodic over the time scale of substitutional configurations. Therefore the
Tr{Ph} operation should be performed at first in equation (5.14) at a definite alloy
configuration. As a result, the effective Hamiltonian renormalized by the atomic
thermal vibrations will be received.

The complete system of |nkλ〉-functions which are the eigenfunctions of b+kλ, bkλ
operators is used for performing the Tr{Ph} procedure:

Tr{Ph}e
−βĤth[b+kλ,bkλ] = Tr{nkλ}〈Ψ|e−βĤth|Ψ〉, (5.15)

where
|Ψ〉 =

∏

k,λ

|nkλ〉 ≡ |nk1λ1
nk1λ2

. . . nkNλ3
〉 (5.16)

and
b+kλbkλ|nkλ〉 = nkλ|nkλ〉 , bkλb

+
kλ|nkλ〉 = (nkλ + 1)|nkλ〉 . (5.17)

Here nkλ is the number of vibrational excitations characterized by the quantum
numbers k and λ. One should remark that |nkλ〉 are the eigenfunctions of the CAC
(reference system) Hamiltonian and they are not the eigenfunctions of the Hth (5.7),
(5.8) written in the secondary quantization presentation. Nevertheless calculation of
the Hth diagonal matrix elements (〈nkλ|Ĥth|nkλ〉) does not face any difficulties with
utilizing (5.16), (5.17) and orthonormality of the basis functions [54].
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The diagonal matrix element of Ĥth has the following form [54]

〈nkλ|Ĥth|nkλ〉 = B∗
kλBkλh̄ω̄kλ

(

nkλ +
1

2

)

+
1

2
ϕ(k, λ)ρ̂kρ̂−k (5.18)

with

ϕ(k, λ) =
h̄

Mωkλ

· B∗
kλBkλ

(

nkλ +
1

2

)

ekλ
[

f (2)(0)− f (2)(k)
]

e−kλ . (5.19)

Appearance of the second term in the equation (5.18) is caused by the fact that
|nkλ〉 are not the eigenfunctions of Hth.

Consider such temperatures when βHth ≪ 1 and they may restrict themselves
to the first order of the thermodynamical perturbation theory (TPT). Then, see
equation (5.15)

Tr{nkλ}〈Ψ|e−βĤth |Ψ〉 ≈ Tr{nkλ}〈Ψ|1− βĤth|Ψ〉 ≈
∞
∑

nkλ=0

exp



−β
∑

k,λ

〈nkλ|Ĥth|nkλ〉


 .

(5.20)
Equation for the grand partition sum takes the form after performing the Tr{nkλ}

procedure [54].

Z̃ =
∞
∑

nkλ=0

Tr{σR} exp







−β



U0(ρ̂) +
∑

k,λ

〈nkλ|Ĥth|nkλ〉 −
∑

i=A,B

µiNi











(5.21)

with

U0(ρ̂) = NV0 +
√
NV1ρ̂0 +

1

2

∑

k∈BZ

V2(k)ρ̂kρ̂−k (5.22)

and 〈nkλ|Ĥth|nkλ〉 given by equations (5.18) and (5.19). The terms entering equa-
tion (5.22) have the same physical meaning as for the rigid lattice case, see section 3.
Equation (5.21) can be rewritten as follows [54]

Z̃ = exp [−NβV0(µ)]
∞
∑

nkλ=0

exp
[

−βE
(0)
th (nkλ)

]

× Tr{σR} exp







−β





√
NV1(µ)ρ̂0 +

1

2

∑

k∈BZ

Ṽ2(k)ρ̂kρ̂−k











, (5.23)

where

V0(µ) = V0 −
1

2
(µA + µB) , V1(µ) = V1 −

1

2
(µA − µB) , (5.24)

E
(0)
th (nkλ) = 〈B∗

kλBkλ〉h̄ω̄kλ

(

nkλ +
1

2

)

, (5.25)

Ṽ2(k) = V2(k) +
∑

λ

ϕ(k, λ). (5.26)
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In general, B∗
kλBkλ is a functional of the alloy short-range order. We replace B ∗

kλBkλ

by their average values 〈B∗
kλBkλ〉 in (5.18), (5.19) to simplify the problem (5.21).

Equation that determines 〈B∗
kλBkλ〉 value will be received below. Equation (5.26)

defines the ordering potential renormalized by the atomic thermal vibrations. Let
us analyse the obtained result (5.26) more in detail.

Replace for a moment nkλ in (5.19) by its mean value n̄kλ to carry out such an
analysis. First of all the absolute value of ϕkλ function (5.19) is much smaller than
|V2(k)| [34]. Therefore, renormalization of the ordering potential is a rather small
effect and one should regard the rigid lattice as a reasonable zero approximation
in the alloy thermodynamics [7,30–32]. Analysis of the f (2)(k) function entering
equation (5.19) for ϕ(k, λ) shows that renormalization of the ordering potential
V2(k) by the atomic thermal vibrations is more pronounced in alloys where there
is a significant difference in the interatomic pair potentials [7]. Thermal vibrations
should play a more important role in the thermodynamics of such alloys, especially
in the phase diagram calculations. Numerical results of [56,57] perfectly confirm this
conclusion obtained within the analytical theory.

We shall calculate the grand partition sum (5.23) using the CV method [6,7].
This procedure does not differ from the cases described in section 3 and 4. That is
why we present the final result for the grand potential per one atom obtained within
the Gaussian approximation of the CV method. See for details [54].

F̃ (T, µ) = −β−1N−1 ln Z̃ = V0(µ) +
D2

1

2
· V2(0)

1 + βV2(0)D2

+ β−1(2 ln 2−D0)

+β−1(2N)−1
∑

k∈BZ

ln[1 + βV2(k)D2] + β−1N−1
∑

k,λ

ln sinh

(

βL(k, λ)

2

)

, (5.27)

where

Di =
∂n

∂xn
ln cosh x

∣

∣

∣

∣

∣

x=βV1(µ)

(5.28)

and

L(k, λ) = 〈B∗
kλBkλ〉h̄ω̄kλ



1 +
D2

2Mω2
kλ

·
ekλ

(

f (2)(0)− f (2)(k)
)

e−kλ

1 + βV2(k)D2



 . (5.29)

The terms V0, V2(0) in (5.27) contribute to the alloy internal energy while the terms
proportional β−1 contribute to the alloy entropy. The last summand in (5.27) is
caused by the atomic thermal vibrations. At the first glance it has the similar struc-
ture as for the case of an ideal metal [58]. Let us consider the L(k, λ) function (5.29)
to stress the features of the advancing approach.

The second term in the parentheses in the right-hand side of equation (5.29) is
caused by interrelations between configurational and vibrational degrees of freedom
in an alloy. If one neglects this term equation (5.27) becomes

F̃ (T, µ) = F̃ (0)(T, µ) + Fph (5.30)
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with F̃ (0) the grand potential of the rigid lattice and

Fph = β−1N−1
∑

kλ

ln sinh

[

β

2
〈B∗

kλBkλ〉h̄ω̄kλ

]

the vibrational free energy.
Therefore inequality

D2

2Mω2
kλ

·
ekλ

(

f (2)(0)− f (2)(k)
)

e−kλ

1 + βV2(k)D2

≪ 1 (5.31)

formulates the condition when configurational and vibrational contributions to the
alloy free energy may be treated separately. The right-hand side of (3.7) becomes as
follows, with a view of (5.27) and (5.24)

F̃ (T, µ) +
∑

i=A,B

µiCi =

= V0 +
D2

1

2
· V2(0)

1 + βV2(0)D2

+ β−1(2 ln 2−D0) +
µA − µB

2
(CA − CB)

+ β−1



(2N)−1
∑

k∈BZ

ln
(

1 + βV2(k)D2

)

+N−1
∑

k,λ

ln sinh

(

βL(k, λ)

2

)



.(5.32)

Equation (3.20) determines the unknown difference (µA − µB) of the alloy compo-
nents chemical potentials at a given atomic concentration. Let us write down (3.20)
in some detail exploiting equation (5.32) and explicit expressions for the cumulants
Di (5.28), i = 0, 1, 2.

D0 = ln cosh x ; D1 = tanh x ; D2 = [cosh x]−2 = 1−D2
1 (5.33)

at x = βV1(µ).

CA − CB = −D1 −
βV2(0)

[1 + βV2(0)D2]2
D3

1 −
D1D2

N

∑

k 6=0

βV2(k)

1 + βV2(k)D2

+
1

2N

∑

k,λ

coth

[

βL(k, λ)

2

]

∂βL(k, λ)

∂D2

· ∂D2

∂x
. (5.34)

The last term in (5.34) describes the contribution of the atomic thermal vibrations
to the chemical potentials difference (µA − µB). Solving equation (5.34) at specified
(CA − CB) value we find x = βV1(µ), that is (µA − µB), see (5.24).

Let us analyse equations (5.32) and (5.34) more in detail to elucidate relation-
ships between the well known alloy theories [30–32,47] and the approach developed.

Present some exact formulae following from (5.24) and (5.33) which will be used
further on

µA − µB

2
= V1 − β−1 arctanhD1 = V1 −

β−1

2
ln

1 +D1

1−D1

, (5.35)

D0 = −1

2
ln(1−D2

1) = −1

2
lnD2. (5.36)
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The following inequality is valid at high temperatures that is far off T c the temper-
ature of phase transition [7]

βV2(k) ≪ 1 for k ∈ BZ. (5.37)

In a high temperature limit with a view to (5.35)–(5.37) equation (5.34) becomes as
follows

CA − CB = −D1 . (5.38)

Then, the alloy free energy (5.32) takes the form, see (5.35), (5.36) and (5.38).

F (T, C) = V0 + V1(CA − CB) +
1

2
V2(0)(CA − CB)

2 + β−1
∑

i=A,B

Ci lnCi

+ N−1
∑

k,λ

ln sinh

[

β〈B∗
kλBkλ〉
2

h̄ω̄kλ

]

+ β−13 ln 2 . (5.39)

The first three terms in the right-hand side of (5.39) add up to the alloy internal
energy calculated in the virtual crystal approximation [7,30,31]. The next term is
the configurational entropy of an ideal binary mixture [7,32,47] while the last ones
constitute the vibrational free energy.

Thus, we get the well known formulae for the alloy free energy in the high
temperature limit of the advanced approach. Configurational and vibrational degrees
of freedom contribute separately to the free energy at high temperatures.

The expression for the alloy free energy in the linear approximation in βV2(k)
reads

F (T, C) = V0 + V1(CA − CB) +
V2(0)

1 + βV2(0)4CACB

· (CA − CB)
2

2

+ β−1
∑

i=A,B

Ci lnCi + β−1(2N)−1
∑

k∈BZ

ln[1 + βV2(k)4CACB]

+ N−1
∑

kλ

ln sinh

[

βL(k, λ)

2

]

+ β−13 ln 2 . (5.40)

Contribution of the short-range order effects to the F (T, C) are described by the
third and fifth summands in (5.40). Difference

[

V2(0)

1 + βV2(0)4CACB

− V2(0)

]

(CA − CB)
2

2
(5.41)

can be interpreted as the energy of the short-range order. It is seen from (5.40) and
(5.41) that contributions to the free energy caused by the short-range order stabilize
a disordered alloy since V2(k) < 0 at k ∈ BZ [7]. This effect is the most pronounced
in systems where there is a considerable difference in interatomic pair potentials V ii

and Vij (i, j = A,B), that is |V2(k)| is large. This conclusion perfectly agrees with
the results of [59] so long as the value of V2(k) correlates closely with the size mis-
match between alloy constituent elements [7,30]. The authors of [59] investigated the
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dependence of the disordered alloy formation energy on the two effects: the partial
order and the size mismatch. Their numerical results are confirmed completely by
the analysis of equation (5.40). By the way, calculations in [59] were carried out at
temperatures which meet the inequality (5.37).

Consider now the vibrational free energy in equations (5.32) and (5.40). The
argument of the ln sinh[βL(kλ)/2] function must satisfy the following inequality

βL(kλ) ≪ 1 (5.42)

as far as the expression for F (T, C) has been obtained within the first order of the
thermodynamical perturbation theory, see (5.20). It means that including the atomic
thermal vibrations into consideration stabilizes a disordered alloy in comparison
with the rigid lattice model: ln sin h[βL(kλ)/2] < 0. This deduction is in complete
agreement with the results of [56] and also [30]. The Fourier components of the
binary correlation function are defined by the equation with allowance for (4.23)
and (5.32) [54]

〈ρ̂kρ−k〉 =
D2

1 + βV2(k)D2

+
∑

λ

coth

(

βL(k, λ)

2

)

∂L(k, λ)

∂βV2(k)
, k ∈ BZ, k 6= 0.

(5.43)
The second term in (5.43) is due to interrelations between configurational and vi-
brational degrees of freedom. One should expect that it is a rather small effect, see
the explicit expression for the L(k, λ) function (5.29).

Equation for Tc the temperature of the order-disorder transition proceeds from
the fact that 〈ρ̂k∗ρ−k∗〉 diverges at T = Tc if transformation takes place as the phase
transition of the second order [6,7].

The equation determining Tc

1 + βcV2(k
∗)D2 = 0 (5.44)

follows from (5.43). Here {k∗} are the points of the Brillouin zone where the ordering
potential V2(k) has the absolute minimum [7,25].

The cumulant D2 in (5.44) is a complex function of temperature, alloy concen-
tration, potential V1 and h̄ω̄kλ. Therefore (5.44) is a complicated non-linear equation
with respect to the temperature. It is reduced to the form (3.25) in the high tem-
perature limit only: D2 → 4CACB if βV2(k) ≪ 1. By the way, the construction of
the order-disorder phase diagram for Ca-Ba system in [46] indicated a satisfactory
agreement with the experimental data. But theoretical values of Tc, calculated ac-
cording to equation (3.24) within the rigid lattice model, exceed the experimental
ones [46].

It is of interest to answer a question: how will the inclusion of the atomic thermal
vibrations into computational scheme vary results of calculations? We have to inves-
tigate the effect of the atomic thermal vibrations on a D2 cumulant value. Consider
equation (5.34) determining D1 and D2, see (5.33) and analyse the L(kλ) func-
tion (5.29) for this purpose. Taking into account the explicit expression for f (2)(k)
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function and the fact that V2(k) < 0 one can derive the following inequalities

f (2)(0)− f (2)(k) =

{

< 0, k∗ = 0,
> 0, k∗ 6= 0 .

(5.45)

The order-disorder phase transition occurs in alloys if the absolute minimum of
the V2(k) potential is in the star {k∗} with |k∗| 6= 0 [7,30,47]. The case when the
ordering potential V2(k) has the absolute minimum in the centre of the Brillouin zone
is related to decomposition of the homogeneous disordered alloy on two separated
phases with the decrease of temperature [7,47]. This case will not be examined in
the present paper. Analysing the effect of the thermal vibrations on solutions of
equation (5.34) with respect to D1, one can state with a glance to (5.45) and (5.33)
that

D2(r.l.) > D2(vib.). (5.46)

Here notations D2(vib.) and D2(r.l.) mean the cumulant D2 values obtained with
and without thermal vibrations, respectively.

An important conclusion follows from (5.44) and (5.46): the inclusion of the
lattice vibrations reduces the temperature of the second order phase transition in
binary alloys.

One can present several examples that show a significant role of the lattice vi-
brations in determining Tc and confirm the trend stated above, see [31,56,60]. A
noticeable improvement of the results of the Bragg-Williams theory was achieved in
[60] by the inclusion of the thermal vibrations even within a very simple Einstein
model. The lowering of calculated Tc values was observed for MgCd alloys [60].

Finally, the unknown correlation functions 〈B ∗
kλBkλ〉 present in the expression for

the L(kλ) function (5.29), see also (5.40), are to be found to complete the discussion.
A system of equations

∂F (T, C)

∂〈B∗
kλBkλ〉

= 0, k ∈ BZ (5.47)

determines the 〈B∗
kλBkλ〉 quantities. Actually, 〈B∗

kλBkλ〉 are dimensionless weight
factors of the Fourier components of the Green function “displacement-displacement”
averaged over configurational states [61]. Equations (5.47) are solved numerically.

6. Conclusions

The results presented above can be summarized as follows.
The CV method is successfully applied for investigating the thermodynamics of

substitutional binary alloys. A new approach to calculating binary alloy thermo-
dynamical properties, when the atomic static displacements (ASD) and the atomic
thermal vibrations (ATV) are taken into consideration, is advanced. It gives good
prospects for an adequate description of real metal systems on a microscopic level.

The following problems need to be developed.

1. Role of many-body interatomic interactions (three- and four-particles) in the
alloy thermodynamics.
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2. Inclusion of the ASD and the ATV into consideration simultaneously.

3. Analysis of the ASD and the ATV effect on alloy phase diagram within the
“ρ4” approximation of the CV method.
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Про метод колективних змінних у мікроскопічній

теорії сплавів

З.Гурський 1,2

1 Інститут фізики конденсованих систем НАН Укpаїни,

79011 Львів, вул. Свєнціцького, 1
2 Опольський університет, вул. Олеська, 48, 45–052, м.Ополє, Польща

Отримано 18 лютого 2000 р.

Розвинуто підхід із перших принципів для дослідження термоди-

намічних властивостей невпорядкованих бінарних сплавів. Він грун-

тується на використанні методу колективних змінних. Отримано яв-

ний вираз для вільної енергії та рівняння, яке визначає хімічні по-

тенціали компонентів сплаву для двох випадків: наближення жорст-

кої гратки та під час включення у розгляд статичних зміщень атомів

(СЗА). Спостерігається сильний вплив СЗА на поведінку Фур’є-ком-

понент бінарної кореляційної функції у першій зоні Бриллюена. Пока-

зано, що СЗА сприяють тенденції до впорядкування у сплавах Ca-Ba

та K-Cs. Запропоновано підхід, у якому конфігураційні та коливні сту-

пені вільності розглядаються на мікроскопічному рівні при розрахун-

ку великої статистичної суми.

Обговорюється роль теплових коливань атомів в утворенні сплавів.

Сформульовано умову, коли конфігураційні та коливні ефекти мо-

жуть розглядатися незалежно.

Ключові слова: вільна енергія, статичні зміщення атомів, теплові

коливання гратки, невпорядкований сплав

PACS: 05.70.Ce, 63.10.+a, 63.50.+x, 63.70.+h, 64.10.+h
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