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Nematic-isotropic transition in a weakly
diluted lattice model: Monte Carlo study
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We consider a weakly diluted lattice model of elongated particles undergo-
ing a first order nematic-isotropic transition in a pure bulk case. The lattice
of 203 sites with a 5% dilution is studied by Monte Carlo simulation and by
applying the Ferrenberg-Swendsen histogram technique. The shift of the
transition temperature and the decrease of the latent heat and the order
parameter due to dilution are calculated. The heat capacity and the suscep-
tibility peaks are essentially suppressed as compared to a pure case. The
comparison to the experiments on liquid crystals confined in silica aerogels
and porous glasses is done.
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1. Introduction

The study of the nematic-isotropic (NI) transition in liquid crystals (LCs) in
the presence of impurities has several reasons. In general, the experimental systems
studied are prepared with some level of purity and thus, have impurities of different
kind which lead to rounding of the NI transition. As a result, slightly broadened
peaks for the heat capacity as well as rounded edges in the enthalpy jumps near the
transition are observed [1]. In this context the influence of dilution on the first order
transitions in three dimensions was examined theoretically by Imry and Wortis [2].
They showed that quenched impurities can round the transition, where the strength
of the rounding depends on the fluctuation in the impurity density and the interfacial
energy between the phases. Berker [3] showed that discontinuities can be suppressed
in all dimensions, dependent on the symmetry of the system and the strength of the
random field. These results have been reexamined recently by Cardy [4] on a base
of the q-state Potts model with quenched random impurities. Previous studies of
the first order transitions with the different type of quenched disorder by computer
simulation compared the shift of the transition temperature and the rounding of the
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specific heat with the pure case [5–9]. It is found that the transition can change from
first to second order above some nonzero threshold value of impurity concentration
[6,8].

The other reason to study the effect of dilution is to probe it as a simple de-
scription of the porous confining media. The main phenomena observed in the ex-
periments on LCs in a porous media, namely the lowering of the transition tem-
perature, the decrease of the transition enthalpy, suppression and broadening of the
heat capacity peak, suppression of the orientational order [10–15] recall the effect
of dilution. However, the strength of these effects depends crucially on the porosity
of the confinement material, its structure and the surface treatment of its pores.
Being a simple model, the dilution neglects some of these aspects, but retains two
important ones, such as finite-volume effect and a connectivity of the pores.

The aim of this report is to perform a Monte Carlo (MC) study of the NI tran-
sition in a lattice model proposed earlier [16] in the presence of a quenched random
dilution. The particles in this model interact via the angular part of the Berne-
Pechukas (BP) potential [17] derived from the overlap integral of two ellipsoidal
Gaussians of a certain elongation a. The elongation of the particles considered in
this report is a = 3. In this case reasonable values for the latent heat and the order
parameter at the NI transition in pure bulk systems are reported [16]. We restrict
ourselves to a single lattice size of 203 sites with a 5% dilution. This situation may
be addressed to a LC in a high porosity random confining media. The present study
has two main objectives, namely, to find out how dilution affects the thermody-
namics near the NI transition, whether the transition remains first order, and how
these changes compare with experiments on LCs in high porosity confining media.
To improve the accuracy of our analysis the Ferrenberg-Swendsen (FS) histogram
technique [18] is used.

2. Monte Carlo simulations

We consider a lattice model with N = 203 sites. A part of these sites Nm = cN
are free and are concerned as impurities. Each of the other Nf = N(1 − c) sites
represents a particle with certain orientation given by a unit vector û i. The nearest
neighbours interaction between the particles has the form [16]

VBPA(θij) = −
ǫ

2





6a

(a− 1)2





1
√

1− χ2 cos2 θij
− 1



− 1



 , (1)

where a is the elongation parameter (we use a = 3 in the present study), ǫ is the
energy scale, χ = (a2 − 1)/(a2 + 1) is the anisotropy parameter, and cos θij = ûiûj.
This potential is derived from the overlap of two ellipsoidal Gaussians with the
elongation a [17] and can be considered as some kind of mapping between hard-
core and continuous models [19]. It is interesting to note that the potential (1) for
a = 3 perfectly coincides with the potential derived from the excluded volume of two
spherocylinders [19] and expanded up to P6(cos θij) term [20]. In the limit of small

190



NI transition in a weakly diluted lattice model

anisotropy χ ≪ 1 the exact form of the Lebwohl-Lasher potential [21] is reproduced.
As a increases the potential (1) becomes more anisotropic (see [16]). It has to be
noted that a similar effect can be achieved by considering higher order P2n(cos θij)
terms [22–24] in addition to P2(cos θij) in the Lebwohl-Lasher potential.

A standard Metropolis algorithm is used to simulate this model in the vicinity of
the NI transition. The orientation of each particle ûi is changed by adding a vector
~l of random orientation and controlled lenght [25] and then normalizing û

′

i = ûi +~l

back to unity. The lenght of ~l is adjusted automatically during simulations to achieve
an acceptance ratio of about 0.4. The dimensionless temperature T ∗ = kBT/ǫ is used
in our simulation, and the dimensionless single-particle internal energy U ∗ and the
order parameter S

U∗ =
1

Nf ǫ

∑

ij

VBPA(θij), S = 〈P2(cosϑi)〉,

(where θi is the angle between the long axis of the i-th particle and a director) are
evaluated after each simulational cycle. The method of Viellard-Baron [26] is used
to calculate S.

Firstly, the short scanning runs (up to 105 MC cycles) were performed along the
entire interval of temperatures including the NI transition point. The more extended
run of 5 · 105 MC cycles was done then for the temperature at which the best
coexistence of two phases had been observed. The histograms of the energy and the
order parameter distribution are built and the FS reweighting [18] is used to locate
the NI transition point in a first approximation. This temperature is then used for
the final extended run of minimum 106 MC cycles which gives the final histograms
and the quantities of interest. We calculate the dimensionless heat capacity C ∗

v =
Cv/(kBNf) and the susceptibility χ∗ = χǫ/Nf defined via the fluctuational formulae:

C∗

v =
Nf

T ∗2
(〈U∗2〉 − 〈U∗〉2), χ∗ =

Nf

T ∗
(〈S2〉 − 〈S〉2). (2)

Binder’s fourth cumulant [27] of the energy fluctuations

V4 = 1−
〈U∗4〉

3 〈U∗2〉2
,

is also calculated since it can be used in the investigation of the order of the tran-
sition. The method is the same both in a pure and a diluted cases. Three different
configurations of 5% quenched dilutions are used in these simulations and the aver-
aging over them is performed.

Due to finite-size effects [28] the peaks in the heat capacity and the susceptibility
are broadened and have maxima at slightly different temperatures T ∗

1,NI and T ∗

2,NI

respectively. Binder’s fourth cumulant has a minimum at T ∗

3,NI. The histograms of the
energy distribution have double maxima of equal height at a certain temperature
T ∗

4,NI being close to all temperatures mentioned above. In the limit of an infinite
system, temperatures of all these estimates coincide (see, for example, [29]) giving
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the transition temperature T ∗

NI with high accuracy. In our case of a single lattice
size we are more interested in the shift of the transition temperature due to dilution
than in its exact value. We obtain substantial shifts for all four estimates T ∗

1−4,NI

caused by a dilution. However, the ratio

T ∗

m,NI(dil)

T ∗

m,NI(pure)
≈ 0.953± 0.002 (3)

turned out to be the same for all m = 1, 2, 3, 4 within the accuracy of our calcula-
tions.

The maxima for C∗

vmax and χ∗

max are suppressed by dilution (see figure 1).
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Figure 1. Suppression of the heat capacity C∗

v and the susceptibility χ∗ peaks in
the vicinity of the NI transition due to a weak dilution.

We obtain the ratios

C∗

v,max(dil)

C∗

v,max(pure)
≈ 0.45± 0.05,

χ∗

max(dil)

χ∗

max(pure)
≈ 0.57± 0.03. (4)

To obtain the discontinuous latent heat of the NI transition ∆HNI consider the
energy distribution histogram at temperature T ∗

4,NI. It is known that the energy
distribution of a system close to a first order transition is approximated reasonably
well by a double Gaussian [30], however, we obtain much better fits using double
non-Gaussians of the form:

P (U∗) ≈ Anem exp

(

−
(U∗ − U∗

nem)
2

αnem

−
(U∗ − U∗

nem)
3

βnem

−
(U∗ − U∗

nem)
4

γnem

)

+Aiso exp

(

−
(U∗ − U∗

iso)
2

αiso

−
(U∗ − U∗

iso)
3

βiso

−
(U∗ − U∗

iso)
4

γiso

)

, (5)

where the expected values in the nematic and the isotropic phase Unem and Uiso and
the fitting coefficients are obtained numerically using the least-squares method (the
accuracy χ2 is of order 0.01). So, the dimensionless one-particle latent heat was then
estimated as ∆H∗

NI = U∗

iso − U∗

nem (see figure 2).
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The same method is used to estimate the order parameter at the transition SNI. In
this case the order parameter distribution is considered at T ∗

2,NI. At this temperature
the maximum correspondent to the isotropic phase is very low and it is fitted by a
Gaussian, and the one correspondent to the nematic phase by a non-Gaussian:

P ′(S) ≈ A′

nem exp

(

−
(S − Snem)

2

α′

nem

−
(S − Snem)

3

β ′

nem

−
(S − Snem)

4

γ′

nem

)

+A′

iso exp

(

−
(S − Siso)

2

α′

iso

)

(6)

(see figure 2) and we assumed that SNI = Snem.
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Figure 2. Histograms of the energy distribution at T ∗

4,NI (on left) and the order
parameter distribution at T ∗

2,NI (on right) and their fits by the forms (5,6). The
expected values U ∗

nem, U∗

iso and Snem are shown.

We obtain the following ratios for the latent heat and the order parameter at the
transition in a pure and a diluted model:

∆H∗

NI(dil)

∆H∗

NI(pure)
≈ 0.47± 0.02,

SNI(dil)

SNI(pure)
≈ 0.76± 0.02. (7)

Thus, the first order NI transition which takes place in the pure version of the
model considered here is essentially smeared due to the presence of a weak 5%
dilution. The transition temperature is shifted, the maxima for the heat capacity
and the susceptibility are suppressed. The latent heat and the order parameter are
essentially lower as in the corresponding pure case. However, there are indications
that the transition retains its first order nature. To prove this unambiguously the
finite size scaling analysis has to be performed [31].

3. Discussion

The influence of a dilution on the thermodynamics near the NI transition can be
compared with the corresponding experiments on LCs confined in a high porosity
media. Particularly, Wu et al. [12] have studied the NI transition in 8CB LC confined
to silica aerogels with a different porosity. For ρ = 0.08 g cm−3 aerogel density (which
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corresponds roughly to the 5% volume fraction of impurities in our model) a shift
of TNI of -0.45

◦C was observed, thus giving T gel
NI /T

pure
NI = 0.9986. The shift obtained

in our simulations and given by a ratio (3) is much more pronounced. We can also
compare the suppression of the heat capacity maxima by progressive increasing of
the aerogel density ρ. As follows from the experiments [12], the excess heat capacity
∆Cpmax decreases approximately linearly with an increase of ρ for ρ < 0.36 g cm−3.
For the aerogel densities ρ1 = 0.08 g cm−3 and ρ2 = 0.17 g cm−3 we obtain the ratio
∆Cpmax(ρ2)/∆Cpmax(ρ1) = 0.51, which is close to the ratio 0.45 (4) obtained in our
simulations.

The other experiments on the NI transition in 8CB LC confined to porous
glasses were done by Iannacchione et al. [15]. In the case of macroporous con-
finement (1000Å mean pore size) a shift of the transition temperature of -2.05◦C
was observed. This gives a ratio T glass

NI /T pure
NI = 0.993 which is again higher than

the ratio found in (3). The latent heat ∆Hglass is reduced as compared to a pure
case and ∆Hglass/∆Hpur = 0.74, the suppression of the heat capacity gives a ra-
tio ∆Cpmax(glass)/∆Cpmax(pure) = 0.65. These values are higher than the ones
obtained in our simulations (7,4). This, probably, is due to the fact that a macrop-
orous confinement with 1000Å mean pore size corresponds to a much weaker dilution
than 5% considered in the simulation.

We obtain a suppression of the first order NI transition in a weakly diluted lattice
model of elongated particles as compared to the pure case. The effects observed in
the simulations agree qualitatively well with the experimentally observed ones in
silica aerogels and support previous computer simulations of the other models [6,8].
However, the shift of the transition temperature is essentially overestimated. This
can be explained by the fact that a site in the lattice model describes a group of the
real molecules rather than a single one. Then the dilution at one site will destroy 6
bonds for a sc lattice and the energy of 6 surrounding particles (groups of molecules)
become essentially underestimated, so the transition temperature will be shifted too
much. In this context we guess that a 5% dilution corresponds effectively to much
higher density aerogel than ρ = 0.08 g cm−3.
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Перехід нематик-ізотропна система у слабо

розведеній гратковій системі: дослідження за

допомогою методу Монте Карло

Я.М.Ільницький

Інститут фізики конденсованих систем НАН Укpаїни,

290011 Львів, вул. Свєнціцького, 1

Отримано 15 вересня 1998 р., в остаточному вигляді –

17 листопада 1998 р.

Розглядається фазовий перехід нематик-ізотропна система у слабо

розведеній гратковій моделі із видовжених частинок. У випадку не-

розведеної моделі цей перехід є переходом першого роду. Виконано

комп’ютерне моделювання методом Монте Карло цієї моделі для ви-

падку 203 вузлів, 5% із яких зайнято замороженими домішками. Для

підвищення ефективності комп’ютерного моделювання використо-

вується метод перезважування діаграм Ферренберга-Свендсена.

Отримано ефекти зсуву температури переходу, зниження тепло-

ти переходу і параметру впорядкування, які викликані наявністю

домішок. Отримано також суттєве зниження максимальних значень

для теплоємності та сприйнятливості в околі переходу порівняно із

випадком нерозведеної моделі. Виконується порівняння отриманих

результатів із експериментами над рідкими кристалами в аерогелях

та пористих склах.

Ключові слова: нематик, рідкі кристали, відпалений безлад
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