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Relativistic effects in the thermodynamical properties of interacting particle
systems are investigated within the framework of the relativistic direct inter-
action theory in various forms of dynamics. In the front form of relativistic
dynamics an exactly solvable model of a one-dimensional hard spheres
gas is formulated and an equation of state and thermodynamical potentials
for such a gas are found. Weakly relativistic corrections to the thermody-
namical functions of the dilute gas with short-range interactions are dis-
cussed on the basis of the approximately relativistic Hamiltonian function
in the instant form of dynamics.
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1. Introduction

The present status of the relativistic direct interaction theory [1-4] enables us
to consider it as a natural basis for a consistent description of relativistic effects in
various physical systems on different levels: classical, quantum, or statistical ones.
The relativistic statistical mechanics of interacting particle systems is nowadays
at an early stage of its development, although the classical partition function of
a relativistic ideal gas was calculated by Jittner in 1911. One cause of this was
indicated in report [5]. Ter Haar and Wergeland wrote: “At extremely high tem-
peratures relativistic effects may, of course, be important. Then, however, matter
behaves as a mixture of ideal gases and this limiting case poses no problem. By
and large, a relativistic theory of heat seems, therefore, to be of little practical
importance”. But the ‘practical importance’, being a very non-smooth function on
historical time, cannot be considered as the main reason for theoretical investiga-
tion.

Among various approaches to the relativistic direct interaction theory the
single-time Lagrangian formalism [1,6,7] seems to be the most convenient in the
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consideration of the general problem of relativistic dynamics, as well as in the
investigation of various approximations. This formalism has been extended to an
arbitrary form of relativistic dynamics defined geometrically by means of space-like
foliations of the Minkowski space [8,9]. Transition from the classical Lagrangian
to the Hamiltonian description allows one to consider the relativistic effects in the
statistical and quantum-mechanical properties of the particle systems.

The present paper is concerned with relativistic models of the equilibrium sta-
tistical mechanics. In section 2, a brief introduction into the concept of the form
of relativistic dynamics is presented. Investigation of a classical and quantum rel-
ativistic ideal gas by means of the front form of dynamics is outlined in section 3.
Relativistic generalization of a one-dimensional gas of hard spheres is obtained in
section 4. This gives an example of an exactly solvable model in the relativistic
statistical mechanics with a non-trivial particle interaction. Section 5 is devoted
to the investigation of the first quasirelativistic (post-Newtonian) approximation.
In the instant form of dynamics the weakly relativistic corrections to the thermo-
dynamical functions of the dilute gas with short-range interactions are studied on
the basis of the general structure, to the order ¢=2, of the approximately relativis-
tic Hamiltonian. As an example, the relativistic correction to the Van der Waals
equation to the order ¢ ? is obtained.

2. Forms of relativistic dynamics in the Lagrangian description
of an interacting particle system

Let us consider a dynamical system consisting of /V interacting point particles.
It is convenient to describe the evolution of this system in the (n + 1)-dimensional

Minkowski space M, ; with coordinates z*, ; = 0,1,---,n. We use the metric
Inuw|| = diag(1, —1,---,—1). In applications we put n = 3 or n = 1. The motion
N—_— ——

of the particles is desT(Lzribed by the world lines
Yo i R—= M1, 74— 28 (7); a=1,....,N, (2.1)

being time-like one-dimensional unbounded submanifolds of the Minkowski space.

The relativistic freedom in the simultaneity definition makes possible different
three-dimensional descriptions of the relativistic particle motions. According to
Dirac [10,11], they are called the forms of relativistic dynamics. Within the frame-
work of the single-time Lagrangian or Hamiltonian mechanics this concept may be
introduced in the following way [8,7]. Let us consider foliation ¥ of the Minkowski
space M,,,; by the hypersurfaces

t=o(x), teR, (2.2)

with the next property: every hypersurface ¥, = {x € M,y | o(x) = t} must
intersect the world lines v, of all the particles in one and only one point

xa(t) = f}/amzt- (23)
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This allows us to consider ¢t as an evolution parameter of the system [8,11]. In
the Poincaré-invariant theory, when we consider only time-like world lines, the
hypersurfaces (2.2) must be space-like or isotropic:

N (0%0)(0"0) > 0, (2.4)

where 0¥ = 9/0z,,. Then, we have 8°c > 0, and the hypersurface equation (2.2) has
the solution 2° = ¢(¢,x), where x = (%), i = 1,---,n. Therefore, the constraint
x4(t) € X, enables us to determine the zeroth component of x,(¢) in terms of ¢
and 7' (t). The parametric equations (2.1) of the world lines of the particles in the
given form of dynamics have the form:

10 = ¢(t,%,(t)) = @, a' = a2 (t). (2.5)

The evolution of the system is determined by nN functions ¢t — z¢(t). They
may be considered as representatives for the sections s : R — F, t — (¢,2%(t)) of
the trivial fibre bundle 7 : F — R with n/N-dimensional fibre space E = R"". The
latter constitutes the configuration space of our system.

Three Dirac’ s forms of relativistic dynamics correspond to the following hyper-
surfaces (2.2): 2% = ¢t (instant form), 2%+ 2" = ¢t (front form), and 7, 2"2” = *t*
(point form). Other examples for the case n = 3 may be found in [8].

In the relativistic Lagrangian mechanics the Lagrangian function L : J*r — R
is defined on the 1nfin1te order jet space of the fibre bundle 7 : F — R with the
standard coordinates .’ [12] The values of these coordinates for the section

it (t ! ( )) belonging to the corresponding equivalence class from J®7 are
xz“)(t) i (t)/dt* = Dzl 5 = 0,1,2,-

The free particle systern is determlned in any form of dynamics by the La-

grangian Ly : J'm — R depending on the first derivatives:

L= Zma \/ (Dy(t, %)) — v; v = i) (2.6)
m, being a rest mass of the particle. In the front form of dynamics it reads:

Ly = ZmGCQ\/l — (v 4+ ’Ug(nil))/@ — 2Ugn/c. (2.7)

In the general case the Poincaré-invariance conditions forbid the existence of
interaction Lagrangians which are defined on the jet-space J"7 with some finite r
(for example, with 7 = 1). This leads to serious difficulties in physical interpreta-
tion of the formalism, and, in fact, makes it impossible to obtain a closed form of
the corresponding Hamiltonian functions which is necessary for the development of
the classical statistical mechanics [1,7,8]. This fact is the Lagrangian counterpart
of the famous no-interaction theorem in the Hamiltonian relativistic mechanics
[13].

There are at least two possibilities to avoid this difficulty. The first is offered by
the front form of dynamics in the two-dimensional Minkowski space. In this case
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there exists a wide class of interaction Lagrangians depending on the first order
derivatives [14]. This allows us to obtain corresponding Hamiltonian functions by
the standard Legendre transformation that preserves the physical meaning of the
position canonical coordinates. The second consists in the consideration of the
approximation in ¢72? [1,9,15]. At least in the first order approximation we may
obtain the usual Lagrangian functions depending on the first order derivatives
[1]. Examples of using these possibilities in the investigation of relativistic effects
in models of the equilibrium statistical mechanics will be considered in the next
sections.

3. Relativistic ideal gas within the framework of the front form
of dynamics

As an illustrative example we shall consider here a description of the relativistic
ideal gas by means of the front form of dynamics. The Hamiltonian function of
the free N-particle system has the form:

N
H = Hy(X,Pa) (3.1)
a=1
with - )
m°c” + p;,
H, = Hy(p) = 0271’. (3.2)
Da3

This Hamiltonian can be obtained from the Lagrangian (2.7) by the usual Legendre
application.

The n-dimensional coordinates x, cover the given region Q C R with vol(Q2) =
V, and p, belongs to the region IT = {p, = (Pars- - Pan) € R*|pan > 0}. As it is
well known, all the information about thermodynamical properties of the system
is contained in the expression for the canonical partition function [16]:

1
_ —BH n n
Zn = N N /e Ial d"z,d"p,, (3.3)

where, as usual, 3 = (kT)~! and the integration is performed over the phase space
P. In our case P = QY x ITV, Inserting (3.1) into equation (3.3) we obtain

1
where
z = /e_ﬂH“d"xad"pa. (3.5)

Substitution of the front form Hamiltonian (3.2) immediately yields

> E[]O dpy exp ——pk) (3.6)

z = V/dpn exp(——ﬂc (pn
0
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Performing integration over p; and putting p, = mca we have

(n-1)/2 T 2

2 1

z=Vme <7r—m> /daoz("_l)/2 eXp(—ﬁmc <a + —) ). (3.7)
0

B 2

Using the integral representation of the Hankel function K, (z) = Te™™/ 2H,(11)(i:1:),

17 1
K,(z) = 5/dOzOz”1 exp(—% (a + E>)’ x>0, (3.8)
0
we obtain
27m, (n—1)/2 ,

When n = 3, equations (3.4) and (3.9) give well-known Jiittner’s result:

1 [4mm?cV

Iy = 5 {ng(gm&)} N, (3.10)

which is usually derived by means of the instant form Hamiltonian:

H, = cy/m2c? + p2. (3.11)

Using the asymptotical expansion

T 4n? — 1
K =./—e "1 12
() w/%e ( + Y. + ) , T — 00, (3.12)

we can obtain a weakly relativistic correction to the non-relativistic result:

2 n(n + 2 N

L VAT Bh2
Z0id _ A=/ . 14
N N! 2rm (3.14)

The necessity for (rather trivial) renormalization of the non-relativistic partition
function Z](\(,)) — Z](@)e—ﬁN me® follows from the presence of the rest energy mc? in
the relativistic Hamiltonians (3.2) or (3.11).

The obtained expressions can be useful for the treatment of the quantum rel-
ativistic ideal gas with generalized statistics of arbitrary order ¢. In this case it is

convenient to consider the grand partition function

where

O = Tre AH-1N) = =A% (3.15)

where H and N represent the operators of energy and of particle number, respec-
tively, and p denotes chemical potential [16].
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Assuming that the maximum value of the occupation number in a given energy
state can be ¢, any integer greater than 1, and acting in a manner quite similar to
the non-relativistic case (cf., for example, [17]), we obtain:

_ 9V [ g (Lo e(=0(g + 1) (Ho(p) — 1))
0= 45 [am < = oxp(— (o (p) — 1) ) (3.16)

Here g denotes degeneracy of the energy state with a given value of momentum p.
For structureless particles with the spin ¢ we have g = 20 + 1.

Of course, care is needed in the replacement of the summation by the inte-
gration over the momentum states, when ¢ ~ N, and, especially, if ¢ — oo (that
corresponds to the Bose-Einstein statistics). But this problem, connected with the
Bose condensation, is essential at a low temperature, 5! << mc?, when relativis-
tic correction seems to be negligible. Then the standard thermodynamical relations
lead to the following expression for the pressure:

P—gsinn / d"p [In (1 = AHe AarDIO@)) _1p (1 — pe PHo®)] - (3.17)

where
A = ePH (3.18)
is the fugacity. The number density
1 N 0P
== 3.19
v V. 0Ou ( )

is given by

lzgh—n/dnp{ Aexp(=fHy()) gy AT exp(=Blg + 1) Ho(p)) }

v 1— Aexp(—3Hy(p)) 1 — M+lexp(—f(q + 1)Ho(p)
(3.20)

and the inner energy density u = U/V is found to be

T Nexp(—AHy(P)) g+ DA exp(—Alg + ) Hy(p))
w=on [ o) [1—Aexp<—ﬂﬂo<p>> 1—Aq“exp(—ﬁ(q+1)Ho(p))}

(3.21)
Expanding the exponential functions into the series and using the denotation
¢(8) = gh™"z/V, (3.22)
where z is defined by equation (3.5), we have
BP =k [NG(Bk) — NG (B(g + 1)k)] (3.23)
k=1
and
1 [o.0]
== [No(8k) = (a+ DXTg(B(g + 1)k)] (3.24)
k=1
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Keeping only the terms up to the second order in the density 1/v, we obtain an
equation of state of the form:

_ 1 L ?(25)
PP =— =55 o(3) (3.25)
where
Mg = { _11 jjf (3.26)

Similarly, for the energy density with the same accuracy we have

19(8) | 1 6(28)6(8) — 9(8)9'(29)
Tuo) T2 6(5)" | (320

Making use of the explicit expression for the ¢ function from (3.9) and (3.22), we
may find a relativistic equation of state at a high temperature up to the first order
in the degeneracy parameter

A’I’L

0= —. 3.28
- (3.25)
The equation is found to be
1 )
BP = - {1 — 21an/2F(ﬁmcz)} : (3.29)

where
K (n 2
\f +2(22) (3.30)
+1 /2

Because F(z) — 1 as x — oo, equation (3.29) agrees with the known non-
relativistic results [16]. In a similar manner we may write relativistic virial ex-
pansions for other thermodynamical functions of the quantum ideal gas, especially
for the inner energy and specific heat.

4. Relativistic one-dimensional model of the hard spheres gas

In the two-dimensional space-time My, the front form of dynamics serves a wide
class of non-trivial interaction Hamiltonians in terms of the covariant canonical
coordinates.

The general form of a Hamiltonian function for a system of NV identical particles
on the line I = {x € R|0 < < A} described by the canonical coordinates z, and
momenta p, within the framework of the front form of dynamics is given by [10]:

H = Z H(] pa + Z Z Pa + pb Tabpaa rabpb)' (41)

a<b

559



V.Tretyak

Here 9
1 m
H == — 4.2
=3 (r+2), (4.9
Tap = Tq — Ty, and V is an arbitrary function on the indicated arguments. In this
section we put ¢ = 1. From the definition of the front form of dynamics it follows
that momenta p, belong to the positive semiaxis R, = {z € R|z > 0}:

Pa > 0. (4.3)

For the convenience of the comparison with the corresponding non-relativistic
calculations we assume that function V' has the form:

V=V (laul) (1.4
where
Gab = Tab(pa +pb)V <p_a + &> s (45)
Po Pa

and v : R, — R, is some function which will be defined later.
Let us again consider the canonical partition function

1 _
Iy = TN /e ﬂHHd:Eadpa, (4.6)

over the phase space P =1V x RY.
Since we are interested in the relativistic generalization of the hard spheres
model, we can choose interaction function (4.4) in the form

0, z>o0
V(z) = { %, <0 (4.7)
We, therefore, find
_ 1, |qaw| >0
BV (lgas]) — » |4ab
e = 4.8
{ 0, |qab| < 0. ( )
If we choose function v(x) in such a way that for any a, b, c
if |gw| >0 and |ge| >0, then |gu.|> o, (4.9)

the partition function (4.6) can be written in the form:

Zy = xxt [ TLantwa) [ [ (4.10)

where
dp(p) = e dp (4.11)
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and coordinates x, must satisfy the restrictions

o Pa Db 1
> Yo o 10 . 4.12
e Dot Py (1% +»pa> ’ w(@) v(r) (4.12)

Conditions (4.9) lead to the inequality

g%%%<x12. (4.13)

In the following we shall choose the simplest solution of (4.13) which has the form

B~ 8

u(z) = C(z + 2), (4.14)
such that
. 1 1\"'
Gy =C 1o | —+—| . (4.15)
Pa Do

Because in the non-relativistic limit p, — m, the demand that q,, — 74 in this
limit fixes the value of the constant C"

c:%- (4.16)

Therefore, partition function (4.10) may be rewritten in the form:

N N-1
1 mo mo
N = o (H du(pa)dxa) H 6 (Ia+1 — I, ) . (4.17)
a=1 a=1

B 2pa B 2pa+1

The appearance of Heaviside # functions is a consequence of conditions (4.12). Let
us perform in (4.17) a change of the variables (z,,p.) — (Ya,Pa), such that the
arguments of 6 functions become y,,1 — y,. This gives

mo

Yo = Ta = =5 Pas (4.18)
where
1 1
p1 =0, P2 = — + —, (4.19)
b1 D2
and
1 11
Pa=—=+2Y» —+—, a> 2. (4.20)
D1 b=2 Do DPa

As a consequence, we obtain

Zn(A, B) = thN! /ﬁdu(pa)ﬁ (4= "en) (4~ %W)N. (4.21)
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Before performing an integration over momenta we consider the Laplace transfor-
mation of (4.21)

o

In(s,5) = / dAe 4 Zy(A, B)

0
1 A mo
= JNgN+1 /gdﬂ(pa) exp (_ST@N)- (4.22)

Using expressions (4.11) and (4.19), (4.20) we find
1

Zn(s,B) = WZ(@ M2)2Z(57 Ml)NJ- (4.23)

where mo mo
M? =m?+2s—-, M3; =m? + s—, (4.24)

g g

and o
1 m?
z(B,m) = [ dpexp —§ﬁ p+ n = 2mK;(Bm). (4.25)
0
Next, we consider the grand partition function
Z(B,sA) =Y AV Zx(B,5). (4.26)
N

The summation over N is performed immediately giving

. ZQ(BMQ) h

205,50 = (D) =3 (GAE (4.27)

The asymptotic behaviour of function Z(3, A) is determined by the singularity
points of function (4.27) which lie on the real axis for variable s. In our case there
exists only one such a point, s’ , that is the solution to the equation

s'h = Xz(BMq(s")). (4.28)

Specifically, we have for the pressure P = $~'s' [18]. Using (4.24) and (3.18) we
obtain an expression for the chemical potential in terms of # and P:

1. 2(6M)
P)=—=1 4.29
where
M? =m?* + 2moP. (4.30)
The standard thermodynamical relation [16]
dp = —5dT + vdP, (4.31)
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where § = S/N and v = A/N , allows one to obtain the equation of state

_op 1 mo Ky(BM)

It is convenient to represent this equation in the form:

1
= — 4.
v 5P+05(5,P), (4.33)
where Ko(5M)
m Ko
0(p,P)= ————=. 4.34
From the inequality
K,(z) > Kp(x), if n>m, (4.35)
it follows that
0<d6(8,P)<1. (4.36)

In the non-relativistic approximation, when gm — oo, M — m, the asymp-
totical expression (3.11) shows that 6 — 1, and we obtain a well-known Tonks
equation [19]

1
v=——+4o0. 4.37
T (437)

In the ultra-relativistic limit, when gm — 0, we have § — 0 and arrive at
the state equation of the ideal gas. In the case of small o (that corresponds to
the linear approximation in the interaction) we can replace function 6(3, P) by its
value d¢(5) at o — 0:

Ko(Bm)
dg = ———. 4.38
" Ki(Bm) (4.38)
This quantity gets an interesting interpretation after accounting that the mean
value of p" over the free-particle distribution defined by the Hamiltonian (4.2) is

given by

By — [ dp pFe—rHo®) /d e~ BHop) _ kBt 1\ 4.39
(P")o 0/ pp / p K\ (5m) (4.39)

Then 6y (3) = m(p~"')o. Next, we can observe that in the front form of dynamics we

have for free particles p = m~y, where v~! = /1 — 2v corresponds to the Lorentz

radical v/1 — v2. Therefore, in the linear approximation the state equation (4.33)

can be considered as a result of taking into account the well-known Lorentz spatial

contraction ¢ — a(y 1)y in the non-relativistic Tonks equation (4.37).
From the equation of state (4.32) we get immediately

v 1 (ma)2 [1_Kg(ﬁM)}

P~ BP?

M

R2(601) (440)

563



V.Tretyak

Then inequality (4.35) shows that the condition of thermodynamical stability

(aa—;)T <0 (4.41)

is valid for equation (4.32) identically. Thus, the system does not have any phase
transition.

In a similar manner we may obtain explicit expressions for other thermody-
namical functions. For example, for entropy we have

o (O
T <8T>p_kﬁ RE
_ 2M KL (BM) Ko(BM) ]

the energy density is determined by
1 m?+moP K¢(3M)

= 15— Po= g = o (4.43)
Specific heat cp can be directly obtained from (4.42) giving
05 0s
o = 7(57),= ()
_ o [, Ko(BM)*  Ko(BM) } }
S RN IR e v | BRCE

Therefore, we have an exactly solvable example of a non-trivial particle inter-
action in the relativistic statistical mechanics.

5. Weakly relativistic corrections to the thermodynamics of an
interacting particle system

Here we shall consider a system of N point-like particles with pairwise inter-
actions at the first post-Newtonian approximation. Let the non-relativistic inter-
action potential has the form:

U =" wa; ta=ulrw), T =|ra| =[xa—x  (5.1)
a<b

In that case the general form of the first post-Newtonian Lagrangian function is
given by [1]:

mav>  mgut
I = a%q aa \ _ 717(0)
()

1 1 du, N
+ 22 ZZ <Va * Vottas = (Fap * Va) (Fap - Vi) — b) +c?@  (5.2)

Tap AT
a<h ab ab
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with an arbitrary Galilei-invariant function @. We choose this function in the form
which is determined in terms of the non-relativistic potential u(r):

1 1 du,
¢ =- SN (Av,ibuab + B(re - Vab)*— ”) . Vap = Va— Vi, (5.3)

7o AT
a<h ab ab

with two arbitrary numerical coefficients, A and B. This structure of the post-
Newtonian Lagrangian is sufficient to cover a wide class of interactions including
those following from various field-theoretical considerations. For example, the val-
ues

A=o0"—1, B=0 (5.4)

correspond to the interactions mediated by linear relativistic fields of spin o. Par-
ticularly, o = 1 and u(r) ~ r~! give the famous Darwin’s Lagrangian for elec-
tromagnetic interactions. It is remarkable that expression (5.2) under (5.3) was
derived by Breit [20] as far back as 1937 with the aid of simple symmetry treat-
ment.

For the system of identical particles the Hamiltonian which follows from the
above Lagrangian has the form:

H=H9 4 ¢2HY £ O(c?), (5.5)

where H® is a non-relativistic Hamiltonian,

(0) Pa (0)
g — Lo LU 5.6

- 2m + ’ ( )
and

4
Da 1
HO = =% =t — o > A0 =29p0 po+ AW, + 1)) vas
a a<b

— [(1+2B)(ras - Pa) (Tt - Ps) — Bl(Tas - Pa)® + (Tas - Po)’]] Tim)il;;::} . (5.7

The canonical variables (x,, p,) are connected with the Lagrangian (x,,v,) by the

standard Legendre transformation

oL

ov,’

Pa (5.8)

considered to the order ¢~2. Inserting Hamiltonian (5.5) into expression (3.3) for
the classical partition function and expanding it to the ¢ 2 terms, we get

1
Iy / ¢ MY (1 B2 HO) ] dPwad®pe = 20 + 227, (5.9)

~ B3NN
where Z% is a non-relativistic partition function

Z% = 20"Q, (5.10)
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@ being a non-relativistic configuration integral
Q= v—N/e—ﬂU“)( — B2 HW Hd3za (5.11)

The straightforward calculation gives first-order corrections to the non-relati-
vistic partition function (5.10):

R
71 7(0
1()_ l()Bm;

where R is defined in terms of the configuration integral (5.11),

rR=2y_3 (Aﬁ—QJrBV Q). (5.13)

R
Zy = 7Y (1 + ) : (5.12)

[Bmc?

8 Q op

In the absence of interaction, when ) = 1, the obtained expression agrees with
equation (3.13).

All thermodynamical properties of the system may be deduced from the free
energy:

R
_ _p1 _ (0
where the corresponding non-relativistic expression is given by
0 —1 N,
F =g [(VA ) ﬁ} . (5.15)

equation (5.14) can be rewritten in the form, which gives a first-order correction
in terms of the non-relativistic free energy:

3 5 34 N PO oF©)
F:F(U)—W[<§—7+B>E+A< )+ ﬁ>+BV av].(5.16)

This formula may be also useful in the obtaining of weakly relativistic corrections
to various phenomenological non-relativistic results.

Let us consider corrections to the equation of state. In the non-relativistic limit
it has the form:

OF©)
P=- = ¢9(B,V). 5.17
Then (5.16) gives a weakly relativistic equation of state in the form
3 g g
P=g9pB,V)- — ((A+B)g? + A BV 5.18
R (e FE L)

which is determined by the non-relativistic form (5.19) and the two constants, A
and B.
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As an example we can consider a well-known Van der Waals equation

N NZ2a
P= B0V = ND) e (5.19)

with a pair of phenomenological constants, a and b. The corresponding weakly
relativistic equation is

P =

N ) [1 3NbB } B N2q (5.20)

3(B — A)
v =m0 |' Tt Bmew =Ny T v [H }

Bmc?

Up to the first order in ¢™? it can be presented in the non-relativistic form (5.19)
with constants a and b being replaced by the linear functions on temperature:

B— A B
ar—>a':a<1+3ﬁm62>; br—>b':b<l+%>. (5.21)

Corrections to other thermodynamical functions and a wider discussion can be
found in [15].
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Mpo penaTuBiCTUYHI Mopeni B piBHOBAXHIN
CTaTUCTUYHIN MeXaHiLi

B.TpeTak

IHCTUTYT ®i3nKn koHaeHcoBaHMx cuctem HAH Ykpainn,
290011 m. JIbBiB—11, BYNn. CBEHLjUBKOrO, 1

OtpumaHo 12 yepsHs 1998 p.

JocniopkyloTbCa penaTuBICTUYHI edekTn y TepMoaMHaMIYHUX BNaCTUBO-
CTAX CUCTEM B3aEMOLIIOYMX YACTUHOK Y pamMax pensaTuUBIiCTUYHOI Teopii
nPAMOT B3aeMogii y pisHUx popmax guHamikun. Y GpoHTanbHin Gopmi pe-
NATUBICTMYHOI AMHAMIKU CPOPMYSIbOBAHO OAHOBUMIPHY MOAENb rasdy
TBEPANX chep, WO MaE TOYHMIN PO3B’A30K; 3HAMOEHO PIBHAHHSA CTaHy Ta
TepMoaMHaMmiyHi noTeHuisnn. O6roBopeHo CnabkopensaTMBICTUYHI Mo-
npaBkn 0O TepMoauHaMIYHUX PYHKLIN pO3piaXeHoro rasy 3 6nM3bko-
CSXKHUMM B3AEMOLSIMM HA OCHOBI HABIMXEHOT PENATUBICTUYHOIT PYHKLT
laminbToHa Y MUTTEBIN HOPMI AMHAMIKN.

Knio4oBi cnoBa: pessatuBicTnyHa CTatTucTudHa MexaHika, popmu
AVNHaMIKV, PeNSITUBICTUYHWIA ideasibHUi ra3, c/1abKopensiTUBICTUYHI
riornpasku

PACS: 05.70.C
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