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The paper gives a short account of some basic properties of Dirichlet-

to-Neumann operators �;@
 including the corresponding semigroups moti-

vated by the Laplacian transport in anisotropic media ( 6= I) and by elliptic

systems with dynamical boundary conditions. To illustrate these notions and

the properties we use the explicitly constructed Lax semigroups. We demon-

strate that for a general smooth bounded convex domain 
 � R
d the cor-

responding Dirichlet-to-Neumann semigroup
�
U(t) := e

�t�;@


	
t�0

in the

Hilbert space L
2(@
) belongs to the trace-norm von Neumann�Schatten

ideal for any t > 0. This means that it is in fact an immediate Gibbs semi-

group. Recently H. Emamirad and I. Laadnani have constructed a Trotter�

Kato�Cherno� product-type approximating family f(V;@
(t=n))
ng

n�1

strongly converging to the semigroup U(t) for n ! 1. We conclude the

paper by discussion of a conjecture about convergence of the Emamirad�

Laadnani approximantes in the trace-norm topology.
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1. Laplacian Transport and Dirichlet-to-Neumann Operators

E x a m p l e 1.1. It is well known (see, e.g., [LeUl]) that the problem of

determining a conductivity matrix �eld (x) = [i;j(x)]
d
i;j=1, for x in a bounded

open domain 
 � R
d , is related to "measuring" the elliptic Dirichlet-to-Neumann
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map for associated conductivity equation. Notice that the solution of this problem

has a lot of practical applications in various domains: geophysics, electrochemistry

etc. It is also an important diagnostic tool in medicine, e.g., in the electrical

impedance tomography ; the tissue in the human body is an example of highly

anisotropic conductor [BaBr].

Under the assumption that there is no sources or sinks of current the potential

v(x); x 2 
; for a given voltage f(!); ! 2 @
; on the (smooth) boundary @
 of


 is a solution of the Dirichlet problem:(
div(rv) = 0 in 
;

vj@
 = f on @
:
(P1)

Then the corresponding to (P1) Dirichlet-to-Neumann map (operator) �;@
 is

de�ned by

�;@
 : f 7! @vf=@� := � �  rvf j@
 : (1.1)

Here � is the unit outer-normal vector to the boundary at ! 2 @
 and the function

u := uf is the solution of the Dirichlet problem (P1).

The Dirichlet-to-Neumann operator (1.1) is also called the voltage-to-current

map, since the function �;@
f gives the induced current �ux trough the boundary

@
. The key (inverse) problem is whether one can determine the conductivity

matrix  by knowing electrical boundary measurements, i.e., the corresponding

Dirichlet-to-Neumann operator? Unfortunately, this operator does not determine

the matrix  uniquely, see e.g. [GrUl] and references there.

E x a m p l e 1.2. The problem of electrical current �ux in the form (P1)

is an example of the so-called Laplacian transport. Besides the voltage-to-current

problem the motivation to study this kind of transport comes for instance from

the transfer across biological membranes, see e.g. [Sap], [GrFiSap].

Let some "species" of concentration C(x), x 2 R
d , di�use in the isotropic

bulk ( = I) from a (distant) source localized on the closed boundary @
0 to-

wards a semipermeable compact interface @
 on which they disappear at a given

rate W . Then the steady concentration �eld (Laplacian transport with a di�usion

coe�cient D) obeys the set of equations8><>:
�C = 0; x 2 
0 n 
;

C(!0 2 @
0) = C0; at the source;

(�D) @�C(!) =W (C(!)� 0); on the interface ! 2 @
:

(P2)

Let C = C0(1 � u). Then �u = 0, x 2 
. If we put � := D=W , then the

boundary conditions on @
 take the form: (I + �@�)u j@
 (!) = 1 j@
 (!), where
(1 j@
)(!) = �@
(!) is a characteristic function of the set @
, and u(!0) = 0,
!0 2 @
0 on the source boundary.
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Consider now the following auxiliary Laplace�Dirichlet problem

�u = 0; x 2 
0 n 
; u j@
 (!) = f(! 2 @
) and u j@
0 (!) = 0; (1.2)

with solution uf . Then similarly to (1.1), with the problem (1.2) we can associate

a Dirihlet-to-Neumann operator

�=I;@
 : f 7! @�uf j@
 (1.3)

with the domain dom(�I;@
), which belongs to a certain Sobolev space (Sect. 2).

The advantage of this approach is that as soon as the operator (1.3) is de�ned

it can be applied for studying the mixed boundary value problem (P2). This

gives in particular the value of the particle �ux due to Laplacian transport across

the membrane @
. Indeed, one obtains that (I + ��I;@
)u j@
= 1 j@
, and that

the local (di�usive) particle �ux is de�ned as:

� j@
:= D C0(@nu) j@
= D C0(�I;@
(I + ��I;@
)
�11) j@
 : (1.4)

Then the corresponding total �ux across the membrane @


� := (�; 1)L2(@
) = D C0(�(I + ��I;@
)
�11; 1)L2(@
) (1.5)

is experimentally measurable macroscopic response of the system expressed via

transport parameters D;C0; � and geometry of @
. Here (�; �)L2(@
) is a scalar

product in the Hilbert space @H := L
2(@
).

The aim of this paper is twofold:

(i) to give a short account of some standard results about Dirichlet-to-Neumann

operators and related Dirichlet-to-Neumann semigroups that solve a certain class

of elliptic systems with dynamical boundary conditions;

(ii) to present some recent results concerning the approximation theory and

the Gibbs character of the Dirichlet-to-Neumann semigroups for compact sets 

with smooth boundaries @
.

To this end in the next Sect. 2 we recall some fundamental properties of

the Dirichlet-to-Neumann operators and semigroups, we illustrate them by a few

elementary examples, including the Lax semigroups [Lax].

In Section 3 we present the strong Emamirad�Laadnani approximations of

the Dirichlet-to-Neumann semigroups inspired by the Cherno� theory and by its

generalizations in [NeZag, CaZag2].

We show in Sect. 4 that for compact sets 
 with smooth boundaries @

the Dirichlet-to-Neumann semigroups are in fact (immediate) Gibbs semigroups

[Zag2].

Some recent results and conjectures about approximations of the Dirichlet-to-

Neumann (Gibbs) semigroups in operator and trace-norm topologies are collected

in the last Sect. 5.
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2. Dirichlet-to-Neumann Operators and Semigroups

2.1. Dirichlet-to-Neumann Operators

Let 
 be an open bounded domain in Rd with a smooth boundary @
. Let 
be a C1(
) matrix-valued function on 
, which we call the Laplacian transport

matrix in domain 
.
We suppose that the matrix-valued function (x) := [i;j(x)]

d
i;j=1 satis�es the

following hypotheses:

(H1) The real coe�cients are symmetric and i;j(x) = j;i(x) 2 C
1(
).

(H2) There exist two constants 0 < c1 � c2 <1 such that for all � 2 R
d we

have

c1k�k
2
�

nX
i;j=1

�i�ji;j(x) � c2k�k
2
: (2.1)

Then the Dirichlet-to-Neumann operator �;@
 associated with the Laplacian

transport in 
 is de�ned as follows.

Let f 2 C(@
), and denote by vf the unique solution (see, e.g., [GiTr,

Th. 6.25]) of the Dirichlet problem(
A;@
 v := div( rv) = 0 in 
;

v j@
= f on @
;
(P1)

in the Banach space X := C(
). Here the operator A;@
 is de�ned on its

maximal domain

dom(A;@
) := fu 2 X : A;@
 u 2 Xg: (2.2)

De�nition 2.1. The Dirichlet-to-Neumann operator is the map

�;@
 : f 7! @vf=@� = � � rvf j@
; (2.3)

with the domain

dom(�;@
) = ff 2 @C(
R) : vf 2 Ker(A;@
) and j(� � rvf j@
)j <1g:

(2.4)

Here � denotes the unit outer-normal vector at ! 2 @
, and vf is the solution of

Dirichlet problem (P1).

The solution vf := L@
f of the problem (P1) is called the -harmonic lifting

of f , where L@
 : C(@
) 7! C
2(
) \ C(
) is called the lifting operator with

domain dom(L@
) = C(@
). If T@
 : C(
) 7! C(@
) denotes the trace operator

on the smooth boundary @
, i.e., v j@
= T@
 v, then [Eng]:

L@
 = (T@
 jKer(A;@
)
)�1 and dom(�;@
) = T@
fKer(A;@
)g: (2.5)
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Remark 2.2. Let @X := C(@
). Then (2.5) implies

T@
L@
 u = u ; u 2 @X and L@
T@
 w = w ; w 2 Ker(A;@
): (2.6)

One also gets that the lifting operator is bounded: L@
 2 L(@X;X), whereas the

Dirichlet-to-Neumann operator (2.3) is obviously not.

Now let H be Hilbert space L2(
) and @H := L
2(@
) denote the boundary

space. In order that the problem (P1) admits a unique solution vf , one has to

assume that f 2 W
1=2
2

(@
), and then vf belongs the Sobolev space W 1

2
(
), see

e.g. [Tay, Ch.7]. So, we can de�ne Dirichlet-to-Neumann operator in the Hilbert

space @H by (2.3) with the domain

dom(�;@
) := ff 2W
1=2
2

(@
) : �;@
f 2 @H = L
2(@
)g: (2.7)

Proposition 2.3. The Dirichlet-to-Neumann operator (2.3) with domain (2.7)

in the Hilbert space @H is unbounded, nonnegative, selfadjoint, �rst-order elliptic

pseudodi�erential operator with compact resolvent.

The complete proof can be found, e.g., in [Tay, Ch. 7], [Tay1]. Therefore, we

give here only some comments on these properties of the Dirichlet-to-Neumann

operator (2.3) in @H = L
2(@
).

Remark 2.4. (a) By virtue of de�nition (2.3) for any f 2W
1=2
2

(@
) one gets

(f;�;@
f)@H =

Z
@


d�(!) vf (!) � � (!)(rvf )(!) (2.8)

=

Z



dx div(vf(x) (rvf)(x)) =

Z



dx (rvf(x) �  rvf)(x)) � 0;

since the matrix  veri�es (H2). Thus, operator �;@
 is nonnegative.

(b) In fact to ensure the existence of the trace T@
(� �r(L@
f)) one has ini-

tially to de�ne the operator �;@
 for f 2W
3=2
2

(@
). Then Dirichlet-to-Neumann

operator is a selfadjoint extension with domain (2.7) and moreover it is a bounded

map �;@
 :W
1=2
2

(@
) 7!W
�1=2
2

(@
).
(c) By (2.8) and since derivatives of the �rst-order are involved in (2.3), one

can conclude that this operator should be elliptic and pseudodi�erential. If (x) =
I, then �I;@
 is, roughly, the operator (��@
)

1=2, where �@
 is the Laplace�

Beltrami operator on @
 with corresponding induced metric [Tay, Ch.7], [Tay1].

(d) Compactness of the imbedding W
1=2
2

(@
) ,! L
2(@
) implies the compact-

ness of the resolvent of �;@
.
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By (a) and (d) the spectrum �(�;@
) of the Dirichlet-to-Neumann operator

is a set of nonnegative increasing eigenvalues f�kg
1

k=1. The rate of increasing is

given by the Weyl asymptotic formula, see, e.g., [Hor, Tay]:

Proposition 2.5. Let �;@
(x; �), for (x; �) 2 T
�
@
, be the symbol of the

�rst-order elliptic pseudodi�erential Dirichlet-to-Neumann operator �;@
. Then

the asymptotic behaviour of the corresponding eigenvalues as k !1 has the form

�k �

�
k

C(@
;�)

�
1=(d�1)

;

where

C(@
;�) :=
1

(2�)d�1

Z
�;@
(x;�)�1

dx d�:

Another important result is due to Hislop and Lutzer [HiLu]. It concerns

a localization (rapid decay) of the -harmonic lifting of the corresponding eigen-

functions.

Proposition 2.6. Let f�kg
1

k=1 be eigenfunctions of the Dirichlet-to-Neumann

operator: �;@
 = �k�k with k�kkL2(@
) = 1. Let v�k := L@
�k be the -harmonic

lifting of �k to 
 corresponding to the problem (P1). Then for any compact C � 

and x 2 C one gets the representation

jv�k(x)j =  (x; p; C)=�k
p (2.9)

with arbitrary large p > 0. Here  (x; p; C) is a decreasing function of the distance

dist(x; @
).

Since by the Weyl asymptotic formula we have �k = O(k1=(d�1)), the decay im-

plied by the estimate (2.9) is algebraic.

Conjecture 2.7. [HiLu]. In fact the order of decay instead of  (x; p; C)=�k
p

is exponential: O(exp[� k dist(C; @
)]).

2.2. Example of a Dirichlet-to-Neumann Operator

To illustrate the results mentioned above we consider a simple example which

will be useful below for contraction of the Lax semigroups.

Consider a homogeneous isotropic case: (x) = I, and let 
 = 
R := fx 2

R
d=3 : kxk < Rg. Then A;@
R = �@
R and for the harmonic lifting of

f(!) =
X
l;m

f
(R)
l;m Yl;m(�; ') 2W

1=2
2

(@
R)
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we obtain

vf (r; �; ') =
X
l;m

�
r

R

�l
f
(R)
l;m Yl;m(�; '); (2.10)

since the spherical functions fYl;mg
1

l=0;jmj�l
form a complete orthonormal basis

in the Hilbert space @H = L
2(@
R; d� sin � d').

De�nition (2.3) and (2.10) imply that nonnegative, selfadjoint, �rst-order

elliptic pseudodi�erential Dirichlet-to-Neumann operator

(�I;@
Rf)(! = (R; �; ')) =
1X
l=0

m=lX
m=�l

�
l

R

�
f
(R)

l;m Yl;m(�; ') (2.11)

has discrete spectrum �(�I;@
R) := f�l;m = l=Rg1
l=0;jmj�l

with spherical eigen-

functions

(�I;@
RYl;m)(R; �; ') =

�
l

R

�
Yl;m(�; ') (2.12)

and multiplicity m. The operator (2.11) is obviously unbounded and it has a com-

pact resolvent.

Remark 2.8. Since by virtue of (2.10) the -harmonic lifting of the eigen-

function Yl;m to the ball 
R is

vYl;m(r; �; ') =
�
r

R

�l
Yl;m(�; ');

one can check the localization (Prop. 2.6) and Conjecture about the exponential

decay explicitly. For distances 0 < dist(x; @
R) = R � r � R, one obtains

jvYl;m(r; �; ')j = O(e�l(R�r)=R).

2.3. Dirichlet-to-Neumann Semigroups on @X

To de�ne the Dirichlet-to-Neumann semigroups on the boundary Banach space

@X = C(@
) we can follow the line of reasoning of [Esc] or [Eng]. To this end

consider in X = C(
) the following elliptic system with the dynamical boundary

conditions 8><>:
div(ru(t; �)) = 0 in (0;1) �
;

@u(t; �)=@t + @u(t; �)=@� = 0 on (0;1) � @
;

u(0; �) = f on @
:

(P2)

Proposition 2.9. The problem (P2) has a unique solution uf (t; x) for any

f 2 C(@
). Its trace on the boundary @
 has the form

uf (t; !) := (T@
uf (t; �))(!) = (U(t)f)(!); (2.13)

where the family of operators fU(t) = e
�t�;@
gt�0 is a C0-semigroup generated

by the Dirichlet-to-Neumann operator of the problem (P1).
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The following key result about the properties of the Dirichlet-to-Neumann

semigroups on the boundary Banach space @X = C(@
) is due to Escher�Engel

[Esc, Eng] and Emamirad�Laadnani [EmLa]:

Proposition 2.10. The semigroup fU(t) = e
�t�;@
gt�0 is analytic, compact,

positive, irreducible and Markov C0-semigroup of contractions on C(@
).

Remark 2.11. The complete proof can be found in the papers quoted above.

So, here we make only some comments and hints concerning Prop. 2.10.

2.4. Dirichlet-to-Neumann Semigroups on @H

The Dirichlet-to-Neumann semigroup fU(t) = e
�t�;@
gt�0 on @H is de�ned

by selfadjoint and nonnegative Dirichlet-to-Neumann generator �;@
 of Prop. 2.3.

Proposition 2.12. The Dirichlet-to-Neumann semigroup fU(t) = e
�t�;@
gt

on the Hilbert space @H is a holomorphic quasisectorial contraction with values

in the trace-class C1(@H) for Re (t) > 0.

Remark 2.13. The �rst part of the statement follows from Prop. 2.3. Since

the generator �;@
 is selfadjoint and nonnegative, the semigroup fU(t)gt is holo-
morphic and quasisectorial contraction for Re (t) > 0, see, e.g., [CaZag1, Zag1].
The compactness of the resolvent of �;@
 implies the compactness of fU(t)gt>0,
but to prove the last part of the statement we need a supplementary argument

about asymptotic behaviour of its eigenvalues given by the Weyl asymptotic for-

mula (Prop. 2.5).

This behaviour of eigenvalues implies the second part of Prop. 2.12:

Lemma 2.14. The Dirichlet-to-Neumann semigroup U(t) has values in the

trace-class C1(@H) for any t > 0.

P r o f. Since the Dirichlet-to-Neumann operator �;@
 is selfadjoint, we

have to prove that

kU(t)k1 =
X
k�1

e�t�k <1 (2.14)

for t > 0. Here k � k1 denotes the norm in the trace-class C1(@H). Then the Weyl

asymptotic formula implies that there exists a bounded M and a function r(k)
such that X

k�1

e�t�k �
X
k�1

expf�t[(k=c)
1

d�1 + r(k)]g

� etM
X
k�1

expf�t(k=c)
1

d�1 g:

Here c := C(@
;�) and the last sum converges for any t > 0, which proves the

equation (2.14).
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2.5. Example: Lax Semigroups

A beautiful example of explicit representation of the Dirichlet-to-Neumann

semigroup (2.13) is due to Lax [Lax, Ch. 36].

Let (x) = I, and 
 = 
R (see Sect. 2.2). Following [Lax] we de�ne the

mapping

K(t) : v(x) 7! v(e�t=R x) for any u 2 C(
R); (2.15)

which is a semigroup for the parameter t � 0 in the Banach space X = C(
R):

(K(�)K(t)v)(x) = v(e��=R e�t=R x) = v(e�(�+t)=R x) ; �; t � 0 ; x 2 
R : (2.16)

Remark 2.15. It is clear that if v(x) is ( = I)-harmonic in C(
R), then the

function: x 7! v(e�t=R x) is also harmonic. Therefore,

uf (t; x) := vf (e
�t=R

x) = (K(t)L@
Rf)(x) = (L@
Rft)(x); x 2 
R; (2.17)

is the harmonic lifting of the function ft(!) := vf (e
�t=R

!) ; ! 2 @
R, where vf
solves the problem (P1) for  = I. Since in the spherical coordinates x = (r; �; ')
one has

@uf (t; x)=@t = �@rvf (e
�t=R

r; �; ')e�t=R (r=R)

and

@uf (t; R; �; ')=@�I = @rvf (e
�t=R

r; �; ')e�t=R;

we get that @uf (t; !)=@t+@uf (t; !)=@�I = 0, i.e., the function (2.17) is a solution

of the problem (P2).

Hence, according to (2.13) and (2.17) the operator family

S(t) := T@
RK(t)L@
R ; t � 0; (2.18)

de�nes the Dirichlet-to-Neumann semigroup corresponding to the problem (P2)

for (x) = I, and 
 = 
R, which is known as the Lax semigroup. By virtue of

(2.17) and (2.18) the action of this semigroup is known explicitly:

(S(t)f)(!) = vf (e
�t=R

!); ! 2 @
R: (2.19)

Notice that the semigroup relation

S(�)S(t) = T@
RK(�)L@
RT@
RK(t)L@
R = S(� + t); (2.20)

follows from the properties of lifting and trace operators (see Remark 2.2), from

identity (2.16) and de�nition (2.18). One �nds the generator �=I;@
R of this

semigroup from the limit

0 = lim
t!0

sup
!2@
R

j
1

t
(f � S(t)f)(!)� (�=I;@
Rf)(!)j (2.21)

= lim
t!0

sup
!2@
R

j
1

t
(vf (R; �; ')� vf (e

�t=R
R; �; '))� (�=I;@
Rf)(R; �; ')j:
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Then the operator

(�=I;@
Rf)(R; �; ') = @rvf (r = R; �; ') (2.22)

for any function f from the domain

dom(�I;@
R) = ff 2 @C(
R) : vf 2 Ker(AI;@
R) and j(@rvf ) j@
R j <1g

(2.23)

is identical to (2.4) for the case  = I and @
 = @
R. Therefore, the gene-

rator (2.22) of the Lax semigroup is the Dirichlet-to-Neumann operator in this

particular case of the Banach space @X = C(@
R).
Similarly, we can consider the Lax semigroup (2.18) in the Hilbert space @H =

L
2(@
R; d� sin � d'). Since the generator of this semigroup is a particular case

of the Dirichlet-to-Neumann operator (2.11), by (2.12) and (2.10) we again obtain

the corresponding action in the explicit form

(S(t)f)(!) (2.24)

= (e�t�I;@
R f)(!)) =

1X
l=0

m=lX
m=�l

1X
s=0

(�t)s

s!

�
l

R

�s
f
(R)
l;m Yl;m(�; ')

=
1X
l=0

m=lX
m=�l

(e� t=R)l f
(R)

l;m Yl;m(�; ') = vf (e
�t=R

!); ! 2 @
R;

which coincides with (2.19).

Notice that for t > 0 the Lax semigroups have their values in the trace-class

C1(@H). This explicitly follows from (2.12), i.e., from the fact that the spectrum

of the semigroup generator �(�I;@
R) := f�l;m = l=Rg1
l=0;jmj�l

is discrete and

TrS(t) =

1X
l=0

(2l + 1) e�tl=R <1: (2.25)

The last is proven in the whole generality in Th. 2.14.

3. Product Approximations of Dirichlet-to-Neumann

Semigroups

3.1. Approximating Family

Since in contrast to the Lax semigroup ( = I) the action of the general

Dirichlet-to-Neumann semigroup for  6= I is known only implicitly (2.13), it is

useful to construct converging approximations, which are simpler for calculations

and analysis.
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One of them is the Emamirad�Laadnani approximation [EmLa], which is mo-

tivated by the explicit action (2.19), (2.24) of the Lax semigroup

(S(t)f)(!) = (T@
RKR(t)L@
Rf)(!) = vf (e
�t=R

!); ! 2 @
R; (3.1)

KR(t) : v(x) 7! v(e�t=R x) for any v 2 C(
R) (orH(
R)):

The suggestion of [EmLa] consists in substituting the family fKR(t)gt�0 by the

�deformed operator family

K;R(t) : v(x) 7! v(e�(t=R) (x)
x) for any v 2 C(
R) (orH(
R)): (3.2)

De�nition 3.1. For the ball 
R the Emamirad�Laadnani approximating

family fV;R(t) := V;@
R(t)gt�0 is de�ned by

(V;R(t)f)(!) := (T@
RK;R(t)L@
Rf)(!) = vf (e
�(t=R) (!)

!); ! 2 @
R: (3.3)

Remark 3.2. (a) Notice that the approximating family (3.3) is not a semigroup

(V;R(t)V;R(s)f)(!) = (T@
RK;R(t)L@
R
ef(s))(!) (3.4)

= v
ef(s)

(e�(t=R) (!)
!) 6= vf (e

�((t+s)=R) (!)
!) = (V;R(t+ s)f)(!):

(b) This family is strongly continuous at t = 0:

lim
t&0

V;R(t)f = f for any f 2 @X (or @H): (3.5)

(c) By de�nition (3.3) this family has the derivative at t = +0:

(@tV;R(t)f)(!) jt=0= ��(!) � (!)(rvf )(!) = �(�;@
Rf)(!); (3.6)

which for any f 2 dom(�;@
R) coincides with the (minus) Dirichlet-to-Neumann

operator (2.3).

3.2. Strong Approximation of the Dirichlet-to-Neumann Semigroups

By virtue of Remark 3.2 the Emamirad�Laadnani approximation family veri-

�es the conditions of the Cherno� approximation theorem ([Che, Th. 1.1]):

Proposition 3.3. Let f�(s)gs�0 be a family of the linear contractions on

a Banach space B and let X0 be the generator of a C0-contraction semigroup.

De�ne X(s) := s
�1(I � �(s)), s > 0. Then for s ! +0 the family fX(s)gs>0

converges strongly in the resolvent sense to the operator X0 if and only if the

sequence f�(t=n)ngn�1, t > 0, converges strongly to e�tX0 as n ! 1 uniformly

on any compact t-intervals in R1
+
.
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Notice that fV;R(t)gt�0 in the Banach space @X is the family of contractions

because of the maximum principle for the -harmonic functions vf . Since the

Dirichlet-to-Neumann operator (2.3) is densely de�ned and closed, Remark 3.2

(c) implies that the family X(s) := s
�1(I � V;R(s)) converges for s ! +0 to

X0 = �;@
R in the strong resolvent sense.

Similar arguments are valid for the case of the Hilbert space @H. By virtue

of Remark 2.4 the Dirichlet-to-Neumann operator �;@
 is nonnegative and self-

adjoint. This implies again that (3.3) is the family of contractions in @H and that

by Remark 3.2 (c) the family X(s) := s
�1(I � V;R(s)) converges for s! +0 to

X0 = �;@
R in the strong resolvent sense.

Resuming the above observations we obtain the strong approximation of the

Dirichlet-to-Neumann semigroup U(t)

Corollary 3.4. [EmLa]

lim
n!1

(V;R(t=n))
n
f = U(t)f; for every f 2 @X or @H; (3.7)

uniformly on any compact t-intervals in (0;1).

The Emamirad�Laadnani approximation theorem (Cor. 3.4) has the following

important extension to more general geometry than the ball [EmLa].

De�nition 3.5. We say that a bounded smooth domain 
 in Rd has the pro-

perty of the interior ball if for any ! 2 @
 there exists a tangent to @
 at ! plane

T!, and such that one can construct a ball tangent to T! at !, which is totally

included in 
.

If 
 has this property, then with any point ! 2 @
, one can associate a unique

point x!, which is the center of the biggest ball B(x!; r!) of radius r! included

in 
. For any 0 < r � r!, we can construct the approximating family Vr(t)
related to the ball B(xr;!; r) := fx 2 
 : jx � xr;!j � rg of radius r, which

is centered on the line perpendicular to T! at the point ! 2 @
, i.e., xr;! =
(r=r!)x! + (1� r=r!)!. Then we de�ne

(V;r(t)f)(!) := T@
 vf

�
xr;! + e�(t=r)(!)(r �!)

�
: (3.8)

Here �! is the outer-normal vector at !, the function vf = L@
f is the -harmonic

lifting of the boundary condition f on @
 , and T@
 is the trace operator

T@
 : H1(
) 3 v 7�! v j@
2 H
1=2(@
): (3.9)

Remark 3.6. Notice that:

(a) since �! = (!�xr;!)=r, one gets (V;r(t = 0)f)(!) := (T@
 vf )(!) = f(!);
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(b) by virtue of (3.8) the strong derivative at t = 0 has the form

(@tV;r(t = 0)f)(!) = �(!)�! � (rvf )(!) = �(�;@
f)(!);

see (3.6).

Proposition 3.7. [EmLa]. Let 
 has the property of interior ball, and let

inf
!2@


fr > 0 : B(x!; r!) � 
g > 0;

sup
!2@


fr > 0 : B(x!; r!) � 
g <1:

For any 0 < s � 1 we de�ne V;sr! , i.e.,

V;sr!f(!) = vf

�
xs;! + e�(t=(sr!))(!)(sr! �!)

�
; (3.10)

where xs;! = sx! + (1� s)!. Then for any 0 < s � 1

lim
n!1

(V;sr!(t=n))
n
f = U(t)f; for every f 2 @X or @H; (3.11)

uniformly on any compact t-intervals in (0;1).

Remark 3.8. By De�nition 3.1 for the ball 
R and the constant matrix-valued

function (x) = I one obviously has V=I;R(t) = S(t) = U(t). On the other

hand, for a general smooth domain 
 with geometry verifying the conditions of

Prop. 3.7, one is obliged to consider the family of approximations V;sr! even for

the homogeneous case  = I.

4. Dirichlet-to-Neumann Gibbs Semigroups

4.1. Gibbs Semigroups

Since by Lemma 2.14 for any Dirichlet-to-Neumann semigroup we obtain

U(t > 0) 2 C1(@H), then one can check that it is in fact a Gibbs semigroup.

To this end we recall the main de�nitions and some results that we need for the

proof (see, e.g., [Zag2]).

Let H be a separable, in�nite-dimensional complex Hilbert space. We denote

by L(H) the algebra of all bounded operators on H and by C1(H) � L(H) the
subspace of all compact operators. The C1(H) is a �-ideal in L(H), that is: if A 2

C1(H), then A� 2 C1(H) and if A 2 C1(H) and B 2 L(H), then AB 2 C1(H)
and BA 2 C1(H). We say that a compact operator A 2 C1(H) belongs to the

von Neumann�Schatten �-ideal Cp(H) for a certain 1 � p <1, if the norm

kAkp :=

0@X
n�1

sn(A)
p

1A1=p

<1; (4.1)
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where sn(A) :=
p
�n(A�A) are the singular values of A de�ned by the eigenvalues

f�n(�)gn�1 of nonnegative selfadjoint operator A�A. Since the norm kAkp is

a nonincreasing function of p > 0, one gets

kAk1 � kAkp � kAkq > kAk1(= kAk) (4.2)

for 1 � p � q <1. Then for the von Neumann�Schatten ideals this implies the

inclusions

C1(H) � Cp(H) � Cq(H) � C1(H): (4.3)

Let p�1 = q
�1+r�1. Then, by virtue of the H�older inequality applied to (4.1),

one gets kABkp � kAkqkBkr, if A 2 Cq(H) and B 2 Cr(H). Consequently, we

obtain

Lemma 4.1. The operator A belongs to the trace-class C1(H) if and only if

there exist two (Hilbert�Schmidt) operators K1, K2 2 C2(H), such that A =
K1 K2. Similarly, if K 2 Cp(H), then K

p 2 C1(H).
Let K be an integral operator in the Hilbert space L2(D;�). It is a Hilbert�

Schmidt operator if and only if its kernel k(x; y) 2 L
2(D �D;� � �), and then

one gets the estimate kKk2 � kkkL2(D�D;���).

The proof is quite straightforward and can be found in, e.g., [Kat, Sim].

De�nition 4.2. [Zag2]. Let fG(t)gt�0 be a C0-semigroup on H with fG(t)gt>0
� C1(H). It is called the immediate Gibbs semigroup if G(t) 2 C1(H) for any

t > 0, and it is called the eventually Gibbs semigroup if there is t0 > 0 such that

G(t) 2 C1(H) for any t � t0.

Remark 4.3. (a) Notice that by Lem. 4.1 any C0-semigroup such that one has

fG(t)gt>0 � Cp(H) for some p <1 is an immediate Gibbs semigroup.

(b) Since compact C0-semigroups are normcontinuous for any t > 0,
the immediate Gibbs semigroups are k � k1-norm continuous for t > 0.

For more details on the Gibbs semigroups properties we refer to the book

[Zag2].

Corollary 4.4. By virtue of Prop. 2.12, Def. 4.2 and Remark 4.3 the

Dirichlet-to-Neumann semigroup fU(t) = e
�t�;@
gt on the Hilbert space @H

is a k � k1-holomorphic quasisectorial immediate Gibbs for Re (t) > 0.

4.2. Compact and Tr-norm Approximating Family

Proposition 4.5. [EmLa] For the ball 
R the Emamirad�Laadnani appro-

ximating family fV;R(t)gt�0 consists of compact operators on the Banach space

@X = C(@
R) for any t > 0.

564 Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 4



From Laplacian Transport to Dirichlet-to-Neumann (Gibbs) Semigroups

The proof follows from Def. 3.1 by Arzela�Ascoli criterium of compactness,

since representation (3.3) and conditions on  imply the uniform bound and

equicontinuity of the sets fV;R(t)(@X)gt for any t > 0.
For the case of Hilbert space we recall the following useful condition for cha-

racterization of the Tr-class operators [Zag2].

Proposition 4.6. If A 2 L(H) and
P
1

j=1 kAejk < 1 for an orthonormal

basis fejg
1

j=1 of H, then A 2 C1(H).

Theorem 4.7. On the Hilbert space @H = L
2(@
R) the approximating family

fV;R(t)gt>0 � C1(@H).

P r o f. Since the eigenfunctions f�kg
1

k=1 of the selfadjoint Dirichlet-to-

Neumann operator �;@
R form an orthonormal basis in L
2(@
R), we apply

Prop. 4.6 for this basis.

Let @
t;;R := fx!(t) := e
�(t=R) (!)

!g!2@
R . By representation (3.3) and

by estimate (2.9) one obtains

kV;R(t)�kk
2 =

Z
@
R

d�(!)jv�k (x!)j
2

� j@
Rj sup
!2@
R

 (x!; p; @
t;;R)
2
=k

2p=(d�1)
: (4.4)

Then, by hypothesis (H2) on the matrix  for the norm of the vector x! in R
d

one gets the estimate

kx!k � ke
�(t=R) 

k R � e
�c1(t=R) R:

Hence, for any t > 0 the dist(x!; @
R) � (1 � e
�c1(t=R))R > 0, which for the

estimates in (2.9) and in (4.4) implies that

0 < inf
!2@
R

 (x!; p; @
t>0;;R) � sup
!2@
R

 (x!; p; @
t>0;;R):

Then, for 2p=(d � 1) > 1 the estimate (4.4) ensures the convergence of the series

in the inequality

kV;R(t)k1 �

1X
k=1

kV;R(t)�kk;

which �nishes the proof.
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5. Concluding Remarks: Trace-Norm Approximations

The strong Emamirad�Laadnani approximation theorem (Cor. 3.4) and the re-

sults of Sect. 4.2 proving that Dirichlet-to-Neumann semigroup U(t) and appro-

ximants V;@
(t=n)
n belong to C1(@H), for all n � 1 and t > 0, motivate the

following conjecture:

Conjecture 5.1. [EmZa]. The Emamirad�Laadnani approximation theorem

is valid in the Tr-norm topology of C1(@H).

Remark 5.2. Notice that the strong approximation of the Dirichlet-to-

Neumann Gibbs semigroup U(t) by the Tr-class family (V;@
(t=n))
n does not lift

automatically the topology of convergence to, e.g., operator-norm approximation

[Zag2].

Therefore, to prove Conjecture 5.1 one needs additional arguments similar

to those of [CaZag2]. To this end we put the di�erence in question �n(t) :=
(V;@
(t=n))

n � U(t) in the following form:

�n(t) = f(V;@
(t=n))
kn � (U(t=n))kng(V;R(t=n))

mn (5.1)

+ (U(t=n))knf(V;@
(t=n))
mn � (U(t=n))mng:

Here for any n > 1, we de�ne two variables kn = [n=2] and mn = [(n + 1)=2],
where [x] denotes the integer part of x � 0, i.e., n = kn + mn. Then, for the

estimate of �n(t) in the C1(@H)-topology one gets

k�n(t)k1 � k(V;@
(t=n))
kn � (U(t=n))knk k(V;@
(t=n))

mnk1 (5.2)

+ k(U(t=n))knk1 k(V;@
(t=n))
mn � (U(t=n))mnk:

In spite of Remark 5.2, the explicit representation of approximants

f(V;@
(t=n))
ng

n�1
allows to prove the corresponding operator-norm estimate.

Theorem 5.3. [EmZa]. Let V;@
R(t) be de�ned by (3.3). Then one gets the

estimate

k(V;@
R(t=n))
n
� U(t)k � "(n); lim

n!1
"(n) = 0; (5.3)

uniformly for any t-compact in R1
+
.

To establish (5.3) we use the "telescopic" representation

(V;@
R(t=n))
n
� U(t) (5.4)

=

n�1X
s=0

(V;@
R(t=n))
(n�s�1)

fV;@
R(t=n)� U(t=n)g(U(t=n))s;

and the operator-norm estimate of fV;@
R(t=n)� U(t=n)g for large n.
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The next auxiliary result establishes a relation between the family of operators

V;@
R(t) and the Dirichlet-to-Neumann semigroup U(t).

Lemma 5.4. [EmZa]. There exists a bounded operator W;@
R(t) on @H such

that

V;@
R(t) =W;@
R(t)U(t) (5.5)

for any t � 0.

Now we return to the main inequality (5.2). To estimate the �rst term in

the right-hand side of (5.2) we need Th. 5.3 and the Ginibre�Gruber inequality

[CaZag2]

k(V;@
(t=n))
mnk1 � C U(mnt=n):

To establish the latter we use representation (5.5) given by Lem. 5.4.

To estimate the second term one needs only the result of Th. 5.3. All together

this gives a proof of Conjecture 5.1 at least for the ball 
R.
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