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Liquid heavy metal coolant in a fast reactor, as well as in accelerator driven systems, is exhibited to large thermal

and pressure shocks which can cause cavitation in the coolant. Here we calculated the work of the critical bubble

formation in the lead coolant and the nucleation rate in terms of the generalized Gibbs approach. It is demonstrated

that such approach provides a more adequate description of the process of bubble nucleation as compared with the

classical nucleation theory.
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1. INTRODUCTION

Liquid heavy metal heat-carrier (lead, bismuth, eu-
tectic Pb-Bi alloy, mercury) in fast reactors and
accelerator-driven reactors subject to significant ther-
mal and hydraulic shocks. Increase in temperature
and lowering of pressure (down to negative values at
negative phase of a pressure wave period) can result
in a cavitation in the coolant. The newly formed bub-
bles filled with metal vapor, together with a coolant
circulation can come to the high pressure and low
temperature regions, where they collapse and dam-
age the construction materials. There are methods
of controlling pressure shocks, however, temperature
shocks cannot be avoided. In this paper we determine
the criterions of homogeneous bubble nucleation in
the liquid metal lead heat-carrier using the modified
Gibbs approach [1–3] and compare the results with
the classical nucleation theory (CNT).

We approached the problem in three steps. In the
first step (Sec. 2), we calculated the phase equilib-
rium properties, the stability limit and various other
properties of lead by using a slightly modified version
of the equation of state [2] proposed by Redlich and
Kwong [4] (see also [5–7]). In the next step (Sec. 3),
we calculated the work of critical bubble formation in
lead as well as the rate of homogeneous nucleation in
the pressure-temperature range defined according to
the results of the previous section. The paper is com-
pleted by a short summary and discussion (Sec. 4).

2. MODEL SYSTEM

For the description of lead (Pb) in both the liquid and
gas phases, we will apply a slightly modified Redlich-
Kwong-type equation of state as proposed by Morita
et al. (see [4, 5] and, in particular, Eq. (1) in [2]). It
reads

p =
RT

M(v − b)
− a(T )
v(v + c)

, (1)

a(T ) = ac (T/Tc)
m
, (2)

where R = 8.314 J/mol is the universal gas con-
stant, p is pressure, v is molar volume, T is tempera-
ture, ac, b, c and m are the model parameters specific
for the substance, Tc is critical temperature.

We employ further dimensionless variables

Π ≡ p

pc
, ω ≡ v

vc
, θ ≡ T

Tc
, (3)

where vc is the molar volume, pc the pressure both
at the critical point with the critical temperature, Tc.
These parameters can be determined from equation
(1) in the common way via

∂p

∂v

∣∣∣∣
T

=
∂2p

∂v2

∣∣∣∣
T

= 0 at T = Tc. (4)

The equation of state in reduced variables is given
by

Π(θ, ω) =
θ

χc(ω − β)
− α(θ)
ω(ω + ξ)

. (5)

Here
χc =

pcvc

RTc
(6)

is the reduced critical compressibility, and

α(θ) =
acθ

m

pcv2
c

= αθm, (7)

β = b/vc, ξ = c/vc. (8)

According to [6] we have then

α = 5.9, β = 1.7 · 10−3, ξ = 0.768, m = −0.01.
(9)

From equations (1) and (4) we get

pc = 121 MPa, ρc = 1920 kg/m3
,

vc = 5.2 · 10−4 m3/kg, Tc = 5843 K.
(10)
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The location of the classical spinodal curve can be
found by the determination of the extrema of the
thermal equation of state, Π(θ, ω) (5), considering
the temperature θ as constant. By taking the deriva-
tive of Π(θ, ω) with respect to temperature, we obtain
from equation (5) the result

∂

∂ω
Π(θ, ω) =

α(θ)(2ω + ξ)
ω2(ω + ξ)2

− θ

χc(ω − β)2
= 0. (11)

For θ < 1 , this equation has two positive solutions
ω

(left)
sp and ω

(right)
sp for ω corresponding to the spe-

cific volumes of the both macrophases at the spinodal
curves (or at the limits of metastability). Similarly,
the binodal curves give the values of the specific vol-
umes of the liquid and the gas phases coexisting in
thermal equilibrium at a planar interface. From the
left branch of the binodal curve, we get the specific
volume of the liquid phase ( ω(eq)

l = ω
(left)
b ), from

the right branch of the binodal curve, we obtain the
specific volume of the gas ( ω(eq)

g = ω
(right)
b ). For

θ = 1 , both solutions coincide in the critical point
( ω(eq)

l = ω
(eq)
g = ωc = 1 ), again. Consequently, in

order to determine the specific volumes of the liquid
and the gas at some given temperature in the range
θ ≤ 1 , we have to specify the location of the bin-
odal curve. The location of the binodal curve may be
determined from the necessary thermodynamic equi-
librium conditions (for planar interfaces) – equality
of pressure and chemical potentials – via the solution
of the set of equations

Πl (ωl, θ) = Πg(ωg, θ), μl(ωl, θ) = μg(ωg, θ). (12)

Here by μ the chemical potential of the atoms or
molecules in the liquid (l) and the gas (g) are de-
noted. Having the equation for the reduced pres-
sure (cf. Eq. (5)), we have now to determine in ad-
dition the chemical potential in dependence on pres-
sure and temperature (see Sec. 2). Isotherms for lead
(5) for different values of the reduced temperature
θ = 0.4, 0.65, 0.8, 0.891 and 0.92 are shown in Fig. 1,
dashed and dashed-dotted curves present the binodal
and spinodal curves, correspondingly.

For isothermal processes, the change of the
Helmholtz free energy, dF , may be expressed as

dF = −pdV + μdn. (13)

Here V is the volume of the system and n the number
of moles in it. For a given fixed mole number, n, of
the substance (n = const.), we have

dφn = −pdv, φn =
F

n
, v =

V

n
, (14)

or, in reduced variables,

d

(
φn

pcvc

)
= −Πdω . (15)
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Fig. 1. Isotherms of mercury as described via
equation (5) for different values of the reduced
temperature, from θ = 0.4 (bottom curve) to θ = 1
(upper curve)

Combining equation (15) with the equation of the
state, equation (5), we obtain

φn

pcvc
= −

[
α(θ)
ξ

ln
(
ξ

ω
+ 1

)
+
θ · ln(ω − β)

χc

]
. (16)

Alternatively, the isochoric change of the Helmholtz
free energy is given at constant temperature by

dF = μdn. (17)

From equation (17),

dφv = − μ

v2
dv, φv =

F

V
. (18)

On the other side, the functions dφv and φn are con-
nected by

F = φnn = φvV, φv =
φn

v
. (19)

With equation (16), we have then

φv =
pc

ω

[
α(θ)
ξ

ln
(
ξ

ω
+ 1

)
+
θ · ln(ω − β)

χc

]
. (20)

With equations (18) and (20), the expression for the
chemical potential of a heavy liquid metal (HLM) can
be obtained then via

μ = −v2 ∂φv

∂v
= −veω

2 ∂φv

∂v
. (21)

This relation yields

μ(ω,θ)
pcvc

= −
[

α(θ)
ω+ξ + θ·ω

χc(β−ω)+

+ α(θ)
ξ ln

(
ξ
ω + 1

)
+ θ·ln(ω−β)

χc

]
+ ψ(θ) .

(22)

In addition to the bulk properties of the system,
we have to know the value of the surface tension, σ,
for planar interfaces in dependence on the parameters
describing the state of both phases. The following
form was chosen for our calculation [3, 8–10]

σ(ωg, ωl, θ) = Θ(θ)
[

1
ωl

− 1
ωg

]δ

, (23)
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where

Θ(θ) = A

[
1

ω
(left)
b

− 1

ω
(right)
b

]k−δ

, δ = 2, (24)

and A and k are constant parameters. Comparison
of equations (23) and (24) with experimental data
[11, 12]

σ(T ) = 0.4857− 0.000066 · T (25)

(valid in this form only for temperatures far below the
critical temperature; here the temperature is given in
Kelvin and the surface tension in J/m2) at ωl = ω

(left)
b

and ωg = ω
(right)
b yields

A = 40.5 · 10−3 J/m2
, k = 1.4. (26)

3. DETERMINATION OF THE WORK OF
CRITICAL CLUSTER FORMATION

Let us assume that the system is brought suddenly
into a metastable state located between binodal curve
and spinodal curve on the liquid side. Then, by nu-
cleation and growth processes, bubbles may appear
spontaneously in the liquid and a phase separation
takes place [13]. Based on the relations outlined
above, we will find the temperature and pressure
dependence of the parameters of the critical vapour
cluster formation. We start with the general expres-
sion for the change of the thermodynamic potential

ΔG = σA+ (p− pα)Vα +
∑

j

njα(μjα − μjβ) . (27)

Here the subscript α specifies the parameters of the
cluster (bubble) phase while β refers to the ambient
liquid phase. This relation holds as long as the state
of the liquid remains unchanged by the formation of
one bubble. For a one-component system, this ex-
pression is reduced to

ΔG = σA+ (p− pα)Vα + nα(μα − μβ) . (28)

As independent variables, we selected the radius
of the bubble, r, and the molar volume of the gas
phase in the bubble. Similarly to [2, 3, 14] we arrive
then at

Δg(r, ωg, ωl, θ)
kBT

= 3
(

1
ωl

− 1
ωg

)δ

r2+2f(ωg, ωl, θ)r3 ,

(29)
where the following notations have been introduced:

f(ωg, ωl, θ) = Π(ωg, θ) − Π(ωl, θ)+
+ (ωgpcvc)

−1 (μ(ωl, θ) − μ(ωg, θ)) ,
(30)

g ≡ G

Ω1
, Ω1 =

16π
3

1
p2

ckBTcθ
Θ3(θ) , (31)

r ≡ R

Rσ
, Rσ =

2
pc

Θ(θ). (32)

The Gibbs free energy surface for the metastable
initial state has a typical saddle shape near to the

configuration corresponding to a bubble of critical
size (see Fig. 2, θ = 0.75, Ω1 = 0.44) in the space
of critical radius-molar volume and work of cluster
formation.
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Fig. 2. Gibbs free energy surface for metastable
initial state, θ = 0.75, Ω1 = 0.44

The critical point position is determined by the
following set of equations

∂Δg(r, ωg, ωl, θ)
∂r

= 0,
∂Δg(r, ωg, ωl, θ)

∂ωg
= 0. (33)

The dependence of the critical cluster parameters
on the negative pressure, p, are shown in Figures 3-
5, for θ = 0.70. The positions of the binodal and
spinodal curves are given then by ω

(left)
b = 0.311 ,

pb = −0.254 , and ω
(left)
sp = 0.44 , psp = 1.174 , cor-

respondingly. psp = 1.812 .
Compare the obtained results with the classical

nucleation theory (CNT). The work of formation of
critical nucleus ΔGclass is determined in this case by
the following equation (see, for example, [13])

ΔGclass

kBT
=

16π
3

σ3

(p− pg)2kBT
. (34)

Fig. 3 presents the dependence of gas density in
critical nucleus on the density of liquid. Close to bin-
odal (at very small metastability) the density of gas
in a bubble only insignificantly differs from its equi-
librium value (the same as in CNT). However, as the
metastability increases the gas density in a bubble
grows, coming closer to the density of the surround-
ing liquid taken at spinodal. At the same time (see
Eq. (23)) the bubble surface energy decreases, and,
correspondingly, the work of nucleus formation also
decreases.

The dependence of the work of critical nucleus for-
mation ΔGc/kBT , on negative pressure in a general-
ized Gibbs model (blue line) and CNT (green line) is
shown in Fig. 4. It is evident that in CNT the work
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of critical nucleus formation does not “feel” spinodal,
while for in the generalized Gibbs model the work
decreases with the approach to spinodal. Indeed, at
spinodal the gas density in a bubble coincides with
the density of the liquid (see Fig. 3). It means, that
such “nucleus” does not differ from a surrounding
it medium and, naturally, the work of its formation
is equal to zero. Therefore, the nucleation process
close to spinodal goes not through a saddle point,
but through a ridge of the potential ΔG (in details
see [15]).

The behaviour of the critical radius with the ap-
proach to the binodal also differs in these theories:
in the generalized Gibbs model the critical radius
sharply increases (however, this does not influence
the nucleation: as was mentioned above, the nucle-
ation process close to spinodal does not pass through
the saddle point), and in CNT there is no singularity
(Fig. 5).

The nucleation rate is determined by the following
equation

I = I0 exp
(
−ΔGc

kBT

)
. (35)
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C
ri

ti
ca

l 
w

o
rk

,
�

G
k

T
c
/

B

0.5� 0 0.5 1 1.5 2
1

10

100

10
3

10
4

10
5

Pressure, /p pc

generalized Gibbs

CNT

B
in

o
d

al

S
p

in
o

d
al

Fig. 4. Dependence of work of the critical bubble
formation, ΔGc/kBT , on negative pressure

C
ri

ti
ca

l 
ra

d
iu

s,
 n

m

��	�
0.1

1

10

100

10
3

B
in

o
d
al

Pressure, /p pc

� �	� � �	� �

CNT

generalized Gibbs

S
p
in

o
d
al

Fig. 5. Dependence of the radius of the critical
bubble, Rc, on negative pressure

Fig. 6 presents the dependence of the nucleation
rate on negative pressure in the generalized Gibbs
model (blue) and CNT (green) (in calculation the
preexponential factor equaled I0 ≈ 1041 m−3 s−1). It
is evident that the nucleation rate calculated in the
classical theory is several orders less than the gener-
alized Gibbs model predicts.
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4. CONCLUSIONS

Near the binodal the generalized Gibbs approach
leads to the same results as the classical nucleation
theory, but noticeably different ones for enough large
degree of metastability, that is close to the spinodal
(see Figs. 7, 10 and [1, 3, 14]). Therefore, the con-
sidered approach is of importance for cavitational
processes, which take place mainly at large metasta-
bility. It was found that the nucleation rate, calcu-
lated within the generalized Gibbs model is several
orders higher than the classical theory predicts, that
is the limit of cavitational stability is noticeably lower
than in the classical theory. Note that the calcu-
lations were done only for the case of homogeneous
bubble nucleation in the coolant bulk. However, the
heterogeneous nucleation at impurities in the coolant
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or on the pipelines walls is also possible. The work of
formation of critical bubbles is in this case lower, but
also the number of nucleation sites is much less, there-
fore the influence of heterogeneous nucleation on the
threshold of cavitational stability requires additional
investigation.

References

1. V.V. Slezov. Kinetics of First-Order Phase Tran-
sitions. Weinheim: “Wiley-VCH Publishers”,
2009, 429 p.

2. A.R. Imre, A.S. Abyzov, I.F. Barna, and J.W.P.
Schmelzer. Homogeneous bubble nucleation limit
of mercury under the normal working condi-
tions of the planned European spallation neutron
source // Eur. Phys. J. 2011, v. B79, p. 107-113.

3. J.W.P. Schmelzer, J. Schmelzer, Jr. Kinetics of
bubble formation and the tensile strength of
liquids // Atmospheric Research. 2003, v. 65,
p. 303-324.

4. O. Redlich, J.N.S. Kwong. On the Thermody-
namics of Solutions. V. An Equation of State.
Fugacities of Gaseous Solutions // Chem. Rev.
1949, v. 44, p. 233-244.

5. K. Morita, W. Maschek, M. Flad, Y. Tobita,
H. Yamano. Critical parameters and equation of
state for heavy liquid metals // J. Nucl. Sci.
Technol. 2006, v. 43, p. 526-537.

6. K. Morita, V. Sobolev, M. Flad. Critical para-
meters and equation of state for heavy liquid met-
als // J. Nucl. Mat. 2007, v. 362, p. 227-234.

7. K. Morita, E.A. Fischer. Thermodynamic prop-
erties and equations of state for fast reactor safety

analysis. Part I: Analytic equation-of-state model
// Nucl. Eng. Des. 1998, v. 183, p. 177-191.

8. J.D. van der Waals, Ph. Kohnstamm. Lehrbuch
der Thermodynamik. Leipzig und Amsterdam:
“Johann-Ambrosius-Barth Verlag”, 1908, 646 p.

9. K. Binder. Spinodal Decomposition // Materials
Science and Technology / Edited by R.W. Cahn,
P. Haasen, E.J. Kramer. Weinheim: “VCH”,
1991, v. 5, p. 405.

10. D.B. Macleod. On a relation between surface
tension and density // Trans. Faraday Soc. 1923,
v. 19, p. 38-41.

11. B.B. Alchagirov and A.G. Mozgovoi. Experi-
mental Investigation of the Surface Tension of
Liquid Lead and Bismuth in the Vicinity of the
Melting Point // High Temperature. 2003, v. 41,
p. 412-414.

12. A.E. Schwaneke, W.L. Falke. Surface tension
and density of liquid lead // J. Chem. Eng. Data.
1972, v. 17(3), p. 291-293.

13. V.P. Skripov. Metastable Liquids. New York:
“Wiley”, 1974, 272 p.

14. A.S. Abyzov, J.W.P. Schmelzer. Nucleation ver-
sus spinodal decomposition in confined binary so-
lutions // J. Chem. Phys. 2007, v. 127, 114504.

15. A.S. Abyzov, J.W.P. Schmelzer, A.A. Koval-
chuk, V.V. Slezov. Evolution of Cluster Size-
Distributions in Nucleation-Growth and Spin-
odal Decomposition Processes in a Regular So-
lution // J. Non-Cryst. Solids. 2010, v. 356,
p. 2915.

����� ����������� �	��
����
 ��������� � ������

���� ������	 
����� 
�������	 ���� �������	 ���� ������

���������	��� �
 ������ ��
��� 	������ ��	
���� � ���	��� ��
�	��
� � ��
�	��
�� ���
�������

������	����� ��
������� ��
��	������ 	������� � ��
�
��������� �

�
�� �	� ����	 �����
�	� �

�
��	
��� 	��������	���� �
����	
�� �
��	
 ���
���
��� ���	������� ��������� � ��������� 	�����

����	��� � ������	� �� �
���
���� � �
��
� ����������� ��
��

  ����
� !��
�
��� �	� 	
��" ��
��


���������
�	 ����� 

���
	��� ����
��� �������
 �
���
���� ��������� �� ��
�����# � ��
��������"

	�����" �����
����

����� ����������� �	���
���
 �������� � ������

���� ������	 
����� 
�������	 ���� �������	 ���� �������

��������$% �
 �����$ �$
��� �
���� ��	
�$� � &��
��� ��
�	��
� $ ��
�	��
�� �����
��� �������#�
�

���� ������$ 
� ��
���� 	������� $ �$
�
��$���� �

�$�� �� ���� ������
�	� 
� �
�$	
�$% 	�������$��

����
���
�$ ����	
 �	������� ���	����� ������$� � ���������� 	�������$% 	
 &��
�$�	� %� �
��
����

�� � �
��
� ��
�
�������� �$
��
�  $���
� !��
�
��� �� 	
��" �$
�$
 �
�������' �$��& 

���
	��"

���� ������� �
��
����� ������$� � ���$�����$ � ��
�����# 	���$'# �����
�$%�

()*


